pxa2xx_spi.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <linux/gpio.h>
  31. #include <asm/io.h>
  32. #include <asm/irq.h>
  33. #include <asm/delay.h>
  34. #include <mach/dma.h>
  35. #include <mach/regs-ssp.h>
  36. #include <mach/ssp.h>
  37. #include <mach/pxa2xx_spi.h>
  38. MODULE_AUTHOR("Stephen Street");
  39. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  40. MODULE_LICENSE("GPL");
  41. MODULE_ALIAS("platform:pxa2xx-spi");
  42. #define MAX_BUSES 3
  43. #define RX_THRESH_DFLT 8
  44. #define TX_THRESH_DFLT 8
  45. #define TIMOUT_DFLT 1000
  46. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  47. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  48. #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
  49. #define MAX_DMA_LEN 8191
  50. /*
  51. * for testing SSCR1 changes that require SSP restart, basically
  52. * everything except the service and interrupt enables, the pxa270 developer
  53. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  54. * list, but the PXA255 dev man says all bits without really meaning the
  55. * service and interrupt enables
  56. */
  57. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  58. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  59. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  60. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  61. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  62. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  63. #define DEFINE_SSP_REG(reg, off) \
  64. static inline u32 read_##reg(void const __iomem *p) \
  65. { return __raw_readl(p + (off)); } \
  66. \
  67. static inline void write_##reg(u32 v, void __iomem *p) \
  68. { __raw_writel(v, p + (off)); }
  69. DEFINE_SSP_REG(SSCR0, 0x00)
  70. DEFINE_SSP_REG(SSCR1, 0x04)
  71. DEFINE_SSP_REG(SSSR, 0x08)
  72. DEFINE_SSP_REG(SSITR, 0x0c)
  73. DEFINE_SSP_REG(SSDR, 0x10)
  74. DEFINE_SSP_REG(SSTO, 0x28)
  75. DEFINE_SSP_REG(SSPSP, 0x2c)
  76. #define START_STATE ((void*)0)
  77. #define RUNNING_STATE ((void*)1)
  78. #define DONE_STATE ((void*)2)
  79. #define ERROR_STATE ((void*)-1)
  80. #define QUEUE_RUNNING 0
  81. #define QUEUE_STOPPED 1
  82. struct driver_data {
  83. /* Driver model hookup */
  84. struct platform_device *pdev;
  85. /* SSP Info */
  86. struct ssp_device *ssp;
  87. /* SPI framework hookup */
  88. enum pxa_ssp_type ssp_type;
  89. struct spi_master *master;
  90. /* PXA hookup */
  91. struct pxa2xx_spi_master *master_info;
  92. /* DMA setup stuff */
  93. int rx_channel;
  94. int tx_channel;
  95. u32 *null_dma_buf;
  96. /* SSP register addresses */
  97. void __iomem *ioaddr;
  98. u32 ssdr_physical;
  99. /* SSP masks*/
  100. u32 dma_cr1;
  101. u32 int_cr1;
  102. u32 clear_sr;
  103. u32 mask_sr;
  104. /* Driver message queue */
  105. struct workqueue_struct *workqueue;
  106. struct work_struct pump_messages;
  107. spinlock_t lock;
  108. struct list_head queue;
  109. int busy;
  110. int run;
  111. /* Message Transfer pump */
  112. struct tasklet_struct pump_transfers;
  113. /* Current message transfer state info */
  114. struct spi_message* cur_msg;
  115. struct spi_transfer* cur_transfer;
  116. struct chip_data *cur_chip;
  117. size_t len;
  118. void *tx;
  119. void *tx_end;
  120. void *rx;
  121. void *rx_end;
  122. int dma_mapped;
  123. dma_addr_t rx_dma;
  124. dma_addr_t tx_dma;
  125. size_t rx_map_len;
  126. size_t tx_map_len;
  127. u8 n_bytes;
  128. u32 dma_width;
  129. int (*write)(struct driver_data *drv_data);
  130. int (*read)(struct driver_data *drv_data);
  131. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  132. void (*cs_control)(u32 command);
  133. };
  134. struct chip_data {
  135. u32 cr0;
  136. u32 cr1;
  137. u32 psp;
  138. u32 timeout;
  139. u8 n_bytes;
  140. u32 dma_width;
  141. u32 dma_burst_size;
  142. u32 threshold;
  143. u32 dma_threshold;
  144. u8 enable_dma;
  145. u8 bits_per_word;
  146. u32 speed_hz;
  147. int gpio_cs;
  148. int gpio_cs_inverted;
  149. int (*write)(struct driver_data *drv_data);
  150. int (*read)(struct driver_data *drv_data);
  151. void (*cs_control)(u32 command);
  152. };
  153. static void pump_messages(struct work_struct *work);
  154. static void cs_assert(struct driver_data *drv_data)
  155. {
  156. struct chip_data *chip = drv_data->cur_chip;
  157. if (chip->cs_control) {
  158. chip->cs_control(PXA2XX_CS_ASSERT);
  159. return;
  160. }
  161. if (gpio_is_valid(chip->gpio_cs))
  162. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  163. }
  164. static void cs_deassert(struct driver_data *drv_data)
  165. {
  166. struct chip_data *chip = drv_data->cur_chip;
  167. if (chip->cs_control) {
  168. chip->cs_control(PXA2XX_CS_ASSERT);
  169. return;
  170. }
  171. if (gpio_is_valid(chip->gpio_cs))
  172. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  173. }
  174. static int flush(struct driver_data *drv_data)
  175. {
  176. unsigned long limit = loops_per_jiffy << 1;
  177. void __iomem *reg = drv_data->ioaddr;
  178. do {
  179. while (read_SSSR(reg) & SSSR_RNE) {
  180. read_SSDR(reg);
  181. }
  182. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  183. write_SSSR(SSSR_ROR, reg);
  184. return limit;
  185. }
  186. static int null_writer(struct driver_data *drv_data)
  187. {
  188. void __iomem *reg = drv_data->ioaddr;
  189. u8 n_bytes = drv_data->n_bytes;
  190. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  191. || (drv_data->tx == drv_data->tx_end))
  192. return 0;
  193. write_SSDR(0, reg);
  194. drv_data->tx += n_bytes;
  195. return 1;
  196. }
  197. static int null_reader(struct driver_data *drv_data)
  198. {
  199. void __iomem *reg = drv_data->ioaddr;
  200. u8 n_bytes = drv_data->n_bytes;
  201. while ((read_SSSR(reg) & SSSR_RNE)
  202. && (drv_data->rx < drv_data->rx_end)) {
  203. read_SSDR(reg);
  204. drv_data->rx += n_bytes;
  205. }
  206. return drv_data->rx == drv_data->rx_end;
  207. }
  208. static int u8_writer(struct driver_data *drv_data)
  209. {
  210. void __iomem *reg = drv_data->ioaddr;
  211. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  212. || (drv_data->tx == drv_data->tx_end))
  213. return 0;
  214. write_SSDR(*(u8 *)(drv_data->tx), reg);
  215. ++drv_data->tx;
  216. return 1;
  217. }
  218. static int u8_reader(struct driver_data *drv_data)
  219. {
  220. void __iomem *reg = drv_data->ioaddr;
  221. while ((read_SSSR(reg) & SSSR_RNE)
  222. && (drv_data->rx < drv_data->rx_end)) {
  223. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  224. ++drv_data->rx;
  225. }
  226. return drv_data->rx == drv_data->rx_end;
  227. }
  228. static int u16_writer(struct driver_data *drv_data)
  229. {
  230. void __iomem *reg = drv_data->ioaddr;
  231. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  232. || (drv_data->tx == drv_data->tx_end))
  233. return 0;
  234. write_SSDR(*(u16 *)(drv_data->tx), reg);
  235. drv_data->tx += 2;
  236. return 1;
  237. }
  238. static int u16_reader(struct driver_data *drv_data)
  239. {
  240. void __iomem *reg = drv_data->ioaddr;
  241. while ((read_SSSR(reg) & SSSR_RNE)
  242. && (drv_data->rx < drv_data->rx_end)) {
  243. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  244. drv_data->rx += 2;
  245. }
  246. return drv_data->rx == drv_data->rx_end;
  247. }
  248. static int u32_writer(struct driver_data *drv_data)
  249. {
  250. void __iomem *reg = drv_data->ioaddr;
  251. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  252. || (drv_data->tx == drv_data->tx_end))
  253. return 0;
  254. write_SSDR(*(u32 *)(drv_data->tx), reg);
  255. drv_data->tx += 4;
  256. return 1;
  257. }
  258. static int u32_reader(struct driver_data *drv_data)
  259. {
  260. void __iomem *reg = drv_data->ioaddr;
  261. while ((read_SSSR(reg) & SSSR_RNE)
  262. && (drv_data->rx < drv_data->rx_end)) {
  263. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  264. drv_data->rx += 4;
  265. }
  266. return drv_data->rx == drv_data->rx_end;
  267. }
  268. static void *next_transfer(struct driver_data *drv_data)
  269. {
  270. struct spi_message *msg = drv_data->cur_msg;
  271. struct spi_transfer *trans = drv_data->cur_transfer;
  272. /* Move to next transfer */
  273. if (trans->transfer_list.next != &msg->transfers) {
  274. drv_data->cur_transfer =
  275. list_entry(trans->transfer_list.next,
  276. struct spi_transfer,
  277. transfer_list);
  278. return RUNNING_STATE;
  279. } else
  280. return DONE_STATE;
  281. }
  282. static int map_dma_buffers(struct driver_data *drv_data)
  283. {
  284. struct spi_message *msg = drv_data->cur_msg;
  285. struct device *dev = &msg->spi->dev;
  286. if (!drv_data->cur_chip->enable_dma)
  287. return 0;
  288. if (msg->is_dma_mapped)
  289. return drv_data->rx_dma && drv_data->tx_dma;
  290. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  291. return 0;
  292. /* Modify setup if rx buffer is null */
  293. if (drv_data->rx == NULL) {
  294. *drv_data->null_dma_buf = 0;
  295. drv_data->rx = drv_data->null_dma_buf;
  296. drv_data->rx_map_len = 4;
  297. } else
  298. drv_data->rx_map_len = drv_data->len;
  299. /* Modify setup if tx buffer is null */
  300. if (drv_data->tx == NULL) {
  301. *drv_data->null_dma_buf = 0;
  302. drv_data->tx = drv_data->null_dma_buf;
  303. drv_data->tx_map_len = 4;
  304. } else
  305. drv_data->tx_map_len = drv_data->len;
  306. /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
  307. * so we flush the cache *before* invalidating it, in case
  308. * the tx and rx buffers overlap.
  309. */
  310. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  311. drv_data->tx_map_len, DMA_TO_DEVICE);
  312. if (dma_mapping_error(dev, drv_data->tx_dma))
  313. return 0;
  314. /* Stream map the rx buffer */
  315. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  316. drv_data->rx_map_len, DMA_FROM_DEVICE);
  317. if (dma_mapping_error(dev, drv_data->rx_dma)) {
  318. dma_unmap_single(dev, drv_data->tx_dma,
  319. drv_data->tx_map_len, DMA_TO_DEVICE);
  320. return 0;
  321. }
  322. return 1;
  323. }
  324. static void unmap_dma_buffers(struct driver_data *drv_data)
  325. {
  326. struct device *dev;
  327. if (!drv_data->dma_mapped)
  328. return;
  329. if (!drv_data->cur_msg->is_dma_mapped) {
  330. dev = &drv_data->cur_msg->spi->dev;
  331. dma_unmap_single(dev, drv_data->rx_dma,
  332. drv_data->rx_map_len, DMA_FROM_DEVICE);
  333. dma_unmap_single(dev, drv_data->tx_dma,
  334. drv_data->tx_map_len, DMA_TO_DEVICE);
  335. }
  336. drv_data->dma_mapped = 0;
  337. }
  338. /* caller already set message->status; dma and pio irqs are blocked */
  339. static void giveback(struct driver_data *drv_data)
  340. {
  341. struct spi_transfer* last_transfer;
  342. unsigned long flags;
  343. struct spi_message *msg;
  344. spin_lock_irqsave(&drv_data->lock, flags);
  345. msg = drv_data->cur_msg;
  346. drv_data->cur_msg = NULL;
  347. drv_data->cur_transfer = NULL;
  348. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  349. spin_unlock_irqrestore(&drv_data->lock, flags);
  350. last_transfer = list_entry(msg->transfers.prev,
  351. struct spi_transfer,
  352. transfer_list);
  353. /* Delay if requested before any change in chip select */
  354. if (last_transfer->delay_usecs)
  355. udelay(last_transfer->delay_usecs);
  356. /* Drop chip select UNLESS cs_change is true or we are returning
  357. * a message with an error, or next message is for another chip
  358. */
  359. if (!last_transfer->cs_change)
  360. cs_deassert(drv_data);
  361. else {
  362. struct spi_message *next_msg;
  363. /* Holding of cs was hinted, but we need to make sure
  364. * the next message is for the same chip. Don't waste
  365. * time with the following tests unless this was hinted.
  366. *
  367. * We cannot postpone this until pump_messages, because
  368. * after calling msg->complete (below) the driver that
  369. * sent the current message could be unloaded, which
  370. * could invalidate the cs_control() callback...
  371. */
  372. /* get a pointer to the next message, if any */
  373. spin_lock_irqsave(&drv_data->lock, flags);
  374. if (list_empty(&drv_data->queue))
  375. next_msg = NULL;
  376. else
  377. next_msg = list_entry(drv_data->queue.next,
  378. struct spi_message, queue);
  379. spin_unlock_irqrestore(&drv_data->lock, flags);
  380. /* see if the next and current messages point
  381. * to the same chip
  382. */
  383. if (next_msg && next_msg->spi != msg->spi)
  384. next_msg = NULL;
  385. if (!next_msg || msg->state == ERROR_STATE)
  386. cs_deassert(drv_data);
  387. }
  388. msg->state = NULL;
  389. if (msg->complete)
  390. msg->complete(msg->context);
  391. drv_data->cur_chip = NULL;
  392. }
  393. static int wait_ssp_rx_stall(void const __iomem *ioaddr)
  394. {
  395. unsigned long limit = loops_per_jiffy << 1;
  396. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  397. cpu_relax();
  398. return limit;
  399. }
  400. static int wait_dma_channel_stop(int channel)
  401. {
  402. unsigned long limit = loops_per_jiffy << 1;
  403. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  404. cpu_relax();
  405. return limit;
  406. }
  407. static void dma_error_stop(struct driver_data *drv_data, const char *msg)
  408. {
  409. void __iomem *reg = drv_data->ioaddr;
  410. /* Stop and reset */
  411. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  412. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  413. write_SSSR(drv_data->clear_sr, reg);
  414. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  415. if (drv_data->ssp_type != PXA25x_SSP)
  416. write_SSTO(0, reg);
  417. flush(drv_data);
  418. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  419. unmap_dma_buffers(drv_data);
  420. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  421. drv_data->cur_msg->state = ERROR_STATE;
  422. tasklet_schedule(&drv_data->pump_transfers);
  423. }
  424. static void dma_transfer_complete(struct driver_data *drv_data)
  425. {
  426. void __iomem *reg = drv_data->ioaddr;
  427. struct spi_message *msg = drv_data->cur_msg;
  428. /* Clear and disable interrupts on SSP and DMA channels*/
  429. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  430. write_SSSR(drv_data->clear_sr, reg);
  431. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  432. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  433. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  434. dev_err(&drv_data->pdev->dev,
  435. "dma_handler: dma rx channel stop failed\n");
  436. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  437. dev_err(&drv_data->pdev->dev,
  438. "dma_transfer: ssp rx stall failed\n");
  439. unmap_dma_buffers(drv_data);
  440. /* update the buffer pointer for the amount completed in dma */
  441. drv_data->rx += drv_data->len -
  442. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  443. /* read trailing data from fifo, it does not matter how many
  444. * bytes are in the fifo just read until buffer is full
  445. * or fifo is empty, which ever occurs first */
  446. drv_data->read(drv_data);
  447. /* return count of what was actually read */
  448. msg->actual_length += drv_data->len -
  449. (drv_data->rx_end - drv_data->rx);
  450. /* Transfer delays and chip select release are
  451. * handled in pump_transfers or giveback
  452. */
  453. /* Move to next transfer */
  454. msg->state = next_transfer(drv_data);
  455. /* Schedule transfer tasklet */
  456. tasklet_schedule(&drv_data->pump_transfers);
  457. }
  458. static void dma_handler(int channel, void *data)
  459. {
  460. struct driver_data *drv_data = data;
  461. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  462. if (irq_status & DCSR_BUSERR) {
  463. if (channel == drv_data->tx_channel)
  464. dma_error_stop(drv_data,
  465. "dma_handler: "
  466. "bad bus address on tx channel");
  467. else
  468. dma_error_stop(drv_data,
  469. "dma_handler: "
  470. "bad bus address on rx channel");
  471. return;
  472. }
  473. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  474. if ((channel == drv_data->tx_channel)
  475. && (irq_status & DCSR_ENDINTR)
  476. && (drv_data->ssp_type == PXA25x_SSP)) {
  477. /* Wait for rx to stall */
  478. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  479. dev_err(&drv_data->pdev->dev,
  480. "dma_handler: ssp rx stall failed\n");
  481. /* finish this transfer, start the next */
  482. dma_transfer_complete(drv_data);
  483. }
  484. }
  485. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  486. {
  487. u32 irq_status;
  488. void __iomem *reg = drv_data->ioaddr;
  489. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  490. if (irq_status & SSSR_ROR) {
  491. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  492. return IRQ_HANDLED;
  493. }
  494. /* Check for false positive timeout */
  495. if ((irq_status & SSSR_TINT)
  496. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  497. write_SSSR(SSSR_TINT, reg);
  498. return IRQ_HANDLED;
  499. }
  500. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  501. /* Clear and disable timeout interrupt, do the rest in
  502. * dma_transfer_complete */
  503. if (drv_data->ssp_type != PXA25x_SSP)
  504. write_SSTO(0, reg);
  505. /* finish this transfer, start the next */
  506. dma_transfer_complete(drv_data);
  507. return IRQ_HANDLED;
  508. }
  509. /* Opps problem detected */
  510. return IRQ_NONE;
  511. }
  512. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  513. {
  514. void __iomem *reg = drv_data->ioaddr;
  515. /* Stop and reset SSP */
  516. write_SSSR(drv_data->clear_sr, reg);
  517. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  518. if (drv_data->ssp_type != PXA25x_SSP)
  519. write_SSTO(0, reg);
  520. flush(drv_data);
  521. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  522. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  523. drv_data->cur_msg->state = ERROR_STATE;
  524. tasklet_schedule(&drv_data->pump_transfers);
  525. }
  526. static void int_transfer_complete(struct driver_data *drv_data)
  527. {
  528. void __iomem *reg = drv_data->ioaddr;
  529. /* Stop SSP */
  530. write_SSSR(drv_data->clear_sr, reg);
  531. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  532. if (drv_data->ssp_type != PXA25x_SSP)
  533. write_SSTO(0, reg);
  534. /* Update total byte transfered return count actual bytes read */
  535. drv_data->cur_msg->actual_length += drv_data->len -
  536. (drv_data->rx_end - drv_data->rx);
  537. /* Transfer delays and chip select release are
  538. * handled in pump_transfers or giveback
  539. */
  540. /* Move to next transfer */
  541. drv_data->cur_msg->state = next_transfer(drv_data);
  542. /* Schedule transfer tasklet */
  543. tasklet_schedule(&drv_data->pump_transfers);
  544. }
  545. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  546. {
  547. void __iomem *reg = drv_data->ioaddr;
  548. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  549. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  550. u32 irq_status = read_SSSR(reg) & irq_mask;
  551. if (irq_status & SSSR_ROR) {
  552. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  553. return IRQ_HANDLED;
  554. }
  555. if (irq_status & SSSR_TINT) {
  556. write_SSSR(SSSR_TINT, reg);
  557. if (drv_data->read(drv_data)) {
  558. int_transfer_complete(drv_data);
  559. return IRQ_HANDLED;
  560. }
  561. }
  562. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  563. do {
  564. if (drv_data->read(drv_data)) {
  565. int_transfer_complete(drv_data);
  566. return IRQ_HANDLED;
  567. }
  568. } while (drv_data->write(drv_data));
  569. if (drv_data->read(drv_data)) {
  570. int_transfer_complete(drv_data);
  571. return IRQ_HANDLED;
  572. }
  573. if (drv_data->tx == drv_data->tx_end) {
  574. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  575. /* PXA25x_SSP has no timeout, read trailing bytes */
  576. if (drv_data->ssp_type == PXA25x_SSP) {
  577. if (!wait_ssp_rx_stall(reg))
  578. {
  579. int_error_stop(drv_data, "interrupt_transfer: "
  580. "rx stall failed");
  581. return IRQ_HANDLED;
  582. }
  583. if (!drv_data->read(drv_data))
  584. {
  585. int_error_stop(drv_data,
  586. "interrupt_transfer: "
  587. "trailing byte read failed");
  588. return IRQ_HANDLED;
  589. }
  590. int_transfer_complete(drv_data);
  591. }
  592. }
  593. /* We did something */
  594. return IRQ_HANDLED;
  595. }
  596. static irqreturn_t ssp_int(int irq, void *dev_id)
  597. {
  598. struct driver_data *drv_data = dev_id;
  599. void __iomem *reg = drv_data->ioaddr;
  600. if (!drv_data->cur_msg) {
  601. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  602. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  603. if (drv_data->ssp_type != PXA25x_SSP)
  604. write_SSTO(0, reg);
  605. write_SSSR(drv_data->clear_sr, reg);
  606. dev_err(&drv_data->pdev->dev, "bad message state "
  607. "in interrupt handler\n");
  608. /* Never fail */
  609. return IRQ_HANDLED;
  610. }
  611. return drv_data->transfer_handler(drv_data);
  612. }
  613. static int set_dma_burst_and_threshold(struct chip_data *chip,
  614. struct spi_device *spi,
  615. u8 bits_per_word, u32 *burst_code,
  616. u32 *threshold)
  617. {
  618. struct pxa2xx_spi_chip *chip_info =
  619. (struct pxa2xx_spi_chip *)spi->controller_data;
  620. int bytes_per_word;
  621. int burst_bytes;
  622. int thresh_words;
  623. int req_burst_size;
  624. int retval = 0;
  625. /* Set the threshold (in registers) to equal the same amount of data
  626. * as represented by burst size (in bytes). The computation below
  627. * is (burst_size rounded up to nearest 8 byte, word or long word)
  628. * divided by (bytes/register); the tx threshold is the inverse of
  629. * the rx, so that there will always be enough data in the rx fifo
  630. * to satisfy a burst, and there will always be enough space in the
  631. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  632. * there is not enough space), there must always remain enough empty
  633. * space in the rx fifo for any data loaded to the tx fifo.
  634. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  635. * will be 8, or half the fifo;
  636. * The threshold can only be set to 2, 4 or 8, but not 16, because
  637. * to burst 16 to the tx fifo, the fifo would have to be empty;
  638. * however, the minimum fifo trigger level is 1, and the tx will
  639. * request service when the fifo is at this level, with only 15 spaces.
  640. */
  641. /* find bytes/word */
  642. if (bits_per_word <= 8)
  643. bytes_per_word = 1;
  644. else if (bits_per_word <= 16)
  645. bytes_per_word = 2;
  646. else
  647. bytes_per_word = 4;
  648. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  649. if (chip_info)
  650. req_burst_size = chip_info->dma_burst_size;
  651. else {
  652. switch (chip->dma_burst_size) {
  653. default:
  654. /* if the default burst size is not set,
  655. * do it now */
  656. chip->dma_burst_size = DCMD_BURST8;
  657. case DCMD_BURST8:
  658. req_burst_size = 8;
  659. break;
  660. case DCMD_BURST16:
  661. req_burst_size = 16;
  662. break;
  663. case DCMD_BURST32:
  664. req_burst_size = 32;
  665. break;
  666. }
  667. }
  668. if (req_burst_size <= 8) {
  669. *burst_code = DCMD_BURST8;
  670. burst_bytes = 8;
  671. } else if (req_burst_size <= 16) {
  672. if (bytes_per_word == 1) {
  673. /* don't burst more than 1/2 the fifo */
  674. *burst_code = DCMD_BURST8;
  675. burst_bytes = 8;
  676. retval = 1;
  677. } else {
  678. *burst_code = DCMD_BURST16;
  679. burst_bytes = 16;
  680. }
  681. } else {
  682. if (bytes_per_word == 1) {
  683. /* don't burst more than 1/2 the fifo */
  684. *burst_code = DCMD_BURST8;
  685. burst_bytes = 8;
  686. retval = 1;
  687. } else if (bytes_per_word == 2) {
  688. /* don't burst more than 1/2 the fifo */
  689. *burst_code = DCMD_BURST16;
  690. burst_bytes = 16;
  691. retval = 1;
  692. } else {
  693. *burst_code = DCMD_BURST32;
  694. burst_bytes = 32;
  695. }
  696. }
  697. thresh_words = burst_bytes / bytes_per_word;
  698. /* thresh_words will be between 2 and 8 */
  699. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  700. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  701. return retval;
  702. }
  703. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  704. {
  705. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  706. if (ssp->type == PXA25x_SSP)
  707. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  708. else
  709. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  710. }
  711. static void pump_transfers(unsigned long data)
  712. {
  713. struct driver_data *drv_data = (struct driver_data *)data;
  714. struct spi_message *message = NULL;
  715. struct spi_transfer *transfer = NULL;
  716. struct spi_transfer *previous = NULL;
  717. struct chip_data *chip = NULL;
  718. struct ssp_device *ssp = drv_data->ssp;
  719. void __iomem *reg = drv_data->ioaddr;
  720. u32 clk_div = 0;
  721. u8 bits = 0;
  722. u32 speed = 0;
  723. u32 cr0;
  724. u32 cr1;
  725. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  726. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  727. /* Get current state information */
  728. message = drv_data->cur_msg;
  729. transfer = drv_data->cur_transfer;
  730. chip = drv_data->cur_chip;
  731. /* Handle for abort */
  732. if (message->state == ERROR_STATE) {
  733. message->status = -EIO;
  734. giveback(drv_data);
  735. return;
  736. }
  737. /* Handle end of message */
  738. if (message->state == DONE_STATE) {
  739. message->status = 0;
  740. giveback(drv_data);
  741. return;
  742. }
  743. /* Delay if requested at end of transfer before CS change */
  744. if (message->state == RUNNING_STATE) {
  745. previous = list_entry(transfer->transfer_list.prev,
  746. struct spi_transfer,
  747. transfer_list);
  748. if (previous->delay_usecs)
  749. udelay(previous->delay_usecs);
  750. /* Drop chip select only if cs_change is requested */
  751. if (previous->cs_change)
  752. cs_deassert(drv_data);
  753. }
  754. /* Check for transfers that need multiple DMA segments */
  755. if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
  756. /* reject already-mapped transfers; PIO won't always work */
  757. if (message->is_dma_mapped
  758. || transfer->rx_dma || transfer->tx_dma) {
  759. dev_err(&drv_data->pdev->dev,
  760. "pump_transfers: mapped transfer length "
  761. "of %u is greater than %d\n",
  762. transfer->len, MAX_DMA_LEN);
  763. message->status = -EINVAL;
  764. giveback(drv_data);
  765. return;
  766. }
  767. /* warn ... we force this to PIO mode */
  768. if (printk_ratelimit())
  769. dev_warn(&message->spi->dev, "pump_transfers: "
  770. "DMA disabled for transfer length %ld "
  771. "greater than %d\n",
  772. (long)drv_data->len, MAX_DMA_LEN);
  773. }
  774. /* Setup the transfer state based on the type of transfer */
  775. if (flush(drv_data) == 0) {
  776. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  777. message->status = -EIO;
  778. giveback(drv_data);
  779. return;
  780. }
  781. drv_data->n_bytes = chip->n_bytes;
  782. drv_data->dma_width = chip->dma_width;
  783. drv_data->tx = (void *)transfer->tx_buf;
  784. drv_data->tx_end = drv_data->tx + transfer->len;
  785. drv_data->rx = transfer->rx_buf;
  786. drv_data->rx_end = drv_data->rx + transfer->len;
  787. drv_data->rx_dma = transfer->rx_dma;
  788. drv_data->tx_dma = transfer->tx_dma;
  789. drv_data->len = transfer->len & DCMD_LENGTH;
  790. drv_data->write = drv_data->tx ? chip->write : null_writer;
  791. drv_data->read = drv_data->rx ? chip->read : null_reader;
  792. /* Change speed and bit per word on a per transfer */
  793. cr0 = chip->cr0;
  794. if (transfer->speed_hz || transfer->bits_per_word) {
  795. bits = chip->bits_per_word;
  796. speed = chip->speed_hz;
  797. if (transfer->speed_hz)
  798. speed = transfer->speed_hz;
  799. if (transfer->bits_per_word)
  800. bits = transfer->bits_per_word;
  801. clk_div = ssp_get_clk_div(ssp, speed);
  802. if (bits <= 8) {
  803. drv_data->n_bytes = 1;
  804. drv_data->dma_width = DCMD_WIDTH1;
  805. drv_data->read = drv_data->read != null_reader ?
  806. u8_reader : null_reader;
  807. drv_data->write = drv_data->write != null_writer ?
  808. u8_writer : null_writer;
  809. } else if (bits <= 16) {
  810. drv_data->n_bytes = 2;
  811. drv_data->dma_width = DCMD_WIDTH2;
  812. drv_data->read = drv_data->read != null_reader ?
  813. u16_reader : null_reader;
  814. drv_data->write = drv_data->write != null_writer ?
  815. u16_writer : null_writer;
  816. } else if (bits <= 32) {
  817. drv_data->n_bytes = 4;
  818. drv_data->dma_width = DCMD_WIDTH4;
  819. drv_data->read = drv_data->read != null_reader ?
  820. u32_reader : null_reader;
  821. drv_data->write = drv_data->write != null_writer ?
  822. u32_writer : null_writer;
  823. }
  824. /* if bits/word is changed in dma mode, then must check the
  825. * thresholds and burst also */
  826. if (chip->enable_dma) {
  827. if (set_dma_burst_and_threshold(chip, message->spi,
  828. bits, &dma_burst,
  829. &dma_thresh))
  830. if (printk_ratelimit())
  831. dev_warn(&message->spi->dev,
  832. "pump_transfers: "
  833. "DMA burst size reduced to "
  834. "match bits_per_word\n");
  835. }
  836. cr0 = clk_div
  837. | SSCR0_Motorola
  838. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  839. | SSCR0_SSE
  840. | (bits > 16 ? SSCR0_EDSS : 0);
  841. }
  842. message->state = RUNNING_STATE;
  843. /* Try to map dma buffer and do a dma transfer if successful, but
  844. * only if the length is non-zero and less than MAX_DMA_LEN.
  845. *
  846. * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
  847. * of PIO instead. Care is needed above because the transfer may
  848. * have have been passed with buffers that are already dma mapped.
  849. * A zero-length transfer in PIO mode will not try to write/read
  850. * to/from the buffers
  851. *
  852. * REVISIT large transfers are exactly where we most want to be
  853. * using DMA. If this happens much, split those transfers into
  854. * multiple DMA segments rather than forcing PIO.
  855. */
  856. drv_data->dma_mapped = 0;
  857. if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
  858. drv_data->dma_mapped = map_dma_buffers(drv_data);
  859. if (drv_data->dma_mapped) {
  860. /* Ensure we have the correct interrupt handler */
  861. drv_data->transfer_handler = dma_transfer;
  862. /* Setup rx DMA Channel */
  863. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  864. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  865. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  866. if (drv_data->rx == drv_data->null_dma_buf)
  867. /* No target address increment */
  868. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  869. | drv_data->dma_width
  870. | dma_burst
  871. | drv_data->len;
  872. else
  873. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  874. | DCMD_FLOWSRC
  875. | drv_data->dma_width
  876. | dma_burst
  877. | drv_data->len;
  878. /* Setup tx DMA Channel */
  879. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  880. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  881. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  882. if (drv_data->tx == drv_data->null_dma_buf)
  883. /* No source address increment */
  884. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  885. | drv_data->dma_width
  886. | dma_burst
  887. | drv_data->len;
  888. else
  889. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  890. | DCMD_FLOWTRG
  891. | drv_data->dma_width
  892. | dma_burst
  893. | drv_data->len;
  894. /* Enable dma end irqs on SSP to detect end of transfer */
  895. if (drv_data->ssp_type == PXA25x_SSP)
  896. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  897. /* Clear status and start DMA engine */
  898. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  899. write_SSSR(drv_data->clear_sr, reg);
  900. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  901. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  902. } else {
  903. /* Ensure we have the correct interrupt handler */
  904. drv_data->transfer_handler = interrupt_transfer;
  905. /* Clear status */
  906. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  907. write_SSSR(drv_data->clear_sr, reg);
  908. }
  909. /* see if we need to reload the config registers */
  910. if ((read_SSCR0(reg) != cr0)
  911. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  912. (cr1 & SSCR1_CHANGE_MASK)) {
  913. /* stop the SSP, and update the other bits */
  914. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  915. if (drv_data->ssp_type != PXA25x_SSP)
  916. write_SSTO(chip->timeout, reg);
  917. /* first set CR1 without interrupt and service enables */
  918. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  919. /* restart the SSP */
  920. write_SSCR0(cr0, reg);
  921. } else {
  922. if (drv_data->ssp_type != PXA25x_SSP)
  923. write_SSTO(chip->timeout, reg);
  924. }
  925. cs_assert(drv_data);
  926. /* after chip select, release the data by enabling service
  927. * requests and interrupts, without changing any mode bits */
  928. write_SSCR1(cr1, reg);
  929. }
  930. static void pump_messages(struct work_struct *work)
  931. {
  932. struct driver_data *drv_data =
  933. container_of(work, struct driver_data, pump_messages);
  934. unsigned long flags;
  935. /* Lock queue and check for queue work */
  936. spin_lock_irqsave(&drv_data->lock, flags);
  937. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  938. drv_data->busy = 0;
  939. spin_unlock_irqrestore(&drv_data->lock, flags);
  940. return;
  941. }
  942. /* Make sure we are not already running a message */
  943. if (drv_data->cur_msg) {
  944. spin_unlock_irqrestore(&drv_data->lock, flags);
  945. return;
  946. }
  947. /* Extract head of queue */
  948. drv_data->cur_msg = list_entry(drv_data->queue.next,
  949. struct spi_message, queue);
  950. list_del_init(&drv_data->cur_msg->queue);
  951. /* Initial message state*/
  952. drv_data->cur_msg->state = START_STATE;
  953. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  954. struct spi_transfer,
  955. transfer_list);
  956. /* prepare to setup the SSP, in pump_transfers, using the per
  957. * chip configuration */
  958. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  959. /* Mark as busy and launch transfers */
  960. tasklet_schedule(&drv_data->pump_transfers);
  961. drv_data->busy = 1;
  962. spin_unlock_irqrestore(&drv_data->lock, flags);
  963. }
  964. static int transfer(struct spi_device *spi, struct spi_message *msg)
  965. {
  966. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  967. unsigned long flags;
  968. spin_lock_irqsave(&drv_data->lock, flags);
  969. if (drv_data->run == QUEUE_STOPPED) {
  970. spin_unlock_irqrestore(&drv_data->lock, flags);
  971. return -ESHUTDOWN;
  972. }
  973. msg->actual_length = 0;
  974. msg->status = -EINPROGRESS;
  975. msg->state = START_STATE;
  976. list_add_tail(&msg->queue, &drv_data->queue);
  977. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  978. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  979. spin_unlock_irqrestore(&drv_data->lock, flags);
  980. return 0;
  981. }
  982. /* the spi->mode bits understood by this driver: */
  983. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  984. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  985. struct pxa2xx_spi_chip *chip_info)
  986. {
  987. int err = 0;
  988. if (chip == NULL || chip_info == NULL)
  989. return 0;
  990. /* NOTE: setup() can be called multiple times, possibly with
  991. * different chip_info, release previously requested GPIO
  992. */
  993. if (gpio_is_valid(chip->gpio_cs))
  994. gpio_free(chip->gpio_cs);
  995. /* If (*cs_control) is provided, ignore GPIO chip select */
  996. if (chip_info->cs_control) {
  997. chip->cs_control = chip_info->cs_control;
  998. return 0;
  999. }
  1000. if (gpio_is_valid(chip_info->gpio_cs)) {
  1001. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  1002. if (err) {
  1003. dev_err(&spi->dev, "failed to request chip select "
  1004. "GPIO%d\n", chip_info->gpio_cs);
  1005. return err;
  1006. }
  1007. chip->gpio_cs = chip_info->gpio_cs;
  1008. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  1009. err = gpio_direction_output(chip->gpio_cs,
  1010. !chip->gpio_cs_inverted);
  1011. }
  1012. return err;
  1013. }
  1014. static int setup(struct spi_device *spi)
  1015. {
  1016. struct pxa2xx_spi_chip *chip_info = NULL;
  1017. struct chip_data *chip;
  1018. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  1019. struct ssp_device *ssp = drv_data->ssp;
  1020. unsigned int clk_div;
  1021. uint tx_thres = TX_THRESH_DFLT;
  1022. uint rx_thres = RX_THRESH_DFLT;
  1023. if (!spi->bits_per_word)
  1024. spi->bits_per_word = 8;
  1025. if (drv_data->ssp_type != PXA25x_SSP
  1026. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  1027. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  1028. "b/w not 4-32 for type non-PXA25x_SSP\n",
  1029. drv_data->ssp_type, spi->bits_per_word);
  1030. return -EINVAL;
  1031. }
  1032. else if (drv_data->ssp_type == PXA25x_SSP
  1033. && (spi->bits_per_word < 4
  1034. || spi->bits_per_word > 16)) {
  1035. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  1036. "b/w not 4-16 for type PXA25x_SSP\n",
  1037. drv_data->ssp_type, spi->bits_per_word);
  1038. return -EINVAL;
  1039. }
  1040. if (spi->mode & ~MODEBITS) {
  1041. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  1042. spi->mode & ~MODEBITS);
  1043. return -EINVAL;
  1044. }
  1045. /* Only alloc on first setup */
  1046. chip = spi_get_ctldata(spi);
  1047. if (!chip) {
  1048. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1049. if (!chip) {
  1050. dev_err(&spi->dev,
  1051. "failed setup: can't allocate chip data\n");
  1052. return -ENOMEM;
  1053. }
  1054. chip->gpio_cs = -1;
  1055. chip->enable_dma = 0;
  1056. chip->timeout = TIMOUT_DFLT;
  1057. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  1058. DCMD_BURST8 : 0;
  1059. }
  1060. /* protocol drivers may change the chip settings, so...
  1061. * if chip_info exists, use it */
  1062. chip_info = spi->controller_data;
  1063. /* chip_info isn't always needed */
  1064. chip->cr1 = 0;
  1065. if (chip_info) {
  1066. if (chip_info->timeout)
  1067. chip->timeout = chip_info->timeout;
  1068. if (chip_info->tx_threshold)
  1069. tx_thres = chip_info->tx_threshold;
  1070. if (chip_info->rx_threshold)
  1071. rx_thres = chip_info->rx_threshold;
  1072. chip->enable_dma = drv_data->master_info->enable_dma;
  1073. chip->dma_threshold = 0;
  1074. if (chip_info->enable_loopback)
  1075. chip->cr1 = SSCR1_LBM;
  1076. }
  1077. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  1078. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  1079. /* set dma burst and threshold outside of chip_info path so that if
  1080. * chip_info goes away after setting chip->enable_dma, the
  1081. * burst and threshold can still respond to changes in bits_per_word */
  1082. if (chip->enable_dma) {
  1083. /* set up legal burst and threshold for dma */
  1084. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  1085. &chip->dma_burst_size,
  1086. &chip->dma_threshold)) {
  1087. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  1088. "to match bits_per_word\n");
  1089. }
  1090. }
  1091. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  1092. chip->speed_hz = spi->max_speed_hz;
  1093. chip->cr0 = clk_div
  1094. | SSCR0_Motorola
  1095. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  1096. spi->bits_per_word - 16 : spi->bits_per_word)
  1097. | SSCR0_SSE
  1098. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  1099. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  1100. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  1101. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  1102. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  1103. if (drv_data->ssp_type != PXA25x_SSP)
  1104. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
  1105. spi->bits_per_word,
  1106. clk_get_rate(ssp->clk)
  1107. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1108. spi->mode & 0x3,
  1109. chip->enable_dma ? "DMA" : "PIO");
  1110. else
  1111. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
  1112. spi->bits_per_word,
  1113. clk_get_rate(ssp->clk) / 2
  1114. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1115. spi->mode & 0x3,
  1116. chip->enable_dma ? "DMA" : "PIO");
  1117. if (spi->bits_per_word <= 8) {
  1118. chip->n_bytes = 1;
  1119. chip->dma_width = DCMD_WIDTH1;
  1120. chip->read = u8_reader;
  1121. chip->write = u8_writer;
  1122. } else if (spi->bits_per_word <= 16) {
  1123. chip->n_bytes = 2;
  1124. chip->dma_width = DCMD_WIDTH2;
  1125. chip->read = u16_reader;
  1126. chip->write = u16_writer;
  1127. } else if (spi->bits_per_word <= 32) {
  1128. chip->cr0 |= SSCR0_EDSS;
  1129. chip->n_bytes = 4;
  1130. chip->dma_width = DCMD_WIDTH4;
  1131. chip->read = u32_reader;
  1132. chip->write = u32_writer;
  1133. } else {
  1134. dev_err(&spi->dev, "invalid wordsize\n");
  1135. return -ENODEV;
  1136. }
  1137. chip->bits_per_word = spi->bits_per_word;
  1138. spi_set_ctldata(spi, chip);
  1139. return setup_cs(spi, chip, chip_info);
  1140. }
  1141. static void cleanup(struct spi_device *spi)
  1142. {
  1143. struct chip_data *chip = spi_get_ctldata(spi);
  1144. if (gpio_is_valid(chip->gpio_cs))
  1145. gpio_free(chip->gpio_cs);
  1146. kfree(chip);
  1147. }
  1148. static int __init init_queue(struct driver_data *drv_data)
  1149. {
  1150. INIT_LIST_HEAD(&drv_data->queue);
  1151. spin_lock_init(&drv_data->lock);
  1152. drv_data->run = QUEUE_STOPPED;
  1153. drv_data->busy = 0;
  1154. tasklet_init(&drv_data->pump_transfers,
  1155. pump_transfers, (unsigned long)drv_data);
  1156. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1157. drv_data->workqueue = create_singlethread_workqueue(
  1158. dev_name(drv_data->master->dev.parent));
  1159. if (drv_data->workqueue == NULL)
  1160. return -EBUSY;
  1161. return 0;
  1162. }
  1163. static int start_queue(struct driver_data *drv_data)
  1164. {
  1165. unsigned long flags;
  1166. spin_lock_irqsave(&drv_data->lock, flags);
  1167. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1168. spin_unlock_irqrestore(&drv_data->lock, flags);
  1169. return -EBUSY;
  1170. }
  1171. drv_data->run = QUEUE_RUNNING;
  1172. drv_data->cur_msg = NULL;
  1173. drv_data->cur_transfer = NULL;
  1174. drv_data->cur_chip = NULL;
  1175. spin_unlock_irqrestore(&drv_data->lock, flags);
  1176. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1177. return 0;
  1178. }
  1179. static int stop_queue(struct driver_data *drv_data)
  1180. {
  1181. unsigned long flags;
  1182. unsigned limit = 500;
  1183. int status = 0;
  1184. spin_lock_irqsave(&drv_data->lock, flags);
  1185. /* This is a bit lame, but is optimized for the common execution path.
  1186. * A wait_queue on the drv_data->busy could be used, but then the common
  1187. * execution path (pump_messages) would be required to call wake_up or
  1188. * friends on every SPI message. Do this instead */
  1189. drv_data->run = QUEUE_STOPPED;
  1190. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1191. spin_unlock_irqrestore(&drv_data->lock, flags);
  1192. msleep(10);
  1193. spin_lock_irqsave(&drv_data->lock, flags);
  1194. }
  1195. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1196. status = -EBUSY;
  1197. spin_unlock_irqrestore(&drv_data->lock, flags);
  1198. return status;
  1199. }
  1200. static int destroy_queue(struct driver_data *drv_data)
  1201. {
  1202. int status;
  1203. status = stop_queue(drv_data);
  1204. /* we are unloading the module or failing to load (only two calls
  1205. * to this routine), and neither call can handle a return value.
  1206. * However, destroy_workqueue calls flush_workqueue, and that will
  1207. * block until all work is done. If the reason that stop_queue
  1208. * timed out is that the work will never finish, then it does no
  1209. * good to call destroy_workqueue, so return anyway. */
  1210. if (status != 0)
  1211. return status;
  1212. destroy_workqueue(drv_data->workqueue);
  1213. return 0;
  1214. }
  1215. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1216. {
  1217. struct device *dev = &pdev->dev;
  1218. struct pxa2xx_spi_master *platform_info;
  1219. struct spi_master *master;
  1220. struct driver_data *drv_data;
  1221. struct ssp_device *ssp;
  1222. int status;
  1223. platform_info = dev->platform_data;
  1224. ssp = ssp_request(pdev->id, pdev->name);
  1225. if (ssp == NULL) {
  1226. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1227. return -ENODEV;
  1228. }
  1229. /* Allocate master with space for drv_data and null dma buffer */
  1230. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1231. if (!master) {
  1232. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  1233. ssp_free(ssp);
  1234. return -ENOMEM;
  1235. }
  1236. drv_data = spi_master_get_devdata(master);
  1237. drv_data->master = master;
  1238. drv_data->master_info = platform_info;
  1239. drv_data->pdev = pdev;
  1240. drv_data->ssp = ssp;
  1241. master->bus_num = pdev->id;
  1242. master->num_chipselect = platform_info->num_chipselect;
  1243. master->cleanup = cleanup;
  1244. master->setup = setup;
  1245. master->transfer = transfer;
  1246. drv_data->ssp_type = ssp->type;
  1247. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1248. sizeof(struct driver_data)), 8);
  1249. drv_data->ioaddr = ssp->mmio_base;
  1250. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1251. if (ssp->type == PXA25x_SSP) {
  1252. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1253. drv_data->dma_cr1 = 0;
  1254. drv_data->clear_sr = SSSR_ROR;
  1255. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1256. } else {
  1257. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1258. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1259. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1260. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1261. }
  1262. status = request_irq(ssp->irq, ssp_int, 0, dev_name(dev), drv_data);
  1263. if (status < 0) {
  1264. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  1265. goto out_error_master_alloc;
  1266. }
  1267. /* Setup DMA if requested */
  1268. drv_data->tx_channel = -1;
  1269. drv_data->rx_channel = -1;
  1270. if (platform_info->enable_dma) {
  1271. /* Get two DMA channels (rx and tx) */
  1272. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1273. DMA_PRIO_HIGH,
  1274. dma_handler,
  1275. drv_data);
  1276. if (drv_data->rx_channel < 0) {
  1277. dev_err(dev, "problem (%d) requesting rx channel\n",
  1278. drv_data->rx_channel);
  1279. status = -ENODEV;
  1280. goto out_error_irq_alloc;
  1281. }
  1282. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1283. DMA_PRIO_MEDIUM,
  1284. dma_handler,
  1285. drv_data);
  1286. if (drv_data->tx_channel < 0) {
  1287. dev_err(dev, "problem (%d) requesting tx channel\n",
  1288. drv_data->tx_channel);
  1289. status = -ENODEV;
  1290. goto out_error_dma_alloc;
  1291. }
  1292. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1293. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1294. }
  1295. /* Enable SOC clock */
  1296. clk_enable(ssp->clk);
  1297. /* Load default SSP configuration */
  1298. write_SSCR0(0, drv_data->ioaddr);
  1299. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  1300. SSCR1_TxTresh(TX_THRESH_DFLT),
  1301. drv_data->ioaddr);
  1302. write_SSCR0(SSCR0_SerClkDiv(2)
  1303. | SSCR0_Motorola
  1304. | SSCR0_DataSize(8),
  1305. drv_data->ioaddr);
  1306. if (drv_data->ssp_type != PXA25x_SSP)
  1307. write_SSTO(0, drv_data->ioaddr);
  1308. write_SSPSP(0, drv_data->ioaddr);
  1309. /* Initial and start queue */
  1310. status = init_queue(drv_data);
  1311. if (status != 0) {
  1312. dev_err(&pdev->dev, "problem initializing queue\n");
  1313. goto out_error_clock_enabled;
  1314. }
  1315. status = start_queue(drv_data);
  1316. if (status != 0) {
  1317. dev_err(&pdev->dev, "problem starting queue\n");
  1318. goto out_error_clock_enabled;
  1319. }
  1320. /* Register with the SPI framework */
  1321. platform_set_drvdata(pdev, drv_data);
  1322. status = spi_register_master(master);
  1323. if (status != 0) {
  1324. dev_err(&pdev->dev, "problem registering spi master\n");
  1325. goto out_error_queue_alloc;
  1326. }
  1327. return status;
  1328. out_error_queue_alloc:
  1329. destroy_queue(drv_data);
  1330. out_error_clock_enabled:
  1331. clk_disable(ssp->clk);
  1332. out_error_dma_alloc:
  1333. if (drv_data->tx_channel != -1)
  1334. pxa_free_dma(drv_data->tx_channel);
  1335. if (drv_data->rx_channel != -1)
  1336. pxa_free_dma(drv_data->rx_channel);
  1337. out_error_irq_alloc:
  1338. free_irq(ssp->irq, drv_data);
  1339. out_error_master_alloc:
  1340. spi_master_put(master);
  1341. ssp_free(ssp);
  1342. return status;
  1343. }
  1344. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1345. {
  1346. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1347. struct ssp_device *ssp;
  1348. int status = 0;
  1349. if (!drv_data)
  1350. return 0;
  1351. ssp = drv_data->ssp;
  1352. /* Remove the queue */
  1353. status = destroy_queue(drv_data);
  1354. if (status != 0)
  1355. /* the kernel does not check the return status of this
  1356. * this routine (mod->exit, within the kernel). Therefore
  1357. * nothing is gained by returning from here, the module is
  1358. * going away regardless, and we should not leave any more
  1359. * resources allocated than necessary. We cannot free the
  1360. * message memory in drv_data->queue, but we can release the
  1361. * resources below. I think the kernel should honor -EBUSY
  1362. * returns but... */
  1363. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1364. "complete, message memory not freed\n");
  1365. /* Disable the SSP at the peripheral and SOC level */
  1366. write_SSCR0(0, drv_data->ioaddr);
  1367. clk_disable(ssp->clk);
  1368. /* Release DMA */
  1369. if (drv_data->master_info->enable_dma) {
  1370. DRCMR(ssp->drcmr_rx) = 0;
  1371. DRCMR(ssp->drcmr_tx) = 0;
  1372. pxa_free_dma(drv_data->tx_channel);
  1373. pxa_free_dma(drv_data->rx_channel);
  1374. }
  1375. /* Release IRQ */
  1376. free_irq(ssp->irq, drv_data);
  1377. /* Release SSP */
  1378. ssp_free(ssp);
  1379. /* Disconnect from the SPI framework */
  1380. spi_unregister_master(drv_data->master);
  1381. /* Prevent double remove */
  1382. platform_set_drvdata(pdev, NULL);
  1383. return 0;
  1384. }
  1385. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1386. {
  1387. int status = 0;
  1388. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1389. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1390. }
  1391. #ifdef CONFIG_PM
  1392. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1393. {
  1394. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1395. struct ssp_device *ssp = drv_data->ssp;
  1396. int status = 0;
  1397. status = stop_queue(drv_data);
  1398. if (status != 0)
  1399. return status;
  1400. write_SSCR0(0, drv_data->ioaddr);
  1401. clk_disable(ssp->clk);
  1402. return 0;
  1403. }
  1404. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1405. {
  1406. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1407. struct ssp_device *ssp = drv_data->ssp;
  1408. int status = 0;
  1409. /* Enable the SSP clock */
  1410. clk_enable(ssp->clk);
  1411. /* Start the queue running */
  1412. status = start_queue(drv_data);
  1413. if (status != 0) {
  1414. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1415. return status;
  1416. }
  1417. return 0;
  1418. }
  1419. #else
  1420. #define pxa2xx_spi_suspend NULL
  1421. #define pxa2xx_spi_resume NULL
  1422. #endif /* CONFIG_PM */
  1423. static struct platform_driver driver = {
  1424. .driver = {
  1425. .name = "pxa2xx-spi",
  1426. .owner = THIS_MODULE,
  1427. },
  1428. .remove = pxa2xx_spi_remove,
  1429. .shutdown = pxa2xx_spi_shutdown,
  1430. .suspend = pxa2xx_spi_suspend,
  1431. .resume = pxa2xx_spi_resume,
  1432. };
  1433. static int __init pxa2xx_spi_init(void)
  1434. {
  1435. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1436. }
  1437. module_init(pxa2xx_spi_init);
  1438. static void __exit pxa2xx_spi_exit(void)
  1439. {
  1440. platform_driver_unregister(&driver);
  1441. }
  1442. module_exit(pxa2xx_spi_exit);