sched_fair.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. /**************************************************************
  68. * CFS operations on generic schedulable entities:
  69. */
  70. static inline struct task_struct *task_of(struct sched_entity *se)
  71. {
  72. return container_of(se, struct task_struct, se);
  73. }
  74. #ifdef CONFIG_FAIR_GROUP_SCHED
  75. /* cpu runqueue to which this cfs_rq is attached */
  76. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  77. {
  78. return cfs_rq->rq;
  79. }
  80. /* An entity is a task if it doesn't "own" a runqueue */
  81. #define entity_is_task(se) (!se->my_q)
  82. /* Walk up scheduling entities hierarchy */
  83. #define for_each_sched_entity(se) \
  84. for (; se; se = se->parent)
  85. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  86. {
  87. return p->se.cfs_rq;
  88. }
  89. /* runqueue on which this entity is (to be) queued */
  90. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  91. {
  92. return se->cfs_rq;
  93. }
  94. /* runqueue "owned" by this group */
  95. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  96. {
  97. return grp->my_q;
  98. }
  99. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  100. * another cpu ('this_cpu')
  101. */
  102. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  103. {
  104. return cfs_rq->tg->cfs_rq[this_cpu];
  105. }
  106. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  107. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  108. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  109. /* Do the two (enqueued) entities belong to the same group ? */
  110. static inline int
  111. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  112. {
  113. if (se->cfs_rq == pse->cfs_rq)
  114. return 1;
  115. return 0;
  116. }
  117. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  118. {
  119. return se->parent;
  120. }
  121. #else /* CONFIG_FAIR_GROUP_SCHED */
  122. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  123. {
  124. return container_of(cfs_rq, struct rq, cfs);
  125. }
  126. #define entity_is_task(se) 1
  127. #define for_each_sched_entity(se) \
  128. for (; se; se = NULL)
  129. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  130. {
  131. return &task_rq(p)->cfs;
  132. }
  133. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  134. {
  135. struct task_struct *p = task_of(se);
  136. struct rq *rq = task_rq(p);
  137. return &rq->cfs;
  138. }
  139. /* runqueue "owned" by this group */
  140. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  141. {
  142. return NULL;
  143. }
  144. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  145. {
  146. return &cpu_rq(this_cpu)->cfs;
  147. }
  148. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  149. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  150. static inline int
  151. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  152. {
  153. return 1;
  154. }
  155. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  156. {
  157. return NULL;
  158. }
  159. #endif /* CONFIG_FAIR_GROUP_SCHED */
  160. /**************************************************************
  161. * Scheduling class tree data structure manipulation methods:
  162. */
  163. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  164. {
  165. s64 delta = (s64)(vruntime - min_vruntime);
  166. if (delta > 0)
  167. min_vruntime = vruntime;
  168. return min_vruntime;
  169. }
  170. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  171. {
  172. s64 delta = (s64)(vruntime - min_vruntime);
  173. if (delta < 0)
  174. min_vruntime = vruntime;
  175. return min_vruntime;
  176. }
  177. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  178. {
  179. return se->vruntime - cfs_rq->min_vruntime;
  180. }
  181. /*
  182. * Enqueue an entity into the rb-tree:
  183. */
  184. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  185. {
  186. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  187. struct rb_node *parent = NULL;
  188. struct sched_entity *entry;
  189. s64 key = entity_key(cfs_rq, se);
  190. int leftmost = 1;
  191. /*
  192. * Find the right place in the rbtree:
  193. */
  194. while (*link) {
  195. parent = *link;
  196. entry = rb_entry(parent, struct sched_entity, run_node);
  197. /*
  198. * We dont care about collisions. Nodes with
  199. * the same key stay together.
  200. */
  201. if (key < entity_key(cfs_rq, entry)) {
  202. link = &parent->rb_left;
  203. } else {
  204. link = &parent->rb_right;
  205. leftmost = 0;
  206. }
  207. }
  208. /*
  209. * Maintain a cache of leftmost tree entries (it is frequently
  210. * used):
  211. */
  212. if (leftmost) {
  213. cfs_rq->rb_leftmost = &se->run_node;
  214. /*
  215. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  216. * value tracking the leftmost vruntime in the tree.
  217. */
  218. cfs_rq->min_vruntime =
  219. max_vruntime(cfs_rq->min_vruntime, se->vruntime);
  220. }
  221. rb_link_node(&se->run_node, parent, link);
  222. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  223. }
  224. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  225. {
  226. if (cfs_rq->rb_leftmost == &se->run_node) {
  227. struct rb_node *next_node;
  228. struct sched_entity *next;
  229. next_node = rb_next(&se->run_node);
  230. cfs_rq->rb_leftmost = next_node;
  231. if (next_node) {
  232. next = rb_entry(next_node,
  233. struct sched_entity, run_node);
  234. cfs_rq->min_vruntime =
  235. max_vruntime(cfs_rq->min_vruntime,
  236. next->vruntime);
  237. }
  238. }
  239. if (cfs_rq->next == se)
  240. cfs_rq->next = NULL;
  241. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  242. }
  243. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  244. {
  245. return cfs_rq->rb_leftmost;
  246. }
  247. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  248. {
  249. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  250. }
  251. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  252. {
  253. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  254. if (!last)
  255. return NULL;
  256. return rb_entry(last, struct sched_entity, run_node);
  257. }
  258. /**************************************************************
  259. * Scheduling class statistics methods:
  260. */
  261. #ifdef CONFIG_SCHED_DEBUG
  262. int sched_nr_latency_handler(struct ctl_table *table, int write,
  263. struct file *filp, void __user *buffer, size_t *lenp,
  264. loff_t *ppos)
  265. {
  266. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  267. if (ret || !write)
  268. return ret;
  269. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  270. sysctl_sched_min_granularity);
  271. return 0;
  272. }
  273. #endif
  274. /*
  275. * delta *= w / rw
  276. */
  277. static inline unsigned long
  278. calc_delta_weight(unsigned long delta, struct sched_entity *se)
  279. {
  280. for_each_sched_entity(se) {
  281. delta = calc_delta_mine(delta,
  282. se->load.weight, &cfs_rq_of(se)->load);
  283. }
  284. return delta;
  285. }
  286. /*
  287. * delta *= rw / w
  288. */
  289. static inline unsigned long
  290. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  291. {
  292. for_each_sched_entity(se) {
  293. delta = calc_delta_mine(delta,
  294. cfs_rq_of(se)->load.weight, &se->load);
  295. }
  296. return delta;
  297. }
  298. /*
  299. * The idea is to set a period in which each task runs once.
  300. *
  301. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  302. * this period because otherwise the slices get too small.
  303. *
  304. * p = (nr <= nl) ? l : l*nr/nl
  305. */
  306. static u64 __sched_period(unsigned long nr_running)
  307. {
  308. u64 period = sysctl_sched_latency;
  309. unsigned long nr_latency = sched_nr_latency;
  310. if (unlikely(nr_running > nr_latency)) {
  311. period = sysctl_sched_min_granularity;
  312. period *= nr_running;
  313. }
  314. return period;
  315. }
  316. /*
  317. * We calculate the wall-time slice from the period by taking a part
  318. * proportional to the weight.
  319. *
  320. * s = p*w/rw
  321. */
  322. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  323. {
  324. return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
  325. }
  326. /*
  327. * We calculate the vruntime slice of a to be inserted task
  328. *
  329. * vs = s*rw/w = p
  330. */
  331. static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
  332. {
  333. unsigned long nr_running = cfs_rq->nr_running;
  334. if (!se->on_rq)
  335. nr_running++;
  336. return __sched_period(nr_running);
  337. }
  338. /*
  339. * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
  340. * that it favours >=0 over <0.
  341. *
  342. * -20 |
  343. * |
  344. * 0 --------+-------
  345. * .'
  346. * 19 .'
  347. *
  348. */
  349. static unsigned long
  350. calc_delta_asym(unsigned long delta, struct sched_entity *se)
  351. {
  352. struct load_weight lw = {
  353. .weight = NICE_0_LOAD,
  354. .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
  355. };
  356. for_each_sched_entity(se) {
  357. struct load_weight *se_lw = &se->load;
  358. if (se->load.weight < NICE_0_LOAD)
  359. se_lw = &lw;
  360. delta = calc_delta_mine(delta,
  361. cfs_rq_of(se)->load.weight, se_lw);
  362. }
  363. return delta;
  364. }
  365. /*
  366. * Update the current task's runtime statistics. Skip current tasks that
  367. * are not in our scheduling class.
  368. */
  369. static inline void
  370. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  371. unsigned long delta_exec)
  372. {
  373. unsigned long delta_exec_weighted;
  374. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  375. curr->sum_exec_runtime += delta_exec;
  376. schedstat_add(cfs_rq, exec_clock, delta_exec);
  377. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  378. curr->vruntime += delta_exec_weighted;
  379. }
  380. static void update_curr(struct cfs_rq *cfs_rq)
  381. {
  382. struct sched_entity *curr = cfs_rq->curr;
  383. u64 now = rq_of(cfs_rq)->clock;
  384. unsigned long delta_exec;
  385. if (unlikely(!curr))
  386. return;
  387. /*
  388. * Get the amount of time the current task was running
  389. * since the last time we changed load (this cannot
  390. * overflow on 32 bits):
  391. */
  392. delta_exec = (unsigned long)(now - curr->exec_start);
  393. __update_curr(cfs_rq, curr, delta_exec);
  394. curr->exec_start = now;
  395. if (entity_is_task(curr)) {
  396. struct task_struct *curtask = task_of(curr);
  397. cpuacct_charge(curtask, delta_exec);
  398. }
  399. }
  400. static inline void
  401. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  402. {
  403. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  404. }
  405. /*
  406. * Task is being enqueued - update stats:
  407. */
  408. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  409. {
  410. /*
  411. * Are we enqueueing a waiting task? (for current tasks
  412. * a dequeue/enqueue event is a NOP)
  413. */
  414. if (se != cfs_rq->curr)
  415. update_stats_wait_start(cfs_rq, se);
  416. }
  417. static void
  418. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. schedstat_set(se->wait_max, max(se->wait_max,
  421. rq_of(cfs_rq)->clock - se->wait_start));
  422. schedstat_set(se->wait_count, se->wait_count + 1);
  423. schedstat_set(se->wait_sum, se->wait_sum +
  424. rq_of(cfs_rq)->clock - se->wait_start);
  425. schedstat_set(se->wait_start, 0);
  426. }
  427. static inline void
  428. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  429. {
  430. /*
  431. * Mark the end of the wait period if dequeueing a
  432. * waiting task:
  433. */
  434. if (se != cfs_rq->curr)
  435. update_stats_wait_end(cfs_rq, se);
  436. }
  437. /*
  438. * We are picking a new current task - update its stats:
  439. */
  440. static inline void
  441. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  442. {
  443. /*
  444. * We are starting a new run period:
  445. */
  446. se->exec_start = rq_of(cfs_rq)->clock;
  447. }
  448. /**************************************************
  449. * Scheduling class queueing methods:
  450. */
  451. static void
  452. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  453. {
  454. update_load_add(&cfs_rq->load, se->load.weight);
  455. cfs_rq->nr_running++;
  456. se->on_rq = 1;
  457. list_add(&se->group_node, &cfs_rq->tasks);
  458. }
  459. static void
  460. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  461. {
  462. update_load_sub(&cfs_rq->load, se->load.weight);
  463. cfs_rq->nr_running--;
  464. se->on_rq = 0;
  465. list_del_init(&se->group_node);
  466. }
  467. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  468. {
  469. #ifdef CONFIG_SCHEDSTATS
  470. if (se->sleep_start) {
  471. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  472. struct task_struct *tsk = task_of(se);
  473. if ((s64)delta < 0)
  474. delta = 0;
  475. if (unlikely(delta > se->sleep_max))
  476. se->sleep_max = delta;
  477. se->sleep_start = 0;
  478. se->sum_sleep_runtime += delta;
  479. account_scheduler_latency(tsk, delta >> 10, 1);
  480. }
  481. if (se->block_start) {
  482. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  483. struct task_struct *tsk = task_of(se);
  484. if ((s64)delta < 0)
  485. delta = 0;
  486. if (unlikely(delta > se->block_max))
  487. se->block_max = delta;
  488. se->block_start = 0;
  489. se->sum_sleep_runtime += delta;
  490. /*
  491. * Blocking time is in units of nanosecs, so shift by 20 to
  492. * get a milliseconds-range estimation of the amount of
  493. * time that the task spent sleeping:
  494. */
  495. if (unlikely(prof_on == SLEEP_PROFILING)) {
  496. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  497. delta >> 20);
  498. }
  499. account_scheduler_latency(tsk, delta >> 10, 0);
  500. }
  501. #endif
  502. }
  503. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  504. {
  505. #ifdef CONFIG_SCHED_DEBUG
  506. s64 d = se->vruntime - cfs_rq->min_vruntime;
  507. if (d < 0)
  508. d = -d;
  509. if (d > 3*sysctl_sched_latency)
  510. schedstat_inc(cfs_rq, nr_spread_over);
  511. #endif
  512. }
  513. static void
  514. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  515. {
  516. u64 vruntime;
  517. if (first_fair(cfs_rq)) {
  518. vruntime = min_vruntime(cfs_rq->min_vruntime,
  519. __pick_next_entity(cfs_rq)->vruntime);
  520. } else
  521. vruntime = cfs_rq->min_vruntime;
  522. /*
  523. * The 'current' period is already promised to the current tasks,
  524. * however the extra weight of the new task will slow them down a
  525. * little, place the new task so that it fits in the slot that
  526. * stays open at the end.
  527. */
  528. if (initial && sched_feat(START_DEBIT))
  529. vruntime += sched_vslice_add(cfs_rq, se);
  530. if (!initial) {
  531. /* sleeps upto a single latency don't count. */
  532. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  533. unsigned long thresh = sysctl_sched_latency;
  534. /*
  535. * convert the sleeper threshold into virtual time
  536. */
  537. if (sched_feat(NORMALIZED_SLEEPER))
  538. thresh = calc_delta_fair(thresh, se);
  539. vruntime -= thresh;
  540. }
  541. /* ensure we never gain time by being placed backwards. */
  542. vruntime = max_vruntime(se->vruntime, vruntime);
  543. }
  544. se->vruntime = vruntime;
  545. }
  546. static void
  547. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  548. {
  549. /*
  550. * Update run-time statistics of the 'current'.
  551. */
  552. update_curr(cfs_rq);
  553. account_entity_enqueue(cfs_rq, se);
  554. if (wakeup) {
  555. place_entity(cfs_rq, se, 0);
  556. enqueue_sleeper(cfs_rq, se);
  557. }
  558. update_stats_enqueue(cfs_rq, se);
  559. check_spread(cfs_rq, se);
  560. if (se != cfs_rq->curr)
  561. __enqueue_entity(cfs_rq, se);
  562. }
  563. static void update_avg(u64 *avg, u64 sample)
  564. {
  565. s64 diff = sample - *avg;
  566. *avg += diff >> 3;
  567. }
  568. static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
  569. {
  570. if (!se->last_wakeup)
  571. return;
  572. update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
  573. se->last_wakeup = 0;
  574. }
  575. static void
  576. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  577. {
  578. /*
  579. * Update run-time statistics of the 'current'.
  580. */
  581. update_curr(cfs_rq);
  582. update_stats_dequeue(cfs_rq, se);
  583. if (sleep) {
  584. update_avg_stats(cfs_rq, se);
  585. #ifdef CONFIG_SCHEDSTATS
  586. if (entity_is_task(se)) {
  587. struct task_struct *tsk = task_of(se);
  588. if (tsk->state & TASK_INTERRUPTIBLE)
  589. se->sleep_start = rq_of(cfs_rq)->clock;
  590. if (tsk->state & TASK_UNINTERRUPTIBLE)
  591. se->block_start = rq_of(cfs_rq)->clock;
  592. }
  593. #endif
  594. }
  595. if (se != cfs_rq->curr)
  596. __dequeue_entity(cfs_rq, se);
  597. account_entity_dequeue(cfs_rq, se);
  598. }
  599. /*
  600. * Preempt the current task with a newly woken task if needed:
  601. */
  602. static void
  603. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  604. {
  605. unsigned long ideal_runtime, delta_exec;
  606. ideal_runtime = sched_slice(cfs_rq, curr);
  607. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  608. if (delta_exec > ideal_runtime)
  609. resched_task(rq_of(cfs_rq)->curr);
  610. }
  611. static void
  612. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  613. {
  614. /* 'current' is not kept within the tree. */
  615. if (se->on_rq) {
  616. /*
  617. * Any task has to be enqueued before it get to execute on
  618. * a CPU. So account for the time it spent waiting on the
  619. * runqueue.
  620. */
  621. update_stats_wait_end(cfs_rq, se);
  622. __dequeue_entity(cfs_rq, se);
  623. }
  624. update_stats_curr_start(cfs_rq, se);
  625. cfs_rq->curr = se;
  626. #ifdef CONFIG_SCHEDSTATS
  627. /*
  628. * Track our maximum slice length, if the CPU's load is at
  629. * least twice that of our own weight (i.e. dont track it
  630. * when there are only lesser-weight tasks around):
  631. */
  632. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  633. se->slice_max = max(se->slice_max,
  634. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  635. }
  636. #endif
  637. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  638. }
  639. static int
  640. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  641. static struct sched_entity *
  642. pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
  643. {
  644. if (!cfs_rq->next)
  645. return se;
  646. if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
  647. return se;
  648. return cfs_rq->next;
  649. }
  650. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  651. {
  652. struct sched_entity *se = NULL;
  653. if (first_fair(cfs_rq)) {
  654. se = __pick_next_entity(cfs_rq);
  655. se = pick_next(cfs_rq, se);
  656. set_next_entity(cfs_rq, se);
  657. }
  658. return se;
  659. }
  660. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  661. {
  662. /*
  663. * If still on the runqueue then deactivate_task()
  664. * was not called and update_curr() has to be done:
  665. */
  666. if (prev->on_rq)
  667. update_curr(cfs_rq);
  668. check_spread(cfs_rq, prev);
  669. if (prev->on_rq) {
  670. update_stats_wait_start(cfs_rq, prev);
  671. /* Put 'current' back into the tree. */
  672. __enqueue_entity(cfs_rq, prev);
  673. }
  674. cfs_rq->curr = NULL;
  675. }
  676. static void
  677. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  678. {
  679. /*
  680. * Update run-time statistics of the 'current'.
  681. */
  682. update_curr(cfs_rq);
  683. #ifdef CONFIG_SCHED_HRTICK
  684. /*
  685. * queued ticks are scheduled to match the slice, so don't bother
  686. * validating it and just reschedule.
  687. */
  688. if (queued) {
  689. resched_task(rq_of(cfs_rq)->curr);
  690. return;
  691. }
  692. /*
  693. * don't let the period tick interfere with the hrtick preemption
  694. */
  695. if (!sched_feat(DOUBLE_TICK) &&
  696. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  697. return;
  698. #endif
  699. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  700. check_preempt_tick(cfs_rq, curr);
  701. }
  702. /**************************************************
  703. * CFS operations on tasks:
  704. */
  705. #ifdef CONFIG_SCHED_HRTICK
  706. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  707. {
  708. int requeue = rq->curr == p;
  709. struct sched_entity *se = &p->se;
  710. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  711. WARN_ON(task_rq(p) != rq);
  712. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  713. u64 slice = sched_slice(cfs_rq, se);
  714. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  715. s64 delta = slice - ran;
  716. if (delta < 0) {
  717. if (rq->curr == p)
  718. resched_task(p);
  719. return;
  720. }
  721. /*
  722. * Don't schedule slices shorter than 10000ns, that just
  723. * doesn't make sense. Rely on vruntime for fairness.
  724. */
  725. if (!requeue)
  726. delta = max(10000LL, delta);
  727. hrtick_start(rq, delta, requeue);
  728. }
  729. }
  730. #else
  731. static inline void
  732. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  733. {
  734. }
  735. #endif
  736. /*
  737. * The enqueue_task method is called before nr_running is
  738. * increased. Here we update the fair scheduling stats and
  739. * then put the task into the rbtree:
  740. */
  741. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  742. {
  743. struct cfs_rq *cfs_rq;
  744. struct sched_entity *se = &p->se;
  745. for_each_sched_entity(se) {
  746. if (se->on_rq)
  747. break;
  748. cfs_rq = cfs_rq_of(se);
  749. enqueue_entity(cfs_rq, se, wakeup);
  750. wakeup = 1;
  751. }
  752. hrtick_start_fair(rq, rq->curr);
  753. }
  754. /*
  755. * The dequeue_task method is called before nr_running is
  756. * decreased. We remove the task from the rbtree and
  757. * update the fair scheduling stats:
  758. */
  759. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  760. {
  761. struct cfs_rq *cfs_rq;
  762. struct sched_entity *se = &p->se;
  763. for_each_sched_entity(se) {
  764. cfs_rq = cfs_rq_of(se);
  765. dequeue_entity(cfs_rq, se, sleep);
  766. /* Don't dequeue parent if it has other entities besides us */
  767. if (cfs_rq->load.weight)
  768. break;
  769. sleep = 1;
  770. }
  771. hrtick_start_fair(rq, rq->curr);
  772. }
  773. /*
  774. * sched_yield() support is very simple - we dequeue and enqueue.
  775. *
  776. * If compat_yield is turned on then we requeue to the end of the tree.
  777. */
  778. static void yield_task_fair(struct rq *rq)
  779. {
  780. struct task_struct *curr = rq->curr;
  781. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  782. struct sched_entity *rightmost, *se = &curr->se;
  783. /*
  784. * Are we the only task in the tree?
  785. */
  786. if (unlikely(cfs_rq->nr_running == 1))
  787. return;
  788. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  789. update_rq_clock(rq);
  790. /*
  791. * Update run-time statistics of the 'current'.
  792. */
  793. update_curr(cfs_rq);
  794. return;
  795. }
  796. /*
  797. * Find the rightmost entry in the rbtree:
  798. */
  799. rightmost = __pick_last_entity(cfs_rq);
  800. /*
  801. * Already in the rightmost position?
  802. */
  803. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  804. return;
  805. /*
  806. * Minimally necessary key value to be last in the tree:
  807. * Upon rescheduling, sched_class::put_prev_task() will place
  808. * 'current' within the tree based on its new key value.
  809. */
  810. se->vruntime = rightmost->vruntime + 1;
  811. }
  812. /*
  813. * wake_idle() will wake a task on an idle cpu if task->cpu is
  814. * not idle and an idle cpu is available. The span of cpus to
  815. * search starts with cpus closest then further out as needed,
  816. * so we always favor a closer, idle cpu.
  817. *
  818. * Returns the CPU we should wake onto.
  819. */
  820. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  821. static int wake_idle(int cpu, struct task_struct *p)
  822. {
  823. cpumask_t tmp;
  824. struct sched_domain *sd;
  825. int i;
  826. /*
  827. * If it is idle, then it is the best cpu to run this task.
  828. *
  829. * This cpu is also the best, if it has more than one task already.
  830. * Siblings must be also busy(in most cases) as they didn't already
  831. * pickup the extra load from this cpu and hence we need not check
  832. * sibling runqueue info. This will avoid the checks and cache miss
  833. * penalities associated with that.
  834. */
  835. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  836. return cpu;
  837. for_each_domain(cpu, sd) {
  838. if ((sd->flags & SD_WAKE_IDLE)
  839. || ((sd->flags & SD_WAKE_IDLE_FAR)
  840. && !task_hot(p, task_rq(p)->clock, sd))) {
  841. cpus_and(tmp, sd->span, p->cpus_allowed);
  842. for_each_cpu_mask(i, tmp) {
  843. if (idle_cpu(i)) {
  844. if (i != task_cpu(p)) {
  845. schedstat_inc(p,
  846. se.nr_wakeups_idle);
  847. }
  848. return i;
  849. }
  850. }
  851. } else {
  852. break;
  853. }
  854. }
  855. return cpu;
  856. }
  857. #else
  858. static inline int wake_idle(int cpu, struct task_struct *p)
  859. {
  860. return cpu;
  861. }
  862. #endif
  863. #ifdef CONFIG_SMP
  864. static const struct sched_class fair_sched_class;
  865. static int
  866. wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
  867. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  868. int idx, unsigned long load, unsigned long this_load,
  869. unsigned int imbalance)
  870. {
  871. struct task_struct *curr = this_rq->curr;
  872. unsigned long tl = this_load;
  873. unsigned long tl_per_task;
  874. int balanced;
  875. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  876. return 0;
  877. /*
  878. * If sync wakeup then subtract the (maximum possible)
  879. * effect of the currently running task from the load
  880. * of the current CPU:
  881. */
  882. if (sync)
  883. tl -= current->se.load.weight;
  884. balanced = 100*(tl + p->se.load.weight) <= imbalance*load;
  885. /*
  886. * If the currently running task will sleep within
  887. * a reasonable amount of time then attract this newly
  888. * woken task:
  889. */
  890. if (sync && balanced && curr->sched_class == &fair_sched_class) {
  891. if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  892. p->se.avg_overlap < sysctl_sched_migration_cost)
  893. return 1;
  894. }
  895. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  896. tl_per_task = cpu_avg_load_per_task(this_cpu);
  897. if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
  898. balanced) {
  899. /*
  900. * This domain has SD_WAKE_AFFINE and
  901. * p is cache cold in this domain, and
  902. * there is no bad imbalance.
  903. */
  904. schedstat_inc(this_sd, ttwu_move_affine);
  905. schedstat_inc(p, se.nr_wakeups_affine);
  906. return 1;
  907. }
  908. return 0;
  909. }
  910. static int select_task_rq_fair(struct task_struct *p, int sync)
  911. {
  912. struct sched_domain *sd, *this_sd = NULL;
  913. int prev_cpu, this_cpu, new_cpu;
  914. unsigned long load, this_load;
  915. struct rq *rq, *this_rq;
  916. unsigned int imbalance;
  917. int idx;
  918. prev_cpu = task_cpu(p);
  919. rq = task_rq(p);
  920. this_cpu = smp_processor_id();
  921. this_rq = cpu_rq(this_cpu);
  922. new_cpu = prev_cpu;
  923. /*
  924. * 'this_sd' is the first domain that both
  925. * this_cpu and prev_cpu are present in:
  926. */
  927. for_each_domain(this_cpu, sd) {
  928. if (cpu_isset(prev_cpu, sd->span)) {
  929. this_sd = sd;
  930. break;
  931. }
  932. }
  933. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  934. goto out;
  935. /*
  936. * Check for affine wakeup and passive balancing possibilities.
  937. */
  938. if (!this_sd)
  939. goto out;
  940. idx = this_sd->wake_idx;
  941. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  942. load = source_load(prev_cpu, idx);
  943. this_load = target_load(this_cpu, idx);
  944. if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  945. load, this_load, imbalance))
  946. return this_cpu;
  947. if (prev_cpu == this_cpu)
  948. goto out;
  949. /*
  950. * Start passive balancing when half the imbalance_pct
  951. * limit is reached.
  952. */
  953. if (this_sd->flags & SD_WAKE_BALANCE) {
  954. if (imbalance*this_load <= 100*load) {
  955. schedstat_inc(this_sd, ttwu_move_balance);
  956. schedstat_inc(p, se.nr_wakeups_passive);
  957. return this_cpu;
  958. }
  959. }
  960. out:
  961. return wake_idle(new_cpu, p);
  962. }
  963. #endif /* CONFIG_SMP */
  964. static unsigned long wakeup_gran(struct sched_entity *se)
  965. {
  966. unsigned long gran = sysctl_sched_wakeup_granularity;
  967. /*
  968. * More easily preempt - nice tasks, while not making it harder for
  969. * + nice tasks.
  970. */
  971. gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
  972. return gran;
  973. }
  974. /*
  975. * Should 'se' preempt 'curr'.
  976. *
  977. * |s1
  978. * |s2
  979. * |s3
  980. * g
  981. * |<--->|c
  982. *
  983. * w(c, s1) = -1
  984. * w(c, s2) = 0
  985. * w(c, s3) = 1
  986. *
  987. */
  988. static int
  989. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  990. {
  991. s64 gran, vdiff = curr->vruntime - se->vruntime;
  992. if (vdiff < 0)
  993. return -1;
  994. gran = wakeup_gran(curr);
  995. if (vdiff > gran)
  996. return 1;
  997. return 0;
  998. }
  999. /* return depth at which a sched entity is present in the hierarchy */
  1000. static inline int depth_se(struct sched_entity *se)
  1001. {
  1002. int depth = 0;
  1003. for_each_sched_entity(se)
  1004. depth++;
  1005. return depth;
  1006. }
  1007. /*
  1008. * Preempt the current task with a newly woken task if needed:
  1009. */
  1010. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
  1011. {
  1012. struct task_struct *curr = rq->curr;
  1013. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1014. struct sched_entity *se = &curr->se, *pse = &p->se;
  1015. int se_depth, pse_depth;
  1016. if (unlikely(rt_prio(p->prio))) {
  1017. update_rq_clock(rq);
  1018. update_curr(cfs_rq);
  1019. resched_task(curr);
  1020. return;
  1021. }
  1022. se->last_wakeup = se->sum_exec_runtime;
  1023. if (unlikely(se == pse))
  1024. return;
  1025. cfs_rq_of(pse)->next = pse;
  1026. /*
  1027. * Batch tasks do not preempt (their preemption is driven by
  1028. * the tick):
  1029. */
  1030. if (unlikely(p->policy == SCHED_BATCH))
  1031. return;
  1032. if (!sched_feat(WAKEUP_PREEMPT))
  1033. return;
  1034. /*
  1035. * preemption test can be made between sibling entities who are in the
  1036. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  1037. * both tasks until we find their ancestors who are siblings of common
  1038. * parent.
  1039. */
  1040. /* First walk up until both entities are at same depth */
  1041. se_depth = depth_se(se);
  1042. pse_depth = depth_se(pse);
  1043. while (se_depth > pse_depth) {
  1044. se_depth--;
  1045. se = parent_entity(se);
  1046. }
  1047. while (pse_depth > se_depth) {
  1048. pse_depth--;
  1049. pse = parent_entity(pse);
  1050. }
  1051. while (!is_same_group(se, pse)) {
  1052. se = parent_entity(se);
  1053. pse = parent_entity(pse);
  1054. }
  1055. if (wakeup_preempt_entity(se, pse) == 1)
  1056. resched_task(curr);
  1057. }
  1058. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1059. {
  1060. struct task_struct *p;
  1061. struct cfs_rq *cfs_rq = &rq->cfs;
  1062. struct sched_entity *se;
  1063. if (unlikely(!cfs_rq->nr_running))
  1064. return NULL;
  1065. do {
  1066. se = pick_next_entity(cfs_rq);
  1067. cfs_rq = group_cfs_rq(se);
  1068. } while (cfs_rq);
  1069. p = task_of(se);
  1070. hrtick_start_fair(rq, p);
  1071. return p;
  1072. }
  1073. /*
  1074. * Account for a descheduled task:
  1075. */
  1076. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1077. {
  1078. struct sched_entity *se = &prev->se;
  1079. struct cfs_rq *cfs_rq;
  1080. for_each_sched_entity(se) {
  1081. cfs_rq = cfs_rq_of(se);
  1082. put_prev_entity(cfs_rq, se);
  1083. }
  1084. }
  1085. #ifdef CONFIG_SMP
  1086. /**************************************************
  1087. * Fair scheduling class load-balancing methods:
  1088. */
  1089. /*
  1090. * Load-balancing iterator. Note: while the runqueue stays locked
  1091. * during the whole iteration, the current task might be
  1092. * dequeued so the iterator has to be dequeue-safe. Here we
  1093. * achieve that by always pre-iterating before returning
  1094. * the current task:
  1095. */
  1096. static struct task_struct *
  1097. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1098. {
  1099. struct task_struct *p = NULL;
  1100. struct sched_entity *se;
  1101. while (next != &cfs_rq->tasks) {
  1102. se = list_entry(next, struct sched_entity, group_node);
  1103. next = next->next;
  1104. /* Skip over entities that are not tasks */
  1105. if (entity_is_task(se)) {
  1106. p = task_of(se);
  1107. break;
  1108. }
  1109. }
  1110. cfs_rq->balance_iterator = next;
  1111. return p;
  1112. }
  1113. static struct task_struct *load_balance_start_fair(void *arg)
  1114. {
  1115. struct cfs_rq *cfs_rq = arg;
  1116. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1117. }
  1118. static struct task_struct *load_balance_next_fair(void *arg)
  1119. {
  1120. struct cfs_rq *cfs_rq = arg;
  1121. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1122. }
  1123. #ifdef CONFIG_FAIR_GROUP_SCHED
  1124. static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
  1125. {
  1126. struct sched_entity *curr;
  1127. struct task_struct *p;
  1128. if (!cfs_rq->nr_running || !first_fair(cfs_rq))
  1129. return MAX_PRIO;
  1130. curr = cfs_rq->curr;
  1131. if (!curr)
  1132. curr = __pick_next_entity(cfs_rq);
  1133. p = task_of(curr);
  1134. return p->prio;
  1135. }
  1136. #endif
  1137. static unsigned long
  1138. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1139. unsigned long max_load_move,
  1140. struct sched_domain *sd, enum cpu_idle_type idle,
  1141. int *all_pinned, int *this_best_prio)
  1142. {
  1143. struct cfs_rq *busy_cfs_rq;
  1144. long rem_load_move = max_load_move;
  1145. struct rq_iterator cfs_rq_iterator;
  1146. cfs_rq_iterator.start = load_balance_start_fair;
  1147. cfs_rq_iterator.next = load_balance_next_fair;
  1148. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1149. #ifdef CONFIG_FAIR_GROUP_SCHED
  1150. struct cfs_rq *this_cfs_rq;
  1151. long imbalance;
  1152. unsigned long maxload;
  1153. this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
  1154. imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
  1155. /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
  1156. if (imbalance <= 0)
  1157. continue;
  1158. /* Don't pull more than imbalance/2 */
  1159. imbalance /= 2;
  1160. maxload = min(rem_load_move, imbalance);
  1161. *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
  1162. #else
  1163. # define maxload rem_load_move
  1164. #endif
  1165. /*
  1166. * pass busy_cfs_rq argument into
  1167. * load_balance_[start|next]_fair iterators
  1168. */
  1169. cfs_rq_iterator.arg = busy_cfs_rq;
  1170. rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
  1171. maxload, sd, idle, all_pinned,
  1172. this_best_prio,
  1173. &cfs_rq_iterator);
  1174. if (rem_load_move <= 0)
  1175. break;
  1176. }
  1177. return max_load_move - rem_load_move;
  1178. }
  1179. static int
  1180. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. struct sched_domain *sd, enum cpu_idle_type idle)
  1182. {
  1183. struct cfs_rq *busy_cfs_rq;
  1184. struct rq_iterator cfs_rq_iterator;
  1185. cfs_rq_iterator.start = load_balance_start_fair;
  1186. cfs_rq_iterator.next = load_balance_next_fair;
  1187. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1188. /*
  1189. * pass busy_cfs_rq argument into
  1190. * load_balance_[start|next]_fair iterators
  1191. */
  1192. cfs_rq_iterator.arg = busy_cfs_rq;
  1193. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1194. &cfs_rq_iterator))
  1195. return 1;
  1196. }
  1197. return 0;
  1198. }
  1199. #endif
  1200. /*
  1201. * scheduler tick hitting a task of our scheduling class:
  1202. */
  1203. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1204. {
  1205. struct cfs_rq *cfs_rq;
  1206. struct sched_entity *se = &curr->se;
  1207. for_each_sched_entity(se) {
  1208. cfs_rq = cfs_rq_of(se);
  1209. entity_tick(cfs_rq, se, queued);
  1210. }
  1211. }
  1212. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1213. /*
  1214. * Share the fairness runtime between parent and child, thus the
  1215. * total amount of pressure for CPU stays equal - new tasks
  1216. * get a chance to run but frequent forkers are not allowed to
  1217. * monopolize the CPU. Note: the parent runqueue is locked,
  1218. * the child is not running yet.
  1219. */
  1220. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1221. {
  1222. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1223. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1224. int this_cpu = smp_processor_id();
  1225. sched_info_queued(p);
  1226. update_curr(cfs_rq);
  1227. place_entity(cfs_rq, se, 1);
  1228. /* 'curr' will be NULL if the child belongs to a different group */
  1229. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1230. curr && curr->vruntime < se->vruntime) {
  1231. /*
  1232. * Upon rescheduling, sched_class::put_prev_task() will place
  1233. * 'current' within the tree based on its new key value.
  1234. */
  1235. swap(curr->vruntime, se->vruntime);
  1236. }
  1237. enqueue_task_fair(rq, p, 0);
  1238. resched_task(rq->curr);
  1239. }
  1240. /*
  1241. * Priority of the task has changed. Check to see if we preempt
  1242. * the current task.
  1243. */
  1244. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1245. int oldprio, int running)
  1246. {
  1247. /*
  1248. * Reschedule if we are currently running on this runqueue and
  1249. * our priority decreased, or if we are not currently running on
  1250. * this runqueue and our priority is higher than the current's
  1251. */
  1252. if (running) {
  1253. if (p->prio > oldprio)
  1254. resched_task(rq->curr);
  1255. } else
  1256. check_preempt_curr(rq, p);
  1257. }
  1258. /*
  1259. * We switched to the sched_fair class.
  1260. */
  1261. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1262. int running)
  1263. {
  1264. /*
  1265. * We were most likely switched from sched_rt, so
  1266. * kick off the schedule if running, otherwise just see
  1267. * if we can still preempt the current task.
  1268. */
  1269. if (running)
  1270. resched_task(rq->curr);
  1271. else
  1272. check_preempt_curr(rq, p);
  1273. }
  1274. /* Account for a task changing its policy or group.
  1275. *
  1276. * This routine is mostly called to set cfs_rq->curr field when a task
  1277. * migrates between groups/classes.
  1278. */
  1279. static void set_curr_task_fair(struct rq *rq)
  1280. {
  1281. struct sched_entity *se = &rq->curr->se;
  1282. for_each_sched_entity(se)
  1283. set_next_entity(cfs_rq_of(se), se);
  1284. }
  1285. #ifdef CONFIG_FAIR_GROUP_SCHED
  1286. static void moved_group_fair(struct task_struct *p)
  1287. {
  1288. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1289. update_curr(cfs_rq);
  1290. place_entity(cfs_rq, &p->se, 1);
  1291. }
  1292. #endif
  1293. /*
  1294. * All the scheduling class methods:
  1295. */
  1296. static const struct sched_class fair_sched_class = {
  1297. .next = &idle_sched_class,
  1298. .enqueue_task = enqueue_task_fair,
  1299. .dequeue_task = dequeue_task_fair,
  1300. .yield_task = yield_task_fair,
  1301. #ifdef CONFIG_SMP
  1302. .select_task_rq = select_task_rq_fair,
  1303. #endif /* CONFIG_SMP */
  1304. .check_preempt_curr = check_preempt_wakeup,
  1305. .pick_next_task = pick_next_task_fair,
  1306. .put_prev_task = put_prev_task_fair,
  1307. #ifdef CONFIG_SMP
  1308. .load_balance = load_balance_fair,
  1309. .move_one_task = move_one_task_fair,
  1310. #endif
  1311. .set_curr_task = set_curr_task_fair,
  1312. .task_tick = task_tick_fair,
  1313. .task_new = task_new_fair,
  1314. .prio_changed = prio_changed_fair,
  1315. .switched_to = switched_to_fair,
  1316. #ifdef CONFIG_FAIR_GROUP_SCHED
  1317. .moved_group = moved_group_fair,
  1318. #endif
  1319. };
  1320. #ifdef CONFIG_SCHED_DEBUG
  1321. static void print_cfs_stats(struct seq_file *m, int cpu)
  1322. {
  1323. struct cfs_rq *cfs_rq;
  1324. rcu_read_lock();
  1325. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1326. print_cfs_rq(m, cpu, cfs_rq);
  1327. rcu_read_unlock();
  1328. }
  1329. #endif