md.c 222 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  134. struct mddev *mddev)
  135. {
  136. struct bio *b;
  137. if (!mddev || !mddev->bio_set)
  138. return bio_alloc(gfp_mask, nr_iovecs);
  139. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  140. if (!b)
  141. return NULL;
  142. return b;
  143. }
  144. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  145. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  146. struct mddev *mddev)
  147. {
  148. if (!mddev || !mddev->bio_set)
  149. return bio_clone(bio, gfp_mask);
  150. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  151. }
  152. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  153. void md_trim_bio(struct bio *bio, int offset, int size)
  154. {
  155. /* 'bio' is a cloned bio which we need to trim to match
  156. * the given offset and size.
  157. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  158. */
  159. int i;
  160. struct bio_vec *bvec;
  161. int sofar = 0;
  162. size <<= 9;
  163. if (offset == 0 && size == bio->bi_size)
  164. return;
  165. bio->bi_sector += offset;
  166. bio->bi_size = size;
  167. offset <<= 9;
  168. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  169. while (bio->bi_idx < bio->bi_vcnt &&
  170. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  171. /* remove this whole bio_vec */
  172. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  173. bio->bi_idx++;
  174. }
  175. if (bio->bi_idx < bio->bi_vcnt) {
  176. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  177. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  178. }
  179. /* avoid any complications with bi_idx being non-zero*/
  180. if (bio->bi_idx) {
  181. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  182. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  183. bio->bi_vcnt -= bio->bi_idx;
  184. bio->bi_idx = 0;
  185. }
  186. /* Make sure vcnt and last bv are not too big */
  187. bio_for_each_segment(bvec, bio, i) {
  188. if (sofar + bvec->bv_len > size)
  189. bvec->bv_len = size - sofar;
  190. if (bvec->bv_len == 0) {
  191. bio->bi_vcnt = i;
  192. break;
  193. }
  194. sofar += bvec->bv_len;
  195. }
  196. }
  197. EXPORT_SYMBOL_GPL(md_trim_bio);
  198. /*
  199. * We have a system wide 'event count' that is incremented
  200. * on any 'interesting' event, and readers of /proc/mdstat
  201. * can use 'poll' or 'select' to find out when the event
  202. * count increases.
  203. *
  204. * Events are:
  205. * start array, stop array, error, add device, remove device,
  206. * start build, activate spare
  207. */
  208. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  209. static atomic_t md_event_count;
  210. void md_new_event(struct mddev *mddev)
  211. {
  212. atomic_inc(&md_event_count);
  213. wake_up(&md_event_waiters);
  214. }
  215. EXPORT_SYMBOL_GPL(md_new_event);
  216. /* Alternate version that can be called from interrupts
  217. * when calling sysfs_notify isn't needed.
  218. */
  219. static void md_new_event_inintr(struct mddev *mddev)
  220. {
  221. atomic_inc(&md_event_count);
  222. wake_up(&md_event_waiters);
  223. }
  224. /*
  225. * Enables to iterate over all existing md arrays
  226. * all_mddevs_lock protects this list.
  227. */
  228. static LIST_HEAD(all_mddevs);
  229. static DEFINE_SPINLOCK(all_mddevs_lock);
  230. /*
  231. * iterates through all used mddevs in the system.
  232. * We take care to grab the all_mddevs_lock whenever navigating
  233. * the list, and to always hold a refcount when unlocked.
  234. * Any code which breaks out of this loop while own
  235. * a reference to the current mddev and must mddev_put it.
  236. */
  237. #define for_each_mddev(_mddev,_tmp) \
  238. \
  239. for (({ spin_lock(&all_mddevs_lock); \
  240. _tmp = all_mddevs.next; \
  241. _mddev = NULL;}); \
  242. ({ if (_tmp != &all_mddevs) \
  243. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  244. spin_unlock(&all_mddevs_lock); \
  245. if (_mddev) mddev_put(_mddev); \
  246. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  247. _tmp != &all_mddevs;}); \
  248. ({ spin_lock(&all_mddevs_lock); \
  249. _tmp = _tmp->next;}) \
  250. )
  251. /* Rather than calling directly into the personality make_request function,
  252. * IO requests come here first so that we can check if the device is
  253. * being suspended pending a reconfiguration.
  254. * We hold a refcount over the call to ->make_request. By the time that
  255. * call has finished, the bio has been linked into some internal structure
  256. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  257. */
  258. static void md_make_request(struct request_queue *q, struct bio *bio)
  259. {
  260. const int rw = bio_data_dir(bio);
  261. struct mddev *mddev = q->queuedata;
  262. int cpu;
  263. unsigned int sectors;
  264. if (mddev == NULL || mddev->pers == NULL
  265. || !mddev->ready) {
  266. bio_io_error(bio);
  267. return;
  268. }
  269. smp_rmb(); /* Ensure implications of 'active' are visible */
  270. rcu_read_lock();
  271. if (mddev->suspended) {
  272. DEFINE_WAIT(__wait);
  273. for (;;) {
  274. prepare_to_wait(&mddev->sb_wait, &__wait,
  275. TASK_UNINTERRUPTIBLE);
  276. if (!mddev->suspended)
  277. break;
  278. rcu_read_unlock();
  279. schedule();
  280. rcu_read_lock();
  281. }
  282. finish_wait(&mddev->sb_wait, &__wait);
  283. }
  284. atomic_inc(&mddev->active_io);
  285. rcu_read_unlock();
  286. /*
  287. * save the sectors now since our bio can
  288. * go away inside make_request
  289. */
  290. sectors = bio_sectors(bio);
  291. mddev->pers->make_request(mddev, bio);
  292. cpu = part_stat_lock();
  293. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  294. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  295. part_stat_unlock();
  296. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  297. wake_up(&mddev->sb_wait);
  298. }
  299. /* mddev_suspend makes sure no new requests are submitted
  300. * to the device, and that any requests that have been submitted
  301. * are completely handled.
  302. * Once ->stop is called and completes, the module will be completely
  303. * unused.
  304. */
  305. void mddev_suspend(struct mddev *mddev)
  306. {
  307. BUG_ON(mddev->suspended);
  308. mddev->suspended = 1;
  309. synchronize_rcu();
  310. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  311. mddev->pers->quiesce(mddev, 1);
  312. del_timer_sync(&mddev->safemode_timer);
  313. }
  314. EXPORT_SYMBOL_GPL(mddev_suspend);
  315. void mddev_resume(struct mddev *mddev)
  316. {
  317. mddev->suspended = 0;
  318. wake_up(&mddev->sb_wait);
  319. mddev->pers->quiesce(mddev, 0);
  320. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  321. md_wakeup_thread(mddev->thread);
  322. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  323. }
  324. EXPORT_SYMBOL_GPL(mddev_resume);
  325. int mddev_congested(struct mddev *mddev, int bits)
  326. {
  327. return mddev->suspended;
  328. }
  329. EXPORT_SYMBOL(mddev_congested);
  330. /*
  331. * Generic flush handling for md
  332. */
  333. static void md_end_flush(struct bio *bio, int err)
  334. {
  335. struct md_rdev *rdev = bio->bi_private;
  336. struct mddev *mddev = rdev->mddev;
  337. rdev_dec_pending(rdev, mddev);
  338. if (atomic_dec_and_test(&mddev->flush_pending)) {
  339. /* The pre-request flush has finished */
  340. queue_work(md_wq, &mddev->flush_work);
  341. }
  342. bio_put(bio);
  343. }
  344. static void md_submit_flush_data(struct work_struct *ws);
  345. static void submit_flushes(struct work_struct *ws)
  346. {
  347. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  348. struct md_rdev *rdev;
  349. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  350. atomic_set(&mddev->flush_pending, 1);
  351. rcu_read_lock();
  352. rdev_for_each_rcu(rdev, mddev)
  353. if (rdev->raid_disk >= 0 &&
  354. !test_bit(Faulty, &rdev->flags)) {
  355. /* Take two references, one is dropped
  356. * when request finishes, one after
  357. * we reclaim rcu_read_lock
  358. */
  359. struct bio *bi;
  360. atomic_inc(&rdev->nr_pending);
  361. atomic_inc(&rdev->nr_pending);
  362. rcu_read_unlock();
  363. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  364. bi->bi_end_io = md_end_flush;
  365. bi->bi_private = rdev;
  366. bi->bi_bdev = rdev->bdev;
  367. atomic_inc(&mddev->flush_pending);
  368. submit_bio(WRITE_FLUSH, bi);
  369. rcu_read_lock();
  370. rdev_dec_pending(rdev, mddev);
  371. }
  372. rcu_read_unlock();
  373. if (atomic_dec_and_test(&mddev->flush_pending))
  374. queue_work(md_wq, &mddev->flush_work);
  375. }
  376. static void md_submit_flush_data(struct work_struct *ws)
  377. {
  378. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  379. struct bio *bio = mddev->flush_bio;
  380. if (bio->bi_size == 0)
  381. /* an empty barrier - all done */
  382. bio_endio(bio, 0);
  383. else {
  384. bio->bi_rw &= ~REQ_FLUSH;
  385. mddev->pers->make_request(mddev, bio);
  386. }
  387. mddev->flush_bio = NULL;
  388. wake_up(&mddev->sb_wait);
  389. }
  390. void md_flush_request(struct mddev *mddev, struct bio *bio)
  391. {
  392. spin_lock_irq(&mddev->write_lock);
  393. wait_event_lock_irq(mddev->sb_wait,
  394. !mddev->flush_bio,
  395. mddev->write_lock, /*nothing*/);
  396. mddev->flush_bio = bio;
  397. spin_unlock_irq(&mddev->write_lock);
  398. INIT_WORK(&mddev->flush_work, submit_flushes);
  399. queue_work(md_wq, &mddev->flush_work);
  400. }
  401. EXPORT_SYMBOL(md_flush_request);
  402. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  403. {
  404. struct mddev *mddev = cb->data;
  405. md_wakeup_thread(mddev->thread);
  406. kfree(cb);
  407. }
  408. EXPORT_SYMBOL(md_unplug);
  409. static inline struct mddev *mddev_get(struct mddev *mddev)
  410. {
  411. atomic_inc(&mddev->active);
  412. return mddev;
  413. }
  414. static void mddev_delayed_delete(struct work_struct *ws);
  415. static void mddev_put(struct mddev *mddev)
  416. {
  417. struct bio_set *bs = NULL;
  418. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  419. return;
  420. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  421. mddev->ctime == 0 && !mddev->hold_active) {
  422. /* Array is not configured at all, and not held active,
  423. * so destroy it */
  424. list_del_init(&mddev->all_mddevs);
  425. bs = mddev->bio_set;
  426. mddev->bio_set = NULL;
  427. if (mddev->gendisk) {
  428. /* We did a probe so need to clean up. Call
  429. * queue_work inside the spinlock so that
  430. * flush_workqueue() after mddev_find will
  431. * succeed in waiting for the work to be done.
  432. */
  433. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  434. queue_work(md_misc_wq, &mddev->del_work);
  435. } else
  436. kfree(mddev);
  437. }
  438. spin_unlock(&all_mddevs_lock);
  439. if (bs)
  440. bioset_free(bs);
  441. }
  442. void mddev_init(struct mddev *mddev)
  443. {
  444. mutex_init(&mddev->open_mutex);
  445. mutex_init(&mddev->reconfig_mutex);
  446. mutex_init(&mddev->bitmap_info.mutex);
  447. INIT_LIST_HEAD(&mddev->disks);
  448. INIT_LIST_HEAD(&mddev->all_mddevs);
  449. init_timer(&mddev->safemode_timer);
  450. atomic_set(&mddev->active, 1);
  451. atomic_set(&mddev->openers, 0);
  452. atomic_set(&mddev->active_io, 0);
  453. spin_lock_init(&mddev->write_lock);
  454. atomic_set(&mddev->flush_pending, 0);
  455. init_waitqueue_head(&mddev->sb_wait);
  456. init_waitqueue_head(&mddev->recovery_wait);
  457. mddev->reshape_position = MaxSector;
  458. mddev->reshape_backwards = 0;
  459. mddev->resync_min = 0;
  460. mddev->resync_max = MaxSector;
  461. mddev->level = LEVEL_NONE;
  462. }
  463. EXPORT_SYMBOL_GPL(mddev_init);
  464. static struct mddev * mddev_find(dev_t unit)
  465. {
  466. struct mddev *mddev, *new = NULL;
  467. if (unit && MAJOR(unit) != MD_MAJOR)
  468. unit &= ~((1<<MdpMinorShift)-1);
  469. retry:
  470. spin_lock(&all_mddevs_lock);
  471. if (unit) {
  472. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  473. if (mddev->unit == unit) {
  474. mddev_get(mddev);
  475. spin_unlock(&all_mddevs_lock);
  476. kfree(new);
  477. return mddev;
  478. }
  479. if (new) {
  480. list_add(&new->all_mddevs, &all_mddevs);
  481. spin_unlock(&all_mddevs_lock);
  482. new->hold_active = UNTIL_IOCTL;
  483. return new;
  484. }
  485. } else if (new) {
  486. /* find an unused unit number */
  487. static int next_minor = 512;
  488. int start = next_minor;
  489. int is_free = 0;
  490. int dev = 0;
  491. while (!is_free) {
  492. dev = MKDEV(MD_MAJOR, next_minor);
  493. next_minor++;
  494. if (next_minor > MINORMASK)
  495. next_minor = 0;
  496. if (next_minor == start) {
  497. /* Oh dear, all in use. */
  498. spin_unlock(&all_mddevs_lock);
  499. kfree(new);
  500. return NULL;
  501. }
  502. is_free = 1;
  503. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  504. if (mddev->unit == dev) {
  505. is_free = 0;
  506. break;
  507. }
  508. }
  509. new->unit = dev;
  510. new->md_minor = MINOR(dev);
  511. new->hold_active = UNTIL_STOP;
  512. list_add(&new->all_mddevs, &all_mddevs);
  513. spin_unlock(&all_mddevs_lock);
  514. return new;
  515. }
  516. spin_unlock(&all_mddevs_lock);
  517. new = kzalloc(sizeof(*new), GFP_KERNEL);
  518. if (!new)
  519. return NULL;
  520. new->unit = unit;
  521. if (MAJOR(unit) == MD_MAJOR)
  522. new->md_minor = MINOR(unit);
  523. else
  524. new->md_minor = MINOR(unit) >> MdpMinorShift;
  525. mddev_init(new);
  526. goto retry;
  527. }
  528. static inline int mddev_lock(struct mddev * mddev)
  529. {
  530. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  531. }
  532. static inline int mddev_is_locked(struct mddev *mddev)
  533. {
  534. return mutex_is_locked(&mddev->reconfig_mutex);
  535. }
  536. static inline int mddev_trylock(struct mddev * mddev)
  537. {
  538. return mutex_trylock(&mddev->reconfig_mutex);
  539. }
  540. static struct attribute_group md_redundancy_group;
  541. static void mddev_unlock(struct mddev * mddev)
  542. {
  543. if (mddev->to_remove) {
  544. /* These cannot be removed under reconfig_mutex as
  545. * an access to the files will try to take reconfig_mutex
  546. * while holding the file unremovable, which leads to
  547. * a deadlock.
  548. * So hold set sysfs_active while the remove in happeing,
  549. * and anything else which might set ->to_remove or my
  550. * otherwise change the sysfs namespace will fail with
  551. * -EBUSY if sysfs_active is still set.
  552. * We set sysfs_active under reconfig_mutex and elsewhere
  553. * test it under the same mutex to ensure its correct value
  554. * is seen.
  555. */
  556. struct attribute_group *to_remove = mddev->to_remove;
  557. mddev->to_remove = NULL;
  558. mddev->sysfs_active = 1;
  559. mutex_unlock(&mddev->reconfig_mutex);
  560. if (mddev->kobj.sd) {
  561. if (to_remove != &md_redundancy_group)
  562. sysfs_remove_group(&mddev->kobj, to_remove);
  563. if (mddev->pers == NULL ||
  564. mddev->pers->sync_request == NULL) {
  565. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  566. if (mddev->sysfs_action)
  567. sysfs_put(mddev->sysfs_action);
  568. mddev->sysfs_action = NULL;
  569. }
  570. }
  571. mddev->sysfs_active = 0;
  572. } else
  573. mutex_unlock(&mddev->reconfig_mutex);
  574. /* As we've dropped the mutex we need a spinlock to
  575. * make sure the thread doesn't disappear
  576. */
  577. spin_lock(&pers_lock);
  578. md_wakeup_thread(mddev->thread);
  579. spin_unlock(&pers_lock);
  580. }
  581. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  582. {
  583. struct md_rdev *rdev;
  584. rdev_for_each(rdev, mddev)
  585. if (rdev->desc_nr == nr)
  586. return rdev;
  587. return NULL;
  588. }
  589. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  590. {
  591. struct md_rdev *rdev;
  592. rdev_for_each_rcu(rdev, mddev)
  593. if (rdev->desc_nr == nr)
  594. return rdev;
  595. return NULL;
  596. }
  597. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  598. {
  599. struct md_rdev *rdev;
  600. rdev_for_each(rdev, mddev)
  601. if (rdev->bdev->bd_dev == dev)
  602. return rdev;
  603. return NULL;
  604. }
  605. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  606. {
  607. struct md_rdev *rdev;
  608. rdev_for_each_rcu(rdev, mddev)
  609. if (rdev->bdev->bd_dev == dev)
  610. return rdev;
  611. return NULL;
  612. }
  613. static struct md_personality *find_pers(int level, char *clevel)
  614. {
  615. struct md_personality *pers;
  616. list_for_each_entry(pers, &pers_list, list) {
  617. if (level != LEVEL_NONE && pers->level == level)
  618. return pers;
  619. if (strcmp(pers->name, clevel)==0)
  620. return pers;
  621. }
  622. return NULL;
  623. }
  624. /* return the offset of the super block in 512byte sectors */
  625. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  626. {
  627. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  628. return MD_NEW_SIZE_SECTORS(num_sectors);
  629. }
  630. static int alloc_disk_sb(struct md_rdev * rdev)
  631. {
  632. if (rdev->sb_page)
  633. MD_BUG();
  634. rdev->sb_page = alloc_page(GFP_KERNEL);
  635. if (!rdev->sb_page) {
  636. printk(KERN_ALERT "md: out of memory.\n");
  637. return -ENOMEM;
  638. }
  639. return 0;
  640. }
  641. void md_rdev_clear(struct md_rdev *rdev)
  642. {
  643. if (rdev->sb_page) {
  644. put_page(rdev->sb_page);
  645. rdev->sb_loaded = 0;
  646. rdev->sb_page = NULL;
  647. rdev->sb_start = 0;
  648. rdev->sectors = 0;
  649. }
  650. if (rdev->bb_page) {
  651. put_page(rdev->bb_page);
  652. rdev->bb_page = NULL;
  653. }
  654. kfree(rdev->badblocks.page);
  655. rdev->badblocks.page = NULL;
  656. }
  657. EXPORT_SYMBOL_GPL(md_rdev_clear);
  658. static void super_written(struct bio *bio, int error)
  659. {
  660. struct md_rdev *rdev = bio->bi_private;
  661. struct mddev *mddev = rdev->mddev;
  662. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  663. printk("md: super_written gets error=%d, uptodate=%d\n",
  664. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  665. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  666. md_error(mddev, rdev);
  667. }
  668. if (atomic_dec_and_test(&mddev->pending_writes))
  669. wake_up(&mddev->sb_wait);
  670. bio_put(bio);
  671. }
  672. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  673. sector_t sector, int size, struct page *page)
  674. {
  675. /* write first size bytes of page to sector of rdev
  676. * Increment mddev->pending_writes before returning
  677. * and decrement it on completion, waking up sb_wait
  678. * if zero is reached.
  679. * If an error occurred, call md_error
  680. */
  681. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  682. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  683. bio->bi_sector = sector;
  684. bio_add_page(bio, page, size, 0);
  685. bio->bi_private = rdev;
  686. bio->bi_end_io = super_written;
  687. atomic_inc(&mddev->pending_writes);
  688. submit_bio(WRITE_FLUSH_FUA, bio);
  689. }
  690. void md_super_wait(struct mddev *mddev)
  691. {
  692. /* wait for all superblock writes that were scheduled to complete */
  693. DEFINE_WAIT(wq);
  694. for(;;) {
  695. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  696. if (atomic_read(&mddev->pending_writes)==0)
  697. break;
  698. schedule();
  699. }
  700. finish_wait(&mddev->sb_wait, &wq);
  701. }
  702. static void bi_complete(struct bio *bio, int error)
  703. {
  704. complete((struct completion*)bio->bi_private);
  705. }
  706. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  707. struct page *page, int rw, bool metadata_op)
  708. {
  709. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  710. struct completion event;
  711. int ret;
  712. rw |= REQ_SYNC;
  713. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  714. rdev->meta_bdev : rdev->bdev;
  715. if (metadata_op)
  716. bio->bi_sector = sector + rdev->sb_start;
  717. else if (rdev->mddev->reshape_position != MaxSector &&
  718. (rdev->mddev->reshape_backwards ==
  719. (sector >= rdev->mddev->reshape_position)))
  720. bio->bi_sector = sector + rdev->new_data_offset;
  721. else
  722. bio->bi_sector = sector + rdev->data_offset;
  723. bio_add_page(bio, page, size, 0);
  724. init_completion(&event);
  725. bio->bi_private = &event;
  726. bio->bi_end_io = bi_complete;
  727. submit_bio(rw, bio);
  728. wait_for_completion(&event);
  729. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  730. bio_put(bio);
  731. return ret;
  732. }
  733. EXPORT_SYMBOL_GPL(sync_page_io);
  734. static int read_disk_sb(struct md_rdev * rdev, int size)
  735. {
  736. char b[BDEVNAME_SIZE];
  737. if (!rdev->sb_page) {
  738. MD_BUG();
  739. return -EINVAL;
  740. }
  741. if (rdev->sb_loaded)
  742. return 0;
  743. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  744. goto fail;
  745. rdev->sb_loaded = 1;
  746. return 0;
  747. fail:
  748. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  749. bdevname(rdev->bdev,b));
  750. return -EINVAL;
  751. }
  752. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  753. {
  754. return sb1->set_uuid0 == sb2->set_uuid0 &&
  755. sb1->set_uuid1 == sb2->set_uuid1 &&
  756. sb1->set_uuid2 == sb2->set_uuid2 &&
  757. sb1->set_uuid3 == sb2->set_uuid3;
  758. }
  759. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  760. {
  761. int ret;
  762. mdp_super_t *tmp1, *tmp2;
  763. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  764. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  765. if (!tmp1 || !tmp2) {
  766. ret = 0;
  767. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  768. goto abort;
  769. }
  770. *tmp1 = *sb1;
  771. *tmp2 = *sb2;
  772. /*
  773. * nr_disks is not constant
  774. */
  775. tmp1->nr_disks = 0;
  776. tmp2->nr_disks = 0;
  777. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  778. abort:
  779. kfree(tmp1);
  780. kfree(tmp2);
  781. return ret;
  782. }
  783. static u32 md_csum_fold(u32 csum)
  784. {
  785. csum = (csum & 0xffff) + (csum >> 16);
  786. return (csum & 0xffff) + (csum >> 16);
  787. }
  788. static unsigned int calc_sb_csum(mdp_super_t * sb)
  789. {
  790. u64 newcsum = 0;
  791. u32 *sb32 = (u32*)sb;
  792. int i;
  793. unsigned int disk_csum, csum;
  794. disk_csum = sb->sb_csum;
  795. sb->sb_csum = 0;
  796. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  797. newcsum += sb32[i];
  798. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  799. #ifdef CONFIG_ALPHA
  800. /* This used to use csum_partial, which was wrong for several
  801. * reasons including that different results are returned on
  802. * different architectures. It isn't critical that we get exactly
  803. * the same return value as before (we always csum_fold before
  804. * testing, and that removes any differences). However as we
  805. * know that csum_partial always returned a 16bit value on
  806. * alphas, do a fold to maximise conformity to previous behaviour.
  807. */
  808. sb->sb_csum = md_csum_fold(disk_csum);
  809. #else
  810. sb->sb_csum = disk_csum;
  811. #endif
  812. return csum;
  813. }
  814. /*
  815. * Handle superblock details.
  816. * We want to be able to handle multiple superblock formats
  817. * so we have a common interface to them all, and an array of
  818. * different handlers.
  819. * We rely on user-space to write the initial superblock, and support
  820. * reading and updating of superblocks.
  821. * Interface methods are:
  822. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  823. * loads and validates a superblock on dev.
  824. * if refdev != NULL, compare superblocks on both devices
  825. * Return:
  826. * 0 - dev has a superblock that is compatible with refdev
  827. * 1 - dev has a superblock that is compatible and newer than refdev
  828. * so dev should be used as the refdev in future
  829. * -EINVAL superblock incompatible or invalid
  830. * -othererror e.g. -EIO
  831. *
  832. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  833. * Verify that dev is acceptable into mddev.
  834. * The first time, mddev->raid_disks will be 0, and data from
  835. * dev should be merged in. Subsequent calls check that dev
  836. * is new enough. Return 0 or -EINVAL
  837. *
  838. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  839. * Update the superblock for rdev with data in mddev
  840. * This does not write to disc.
  841. *
  842. */
  843. struct super_type {
  844. char *name;
  845. struct module *owner;
  846. int (*load_super)(struct md_rdev *rdev,
  847. struct md_rdev *refdev,
  848. int minor_version);
  849. int (*validate_super)(struct mddev *mddev,
  850. struct md_rdev *rdev);
  851. void (*sync_super)(struct mddev *mddev,
  852. struct md_rdev *rdev);
  853. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  854. sector_t num_sectors);
  855. int (*allow_new_offset)(struct md_rdev *rdev,
  856. unsigned long long new_offset);
  857. };
  858. /*
  859. * Check that the given mddev has no bitmap.
  860. *
  861. * This function is called from the run method of all personalities that do not
  862. * support bitmaps. It prints an error message and returns non-zero if mddev
  863. * has a bitmap. Otherwise, it returns 0.
  864. *
  865. */
  866. int md_check_no_bitmap(struct mddev *mddev)
  867. {
  868. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  869. return 0;
  870. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  871. mdname(mddev), mddev->pers->name);
  872. return 1;
  873. }
  874. EXPORT_SYMBOL(md_check_no_bitmap);
  875. /*
  876. * load_super for 0.90.0
  877. */
  878. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  879. {
  880. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  881. mdp_super_t *sb;
  882. int ret;
  883. /*
  884. * Calculate the position of the superblock (512byte sectors),
  885. * it's at the end of the disk.
  886. *
  887. * It also happens to be a multiple of 4Kb.
  888. */
  889. rdev->sb_start = calc_dev_sboffset(rdev);
  890. ret = read_disk_sb(rdev, MD_SB_BYTES);
  891. if (ret) return ret;
  892. ret = -EINVAL;
  893. bdevname(rdev->bdev, b);
  894. sb = page_address(rdev->sb_page);
  895. if (sb->md_magic != MD_SB_MAGIC) {
  896. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  897. b);
  898. goto abort;
  899. }
  900. if (sb->major_version != 0 ||
  901. sb->minor_version < 90 ||
  902. sb->minor_version > 91) {
  903. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  904. sb->major_version, sb->minor_version,
  905. b);
  906. goto abort;
  907. }
  908. if (sb->raid_disks <= 0)
  909. goto abort;
  910. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  911. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  912. b);
  913. goto abort;
  914. }
  915. rdev->preferred_minor = sb->md_minor;
  916. rdev->data_offset = 0;
  917. rdev->new_data_offset = 0;
  918. rdev->sb_size = MD_SB_BYTES;
  919. rdev->badblocks.shift = -1;
  920. if (sb->level == LEVEL_MULTIPATH)
  921. rdev->desc_nr = -1;
  922. else
  923. rdev->desc_nr = sb->this_disk.number;
  924. if (!refdev) {
  925. ret = 1;
  926. } else {
  927. __u64 ev1, ev2;
  928. mdp_super_t *refsb = page_address(refdev->sb_page);
  929. if (!uuid_equal(refsb, sb)) {
  930. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  931. b, bdevname(refdev->bdev,b2));
  932. goto abort;
  933. }
  934. if (!sb_equal(refsb, sb)) {
  935. printk(KERN_WARNING "md: %s has same UUID"
  936. " but different superblock to %s\n",
  937. b, bdevname(refdev->bdev, b2));
  938. goto abort;
  939. }
  940. ev1 = md_event(sb);
  941. ev2 = md_event(refsb);
  942. if (ev1 > ev2)
  943. ret = 1;
  944. else
  945. ret = 0;
  946. }
  947. rdev->sectors = rdev->sb_start;
  948. /* Limit to 4TB as metadata cannot record more than that.
  949. * (not needed for Linear and RAID0 as metadata doesn't
  950. * record this size)
  951. */
  952. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  953. rdev->sectors = (2ULL << 32) - 2;
  954. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  955. /* "this cannot possibly happen" ... */
  956. ret = -EINVAL;
  957. abort:
  958. return ret;
  959. }
  960. /*
  961. * validate_super for 0.90.0
  962. */
  963. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  964. {
  965. mdp_disk_t *desc;
  966. mdp_super_t *sb = page_address(rdev->sb_page);
  967. __u64 ev1 = md_event(sb);
  968. rdev->raid_disk = -1;
  969. clear_bit(Faulty, &rdev->flags);
  970. clear_bit(In_sync, &rdev->flags);
  971. clear_bit(WriteMostly, &rdev->flags);
  972. if (mddev->raid_disks == 0) {
  973. mddev->major_version = 0;
  974. mddev->minor_version = sb->minor_version;
  975. mddev->patch_version = sb->patch_version;
  976. mddev->external = 0;
  977. mddev->chunk_sectors = sb->chunk_size >> 9;
  978. mddev->ctime = sb->ctime;
  979. mddev->utime = sb->utime;
  980. mddev->level = sb->level;
  981. mddev->clevel[0] = 0;
  982. mddev->layout = sb->layout;
  983. mddev->raid_disks = sb->raid_disks;
  984. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  985. mddev->events = ev1;
  986. mddev->bitmap_info.offset = 0;
  987. mddev->bitmap_info.space = 0;
  988. /* bitmap can use 60 K after the 4K superblocks */
  989. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  990. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  991. mddev->reshape_backwards = 0;
  992. if (mddev->minor_version >= 91) {
  993. mddev->reshape_position = sb->reshape_position;
  994. mddev->delta_disks = sb->delta_disks;
  995. mddev->new_level = sb->new_level;
  996. mddev->new_layout = sb->new_layout;
  997. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  998. if (mddev->delta_disks < 0)
  999. mddev->reshape_backwards = 1;
  1000. } else {
  1001. mddev->reshape_position = MaxSector;
  1002. mddev->delta_disks = 0;
  1003. mddev->new_level = mddev->level;
  1004. mddev->new_layout = mddev->layout;
  1005. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1006. }
  1007. if (sb->state & (1<<MD_SB_CLEAN))
  1008. mddev->recovery_cp = MaxSector;
  1009. else {
  1010. if (sb->events_hi == sb->cp_events_hi &&
  1011. sb->events_lo == sb->cp_events_lo) {
  1012. mddev->recovery_cp = sb->recovery_cp;
  1013. } else
  1014. mddev->recovery_cp = 0;
  1015. }
  1016. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1017. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1018. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1019. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1020. mddev->max_disks = MD_SB_DISKS;
  1021. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1022. mddev->bitmap_info.file == NULL) {
  1023. mddev->bitmap_info.offset =
  1024. mddev->bitmap_info.default_offset;
  1025. mddev->bitmap_info.space =
  1026. mddev->bitmap_info.space;
  1027. }
  1028. } else if (mddev->pers == NULL) {
  1029. /* Insist on good event counter while assembling, except
  1030. * for spares (which don't need an event count) */
  1031. ++ev1;
  1032. if (sb->disks[rdev->desc_nr].state & (
  1033. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1034. if (ev1 < mddev->events)
  1035. return -EINVAL;
  1036. } else if (mddev->bitmap) {
  1037. /* if adding to array with a bitmap, then we can accept an
  1038. * older device ... but not too old.
  1039. */
  1040. if (ev1 < mddev->bitmap->events_cleared)
  1041. return 0;
  1042. } else {
  1043. if (ev1 < mddev->events)
  1044. /* just a hot-add of a new device, leave raid_disk at -1 */
  1045. return 0;
  1046. }
  1047. if (mddev->level != LEVEL_MULTIPATH) {
  1048. desc = sb->disks + rdev->desc_nr;
  1049. if (desc->state & (1<<MD_DISK_FAULTY))
  1050. set_bit(Faulty, &rdev->flags);
  1051. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1052. desc->raid_disk < mddev->raid_disks */) {
  1053. set_bit(In_sync, &rdev->flags);
  1054. rdev->raid_disk = desc->raid_disk;
  1055. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1056. /* active but not in sync implies recovery up to
  1057. * reshape position. We don't know exactly where
  1058. * that is, so set to zero for now */
  1059. if (mddev->minor_version >= 91) {
  1060. rdev->recovery_offset = 0;
  1061. rdev->raid_disk = desc->raid_disk;
  1062. }
  1063. }
  1064. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1065. set_bit(WriteMostly, &rdev->flags);
  1066. } else /* MULTIPATH are always insync */
  1067. set_bit(In_sync, &rdev->flags);
  1068. return 0;
  1069. }
  1070. /*
  1071. * sync_super for 0.90.0
  1072. */
  1073. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1074. {
  1075. mdp_super_t *sb;
  1076. struct md_rdev *rdev2;
  1077. int next_spare = mddev->raid_disks;
  1078. /* make rdev->sb match mddev data..
  1079. *
  1080. * 1/ zero out disks
  1081. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1082. * 3/ any empty disks < next_spare become removed
  1083. *
  1084. * disks[0] gets initialised to REMOVED because
  1085. * we cannot be sure from other fields if it has
  1086. * been initialised or not.
  1087. */
  1088. int i;
  1089. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1090. rdev->sb_size = MD_SB_BYTES;
  1091. sb = page_address(rdev->sb_page);
  1092. memset(sb, 0, sizeof(*sb));
  1093. sb->md_magic = MD_SB_MAGIC;
  1094. sb->major_version = mddev->major_version;
  1095. sb->patch_version = mddev->patch_version;
  1096. sb->gvalid_words = 0; /* ignored */
  1097. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1098. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1099. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1100. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1101. sb->ctime = mddev->ctime;
  1102. sb->level = mddev->level;
  1103. sb->size = mddev->dev_sectors / 2;
  1104. sb->raid_disks = mddev->raid_disks;
  1105. sb->md_minor = mddev->md_minor;
  1106. sb->not_persistent = 0;
  1107. sb->utime = mddev->utime;
  1108. sb->state = 0;
  1109. sb->events_hi = (mddev->events>>32);
  1110. sb->events_lo = (u32)mddev->events;
  1111. if (mddev->reshape_position == MaxSector)
  1112. sb->minor_version = 90;
  1113. else {
  1114. sb->minor_version = 91;
  1115. sb->reshape_position = mddev->reshape_position;
  1116. sb->new_level = mddev->new_level;
  1117. sb->delta_disks = mddev->delta_disks;
  1118. sb->new_layout = mddev->new_layout;
  1119. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1120. }
  1121. mddev->minor_version = sb->minor_version;
  1122. if (mddev->in_sync)
  1123. {
  1124. sb->recovery_cp = mddev->recovery_cp;
  1125. sb->cp_events_hi = (mddev->events>>32);
  1126. sb->cp_events_lo = (u32)mddev->events;
  1127. if (mddev->recovery_cp == MaxSector)
  1128. sb->state = (1<< MD_SB_CLEAN);
  1129. } else
  1130. sb->recovery_cp = 0;
  1131. sb->layout = mddev->layout;
  1132. sb->chunk_size = mddev->chunk_sectors << 9;
  1133. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1134. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1135. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1136. rdev_for_each(rdev2, mddev) {
  1137. mdp_disk_t *d;
  1138. int desc_nr;
  1139. int is_active = test_bit(In_sync, &rdev2->flags);
  1140. if (rdev2->raid_disk >= 0 &&
  1141. sb->minor_version >= 91)
  1142. /* we have nowhere to store the recovery_offset,
  1143. * but if it is not below the reshape_position,
  1144. * we can piggy-back on that.
  1145. */
  1146. is_active = 1;
  1147. if (rdev2->raid_disk < 0 ||
  1148. test_bit(Faulty, &rdev2->flags))
  1149. is_active = 0;
  1150. if (is_active)
  1151. desc_nr = rdev2->raid_disk;
  1152. else
  1153. desc_nr = next_spare++;
  1154. rdev2->desc_nr = desc_nr;
  1155. d = &sb->disks[rdev2->desc_nr];
  1156. nr_disks++;
  1157. d->number = rdev2->desc_nr;
  1158. d->major = MAJOR(rdev2->bdev->bd_dev);
  1159. d->minor = MINOR(rdev2->bdev->bd_dev);
  1160. if (is_active)
  1161. d->raid_disk = rdev2->raid_disk;
  1162. else
  1163. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1164. if (test_bit(Faulty, &rdev2->flags))
  1165. d->state = (1<<MD_DISK_FAULTY);
  1166. else if (is_active) {
  1167. d->state = (1<<MD_DISK_ACTIVE);
  1168. if (test_bit(In_sync, &rdev2->flags))
  1169. d->state |= (1<<MD_DISK_SYNC);
  1170. active++;
  1171. working++;
  1172. } else {
  1173. d->state = 0;
  1174. spare++;
  1175. working++;
  1176. }
  1177. if (test_bit(WriteMostly, &rdev2->flags))
  1178. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1179. }
  1180. /* now set the "removed" and "faulty" bits on any missing devices */
  1181. for (i=0 ; i < mddev->raid_disks ; i++) {
  1182. mdp_disk_t *d = &sb->disks[i];
  1183. if (d->state == 0 && d->number == 0) {
  1184. d->number = i;
  1185. d->raid_disk = i;
  1186. d->state = (1<<MD_DISK_REMOVED);
  1187. d->state |= (1<<MD_DISK_FAULTY);
  1188. failed++;
  1189. }
  1190. }
  1191. sb->nr_disks = nr_disks;
  1192. sb->active_disks = active;
  1193. sb->working_disks = working;
  1194. sb->failed_disks = failed;
  1195. sb->spare_disks = spare;
  1196. sb->this_disk = sb->disks[rdev->desc_nr];
  1197. sb->sb_csum = calc_sb_csum(sb);
  1198. }
  1199. /*
  1200. * rdev_size_change for 0.90.0
  1201. */
  1202. static unsigned long long
  1203. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1204. {
  1205. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1206. return 0; /* component must fit device */
  1207. if (rdev->mddev->bitmap_info.offset)
  1208. return 0; /* can't move bitmap */
  1209. rdev->sb_start = calc_dev_sboffset(rdev);
  1210. if (!num_sectors || num_sectors > rdev->sb_start)
  1211. num_sectors = rdev->sb_start;
  1212. /* Limit to 4TB as metadata cannot record more than that.
  1213. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1214. */
  1215. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1216. num_sectors = (2ULL << 32) - 2;
  1217. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1218. rdev->sb_page);
  1219. md_super_wait(rdev->mddev);
  1220. return num_sectors;
  1221. }
  1222. static int
  1223. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1224. {
  1225. /* non-zero offset changes not possible with v0.90 */
  1226. return new_offset == 0;
  1227. }
  1228. /*
  1229. * version 1 superblock
  1230. */
  1231. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1232. {
  1233. __le32 disk_csum;
  1234. u32 csum;
  1235. unsigned long long newcsum;
  1236. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1237. __le32 *isuper = (__le32*)sb;
  1238. disk_csum = sb->sb_csum;
  1239. sb->sb_csum = 0;
  1240. newcsum = 0;
  1241. for (; size >= 4; size -= 4)
  1242. newcsum += le32_to_cpu(*isuper++);
  1243. if (size == 2)
  1244. newcsum += le16_to_cpu(*(__le16*) isuper);
  1245. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1246. sb->sb_csum = disk_csum;
  1247. return cpu_to_le32(csum);
  1248. }
  1249. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1250. int acknowledged);
  1251. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1252. {
  1253. struct mdp_superblock_1 *sb;
  1254. int ret;
  1255. sector_t sb_start;
  1256. sector_t sectors;
  1257. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1258. int bmask;
  1259. /*
  1260. * Calculate the position of the superblock in 512byte sectors.
  1261. * It is always aligned to a 4K boundary and
  1262. * depeding on minor_version, it can be:
  1263. * 0: At least 8K, but less than 12K, from end of device
  1264. * 1: At start of device
  1265. * 2: 4K from start of device.
  1266. */
  1267. switch(minor_version) {
  1268. case 0:
  1269. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1270. sb_start -= 8*2;
  1271. sb_start &= ~(sector_t)(4*2-1);
  1272. break;
  1273. case 1:
  1274. sb_start = 0;
  1275. break;
  1276. case 2:
  1277. sb_start = 8;
  1278. break;
  1279. default:
  1280. return -EINVAL;
  1281. }
  1282. rdev->sb_start = sb_start;
  1283. /* superblock is rarely larger than 1K, but it can be larger,
  1284. * and it is safe to read 4k, so we do that
  1285. */
  1286. ret = read_disk_sb(rdev, 4096);
  1287. if (ret) return ret;
  1288. sb = page_address(rdev->sb_page);
  1289. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1290. sb->major_version != cpu_to_le32(1) ||
  1291. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1292. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1293. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1294. return -EINVAL;
  1295. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1296. printk("md: invalid superblock checksum on %s\n",
  1297. bdevname(rdev->bdev,b));
  1298. return -EINVAL;
  1299. }
  1300. if (le64_to_cpu(sb->data_size) < 10) {
  1301. printk("md: data_size too small on %s\n",
  1302. bdevname(rdev->bdev,b));
  1303. return -EINVAL;
  1304. }
  1305. if (sb->pad0 ||
  1306. sb->pad3[0] ||
  1307. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1308. /* Some padding is non-zero, might be a new feature */
  1309. return -EINVAL;
  1310. rdev->preferred_minor = 0xffff;
  1311. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1312. rdev->new_data_offset = rdev->data_offset;
  1313. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1314. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1315. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1316. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1317. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1318. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1319. if (rdev->sb_size & bmask)
  1320. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1321. if (minor_version
  1322. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1323. return -EINVAL;
  1324. if (minor_version
  1325. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1326. return -EINVAL;
  1327. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1328. rdev->desc_nr = -1;
  1329. else
  1330. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1331. if (!rdev->bb_page) {
  1332. rdev->bb_page = alloc_page(GFP_KERNEL);
  1333. if (!rdev->bb_page)
  1334. return -ENOMEM;
  1335. }
  1336. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1337. rdev->badblocks.count == 0) {
  1338. /* need to load the bad block list.
  1339. * Currently we limit it to one page.
  1340. */
  1341. s32 offset;
  1342. sector_t bb_sector;
  1343. u64 *bbp;
  1344. int i;
  1345. int sectors = le16_to_cpu(sb->bblog_size);
  1346. if (sectors > (PAGE_SIZE / 512))
  1347. return -EINVAL;
  1348. offset = le32_to_cpu(sb->bblog_offset);
  1349. if (offset == 0)
  1350. return -EINVAL;
  1351. bb_sector = (long long)offset;
  1352. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1353. rdev->bb_page, READ, true))
  1354. return -EIO;
  1355. bbp = (u64 *)page_address(rdev->bb_page);
  1356. rdev->badblocks.shift = sb->bblog_shift;
  1357. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1358. u64 bb = le64_to_cpu(*bbp);
  1359. int count = bb & (0x3ff);
  1360. u64 sector = bb >> 10;
  1361. sector <<= sb->bblog_shift;
  1362. count <<= sb->bblog_shift;
  1363. if (bb + 1 == 0)
  1364. break;
  1365. if (md_set_badblocks(&rdev->badblocks,
  1366. sector, count, 1) == 0)
  1367. return -EINVAL;
  1368. }
  1369. } else if (sb->bblog_offset == 0)
  1370. rdev->badblocks.shift = -1;
  1371. if (!refdev) {
  1372. ret = 1;
  1373. } else {
  1374. __u64 ev1, ev2;
  1375. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1376. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1377. sb->level != refsb->level ||
  1378. sb->layout != refsb->layout ||
  1379. sb->chunksize != refsb->chunksize) {
  1380. printk(KERN_WARNING "md: %s has strangely different"
  1381. " superblock to %s\n",
  1382. bdevname(rdev->bdev,b),
  1383. bdevname(refdev->bdev,b2));
  1384. return -EINVAL;
  1385. }
  1386. ev1 = le64_to_cpu(sb->events);
  1387. ev2 = le64_to_cpu(refsb->events);
  1388. if (ev1 > ev2)
  1389. ret = 1;
  1390. else
  1391. ret = 0;
  1392. }
  1393. if (minor_version) {
  1394. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1395. sectors -= rdev->data_offset;
  1396. } else
  1397. sectors = rdev->sb_start;
  1398. if (sectors < le64_to_cpu(sb->data_size))
  1399. return -EINVAL;
  1400. rdev->sectors = le64_to_cpu(sb->data_size);
  1401. return ret;
  1402. }
  1403. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1404. {
  1405. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1406. __u64 ev1 = le64_to_cpu(sb->events);
  1407. rdev->raid_disk = -1;
  1408. clear_bit(Faulty, &rdev->flags);
  1409. clear_bit(In_sync, &rdev->flags);
  1410. clear_bit(WriteMostly, &rdev->flags);
  1411. if (mddev->raid_disks == 0) {
  1412. mddev->major_version = 1;
  1413. mddev->patch_version = 0;
  1414. mddev->external = 0;
  1415. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1416. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1417. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1418. mddev->level = le32_to_cpu(sb->level);
  1419. mddev->clevel[0] = 0;
  1420. mddev->layout = le32_to_cpu(sb->layout);
  1421. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1422. mddev->dev_sectors = le64_to_cpu(sb->size);
  1423. mddev->events = ev1;
  1424. mddev->bitmap_info.offset = 0;
  1425. mddev->bitmap_info.space = 0;
  1426. /* Default location for bitmap is 1K after superblock
  1427. * using 3K - total of 4K
  1428. */
  1429. mddev->bitmap_info.default_offset = 1024 >> 9;
  1430. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1431. mddev->reshape_backwards = 0;
  1432. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1433. memcpy(mddev->uuid, sb->set_uuid, 16);
  1434. mddev->max_disks = (4096-256)/2;
  1435. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1436. mddev->bitmap_info.file == NULL) {
  1437. mddev->bitmap_info.offset =
  1438. (__s32)le32_to_cpu(sb->bitmap_offset);
  1439. /* Metadata doesn't record how much space is available.
  1440. * For 1.0, we assume we can use up to the superblock
  1441. * if before, else to 4K beyond superblock.
  1442. * For others, assume no change is possible.
  1443. */
  1444. if (mddev->minor_version > 0)
  1445. mddev->bitmap_info.space = 0;
  1446. else if (mddev->bitmap_info.offset > 0)
  1447. mddev->bitmap_info.space =
  1448. 8 - mddev->bitmap_info.offset;
  1449. else
  1450. mddev->bitmap_info.space =
  1451. -mddev->bitmap_info.offset;
  1452. }
  1453. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1454. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1455. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1456. mddev->new_level = le32_to_cpu(sb->new_level);
  1457. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1458. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1459. if (mddev->delta_disks < 0 ||
  1460. (mddev->delta_disks == 0 &&
  1461. (le32_to_cpu(sb->feature_map)
  1462. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1463. mddev->reshape_backwards = 1;
  1464. } else {
  1465. mddev->reshape_position = MaxSector;
  1466. mddev->delta_disks = 0;
  1467. mddev->new_level = mddev->level;
  1468. mddev->new_layout = mddev->layout;
  1469. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1470. }
  1471. } else if (mddev->pers == NULL) {
  1472. /* Insist of good event counter while assembling, except for
  1473. * spares (which don't need an event count) */
  1474. ++ev1;
  1475. if (rdev->desc_nr >= 0 &&
  1476. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1477. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1478. if (ev1 < mddev->events)
  1479. return -EINVAL;
  1480. } else if (mddev->bitmap) {
  1481. /* If adding to array with a bitmap, then we can accept an
  1482. * older device, but not too old.
  1483. */
  1484. if (ev1 < mddev->bitmap->events_cleared)
  1485. return 0;
  1486. } else {
  1487. if (ev1 < mddev->events)
  1488. /* just a hot-add of a new device, leave raid_disk at -1 */
  1489. return 0;
  1490. }
  1491. if (mddev->level != LEVEL_MULTIPATH) {
  1492. int role;
  1493. if (rdev->desc_nr < 0 ||
  1494. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1495. role = 0xffff;
  1496. rdev->desc_nr = -1;
  1497. } else
  1498. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1499. switch(role) {
  1500. case 0xffff: /* spare */
  1501. break;
  1502. case 0xfffe: /* faulty */
  1503. set_bit(Faulty, &rdev->flags);
  1504. break;
  1505. default:
  1506. if ((le32_to_cpu(sb->feature_map) &
  1507. MD_FEATURE_RECOVERY_OFFSET))
  1508. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1509. else
  1510. set_bit(In_sync, &rdev->flags);
  1511. rdev->raid_disk = role;
  1512. break;
  1513. }
  1514. if (sb->devflags & WriteMostly1)
  1515. set_bit(WriteMostly, &rdev->flags);
  1516. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1517. set_bit(Replacement, &rdev->flags);
  1518. } else /* MULTIPATH are always insync */
  1519. set_bit(In_sync, &rdev->flags);
  1520. return 0;
  1521. }
  1522. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1523. {
  1524. struct mdp_superblock_1 *sb;
  1525. struct md_rdev *rdev2;
  1526. int max_dev, i;
  1527. /* make rdev->sb match mddev and rdev data. */
  1528. sb = page_address(rdev->sb_page);
  1529. sb->feature_map = 0;
  1530. sb->pad0 = 0;
  1531. sb->recovery_offset = cpu_to_le64(0);
  1532. memset(sb->pad3, 0, sizeof(sb->pad3));
  1533. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1534. sb->events = cpu_to_le64(mddev->events);
  1535. if (mddev->in_sync)
  1536. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1537. else
  1538. sb->resync_offset = cpu_to_le64(0);
  1539. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1540. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1541. sb->size = cpu_to_le64(mddev->dev_sectors);
  1542. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1543. sb->level = cpu_to_le32(mddev->level);
  1544. sb->layout = cpu_to_le32(mddev->layout);
  1545. if (test_bit(WriteMostly, &rdev->flags))
  1546. sb->devflags |= WriteMostly1;
  1547. else
  1548. sb->devflags &= ~WriteMostly1;
  1549. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1550. sb->data_size = cpu_to_le64(rdev->sectors);
  1551. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1552. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1553. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1554. }
  1555. if (rdev->raid_disk >= 0 &&
  1556. !test_bit(In_sync, &rdev->flags)) {
  1557. sb->feature_map |=
  1558. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1559. sb->recovery_offset =
  1560. cpu_to_le64(rdev->recovery_offset);
  1561. }
  1562. if (test_bit(Replacement, &rdev->flags))
  1563. sb->feature_map |=
  1564. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1565. if (mddev->reshape_position != MaxSector) {
  1566. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1567. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1568. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1569. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1570. sb->new_level = cpu_to_le32(mddev->new_level);
  1571. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1572. if (mddev->delta_disks == 0 &&
  1573. mddev->reshape_backwards)
  1574. sb->feature_map
  1575. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1576. if (rdev->new_data_offset != rdev->data_offset) {
  1577. sb->feature_map
  1578. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1579. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1580. - rdev->data_offset));
  1581. }
  1582. }
  1583. if (rdev->badblocks.count == 0)
  1584. /* Nothing to do for bad blocks*/ ;
  1585. else if (sb->bblog_offset == 0)
  1586. /* Cannot record bad blocks on this device */
  1587. md_error(mddev, rdev);
  1588. else {
  1589. struct badblocks *bb = &rdev->badblocks;
  1590. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1591. u64 *p = bb->page;
  1592. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1593. if (bb->changed) {
  1594. unsigned seq;
  1595. retry:
  1596. seq = read_seqbegin(&bb->lock);
  1597. memset(bbp, 0xff, PAGE_SIZE);
  1598. for (i = 0 ; i < bb->count ; i++) {
  1599. u64 internal_bb = p[i];
  1600. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1601. | BB_LEN(internal_bb));
  1602. bbp[i] = cpu_to_le64(store_bb);
  1603. }
  1604. bb->changed = 0;
  1605. if (read_seqretry(&bb->lock, seq))
  1606. goto retry;
  1607. bb->sector = (rdev->sb_start +
  1608. (int)le32_to_cpu(sb->bblog_offset));
  1609. bb->size = le16_to_cpu(sb->bblog_size);
  1610. }
  1611. }
  1612. max_dev = 0;
  1613. rdev_for_each(rdev2, mddev)
  1614. if (rdev2->desc_nr+1 > max_dev)
  1615. max_dev = rdev2->desc_nr+1;
  1616. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1617. int bmask;
  1618. sb->max_dev = cpu_to_le32(max_dev);
  1619. rdev->sb_size = max_dev * 2 + 256;
  1620. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1621. if (rdev->sb_size & bmask)
  1622. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1623. } else
  1624. max_dev = le32_to_cpu(sb->max_dev);
  1625. for (i=0; i<max_dev;i++)
  1626. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1627. rdev_for_each(rdev2, mddev) {
  1628. i = rdev2->desc_nr;
  1629. if (test_bit(Faulty, &rdev2->flags))
  1630. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1631. else if (test_bit(In_sync, &rdev2->flags))
  1632. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1633. else if (rdev2->raid_disk >= 0)
  1634. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1635. else
  1636. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1637. }
  1638. sb->sb_csum = calc_sb_1_csum(sb);
  1639. }
  1640. static unsigned long long
  1641. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1642. {
  1643. struct mdp_superblock_1 *sb;
  1644. sector_t max_sectors;
  1645. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1646. return 0; /* component must fit device */
  1647. if (rdev->data_offset != rdev->new_data_offset)
  1648. return 0; /* too confusing */
  1649. if (rdev->sb_start < rdev->data_offset) {
  1650. /* minor versions 1 and 2; superblock before data */
  1651. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1652. max_sectors -= rdev->data_offset;
  1653. if (!num_sectors || num_sectors > max_sectors)
  1654. num_sectors = max_sectors;
  1655. } else if (rdev->mddev->bitmap_info.offset) {
  1656. /* minor version 0 with bitmap we can't move */
  1657. return 0;
  1658. } else {
  1659. /* minor version 0; superblock after data */
  1660. sector_t sb_start;
  1661. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1662. sb_start &= ~(sector_t)(4*2 - 1);
  1663. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1664. if (!num_sectors || num_sectors > max_sectors)
  1665. num_sectors = max_sectors;
  1666. rdev->sb_start = sb_start;
  1667. }
  1668. sb = page_address(rdev->sb_page);
  1669. sb->data_size = cpu_to_le64(num_sectors);
  1670. sb->super_offset = rdev->sb_start;
  1671. sb->sb_csum = calc_sb_1_csum(sb);
  1672. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1673. rdev->sb_page);
  1674. md_super_wait(rdev->mddev);
  1675. return num_sectors;
  1676. }
  1677. static int
  1678. super_1_allow_new_offset(struct md_rdev *rdev,
  1679. unsigned long long new_offset)
  1680. {
  1681. /* All necessary checks on new >= old have been done */
  1682. struct bitmap *bitmap;
  1683. if (new_offset >= rdev->data_offset)
  1684. return 1;
  1685. /* with 1.0 metadata, there is no metadata to tread on
  1686. * so we can always move back */
  1687. if (rdev->mddev->minor_version == 0)
  1688. return 1;
  1689. /* otherwise we must be sure not to step on
  1690. * any metadata, so stay:
  1691. * 36K beyond start of superblock
  1692. * beyond end of badblocks
  1693. * beyond write-intent bitmap
  1694. */
  1695. if (rdev->sb_start + (32+4)*2 > new_offset)
  1696. return 0;
  1697. bitmap = rdev->mddev->bitmap;
  1698. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1699. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1700. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1701. return 0;
  1702. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1703. return 0;
  1704. return 1;
  1705. }
  1706. static struct super_type super_types[] = {
  1707. [0] = {
  1708. .name = "0.90.0",
  1709. .owner = THIS_MODULE,
  1710. .load_super = super_90_load,
  1711. .validate_super = super_90_validate,
  1712. .sync_super = super_90_sync,
  1713. .rdev_size_change = super_90_rdev_size_change,
  1714. .allow_new_offset = super_90_allow_new_offset,
  1715. },
  1716. [1] = {
  1717. .name = "md-1",
  1718. .owner = THIS_MODULE,
  1719. .load_super = super_1_load,
  1720. .validate_super = super_1_validate,
  1721. .sync_super = super_1_sync,
  1722. .rdev_size_change = super_1_rdev_size_change,
  1723. .allow_new_offset = super_1_allow_new_offset,
  1724. },
  1725. };
  1726. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1727. {
  1728. if (mddev->sync_super) {
  1729. mddev->sync_super(mddev, rdev);
  1730. return;
  1731. }
  1732. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1733. super_types[mddev->major_version].sync_super(mddev, rdev);
  1734. }
  1735. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1736. {
  1737. struct md_rdev *rdev, *rdev2;
  1738. rcu_read_lock();
  1739. rdev_for_each_rcu(rdev, mddev1)
  1740. rdev_for_each_rcu(rdev2, mddev2)
  1741. if (rdev->bdev->bd_contains ==
  1742. rdev2->bdev->bd_contains) {
  1743. rcu_read_unlock();
  1744. return 1;
  1745. }
  1746. rcu_read_unlock();
  1747. return 0;
  1748. }
  1749. static LIST_HEAD(pending_raid_disks);
  1750. /*
  1751. * Try to register data integrity profile for an mddev
  1752. *
  1753. * This is called when an array is started and after a disk has been kicked
  1754. * from the array. It only succeeds if all working and active component devices
  1755. * are integrity capable with matching profiles.
  1756. */
  1757. int md_integrity_register(struct mddev *mddev)
  1758. {
  1759. struct md_rdev *rdev, *reference = NULL;
  1760. if (list_empty(&mddev->disks))
  1761. return 0; /* nothing to do */
  1762. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1763. return 0; /* shouldn't register, or already is */
  1764. rdev_for_each(rdev, mddev) {
  1765. /* skip spares and non-functional disks */
  1766. if (test_bit(Faulty, &rdev->flags))
  1767. continue;
  1768. if (rdev->raid_disk < 0)
  1769. continue;
  1770. if (!reference) {
  1771. /* Use the first rdev as the reference */
  1772. reference = rdev;
  1773. continue;
  1774. }
  1775. /* does this rdev's profile match the reference profile? */
  1776. if (blk_integrity_compare(reference->bdev->bd_disk,
  1777. rdev->bdev->bd_disk) < 0)
  1778. return -EINVAL;
  1779. }
  1780. if (!reference || !bdev_get_integrity(reference->bdev))
  1781. return 0;
  1782. /*
  1783. * All component devices are integrity capable and have matching
  1784. * profiles, register the common profile for the md device.
  1785. */
  1786. if (blk_integrity_register(mddev->gendisk,
  1787. bdev_get_integrity(reference->bdev)) != 0) {
  1788. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1789. mdname(mddev));
  1790. return -EINVAL;
  1791. }
  1792. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1793. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1794. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1795. mdname(mddev));
  1796. return -EINVAL;
  1797. }
  1798. return 0;
  1799. }
  1800. EXPORT_SYMBOL(md_integrity_register);
  1801. /* Disable data integrity if non-capable/non-matching disk is being added */
  1802. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1803. {
  1804. struct blk_integrity *bi_rdev;
  1805. struct blk_integrity *bi_mddev;
  1806. if (!mddev->gendisk)
  1807. return;
  1808. bi_rdev = bdev_get_integrity(rdev->bdev);
  1809. bi_mddev = blk_get_integrity(mddev->gendisk);
  1810. if (!bi_mddev) /* nothing to do */
  1811. return;
  1812. if (rdev->raid_disk < 0) /* skip spares */
  1813. return;
  1814. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1815. rdev->bdev->bd_disk) >= 0)
  1816. return;
  1817. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1818. blk_integrity_unregister(mddev->gendisk);
  1819. }
  1820. EXPORT_SYMBOL(md_integrity_add_rdev);
  1821. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1822. {
  1823. char b[BDEVNAME_SIZE];
  1824. struct kobject *ko;
  1825. char *s;
  1826. int err;
  1827. if (rdev->mddev) {
  1828. MD_BUG();
  1829. return -EINVAL;
  1830. }
  1831. /* prevent duplicates */
  1832. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1833. return -EEXIST;
  1834. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1835. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1836. rdev->sectors < mddev->dev_sectors)) {
  1837. if (mddev->pers) {
  1838. /* Cannot change size, so fail
  1839. * If mddev->level <= 0, then we don't care
  1840. * about aligning sizes (e.g. linear)
  1841. */
  1842. if (mddev->level > 0)
  1843. return -ENOSPC;
  1844. } else
  1845. mddev->dev_sectors = rdev->sectors;
  1846. }
  1847. /* Verify rdev->desc_nr is unique.
  1848. * If it is -1, assign a free number, else
  1849. * check number is not in use
  1850. */
  1851. if (rdev->desc_nr < 0) {
  1852. int choice = 0;
  1853. if (mddev->pers) choice = mddev->raid_disks;
  1854. while (find_rdev_nr(mddev, choice))
  1855. choice++;
  1856. rdev->desc_nr = choice;
  1857. } else {
  1858. if (find_rdev_nr(mddev, rdev->desc_nr))
  1859. return -EBUSY;
  1860. }
  1861. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1862. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1863. mdname(mddev), mddev->max_disks);
  1864. return -EBUSY;
  1865. }
  1866. bdevname(rdev->bdev,b);
  1867. while ( (s=strchr(b, '/')) != NULL)
  1868. *s = '!';
  1869. rdev->mddev = mddev;
  1870. printk(KERN_INFO "md: bind<%s>\n", b);
  1871. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1872. goto fail;
  1873. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1874. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1875. /* failure here is OK */;
  1876. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1877. list_add_rcu(&rdev->same_set, &mddev->disks);
  1878. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1879. /* May as well allow recovery to be retried once */
  1880. mddev->recovery_disabled++;
  1881. return 0;
  1882. fail:
  1883. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1884. b, mdname(mddev));
  1885. return err;
  1886. }
  1887. static void md_delayed_delete(struct work_struct *ws)
  1888. {
  1889. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1890. kobject_del(&rdev->kobj);
  1891. kobject_put(&rdev->kobj);
  1892. }
  1893. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1894. {
  1895. char b[BDEVNAME_SIZE];
  1896. if (!rdev->mddev) {
  1897. MD_BUG();
  1898. return;
  1899. }
  1900. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1901. list_del_rcu(&rdev->same_set);
  1902. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1903. rdev->mddev = NULL;
  1904. sysfs_remove_link(&rdev->kobj, "block");
  1905. sysfs_put(rdev->sysfs_state);
  1906. rdev->sysfs_state = NULL;
  1907. rdev->badblocks.count = 0;
  1908. /* We need to delay this, otherwise we can deadlock when
  1909. * writing to 'remove' to "dev/state". We also need
  1910. * to delay it due to rcu usage.
  1911. */
  1912. synchronize_rcu();
  1913. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1914. kobject_get(&rdev->kobj);
  1915. queue_work(md_misc_wq, &rdev->del_work);
  1916. }
  1917. /*
  1918. * prevent the device from being mounted, repartitioned or
  1919. * otherwise reused by a RAID array (or any other kernel
  1920. * subsystem), by bd_claiming the device.
  1921. */
  1922. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1923. {
  1924. int err = 0;
  1925. struct block_device *bdev;
  1926. char b[BDEVNAME_SIZE];
  1927. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1928. shared ? (struct md_rdev *)lock_rdev : rdev);
  1929. if (IS_ERR(bdev)) {
  1930. printk(KERN_ERR "md: could not open %s.\n",
  1931. __bdevname(dev, b));
  1932. return PTR_ERR(bdev);
  1933. }
  1934. rdev->bdev = bdev;
  1935. return err;
  1936. }
  1937. static void unlock_rdev(struct md_rdev *rdev)
  1938. {
  1939. struct block_device *bdev = rdev->bdev;
  1940. rdev->bdev = NULL;
  1941. if (!bdev)
  1942. MD_BUG();
  1943. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1944. }
  1945. void md_autodetect_dev(dev_t dev);
  1946. static void export_rdev(struct md_rdev * rdev)
  1947. {
  1948. char b[BDEVNAME_SIZE];
  1949. printk(KERN_INFO "md: export_rdev(%s)\n",
  1950. bdevname(rdev->bdev,b));
  1951. if (rdev->mddev)
  1952. MD_BUG();
  1953. md_rdev_clear(rdev);
  1954. #ifndef MODULE
  1955. if (test_bit(AutoDetected, &rdev->flags))
  1956. md_autodetect_dev(rdev->bdev->bd_dev);
  1957. #endif
  1958. unlock_rdev(rdev);
  1959. kobject_put(&rdev->kobj);
  1960. }
  1961. static void kick_rdev_from_array(struct md_rdev * rdev)
  1962. {
  1963. unbind_rdev_from_array(rdev);
  1964. export_rdev(rdev);
  1965. }
  1966. static void export_array(struct mddev *mddev)
  1967. {
  1968. struct md_rdev *rdev, *tmp;
  1969. rdev_for_each_safe(rdev, tmp, mddev) {
  1970. if (!rdev->mddev) {
  1971. MD_BUG();
  1972. continue;
  1973. }
  1974. kick_rdev_from_array(rdev);
  1975. }
  1976. if (!list_empty(&mddev->disks))
  1977. MD_BUG();
  1978. mddev->raid_disks = 0;
  1979. mddev->major_version = 0;
  1980. }
  1981. static void print_desc(mdp_disk_t *desc)
  1982. {
  1983. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1984. desc->major,desc->minor,desc->raid_disk,desc->state);
  1985. }
  1986. static void print_sb_90(mdp_super_t *sb)
  1987. {
  1988. int i;
  1989. printk(KERN_INFO
  1990. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1991. sb->major_version, sb->minor_version, sb->patch_version,
  1992. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1993. sb->ctime);
  1994. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1995. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1996. sb->md_minor, sb->layout, sb->chunk_size);
  1997. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1998. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1999. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  2000. sb->failed_disks, sb->spare_disks,
  2001. sb->sb_csum, (unsigned long)sb->events_lo);
  2002. printk(KERN_INFO);
  2003. for (i = 0; i < MD_SB_DISKS; i++) {
  2004. mdp_disk_t *desc;
  2005. desc = sb->disks + i;
  2006. if (desc->number || desc->major || desc->minor ||
  2007. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2008. printk(" D %2d: ", i);
  2009. print_desc(desc);
  2010. }
  2011. }
  2012. printk(KERN_INFO "md: THIS: ");
  2013. print_desc(&sb->this_disk);
  2014. }
  2015. static void print_sb_1(struct mdp_superblock_1 *sb)
  2016. {
  2017. __u8 *uuid;
  2018. uuid = sb->set_uuid;
  2019. printk(KERN_INFO
  2020. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2021. "md: Name: \"%s\" CT:%llu\n",
  2022. le32_to_cpu(sb->major_version),
  2023. le32_to_cpu(sb->feature_map),
  2024. uuid,
  2025. sb->set_name,
  2026. (unsigned long long)le64_to_cpu(sb->ctime)
  2027. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2028. uuid = sb->device_uuid;
  2029. printk(KERN_INFO
  2030. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2031. " RO:%llu\n"
  2032. "md: Dev:%08x UUID: %pU\n"
  2033. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2034. "md: (MaxDev:%u) \n",
  2035. le32_to_cpu(sb->level),
  2036. (unsigned long long)le64_to_cpu(sb->size),
  2037. le32_to_cpu(sb->raid_disks),
  2038. le32_to_cpu(sb->layout),
  2039. le32_to_cpu(sb->chunksize),
  2040. (unsigned long long)le64_to_cpu(sb->data_offset),
  2041. (unsigned long long)le64_to_cpu(sb->data_size),
  2042. (unsigned long long)le64_to_cpu(sb->super_offset),
  2043. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2044. le32_to_cpu(sb->dev_number),
  2045. uuid,
  2046. sb->devflags,
  2047. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2048. (unsigned long long)le64_to_cpu(sb->events),
  2049. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2050. le32_to_cpu(sb->sb_csum),
  2051. le32_to_cpu(sb->max_dev)
  2052. );
  2053. }
  2054. static void print_rdev(struct md_rdev *rdev, int major_version)
  2055. {
  2056. char b[BDEVNAME_SIZE];
  2057. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2058. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2059. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2060. rdev->desc_nr);
  2061. if (rdev->sb_loaded) {
  2062. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2063. switch (major_version) {
  2064. case 0:
  2065. print_sb_90(page_address(rdev->sb_page));
  2066. break;
  2067. case 1:
  2068. print_sb_1(page_address(rdev->sb_page));
  2069. break;
  2070. }
  2071. } else
  2072. printk(KERN_INFO "md: no rdev superblock!\n");
  2073. }
  2074. static void md_print_devices(void)
  2075. {
  2076. struct list_head *tmp;
  2077. struct md_rdev *rdev;
  2078. struct mddev *mddev;
  2079. char b[BDEVNAME_SIZE];
  2080. printk("\n");
  2081. printk("md: **********************************\n");
  2082. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2083. printk("md: **********************************\n");
  2084. for_each_mddev(mddev, tmp) {
  2085. if (mddev->bitmap)
  2086. bitmap_print_sb(mddev->bitmap);
  2087. else
  2088. printk("%s: ", mdname(mddev));
  2089. rdev_for_each(rdev, mddev)
  2090. printk("<%s>", bdevname(rdev->bdev,b));
  2091. printk("\n");
  2092. rdev_for_each(rdev, mddev)
  2093. print_rdev(rdev, mddev->major_version);
  2094. }
  2095. printk("md: **********************************\n");
  2096. printk("\n");
  2097. }
  2098. static void sync_sbs(struct mddev * mddev, int nospares)
  2099. {
  2100. /* Update each superblock (in-memory image), but
  2101. * if we are allowed to, skip spares which already
  2102. * have the right event counter, or have one earlier
  2103. * (which would mean they aren't being marked as dirty
  2104. * with the rest of the array)
  2105. */
  2106. struct md_rdev *rdev;
  2107. rdev_for_each(rdev, mddev) {
  2108. if (rdev->sb_events == mddev->events ||
  2109. (nospares &&
  2110. rdev->raid_disk < 0 &&
  2111. rdev->sb_events+1 == mddev->events)) {
  2112. /* Don't update this superblock */
  2113. rdev->sb_loaded = 2;
  2114. } else {
  2115. sync_super(mddev, rdev);
  2116. rdev->sb_loaded = 1;
  2117. }
  2118. }
  2119. }
  2120. static void md_update_sb(struct mddev * mddev, int force_change)
  2121. {
  2122. struct md_rdev *rdev;
  2123. int sync_req;
  2124. int nospares = 0;
  2125. int any_badblocks_changed = 0;
  2126. repeat:
  2127. /* First make sure individual recovery_offsets are correct */
  2128. rdev_for_each(rdev, mddev) {
  2129. if (rdev->raid_disk >= 0 &&
  2130. mddev->delta_disks >= 0 &&
  2131. !test_bit(In_sync, &rdev->flags) &&
  2132. mddev->curr_resync_completed > rdev->recovery_offset)
  2133. rdev->recovery_offset = mddev->curr_resync_completed;
  2134. }
  2135. if (!mddev->persistent) {
  2136. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2137. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2138. if (!mddev->external) {
  2139. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2140. rdev_for_each(rdev, mddev) {
  2141. if (rdev->badblocks.changed) {
  2142. rdev->badblocks.changed = 0;
  2143. md_ack_all_badblocks(&rdev->badblocks);
  2144. md_error(mddev, rdev);
  2145. }
  2146. clear_bit(Blocked, &rdev->flags);
  2147. clear_bit(BlockedBadBlocks, &rdev->flags);
  2148. wake_up(&rdev->blocked_wait);
  2149. }
  2150. }
  2151. wake_up(&mddev->sb_wait);
  2152. return;
  2153. }
  2154. spin_lock_irq(&mddev->write_lock);
  2155. mddev->utime = get_seconds();
  2156. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2157. force_change = 1;
  2158. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2159. /* just a clean<-> dirty transition, possibly leave spares alone,
  2160. * though if events isn't the right even/odd, we will have to do
  2161. * spares after all
  2162. */
  2163. nospares = 1;
  2164. if (force_change)
  2165. nospares = 0;
  2166. if (mddev->degraded)
  2167. /* If the array is degraded, then skipping spares is both
  2168. * dangerous and fairly pointless.
  2169. * Dangerous because a device that was removed from the array
  2170. * might have a event_count that still looks up-to-date,
  2171. * so it can be re-added without a resync.
  2172. * Pointless because if there are any spares to skip,
  2173. * then a recovery will happen and soon that array won't
  2174. * be degraded any more and the spare can go back to sleep then.
  2175. */
  2176. nospares = 0;
  2177. sync_req = mddev->in_sync;
  2178. /* If this is just a dirty<->clean transition, and the array is clean
  2179. * and 'events' is odd, we can roll back to the previous clean state */
  2180. if (nospares
  2181. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2182. && mddev->can_decrease_events
  2183. && mddev->events != 1) {
  2184. mddev->events--;
  2185. mddev->can_decrease_events = 0;
  2186. } else {
  2187. /* otherwise we have to go forward and ... */
  2188. mddev->events ++;
  2189. mddev->can_decrease_events = nospares;
  2190. }
  2191. if (!mddev->events) {
  2192. /*
  2193. * oops, this 64-bit counter should never wrap.
  2194. * Either we are in around ~1 trillion A.C., assuming
  2195. * 1 reboot per second, or we have a bug:
  2196. */
  2197. MD_BUG();
  2198. mddev->events --;
  2199. }
  2200. rdev_for_each(rdev, mddev) {
  2201. if (rdev->badblocks.changed)
  2202. any_badblocks_changed++;
  2203. if (test_bit(Faulty, &rdev->flags))
  2204. set_bit(FaultRecorded, &rdev->flags);
  2205. }
  2206. sync_sbs(mddev, nospares);
  2207. spin_unlock_irq(&mddev->write_lock);
  2208. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2209. mdname(mddev), mddev->in_sync);
  2210. bitmap_update_sb(mddev->bitmap);
  2211. rdev_for_each(rdev, mddev) {
  2212. char b[BDEVNAME_SIZE];
  2213. if (rdev->sb_loaded != 1)
  2214. continue; /* no noise on spare devices */
  2215. if (!test_bit(Faulty, &rdev->flags) &&
  2216. rdev->saved_raid_disk == -1) {
  2217. md_super_write(mddev,rdev,
  2218. rdev->sb_start, rdev->sb_size,
  2219. rdev->sb_page);
  2220. pr_debug("md: (write) %s's sb offset: %llu\n",
  2221. bdevname(rdev->bdev, b),
  2222. (unsigned long long)rdev->sb_start);
  2223. rdev->sb_events = mddev->events;
  2224. if (rdev->badblocks.size) {
  2225. md_super_write(mddev, rdev,
  2226. rdev->badblocks.sector,
  2227. rdev->badblocks.size << 9,
  2228. rdev->bb_page);
  2229. rdev->badblocks.size = 0;
  2230. }
  2231. } else if (test_bit(Faulty, &rdev->flags))
  2232. pr_debug("md: %s (skipping faulty)\n",
  2233. bdevname(rdev->bdev, b));
  2234. else
  2235. pr_debug("(skipping incremental s/r ");
  2236. if (mddev->level == LEVEL_MULTIPATH)
  2237. /* only need to write one superblock... */
  2238. break;
  2239. }
  2240. md_super_wait(mddev);
  2241. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2242. spin_lock_irq(&mddev->write_lock);
  2243. if (mddev->in_sync != sync_req ||
  2244. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2245. /* have to write it out again */
  2246. spin_unlock_irq(&mddev->write_lock);
  2247. goto repeat;
  2248. }
  2249. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2250. spin_unlock_irq(&mddev->write_lock);
  2251. wake_up(&mddev->sb_wait);
  2252. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2253. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2254. rdev_for_each(rdev, mddev) {
  2255. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2256. clear_bit(Blocked, &rdev->flags);
  2257. if (any_badblocks_changed)
  2258. md_ack_all_badblocks(&rdev->badblocks);
  2259. clear_bit(BlockedBadBlocks, &rdev->flags);
  2260. wake_up(&rdev->blocked_wait);
  2261. }
  2262. }
  2263. /* words written to sysfs files may, or may not, be \n terminated.
  2264. * We want to accept with case. For this we use cmd_match.
  2265. */
  2266. static int cmd_match(const char *cmd, const char *str)
  2267. {
  2268. /* See if cmd, written into a sysfs file, matches
  2269. * str. They must either be the same, or cmd can
  2270. * have a trailing newline
  2271. */
  2272. while (*cmd && *str && *cmd == *str) {
  2273. cmd++;
  2274. str++;
  2275. }
  2276. if (*cmd == '\n')
  2277. cmd++;
  2278. if (*str || *cmd)
  2279. return 0;
  2280. return 1;
  2281. }
  2282. struct rdev_sysfs_entry {
  2283. struct attribute attr;
  2284. ssize_t (*show)(struct md_rdev *, char *);
  2285. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2286. };
  2287. static ssize_t
  2288. state_show(struct md_rdev *rdev, char *page)
  2289. {
  2290. char *sep = "";
  2291. size_t len = 0;
  2292. if (test_bit(Faulty, &rdev->flags) ||
  2293. rdev->badblocks.unacked_exist) {
  2294. len+= sprintf(page+len, "%sfaulty",sep);
  2295. sep = ",";
  2296. }
  2297. if (test_bit(In_sync, &rdev->flags)) {
  2298. len += sprintf(page+len, "%sin_sync",sep);
  2299. sep = ",";
  2300. }
  2301. if (test_bit(WriteMostly, &rdev->flags)) {
  2302. len += sprintf(page+len, "%swrite_mostly",sep);
  2303. sep = ",";
  2304. }
  2305. if (test_bit(Blocked, &rdev->flags) ||
  2306. (rdev->badblocks.unacked_exist
  2307. && !test_bit(Faulty, &rdev->flags))) {
  2308. len += sprintf(page+len, "%sblocked", sep);
  2309. sep = ",";
  2310. }
  2311. if (!test_bit(Faulty, &rdev->flags) &&
  2312. !test_bit(In_sync, &rdev->flags)) {
  2313. len += sprintf(page+len, "%sspare", sep);
  2314. sep = ",";
  2315. }
  2316. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2317. len += sprintf(page+len, "%swrite_error", sep);
  2318. sep = ",";
  2319. }
  2320. if (test_bit(WantReplacement, &rdev->flags)) {
  2321. len += sprintf(page+len, "%swant_replacement", sep);
  2322. sep = ",";
  2323. }
  2324. if (test_bit(Replacement, &rdev->flags)) {
  2325. len += sprintf(page+len, "%sreplacement", sep);
  2326. sep = ",";
  2327. }
  2328. return len+sprintf(page+len, "\n");
  2329. }
  2330. static ssize_t
  2331. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2332. {
  2333. /* can write
  2334. * faulty - simulates an error
  2335. * remove - disconnects the device
  2336. * writemostly - sets write_mostly
  2337. * -writemostly - clears write_mostly
  2338. * blocked - sets the Blocked flags
  2339. * -blocked - clears the Blocked and possibly simulates an error
  2340. * insync - sets Insync providing device isn't active
  2341. * write_error - sets WriteErrorSeen
  2342. * -write_error - clears WriteErrorSeen
  2343. */
  2344. int err = -EINVAL;
  2345. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2346. md_error(rdev->mddev, rdev);
  2347. if (test_bit(Faulty, &rdev->flags))
  2348. err = 0;
  2349. else
  2350. err = -EBUSY;
  2351. } else if (cmd_match(buf, "remove")) {
  2352. if (rdev->raid_disk >= 0)
  2353. err = -EBUSY;
  2354. else {
  2355. struct mddev *mddev = rdev->mddev;
  2356. kick_rdev_from_array(rdev);
  2357. if (mddev->pers)
  2358. md_update_sb(mddev, 1);
  2359. md_new_event(mddev);
  2360. err = 0;
  2361. }
  2362. } else if (cmd_match(buf, "writemostly")) {
  2363. set_bit(WriteMostly, &rdev->flags);
  2364. err = 0;
  2365. } else if (cmd_match(buf, "-writemostly")) {
  2366. clear_bit(WriteMostly, &rdev->flags);
  2367. err = 0;
  2368. } else if (cmd_match(buf, "blocked")) {
  2369. set_bit(Blocked, &rdev->flags);
  2370. err = 0;
  2371. } else if (cmd_match(buf, "-blocked")) {
  2372. if (!test_bit(Faulty, &rdev->flags) &&
  2373. rdev->badblocks.unacked_exist) {
  2374. /* metadata handler doesn't understand badblocks,
  2375. * so we need to fail the device
  2376. */
  2377. md_error(rdev->mddev, rdev);
  2378. }
  2379. clear_bit(Blocked, &rdev->flags);
  2380. clear_bit(BlockedBadBlocks, &rdev->flags);
  2381. wake_up(&rdev->blocked_wait);
  2382. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2383. md_wakeup_thread(rdev->mddev->thread);
  2384. err = 0;
  2385. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2386. set_bit(In_sync, &rdev->flags);
  2387. err = 0;
  2388. } else if (cmd_match(buf, "write_error")) {
  2389. set_bit(WriteErrorSeen, &rdev->flags);
  2390. err = 0;
  2391. } else if (cmd_match(buf, "-write_error")) {
  2392. clear_bit(WriteErrorSeen, &rdev->flags);
  2393. err = 0;
  2394. } else if (cmd_match(buf, "want_replacement")) {
  2395. /* Any non-spare device that is not a replacement can
  2396. * become want_replacement at any time, but we then need to
  2397. * check if recovery is needed.
  2398. */
  2399. if (rdev->raid_disk >= 0 &&
  2400. !test_bit(Replacement, &rdev->flags))
  2401. set_bit(WantReplacement, &rdev->flags);
  2402. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2403. md_wakeup_thread(rdev->mddev->thread);
  2404. err = 0;
  2405. } else if (cmd_match(buf, "-want_replacement")) {
  2406. /* Clearing 'want_replacement' is always allowed.
  2407. * Once replacements starts it is too late though.
  2408. */
  2409. err = 0;
  2410. clear_bit(WantReplacement, &rdev->flags);
  2411. } else if (cmd_match(buf, "replacement")) {
  2412. /* Can only set a device as a replacement when array has not
  2413. * yet been started. Once running, replacement is automatic
  2414. * from spares, or by assigning 'slot'.
  2415. */
  2416. if (rdev->mddev->pers)
  2417. err = -EBUSY;
  2418. else {
  2419. set_bit(Replacement, &rdev->flags);
  2420. err = 0;
  2421. }
  2422. } else if (cmd_match(buf, "-replacement")) {
  2423. /* Similarly, can only clear Replacement before start */
  2424. if (rdev->mddev->pers)
  2425. err = -EBUSY;
  2426. else {
  2427. clear_bit(Replacement, &rdev->flags);
  2428. err = 0;
  2429. }
  2430. }
  2431. if (!err)
  2432. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2433. return err ? err : len;
  2434. }
  2435. static struct rdev_sysfs_entry rdev_state =
  2436. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2437. static ssize_t
  2438. errors_show(struct md_rdev *rdev, char *page)
  2439. {
  2440. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2441. }
  2442. static ssize_t
  2443. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2444. {
  2445. char *e;
  2446. unsigned long n = simple_strtoul(buf, &e, 10);
  2447. if (*buf && (*e == 0 || *e == '\n')) {
  2448. atomic_set(&rdev->corrected_errors, n);
  2449. return len;
  2450. }
  2451. return -EINVAL;
  2452. }
  2453. static struct rdev_sysfs_entry rdev_errors =
  2454. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2455. static ssize_t
  2456. slot_show(struct md_rdev *rdev, char *page)
  2457. {
  2458. if (rdev->raid_disk < 0)
  2459. return sprintf(page, "none\n");
  2460. else
  2461. return sprintf(page, "%d\n", rdev->raid_disk);
  2462. }
  2463. static ssize_t
  2464. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2465. {
  2466. char *e;
  2467. int err;
  2468. int slot = simple_strtoul(buf, &e, 10);
  2469. if (strncmp(buf, "none", 4)==0)
  2470. slot = -1;
  2471. else if (e==buf || (*e && *e!= '\n'))
  2472. return -EINVAL;
  2473. if (rdev->mddev->pers && slot == -1) {
  2474. /* Setting 'slot' on an active array requires also
  2475. * updating the 'rd%d' link, and communicating
  2476. * with the personality with ->hot_*_disk.
  2477. * For now we only support removing
  2478. * failed/spare devices. This normally happens automatically,
  2479. * but not when the metadata is externally managed.
  2480. */
  2481. if (rdev->raid_disk == -1)
  2482. return -EEXIST;
  2483. /* personality does all needed checks */
  2484. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2485. return -EINVAL;
  2486. err = rdev->mddev->pers->
  2487. hot_remove_disk(rdev->mddev, rdev);
  2488. if (err)
  2489. return err;
  2490. sysfs_unlink_rdev(rdev->mddev, rdev);
  2491. rdev->raid_disk = -1;
  2492. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2493. md_wakeup_thread(rdev->mddev->thread);
  2494. } else if (rdev->mddev->pers) {
  2495. /* Activating a spare .. or possibly reactivating
  2496. * if we ever get bitmaps working here.
  2497. */
  2498. if (rdev->raid_disk != -1)
  2499. return -EBUSY;
  2500. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2501. return -EBUSY;
  2502. if (rdev->mddev->pers->hot_add_disk == NULL)
  2503. return -EINVAL;
  2504. if (slot >= rdev->mddev->raid_disks &&
  2505. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2506. return -ENOSPC;
  2507. rdev->raid_disk = slot;
  2508. if (test_bit(In_sync, &rdev->flags))
  2509. rdev->saved_raid_disk = slot;
  2510. else
  2511. rdev->saved_raid_disk = -1;
  2512. clear_bit(In_sync, &rdev->flags);
  2513. err = rdev->mddev->pers->
  2514. hot_add_disk(rdev->mddev, rdev);
  2515. if (err) {
  2516. rdev->raid_disk = -1;
  2517. return err;
  2518. } else
  2519. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2520. if (sysfs_link_rdev(rdev->mddev, rdev))
  2521. /* failure here is OK */;
  2522. /* don't wakeup anyone, leave that to userspace. */
  2523. } else {
  2524. if (slot >= rdev->mddev->raid_disks &&
  2525. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2526. return -ENOSPC;
  2527. rdev->raid_disk = slot;
  2528. /* assume it is working */
  2529. clear_bit(Faulty, &rdev->flags);
  2530. clear_bit(WriteMostly, &rdev->flags);
  2531. set_bit(In_sync, &rdev->flags);
  2532. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2533. }
  2534. return len;
  2535. }
  2536. static struct rdev_sysfs_entry rdev_slot =
  2537. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2538. static ssize_t
  2539. offset_show(struct md_rdev *rdev, char *page)
  2540. {
  2541. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2542. }
  2543. static ssize_t
  2544. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2545. {
  2546. unsigned long long offset;
  2547. if (strict_strtoull(buf, 10, &offset) < 0)
  2548. return -EINVAL;
  2549. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2550. return -EBUSY;
  2551. if (rdev->sectors && rdev->mddev->external)
  2552. /* Must set offset before size, so overlap checks
  2553. * can be sane */
  2554. return -EBUSY;
  2555. rdev->data_offset = offset;
  2556. rdev->new_data_offset = offset;
  2557. return len;
  2558. }
  2559. static struct rdev_sysfs_entry rdev_offset =
  2560. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2561. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2562. {
  2563. return sprintf(page, "%llu\n",
  2564. (unsigned long long)rdev->new_data_offset);
  2565. }
  2566. static ssize_t new_offset_store(struct md_rdev *rdev,
  2567. const char *buf, size_t len)
  2568. {
  2569. unsigned long long new_offset;
  2570. struct mddev *mddev = rdev->mddev;
  2571. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2572. return -EINVAL;
  2573. if (mddev->sync_thread)
  2574. return -EBUSY;
  2575. if (new_offset == rdev->data_offset)
  2576. /* reset is always permitted */
  2577. ;
  2578. else if (new_offset > rdev->data_offset) {
  2579. /* must not push array size beyond rdev_sectors */
  2580. if (new_offset - rdev->data_offset
  2581. + mddev->dev_sectors > rdev->sectors)
  2582. return -E2BIG;
  2583. }
  2584. /* Metadata worries about other space details. */
  2585. /* decreasing the offset is inconsistent with a backwards
  2586. * reshape.
  2587. */
  2588. if (new_offset < rdev->data_offset &&
  2589. mddev->reshape_backwards)
  2590. return -EINVAL;
  2591. /* Increasing offset is inconsistent with forwards
  2592. * reshape. reshape_direction should be set to
  2593. * 'backwards' first.
  2594. */
  2595. if (new_offset > rdev->data_offset &&
  2596. !mddev->reshape_backwards)
  2597. return -EINVAL;
  2598. if (mddev->pers && mddev->persistent &&
  2599. !super_types[mddev->major_version]
  2600. .allow_new_offset(rdev, new_offset))
  2601. return -E2BIG;
  2602. rdev->new_data_offset = new_offset;
  2603. if (new_offset > rdev->data_offset)
  2604. mddev->reshape_backwards = 1;
  2605. else if (new_offset < rdev->data_offset)
  2606. mddev->reshape_backwards = 0;
  2607. return len;
  2608. }
  2609. static struct rdev_sysfs_entry rdev_new_offset =
  2610. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2611. static ssize_t
  2612. rdev_size_show(struct md_rdev *rdev, char *page)
  2613. {
  2614. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2615. }
  2616. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2617. {
  2618. /* check if two start/length pairs overlap */
  2619. if (s1+l1 <= s2)
  2620. return 0;
  2621. if (s2+l2 <= s1)
  2622. return 0;
  2623. return 1;
  2624. }
  2625. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2626. {
  2627. unsigned long long blocks;
  2628. sector_t new;
  2629. if (strict_strtoull(buf, 10, &blocks) < 0)
  2630. return -EINVAL;
  2631. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2632. return -EINVAL; /* sector conversion overflow */
  2633. new = blocks * 2;
  2634. if (new != blocks * 2)
  2635. return -EINVAL; /* unsigned long long to sector_t overflow */
  2636. *sectors = new;
  2637. return 0;
  2638. }
  2639. static ssize_t
  2640. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2641. {
  2642. struct mddev *my_mddev = rdev->mddev;
  2643. sector_t oldsectors = rdev->sectors;
  2644. sector_t sectors;
  2645. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2646. return -EINVAL;
  2647. if (rdev->data_offset != rdev->new_data_offset)
  2648. return -EINVAL; /* too confusing */
  2649. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2650. if (my_mddev->persistent) {
  2651. sectors = super_types[my_mddev->major_version].
  2652. rdev_size_change(rdev, sectors);
  2653. if (!sectors)
  2654. return -EBUSY;
  2655. } else if (!sectors)
  2656. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2657. rdev->data_offset;
  2658. }
  2659. if (sectors < my_mddev->dev_sectors)
  2660. return -EINVAL; /* component must fit device */
  2661. rdev->sectors = sectors;
  2662. if (sectors > oldsectors && my_mddev->external) {
  2663. /* need to check that all other rdevs with the same ->bdev
  2664. * do not overlap. We need to unlock the mddev to avoid
  2665. * a deadlock. We have already changed rdev->sectors, and if
  2666. * we have to change it back, we will have the lock again.
  2667. */
  2668. struct mddev *mddev;
  2669. int overlap = 0;
  2670. struct list_head *tmp;
  2671. mddev_unlock(my_mddev);
  2672. for_each_mddev(mddev, tmp) {
  2673. struct md_rdev *rdev2;
  2674. mddev_lock(mddev);
  2675. rdev_for_each(rdev2, mddev)
  2676. if (rdev->bdev == rdev2->bdev &&
  2677. rdev != rdev2 &&
  2678. overlaps(rdev->data_offset, rdev->sectors,
  2679. rdev2->data_offset,
  2680. rdev2->sectors)) {
  2681. overlap = 1;
  2682. break;
  2683. }
  2684. mddev_unlock(mddev);
  2685. if (overlap) {
  2686. mddev_put(mddev);
  2687. break;
  2688. }
  2689. }
  2690. mddev_lock(my_mddev);
  2691. if (overlap) {
  2692. /* Someone else could have slipped in a size
  2693. * change here, but doing so is just silly.
  2694. * We put oldsectors back because we *know* it is
  2695. * safe, and trust userspace not to race with
  2696. * itself
  2697. */
  2698. rdev->sectors = oldsectors;
  2699. return -EBUSY;
  2700. }
  2701. }
  2702. return len;
  2703. }
  2704. static struct rdev_sysfs_entry rdev_size =
  2705. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2706. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2707. {
  2708. unsigned long long recovery_start = rdev->recovery_offset;
  2709. if (test_bit(In_sync, &rdev->flags) ||
  2710. recovery_start == MaxSector)
  2711. return sprintf(page, "none\n");
  2712. return sprintf(page, "%llu\n", recovery_start);
  2713. }
  2714. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2715. {
  2716. unsigned long long recovery_start;
  2717. if (cmd_match(buf, "none"))
  2718. recovery_start = MaxSector;
  2719. else if (strict_strtoull(buf, 10, &recovery_start))
  2720. return -EINVAL;
  2721. if (rdev->mddev->pers &&
  2722. rdev->raid_disk >= 0)
  2723. return -EBUSY;
  2724. rdev->recovery_offset = recovery_start;
  2725. if (recovery_start == MaxSector)
  2726. set_bit(In_sync, &rdev->flags);
  2727. else
  2728. clear_bit(In_sync, &rdev->flags);
  2729. return len;
  2730. }
  2731. static struct rdev_sysfs_entry rdev_recovery_start =
  2732. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2733. static ssize_t
  2734. badblocks_show(struct badblocks *bb, char *page, int unack);
  2735. static ssize_t
  2736. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2737. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2738. {
  2739. return badblocks_show(&rdev->badblocks, page, 0);
  2740. }
  2741. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2742. {
  2743. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2744. /* Maybe that ack was all we needed */
  2745. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2746. wake_up(&rdev->blocked_wait);
  2747. return rv;
  2748. }
  2749. static struct rdev_sysfs_entry rdev_bad_blocks =
  2750. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2751. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2752. {
  2753. return badblocks_show(&rdev->badblocks, page, 1);
  2754. }
  2755. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2756. {
  2757. return badblocks_store(&rdev->badblocks, page, len, 1);
  2758. }
  2759. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2760. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2761. static struct attribute *rdev_default_attrs[] = {
  2762. &rdev_state.attr,
  2763. &rdev_errors.attr,
  2764. &rdev_slot.attr,
  2765. &rdev_offset.attr,
  2766. &rdev_new_offset.attr,
  2767. &rdev_size.attr,
  2768. &rdev_recovery_start.attr,
  2769. &rdev_bad_blocks.attr,
  2770. &rdev_unack_bad_blocks.attr,
  2771. NULL,
  2772. };
  2773. static ssize_t
  2774. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2775. {
  2776. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2777. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2778. struct mddev *mddev = rdev->mddev;
  2779. ssize_t rv;
  2780. if (!entry->show)
  2781. return -EIO;
  2782. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2783. if (!rv) {
  2784. if (rdev->mddev == NULL)
  2785. rv = -EBUSY;
  2786. else
  2787. rv = entry->show(rdev, page);
  2788. mddev_unlock(mddev);
  2789. }
  2790. return rv;
  2791. }
  2792. static ssize_t
  2793. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2794. const char *page, size_t length)
  2795. {
  2796. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2797. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2798. ssize_t rv;
  2799. struct mddev *mddev = rdev->mddev;
  2800. if (!entry->store)
  2801. return -EIO;
  2802. if (!capable(CAP_SYS_ADMIN))
  2803. return -EACCES;
  2804. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2805. if (!rv) {
  2806. if (rdev->mddev == NULL)
  2807. rv = -EBUSY;
  2808. else
  2809. rv = entry->store(rdev, page, length);
  2810. mddev_unlock(mddev);
  2811. }
  2812. return rv;
  2813. }
  2814. static void rdev_free(struct kobject *ko)
  2815. {
  2816. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2817. kfree(rdev);
  2818. }
  2819. static const struct sysfs_ops rdev_sysfs_ops = {
  2820. .show = rdev_attr_show,
  2821. .store = rdev_attr_store,
  2822. };
  2823. static struct kobj_type rdev_ktype = {
  2824. .release = rdev_free,
  2825. .sysfs_ops = &rdev_sysfs_ops,
  2826. .default_attrs = rdev_default_attrs,
  2827. };
  2828. int md_rdev_init(struct md_rdev *rdev)
  2829. {
  2830. rdev->desc_nr = -1;
  2831. rdev->saved_raid_disk = -1;
  2832. rdev->raid_disk = -1;
  2833. rdev->flags = 0;
  2834. rdev->data_offset = 0;
  2835. rdev->new_data_offset = 0;
  2836. rdev->sb_events = 0;
  2837. rdev->last_read_error.tv_sec = 0;
  2838. rdev->last_read_error.tv_nsec = 0;
  2839. rdev->sb_loaded = 0;
  2840. rdev->bb_page = NULL;
  2841. atomic_set(&rdev->nr_pending, 0);
  2842. atomic_set(&rdev->read_errors, 0);
  2843. atomic_set(&rdev->corrected_errors, 0);
  2844. INIT_LIST_HEAD(&rdev->same_set);
  2845. init_waitqueue_head(&rdev->blocked_wait);
  2846. /* Add space to store bad block list.
  2847. * This reserves the space even on arrays where it cannot
  2848. * be used - I wonder if that matters
  2849. */
  2850. rdev->badblocks.count = 0;
  2851. rdev->badblocks.shift = 0;
  2852. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2853. seqlock_init(&rdev->badblocks.lock);
  2854. if (rdev->badblocks.page == NULL)
  2855. return -ENOMEM;
  2856. return 0;
  2857. }
  2858. EXPORT_SYMBOL_GPL(md_rdev_init);
  2859. /*
  2860. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2861. *
  2862. * mark the device faulty if:
  2863. *
  2864. * - the device is nonexistent (zero size)
  2865. * - the device has no valid superblock
  2866. *
  2867. * a faulty rdev _never_ has rdev->sb set.
  2868. */
  2869. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2870. {
  2871. char b[BDEVNAME_SIZE];
  2872. int err;
  2873. struct md_rdev *rdev;
  2874. sector_t size;
  2875. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2876. if (!rdev) {
  2877. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2878. return ERR_PTR(-ENOMEM);
  2879. }
  2880. err = md_rdev_init(rdev);
  2881. if (err)
  2882. goto abort_free;
  2883. err = alloc_disk_sb(rdev);
  2884. if (err)
  2885. goto abort_free;
  2886. err = lock_rdev(rdev, newdev, super_format == -2);
  2887. if (err)
  2888. goto abort_free;
  2889. kobject_init(&rdev->kobj, &rdev_ktype);
  2890. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2891. if (!size) {
  2892. printk(KERN_WARNING
  2893. "md: %s has zero or unknown size, marking faulty!\n",
  2894. bdevname(rdev->bdev,b));
  2895. err = -EINVAL;
  2896. goto abort_free;
  2897. }
  2898. if (super_format >= 0) {
  2899. err = super_types[super_format].
  2900. load_super(rdev, NULL, super_minor);
  2901. if (err == -EINVAL) {
  2902. printk(KERN_WARNING
  2903. "md: %s does not have a valid v%d.%d "
  2904. "superblock, not importing!\n",
  2905. bdevname(rdev->bdev,b),
  2906. super_format, super_minor);
  2907. goto abort_free;
  2908. }
  2909. if (err < 0) {
  2910. printk(KERN_WARNING
  2911. "md: could not read %s's sb, not importing!\n",
  2912. bdevname(rdev->bdev,b));
  2913. goto abort_free;
  2914. }
  2915. }
  2916. if (super_format == -1)
  2917. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2918. rdev->badblocks.shift = -1;
  2919. return rdev;
  2920. abort_free:
  2921. if (rdev->bdev)
  2922. unlock_rdev(rdev);
  2923. md_rdev_clear(rdev);
  2924. kfree(rdev);
  2925. return ERR_PTR(err);
  2926. }
  2927. /*
  2928. * Check a full RAID array for plausibility
  2929. */
  2930. static void analyze_sbs(struct mddev * mddev)
  2931. {
  2932. int i;
  2933. struct md_rdev *rdev, *freshest, *tmp;
  2934. char b[BDEVNAME_SIZE];
  2935. freshest = NULL;
  2936. rdev_for_each_safe(rdev, tmp, mddev)
  2937. switch (super_types[mddev->major_version].
  2938. load_super(rdev, freshest, mddev->minor_version)) {
  2939. case 1:
  2940. freshest = rdev;
  2941. break;
  2942. case 0:
  2943. break;
  2944. default:
  2945. printk( KERN_ERR \
  2946. "md: fatal superblock inconsistency in %s"
  2947. " -- removing from array\n",
  2948. bdevname(rdev->bdev,b));
  2949. kick_rdev_from_array(rdev);
  2950. }
  2951. super_types[mddev->major_version].
  2952. validate_super(mddev, freshest);
  2953. i = 0;
  2954. rdev_for_each_safe(rdev, tmp, mddev) {
  2955. if (mddev->max_disks &&
  2956. (rdev->desc_nr >= mddev->max_disks ||
  2957. i > mddev->max_disks)) {
  2958. printk(KERN_WARNING
  2959. "md: %s: %s: only %d devices permitted\n",
  2960. mdname(mddev), bdevname(rdev->bdev, b),
  2961. mddev->max_disks);
  2962. kick_rdev_from_array(rdev);
  2963. continue;
  2964. }
  2965. if (rdev != freshest)
  2966. if (super_types[mddev->major_version].
  2967. validate_super(mddev, rdev)) {
  2968. printk(KERN_WARNING "md: kicking non-fresh %s"
  2969. " from array!\n",
  2970. bdevname(rdev->bdev,b));
  2971. kick_rdev_from_array(rdev);
  2972. continue;
  2973. }
  2974. if (mddev->level == LEVEL_MULTIPATH) {
  2975. rdev->desc_nr = i++;
  2976. rdev->raid_disk = rdev->desc_nr;
  2977. set_bit(In_sync, &rdev->flags);
  2978. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2979. rdev->raid_disk = -1;
  2980. clear_bit(In_sync, &rdev->flags);
  2981. }
  2982. }
  2983. }
  2984. /* Read a fixed-point number.
  2985. * Numbers in sysfs attributes should be in "standard" units where
  2986. * possible, so time should be in seconds.
  2987. * However we internally use a a much smaller unit such as
  2988. * milliseconds or jiffies.
  2989. * This function takes a decimal number with a possible fractional
  2990. * component, and produces an integer which is the result of
  2991. * multiplying that number by 10^'scale'.
  2992. * all without any floating-point arithmetic.
  2993. */
  2994. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2995. {
  2996. unsigned long result = 0;
  2997. long decimals = -1;
  2998. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2999. if (*cp == '.')
  3000. decimals = 0;
  3001. else if (decimals < scale) {
  3002. unsigned int value;
  3003. value = *cp - '0';
  3004. result = result * 10 + value;
  3005. if (decimals >= 0)
  3006. decimals++;
  3007. }
  3008. cp++;
  3009. }
  3010. if (*cp == '\n')
  3011. cp++;
  3012. if (*cp)
  3013. return -EINVAL;
  3014. if (decimals < 0)
  3015. decimals = 0;
  3016. while (decimals < scale) {
  3017. result *= 10;
  3018. decimals ++;
  3019. }
  3020. *res = result;
  3021. return 0;
  3022. }
  3023. static void md_safemode_timeout(unsigned long data);
  3024. static ssize_t
  3025. safe_delay_show(struct mddev *mddev, char *page)
  3026. {
  3027. int msec = (mddev->safemode_delay*1000)/HZ;
  3028. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3029. }
  3030. static ssize_t
  3031. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3032. {
  3033. unsigned long msec;
  3034. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3035. return -EINVAL;
  3036. if (msec == 0)
  3037. mddev->safemode_delay = 0;
  3038. else {
  3039. unsigned long old_delay = mddev->safemode_delay;
  3040. mddev->safemode_delay = (msec*HZ)/1000;
  3041. if (mddev->safemode_delay == 0)
  3042. mddev->safemode_delay = 1;
  3043. if (mddev->safemode_delay < old_delay)
  3044. md_safemode_timeout((unsigned long)mddev);
  3045. }
  3046. return len;
  3047. }
  3048. static struct md_sysfs_entry md_safe_delay =
  3049. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3050. static ssize_t
  3051. level_show(struct mddev *mddev, char *page)
  3052. {
  3053. struct md_personality *p = mddev->pers;
  3054. if (p)
  3055. return sprintf(page, "%s\n", p->name);
  3056. else if (mddev->clevel[0])
  3057. return sprintf(page, "%s\n", mddev->clevel);
  3058. else if (mddev->level != LEVEL_NONE)
  3059. return sprintf(page, "%d\n", mddev->level);
  3060. else
  3061. return 0;
  3062. }
  3063. static ssize_t
  3064. level_store(struct mddev *mddev, const char *buf, size_t len)
  3065. {
  3066. char clevel[16];
  3067. ssize_t rv = len;
  3068. struct md_personality *pers;
  3069. long level;
  3070. void *priv;
  3071. struct md_rdev *rdev;
  3072. if (mddev->pers == NULL) {
  3073. if (len == 0)
  3074. return 0;
  3075. if (len >= sizeof(mddev->clevel))
  3076. return -ENOSPC;
  3077. strncpy(mddev->clevel, buf, len);
  3078. if (mddev->clevel[len-1] == '\n')
  3079. len--;
  3080. mddev->clevel[len] = 0;
  3081. mddev->level = LEVEL_NONE;
  3082. return rv;
  3083. }
  3084. /* request to change the personality. Need to ensure:
  3085. * - array is not engaged in resync/recovery/reshape
  3086. * - old personality can be suspended
  3087. * - new personality will access other array.
  3088. */
  3089. if (mddev->sync_thread ||
  3090. mddev->reshape_position != MaxSector ||
  3091. mddev->sysfs_active)
  3092. return -EBUSY;
  3093. if (!mddev->pers->quiesce) {
  3094. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3095. mdname(mddev), mddev->pers->name);
  3096. return -EINVAL;
  3097. }
  3098. /* Now find the new personality */
  3099. if (len == 0 || len >= sizeof(clevel))
  3100. return -EINVAL;
  3101. strncpy(clevel, buf, len);
  3102. if (clevel[len-1] == '\n')
  3103. len--;
  3104. clevel[len] = 0;
  3105. if (strict_strtol(clevel, 10, &level))
  3106. level = LEVEL_NONE;
  3107. if (request_module("md-%s", clevel) != 0)
  3108. request_module("md-level-%s", clevel);
  3109. spin_lock(&pers_lock);
  3110. pers = find_pers(level, clevel);
  3111. if (!pers || !try_module_get(pers->owner)) {
  3112. spin_unlock(&pers_lock);
  3113. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3114. return -EINVAL;
  3115. }
  3116. spin_unlock(&pers_lock);
  3117. if (pers == mddev->pers) {
  3118. /* Nothing to do! */
  3119. module_put(pers->owner);
  3120. return rv;
  3121. }
  3122. if (!pers->takeover) {
  3123. module_put(pers->owner);
  3124. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3125. mdname(mddev), clevel);
  3126. return -EINVAL;
  3127. }
  3128. rdev_for_each(rdev, mddev)
  3129. rdev->new_raid_disk = rdev->raid_disk;
  3130. /* ->takeover must set new_* and/or delta_disks
  3131. * if it succeeds, and may set them when it fails.
  3132. */
  3133. priv = pers->takeover(mddev);
  3134. if (IS_ERR(priv)) {
  3135. mddev->new_level = mddev->level;
  3136. mddev->new_layout = mddev->layout;
  3137. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3138. mddev->raid_disks -= mddev->delta_disks;
  3139. mddev->delta_disks = 0;
  3140. mddev->reshape_backwards = 0;
  3141. module_put(pers->owner);
  3142. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3143. mdname(mddev), clevel);
  3144. return PTR_ERR(priv);
  3145. }
  3146. /* Looks like we have a winner */
  3147. mddev_suspend(mddev);
  3148. mddev->pers->stop(mddev);
  3149. if (mddev->pers->sync_request == NULL &&
  3150. pers->sync_request != NULL) {
  3151. /* need to add the md_redundancy_group */
  3152. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3153. printk(KERN_WARNING
  3154. "md: cannot register extra attributes for %s\n",
  3155. mdname(mddev));
  3156. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3157. }
  3158. if (mddev->pers->sync_request != NULL &&
  3159. pers->sync_request == NULL) {
  3160. /* need to remove the md_redundancy_group */
  3161. if (mddev->to_remove == NULL)
  3162. mddev->to_remove = &md_redundancy_group;
  3163. }
  3164. if (mddev->pers->sync_request == NULL &&
  3165. mddev->external) {
  3166. /* We are converting from a no-redundancy array
  3167. * to a redundancy array and metadata is managed
  3168. * externally so we need to be sure that writes
  3169. * won't block due to a need to transition
  3170. * clean->dirty
  3171. * until external management is started.
  3172. */
  3173. mddev->in_sync = 0;
  3174. mddev->safemode_delay = 0;
  3175. mddev->safemode = 0;
  3176. }
  3177. rdev_for_each(rdev, mddev) {
  3178. if (rdev->raid_disk < 0)
  3179. continue;
  3180. if (rdev->new_raid_disk >= mddev->raid_disks)
  3181. rdev->new_raid_disk = -1;
  3182. if (rdev->new_raid_disk == rdev->raid_disk)
  3183. continue;
  3184. sysfs_unlink_rdev(mddev, rdev);
  3185. }
  3186. rdev_for_each(rdev, mddev) {
  3187. if (rdev->raid_disk < 0)
  3188. continue;
  3189. if (rdev->new_raid_disk == rdev->raid_disk)
  3190. continue;
  3191. rdev->raid_disk = rdev->new_raid_disk;
  3192. if (rdev->raid_disk < 0)
  3193. clear_bit(In_sync, &rdev->flags);
  3194. else {
  3195. if (sysfs_link_rdev(mddev, rdev))
  3196. printk(KERN_WARNING "md: cannot register rd%d"
  3197. " for %s after level change\n",
  3198. rdev->raid_disk, mdname(mddev));
  3199. }
  3200. }
  3201. module_put(mddev->pers->owner);
  3202. mddev->pers = pers;
  3203. mddev->private = priv;
  3204. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3205. mddev->level = mddev->new_level;
  3206. mddev->layout = mddev->new_layout;
  3207. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3208. mddev->delta_disks = 0;
  3209. mddev->reshape_backwards = 0;
  3210. mddev->degraded = 0;
  3211. if (mddev->pers->sync_request == NULL) {
  3212. /* this is now an array without redundancy, so
  3213. * it must always be in_sync
  3214. */
  3215. mddev->in_sync = 1;
  3216. del_timer_sync(&mddev->safemode_timer);
  3217. }
  3218. pers->run(mddev);
  3219. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3220. mddev_resume(mddev);
  3221. sysfs_notify(&mddev->kobj, NULL, "level");
  3222. md_new_event(mddev);
  3223. return rv;
  3224. }
  3225. static struct md_sysfs_entry md_level =
  3226. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3227. static ssize_t
  3228. layout_show(struct mddev *mddev, char *page)
  3229. {
  3230. /* just a number, not meaningful for all levels */
  3231. if (mddev->reshape_position != MaxSector &&
  3232. mddev->layout != mddev->new_layout)
  3233. return sprintf(page, "%d (%d)\n",
  3234. mddev->new_layout, mddev->layout);
  3235. return sprintf(page, "%d\n", mddev->layout);
  3236. }
  3237. static ssize_t
  3238. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3239. {
  3240. char *e;
  3241. unsigned long n = simple_strtoul(buf, &e, 10);
  3242. if (!*buf || (*e && *e != '\n'))
  3243. return -EINVAL;
  3244. if (mddev->pers) {
  3245. int err;
  3246. if (mddev->pers->check_reshape == NULL)
  3247. return -EBUSY;
  3248. mddev->new_layout = n;
  3249. err = mddev->pers->check_reshape(mddev);
  3250. if (err) {
  3251. mddev->new_layout = mddev->layout;
  3252. return err;
  3253. }
  3254. } else {
  3255. mddev->new_layout = n;
  3256. if (mddev->reshape_position == MaxSector)
  3257. mddev->layout = n;
  3258. }
  3259. return len;
  3260. }
  3261. static struct md_sysfs_entry md_layout =
  3262. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3263. static ssize_t
  3264. raid_disks_show(struct mddev *mddev, char *page)
  3265. {
  3266. if (mddev->raid_disks == 0)
  3267. return 0;
  3268. if (mddev->reshape_position != MaxSector &&
  3269. mddev->delta_disks != 0)
  3270. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3271. mddev->raid_disks - mddev->delta_disks);
  3272. return sprintf(page, "%d\n", mddev->raid_disks);
  3273. }
  3274. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3275. static ssize_t
  3276. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3277. {
  3278. char *e;
  3279. int rv = 0;
  3280. unsigned long n = simple_strtoul(buf, &e, 10);
  3281. if (!*buf || (*e && *e != '\n'))
  3282. return -EINVAL;
  3283. if (mddev->pers)
  3284. rv = update_raid_disks(mddev, n);
  3285. else if (mddev->reshape_position != MaxSector) {
  3286. struct md_rdev *rdev;
  3287. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3288. rdev_for_each(rdev, mddev) {
  3289. if (olddisks < n &&
  3290. rdev->data_offset < rdev->new_data_offset)
  3291. return -EINVAL;
  3292. if (olddisks > n &&
  3293. rdev->data_offset > rdev->new_data_offset)
  3294. return -EINVAL;
  3295. }
  3296. mddev->delta_disks = n - olddisks;
  3297. mddev->raid_disks = n;
  3298. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3299. } else
  3300. mddev->raid_disks = n;
  3301. return rv ? rv : len;
  3302. }
  3303. static struct md_sysfs_entry md_raid_disks =
  3304. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3305. static ssize_t
  3306. chunk_size_show(struct mddev *mddev, char *page)
  3307. {
  3308. if (mddev->reshape_position != MaxSector &&
  3309. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3310. return sprintf(page, "%d (%d)\n",
  3311. mddev->new_chunk_sectors << 9,
  3312. mddev->chunk_sectors << 9);
  3313. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3314. }
  3315. static ssize_t
  3316. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3317. {
  3318. char *e;
  3319. unsigned long n = simple_strtoul(buf, &e, 10);
  3320. if (!*buf || (*e && *e != '\n'))
  3321. return -EINVAL;
  3322. if (mddev->pers) {
  3323. int err;
  3324. if (mddev->pers->check_reshape == NULL)
  3325. return -EBUSY;
  3326. mddev->new_chunk_sectors = n >> 9;
  3327. err = mddev->pers->check_reshape(mddev);
  3328. if (err) {
  3329. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3330. return err;
  3331. }
  3332. } else {
  3333. mddev->new_chunk_sectors = n >> 9;
  3334. if (mddev->reshape_position == MaxSector)
  3335. mddev->chunk_sectors = n >> 9;
  3336. }
  3337. return len;
  3338. }
  3339. static struct md_sysfs_entry md_chunk_size =
  3340. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3341. static ssize_t
  3342. resync_start_show(struct mddev *mddev, char *page)
  3343. {
  3344. if (mddev->recovery_cp == MaxSector)
  3345. return sprintf(page, "none\n");
  3346. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3347. }
  3348. static ssize_t
  3349. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3350. {
  3351. char *e;
  3352. unsigned long long n = simple_strtoull(buf, &e, 10);
  3353. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3354. return -EBUSY;
  3355. if (cmd_match(buf, "none"))
  3356. n = MaxSector;
  3357. else if (!*buf || (*e && *e != '\n'))
  3358. return -EINVAL;
  3359. mddev->recovery_cp = n;
  3360. if (mddev->pers)
  3361. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3362. return len;
  3363. }
  3364. static struct md_sysfs_entry md_resync_start =
  3365. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3366. /*
  3367. * The array state can be:
  3368. *
  3369. * clear
  3370. * No devices, no size, no level
  3371. * Equivalent to STOP_ARRAY ioctl
  3372. * inactive
  3373. * May have some settings, but array is not active
  3374. * all IO results in error
  3375. * When written, doesn't tear down array, but just stops it
  3376. * suspended (not supported yet)
  3377. * All IO requests will block. The array can be reconfigured.
  3378. * Writing this, if accepted, will block until array is quiescent
  3379. * readonly
  3380. * no resync can happen. no superblocks get written.
  3381. * write requests fail
  3382. * read-auto
  3383. * like readonly, but behaves like 'clean' on a write request.
  3384. *
  3385. * clean - no pending writes, but otherwise active.
  3386. * When written to inactive array, starts without resync
  3387. * If a write request arrives then
  3388. * if metadata is known, mark 'dirty' and switch to 'active'.
  3389. * if not known, block and switch to write-pending
  3390. * If written to an active array that has pending writes, then fails.
  3391. * active
  3392. * fully active: IO and resync can be happening.
  3393. * When written to inactive array, starts with resync
  3394. *
  3395. * write-pending
  3396. * clean, but writes are blocked waiting for 'active' to be written.
  3397. *
  3398. * active-idle
  3399. * like active, but no writes have been seen for a while (100msec).
  3400. *
  3401. */
  3402. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3403. write_pending, active_idle, bad_word};
  3404. static char *array_states[] = {
  3405. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3406. "write-pending", "active-idle", NULL };
  3407. static int match_word(const char *word, char **list)
  3408. {
  3409. int n;
  3410. for (n=0; list[n]; n++)
  3411. if (cmd_match(word, list[n]))
  3412. break;
  3413. return n;
  3414. }
  3415. static ssize_t
  3416. array_state_show(struct mddev *mddev, char *page)
  3417. {
  3418. enum array_state st = inactive;
  3419. if (mddev->pers)
  3420. switch(mddev->ro) {
  3421. case 1:
  3422. st = readonly;
  3423. break;
  3424. case 2:
  3425. st = read_auto;
  3426. break;
  3427. case 0:
  3428. if (mddev->in_sync)
  3429. st = clean;
  3430. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3431. st = write_pending;
  3432. else if (mddev->safemode)
  3433. st = active_idle;
  3434. else
  3435. st = active;
  3436. }
  3437. else {
  3438. if (list_empty(&mddev->disks) &&
  3439. mddev->raid_disks == 0 &&
  3440. mddev->dev_sectors == 0)
  3441. st = clear;
  3442. else
  3443. st = inactive;
  3444. }
  3445. return sprintf(page, "%s\n", array_states[st]);
  3446. }
  3447. static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
  3448. static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
  3449. static int do_md_run(struct mddev * mddev);
  3450. static int restart_array(struct mddev *mddev);
  3451. static ssize_t
  3452. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3453. {
  3454. int err = -EINVAL;
  3455. enum array_state st = match_word(buf, array_states);
  3456. switch(st) {
  3457. case bad_word:
  3458. break;
  3459. case clear:
  3460. /* stopping an active array */
  3461. err = do_md_stop(mddev, 0, NULL);
  3462. break;
  3463. case inactive:
  3464. /* stopping an active array */
  3465. if (mddev->pers)
  3466. err = do_md_stop(mddev, 2, NULL);
  3467. else
  3468. err = 0; /* already inactive */
  3469. break;
  3470. case suspended:
  3471. break; /* not supported yet */
  3472. case readonly:
  3473. if (mddev->pers)
  3474. err = md_set_readonly(mddev, NULL);
  3475. else {
  3476. mddev->ro = 1;
  3477. set_disk_ro(mddev->gendisk, 1);
  3478. err = do_md_run(mddev);
  3479. }
  3480. break;
  3481. case read_auto:
  3482. if (mddev->pers) {
  3483. if (mddev->ro == 0)
  3484. err = md_set_readonly(mddev, NULL);
  3485. else if (mddev->ro == 1)
  3486. err = restart_array(mddev);
  3487. if (err == 0) {
  3488. mddev->ro = 2;
  3489. set_disk_ro(mddev->gendisk, 0);
  3490. }
  3491. } else {
  3492. mddev->ro = 2;
  3493. err = do_md_run(mddev);
  3494. }
  3495. break;
  3496. case clean:
  3497. if (mddev->pers) {
  3498. restart_array(mddev);
  3499. spin_lock_irq(&mddev->write_lock);
  3500. if (atomic_read(&mddev->writes_pending) == 0) {
  3501. if (mddev->in_sync == 0) {
  3502. mddev->in_sync = 1;
  3503. if (mddev->safemode == 1)
  3504. mddev->safemode = 0;
  3505. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3506. }
  3507. err = 0;
  3508. } else
  3509. err = -EBUSY;
  3510. spin_unlock_irq(&mddev->write_lock);
  3511. } else
  3512. err = -EINVAL;
  3513. break;
  3514. case active:
  3515. if (mddev->pers) {
  3516. restart_array(mddev);
  3517. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3518. wake_up(&mddev->sb_wait);
  3519. err = 0;
  3520. } else {
  3521. mddev->ro = 0;
  3522. set_disk_ro(mddev->gendisk, 0);
  3523. err = do_md_run(mddev);
  3524. }
  3525. break;
  3526. case write_pending:
  3527. case active_idle:
  3528. /* these cannot be set */
  3529. break;
  3530. }
  3531. if (err)
  3532. return err;
  3533. else {
  3534. if (mddev->hold_active == UNTIL_IOCTL)
  3535. mddev->hold_active = 0;
  3536. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3537. return len;
  3538. }
  3539. }
  3540. static struct md_sysfs_entry md_array_state =
  3541. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3542. static ssize_t
  3543. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3544. return sprintf(page, "%d\n",
  3545. atomic_read(&mddev->max_corr_read_errors));
  3546. }
  3547. static ssize_t
  3548. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3549. {
  3550. char *e;
  3551. unsigned long n = simple_strtoul(buf, &e, 10);
  3552. if (*buf && (*e == 0 || *e == '\n')) {
  3553. atomic_set(&mddev->max_corr_read_errors, n);
  3554. return len;
  3555. }
  3556. return -EINVAL;
  3557. }
  3558. static struct md_sysfs_entry max_corr_read_errors =
  3559. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3560. max_corrected_read_errors_store);
  3561. static ssize_t
  3562. null_show(struct mddev *mddev, char *page)
  3563. {
  3564. return -EINVAL;
  3565. }
  3566. static ssize_t
  3567. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3568. {
  3569. /* buf must be %d:%d\n? giving major and minor numbers */
  3570. /* The new device is added to the array.
  3571. * If the array has a persistent superblock, we read the
  3572. * superblock to initialise info and check validity.
  3573. * Otherwise, only checking done is that in bind_rdev_to_array,
  3574. * which mainly checks size.
  3575. */
  3576. char *e;
  3577. int major = simple_strtoul(buf, &e, 10);
  3578. int minor;
  3579. dev_t dev;
  3580. struct md_rdev *rdev;
  3581. int err;
  3582. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3583. return -EINVAL;
  3584. minor = simple_strtoul(e+1, &e, 10);
  3585. if (*e && *e != '\n')
  3586. return -EINVAL;
  3587. dev = MKDEV(major, minor);
  3588. if (major != MAJOR(dev) ||
  3589. minor != MINOR(dev))
  3590. return -EOVERFLOW;
  3591. if (mddev->persistent) {
  3592. rdev = md_import_device(dev, mddev->major_version,
  3593. mddev->minor_version);
  3594. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3595. struct md_rdev *rdev0
  3596. = list_entry(mddev->disks.next,
  3597. struct md_rdev, same_set);
  3598. err = super_types[mddev->major_version]
  3599. .load_super(rdev, rdev0, mddev->minor_version);
  3600. if (err < 0)
  3601. goto out;
  3602. }
  3603. } else if (mddev->external)
  3604. rdev = md_import_device(dev, -2, -1);
  3605. else
  3606. rdev = md_import_device(dev, -1, -1);
  3607. if (IS_ERR(rdev))
  3608. return PTR_ERR(rdev);
  3609. err = bind_rdev_to_array(rdev, mddev);
  3610. out:
  3611. if (err)
  3612. export_rdev(rdev);
  3613. return err ? err : len;
  3614. }
  3615. static struct md_sysfs_entry md_new_device =
  3616. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3617. static ssize_t
  3618. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3619. {
  3620. char *end;
  3621. unsigned long chunk, end_chunk;
  3622. if (!mddev->bitmap)
  3623. goto out;
  3624. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3625. while (*buf) {
  3626. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3627. if (buf == end) break;
  3628. if (*end == '-') { /* range */
  3629. buf = end + 1;
  3630. end_chunk = simple_strtoul(buf, &end, 0);
  3631. if (buf == end) break;
  3632. }
  3633. if (*end && !isspace(*end)) break;
  3634. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3635. buf = skip_spaces(end);
  3636. }
  3637. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3638. out:
  3639. return len;
  3640. }
  3641. static struct md_sysfs_entry md_bitmap =
  3642. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3643. static ssize_t
  3644. size_show(struct mddev *mddev, char *page)
  3645. {
  3646. return sprintf(page, "%llu\n",
  3647. (unsigned long long)mddev->dev_sectors / 2);
  3648. }
  3649. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3650. static ssize_t
  3651. size_store(struct mddev *mddev, const char *buf, size_t len)
  3652. {
  3653. /* If array is inactive, we can reduce the component size, but
  3654. * not increase it (except from 0).
  3655. * If array is active, we can try an on-line resize
  3656. */
  3657. sector_t sectors;
  3658. int err = strict_blocks_to_sectors(buf, &sectors);
  3659. if (err < 0)
  3660. return err;
  3661. if (mddev->pers) {
  3662. err = update_size(mddev, sectors);
  3663. md_update_sb(mddev, 1);
  3664. } else {
  3665. if (mddev->dev_sectors == 0 ||
  3666. mddev->dev_sectors > sectors)
  3667. mddev->dev_sectors = sectors;
  3668. else
  3669. err = -ENOSPC;
  3670. }
  3671. return err ? err : len;
  3672. }
  3673. static struct md_sysfs_entry md_size =
  3674. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3675. /* Metdata version.
  3676. * This is one of
  3677. * 'none' for arrays with no metadata (good luck...)
  3678. * 'external' for arrays with externally managed metadata,
  3679. * or N.M for internally known formats
  3680. */
  3681. static ssize_t
  3682. metadata_show(struct mddev *mddev, char *page)
  3683. {
  3684. if (mddev->persistent)
  3685. return sprintf(page, "%d.%d\n",
  3686. mddev->major_version, mddev->minor_version);
  3687. else if (mddev->external)
  3688. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3689. else
  3690. return sprintf(page, "none\n");
  3691. }
  3692. static ssize_t
  3693. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3694. {
  3695. int major, minor;
  3696. char *e;
  3697. /* Changing the details of 'external' metadata is
  3698. * always permitted. Otherwise there must be
  3699. * no devices attached to the array.
  3700. */
  3701. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3702. ;
  3703. else if (!list_empty(&mddev->disks))
  3704. return -EBUSY;
  3705. if (cmd_match(buf, "none")) {
  3706. mddev->persistent = 0;
  3707. mddev->external = 0;
  3708. mddev->major_version = 0;
  3709. mddev->minor_version = 90;
  3710. return len;
  3711. }
  3712. if (strncmp(buf, "external:", 9) == 0) {
  3713. size_t namelen = len-9;
  3714. if (namelen >= sizeof(mddev->metadata_type))
  3715. namelen = sizeof(mddev->metadata_type)-1;
  3716. strncpy(mddev->metadata_type, buf+9, namelen);
  3717. mddev->metadata_type[namelen] = 0;
  3718. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3719. mddev->metadata_type[--namelen] = 0;
  3720. mddev->persistent = 0;
  3721. mddev->external = 1;
  3722. mddev->major_version = 0;
  3723. mddev->minor_version = 90;
  3724. return len;
  3725. }
  3726. major = simple_strtoul(buf, &e, 10);
  3727. if (e==buf || *e != '.')
  3728. return -EINVAL;
  3729. buf = e+1;
  3730. minor = simple_strtoul(buf, &e, 10);
  3731. if (e==buf || (*e && *e != '\n') )
  3732. return -EINVAL;
  3733. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3734. return -ENOENT;
  3735. mddev->major_version = major;
  3736. mddev->minor_version = minor;
  3737. mddev->persistent = 1;
  3738. mddev->external = 0;
  3739. return len;
  3740. }
  3741. static struct md_sysfs_entry md_metadata =
  3742. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3743. static ssize_t
  3744. action_show(struct mddev *mddev, char *page)
  3745. {
  3746. char *type = "idle";
  3747. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3748. type = "frozen";
  3749. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3750. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3751. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3752. type = "reshape";
  3753. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3754. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3755. type = "resync";
  3756. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3757. type = "check";
  3758. else
  3759. type = "repair";
  3760. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3761. type = "recover";
  3762. }
  3763. return sprintf(page, "%s\n", type);
  3764. }
  3765. static void reap_sync_thread(struct mddev *mddev);
  3766. static ssize_t
  3767. action_store(struct mddev *mddev, const char *page, size_t len)
  3768. {
  3769. if (!mddev->pers || !mddev->pers->sync_request)
  3770. return -EINVAL;
  3771. if (cmd_match(page, "frozen"))
  3772. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3773. else
  3774. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3775. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3776. if (mddev->sync_thread) {
  3777. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3778. reap_sync_thread(mddev);
  3779. }
  3780. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3781. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3782. return -EBUSY;
  3783. else if (cmd_match(page, "resync"))
  3784. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3785. else if (cmd_match(page, "recover")) {
  3786. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3787. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3788. } else if (cmd_match(page, "reshape")) {
  3789. int err;
  3790. if (mddev->pers->start_reshape == NULL)
  3791. return -EINVAL;
  3792. err = mddev->pers->start_reshape(mddev);
  3793. if (err)
  3794. return err;
  3795. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3796. } else {
  3797. if (cmd_match(page, "check"))
  3798. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3799. else if (!cmd_match(page, "repair"))
  3800. return -EINVAL;
  3801. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3802. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3803. }
  3804. if (mddev->ro == 2) {
  3805. /* A write to sync_action is enough to justify
  3806. * canceling read-auto mode
  3807. */
  3808. mddev->ro = 0;
  3809. md_wakeup_thread(mddev->sync_thread);
  3810. }
  3811. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3812. md_wakeup_thread(mddev->thread);
  3813. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3814. return len;
  3815. }
  3816. static ssize_t
  3817. mismatch_cnt_show(struct mddev *mddev, char *page)
  3818. {
  3819. return sprintf(page, "%llu\n",
  3820. (unsigned long long)
  3821. atomic64_read(&mddev->resync_mismatches));
  3822. }
  3823. static struct md_sysfs_entry md_scan_mode =
  3824. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3825. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3826. static ssize_t
  3827. sync_min_show(struct mddev *mddev, char *page)
  3828. {
  3829. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3830. mddev->sync_speed_min ? "local": "system");
  3831. }
  3832. static ssize_t
  3833. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3834. {
  3835. int min;
  3836. char *e;
  3837. if (strncmp(buf, "system", 6)==0) {
  3838. mddev->sync_speed_min = 0;
  3839. return len;
  3840. }
  3841. min = simple_strtoul(buf, &e, 10);
  3842. if (buf == e || (*e && *e != '\n') || min <= 0)
  3843. return -EINVAL;
  3844. mddev->sync_speed_min = min;
  3845. return len;
  3846. }
  3847. static struct md_sysfs_entry md_sync_min =
  3848. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3849. static ssize_t
  3850. sync_max_show(struct mddev *mddev, char *page)
  3851. {
  3852. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3853. mddev->sync_speed_max ? "local": "system");
  3854. }
  3855. static ssize_t
  3856. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3857. {
  3858. int max;
  3859. char *e;
  3860. if (strncmp(buf, "system", 6)==0) {
  3861. mddev->sync_speed_max = 0;
  3862. return len;
  3863. }
  3864. max = simple_strtoul(buf, &e, 10);
  3865. if (buf == e || (*e && *e != '\n') || max <= 0)
  3866. return -EINVAL;
  3867. mddev->sync_speed_max = max;
  3868. return len;
  3869. }
  3870. static struct md_sysfs_entry md_sync_max =
  3871. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3872. static ssize_t
  3873. degraded_show(struct mddev *mddev, char *page)
  3874. {
  3875. return sprintf(page, "%d\n", mddev->degraded);
  3876. }
  3877. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3878. static ssize_t
  3879. sync_force_parallel_show(struct mddev *mddev, char *page)
  3880. {
  3881. return sprintf(page, "%d\n", mddev->parallel_resync);
  3882. }
  3883. static ssize_t
  3884. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3885. {
  3886. long n;
  3887. if (strict_strtol(buf, 10, &n))
  3888. return -EINVAL;
  3889. if (n != 0 && n != 1)
  3890. return -EINVAL;
  3891. mddev->parallel_resync = n;
  3892. if (mddev->sync_thread)
  3893. wake_up(&resync_wait);
  3894. return len;
  3895. }
  3896. /* force parallel resync, even with shared block devices */
  3897. static struct md_sysfs_entry md_sync_force_parallel =
  3898. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3899. sync_force_parallel_show, sync_force_parallel_store);
  3900. static ssize_t
  3901. sync_speed_show(struct mddev *mddev, char *page)
  3902. {
  3903. unsigned long resync, dt, db;
  3904. if (mddev->curr_resync == 0)
  3905. return sprintf(page, "none\n");
  3906. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3907. dt = (jiffies - mddev->resync_mark) / HZ;
  3908. if (!dt) dt++;
  3909. db = resync - mddev->resync_mark_cnt;
  3910. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3911. }
  3912. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3913. static ssize_t
  3914. sync_completed_show(struct mddev *mddev, char *page)
  3915. {
  3916. unsigned long long max_sectors, resync;
  3917. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3918. return sprintf(page, "none\n");
  3919. if (mddev->curr_resync == 1 ||
  3920. mddev->curr_resync == 2)
  3921. return sprintf(page, "delayed\n");
  3922. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3923. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3924. max_sectors = mddev->resync_max_sectors;
  3925. else
  3926. max_sectors = mddev->dev_sectors;
  3927. resync = mddev->curr_resync_completed;
  3928. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3929. }
  3930. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3931. static ssize_t
  3932. min_sync_show(struct mddev *mddev, char *page)
  3933. {
  3934. return sprintf(page, "%llu\n",
  3935. (unsigned long long)mddev->resync_min);
  3936. }
  3937. static ssize_t
  3938. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3939. {
  3940. unsigned long long min;
  3941. if (strict_strtoull(buf, 10, &min))
  3942. return -EINVAL;
  3943. if (min > mddev->resync_max)
  3944. return -EINVAL;
  3945. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3946. return -EBUSY;
  3947. /* Must be a multiple of chunk_size */
  3948. if (mddev->chunk_sectors) {
  3949. sector_t temp = min;
  3950. if (sector_div(temp, mddev->chunk_sectors))
  3951. return -EINVAL;
  3952. }
  3953. mddev->resync_min = min;
  3954. return len;
  3955. }
  3956. static struct md_sysfs_entry md_min_sync =
  3957. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3958. static ssize_t
  3959. max_sync_show(struct mddev *mddev, char *page)
  3960. {
  3961. if (mddev->resync_max == MaxSector)
  3962. return sprintf(page, "max\n");
  3963. else
  3964. return sprintf(page, "%llu\n",
  3965. (unsigned long long)mddev->resync_max);
  3966. }
  3967. static ssize_t
  3968. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3969. {
  3970. if (strncmp(buf, "max", 3) == 0)
  3971. mddev->resync_max = MaxSector;
  3972. else {
  3973. unsigned long long max;
  3974. if (strict_strtoull(buf, 10, &max))
  3975. return -EINVAL;
  3976. if (max < mddev->resync_min)
  3977. return -EINVAL;
  3978. if (max < mddev->resync_max &&
  3979. mddev->ro == 0 &&
  3980. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3981. return -EBUSY;
  3982. /* Must be a multiple of chunk_size */
  3983. if (mddev->chunk_sectors) {
  3984. sector_t temp = max;
  3985. if (sector_div(temp, mddev->chunk_sectors))
  3986. return -EINVAL;
  3987. }
  3988. mddev->resync_max = max;
  3989. }
  3990. wake_up(&mddev->recovery_wait);
  3991. return len;
  3992. }
  3993. static struct md_sysfs_entry md_max_sync =
  3994. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3995. static ssize_t
  3996. suspend_lo_show(struct mddev *mddev, char *page)
  3997. {
  3998. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3999. }
  4000. static ssize_t
  4001. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4002. {
  4003. char *e;
  4004. unsigned long long new = simple_strtoull(buf, &e, 10);
  4005. unsigned long long old = mddev->suspend_lo;
  4006. if (mddev->pers == NULL ||
  4007. mddev->pers->quiesce == NULL)
  4008. return -EINVAL;
  4009. if (buf == e || (*e && *e != '\n'))
  4010. return -EINVAL;
  4011. mddev->suspend_lo = new;
  4012. if (new >= old)
  4013. /* Shrinking suspended region */
  4014. mddev->pers->quiesce(mddev, 2);
  4015. else {
  4016. /* Expanding suspended region - need to wait */
  4017. mddev->pers->quiesce(mddev, 1);
  4018. mddev->pers->quiesce(mddev, 0);
  4019. }
  4020. return len;
  4021. }
  4022. static struct md_sysfs_entry md_suspend_lo =
  4023. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4024. static ssize_t
  4025. suspend_hi_show(struct mddev *mddev, char *page)
  4026. {
  4027. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4028. }
  4029. static ssize_t
  4030. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4031. {
  4032. char *e;
  4033. unsigned long long new = simple_strtoull(buf, &e, 10);
  4034. unsigned long long old = mddev->suspend_hi;
  4035. if (mddev->pers == NULL ||
  4036. mddev->pers->quiesce == NULL)
  4037. return -EINVAL;
  4038. if (buf == e || (*e && *e != '\n'))
  4039. return -EINVAL;
  4040. mddev->suspend_hi = new;
  4041. if (new <= old)
  4042. /* Shrinking suspended region */
  4043. mddev->pers->quiesce(mddev, 2);
  4044. else {
  4045. /* Expanding suspended region - need to wait */
  4046. mddev->pers->quiesce(mddev, 1);
  4047. mddev->pers->quiesce(mddev, 0);
  4048. }
  4049. return len;
  4050. }
  4051. static struct md_sysfs_entry md_suspend_hi =
  4052. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4053. static ssize_t
  4054. reshape_position_show(struct mddev *mddev, char *page)
  4055. {
  4056. if (mddev->reshape_position != MaxSector)
  4057. return sprintf(page, "%llu\n",
  4058. (unsigned long long)mddev->reshape_position);
  4059. strcpy(page, "none\n");
  4060. return 5;
  4061. }
  4062. static ssize_t
  4063. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4064. {
  4065. struct md_rdev *rdev;
  4066. char *e;
  4067. unsigned long long new = simple_strtoull(buf, &e, 10);
  4068. if (mddev->pers)
  4069. return -EBUSY;
  4070. if (buf == e || (*e && *e != '\n'))
  4071. return -EINVAL;
  4072. mddev->reshape_position = new;
  4073. mddev->delta_disks = 0;
  4074. mddev->reshape_backwards = 0;
  4075. mddev->new_level = mddev->level;
  4076. mddev->new_layout = mddev->layout;
  4077. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4078. rdev_for_each(rdev, mddev)
  4079. rdev->new_data_offset = rdev->data_offset;
  4080. return len;
  4081. }
  4082. static struct md_sysfs_entry md_reshape_position =
  4083. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4084. reshape_position_store);
  4085. static ssize_t
  4086. reshape_direction_show(struct mddev *mddev, char *page)
  4087. {
  4088. return sprintf(page, "%s\n",
  4089. mddev->reshape_backwards ? "backwards" : "forwards");
  4090. }
  4091. static ssize_t
  4092. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4093. {
  4094. int backwards = 0;
  4095. if (cmd_match(buf, "forwards"))
  4096. backwards = 0;
  4097. else if (cmd_match(buf, "backwards"))
  4098. backwards = 1;
  4099. else
  4100. return -EINVAL;
  4101. if (mddev->reshape_backwards == backwards)
  4102. return len;
  4103. /* check if we are allowed to change */
  4104. if (mddev->delta_disks)
  4105. return -EBUSY;
  4106. if (mddev->persistent &&
  4107. mddev->major_version == 0)
  4108. return -EINVAL;
  4109. mddev->reshape_backwards = backwards;
  4110. return len;
  4111. }
  4112. static struct md_sysfs_entry md_reshape_direction =
  4113. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4114. reshape_direction_store);
  4115. static ssize_t
  4116. array_size_show(struct mddev *mddev, char *page)
  4117. {
  4118. if (mddev->external_size)
  4119. return sprintf(page, "%llu\n",
  4120. (unsigned long long)mddev->array_sectors/2);
  4121. else
  4122. return sprintf(page, "default\n");
  4123. }
  4124. static ssize_t
  4125. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4126. {
  4127. sector_t sectors;
  4128. if (strncmp(buf, "default", 7) == 0) {
  4129. if (mddev->pers)
  4130. sectors = mddev->pers->size(mddev, 0, 0);
  4131. else
  4132. sectors = mddev->array_sectors;
  4133. mddev->external_size = 0;
  4134. } else {
  4135. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4136. return -EINVAL;
  4137. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4138. return -E2BIG;
  4139. mddev->external_size = 1;
  4140. }
  4141. mddev->array_sectors = sectors;
  4142. if (mddev->pers) {
  4143. set_capacity(mddev->gendisk, mddev->array_sectors);
  4144. revalidate_disk(mddev->gendisk);
  4145. }
  4146. return len;
  4147. }
  4148. static struct md_sysfs_entry md_array_size =
  4149. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4150. array_size_store);
  4151. static struct attribute *md_default_attrs[] = {
  4152. &md_level.attr,
  4153. &md_layout.attr,
  4154. &md_raid_disks.attr,
  4155. &md_chunk_size.attr,
  4156. &md_size.attr,
  4157. &md_resync_start.attr,
  4158. &md_metadata.attr,
  4159. &md_new_device.attr,
  4160. &md_safe_delay.attr,
  4161. &md_array_state.attr,
  4162. &md_reshape_position.attr,
  4163. &md_reshape_direction.attr,
  4164. &md_array_size.attr,
  4165. &max_corr_read_errors.attr,
  4166. NULL,
  4167. };
  4168. static struct attribute *md_redundancy_attrs[] = {
  4169. &md_scan_mode.attr,
  4170. &md_mismatches.attr,
  4171. &md_sync_min.attr,
  4172. &md_sync_max.attr,
  4173. &md_sync_speed.attr,
  4174. &md_sync_force_parallel.attr,
  4175. &md_sync_completed.attr,
  4176. &md_min_sync.attr,
  4177. &md_max_sync.attr,
  4178. &md_suspend_lo.attr,
  4179. &md_suspend_hi.attr,
  4180. &md_bitmap.attr,
  4181. &md_degraded.attr,
  4182. NULL,
  4183. };
  4184. static struct attribute_group md_redundancy_group = {
  4185. .name = NULL,
  4186. .attrs = md_redundancy_attrs,
  4187. };
  4188. static ssize_t
  4189. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4190. {
  4191. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4192. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4193. ssize_t rv;
  4194. if (!entry->show)
  4195. return -EIO;
  4196. spin_lock(&all_mddevs_lock);
  4197. if (list_empty(&mddev->all_mddevs)) {
  4198. spin_unlock(&all_mddevs_lock);
  4199. return -EBUSY;
  4200. }
  4201. mddev_get(mddev);
  4202. spin_unlock(&all_mddevs_lock);
  4203. rv = mddev_lock(mddev);
  4204. if (!rv) {
  4205. rv = entry->show(mddev, page);
  4206. mddev_unlock(mddev);
  4207. }
  4208. mddev_put(mddev);
  4209. return rv;
  4210. }
  4211. static ssize_t
  4212. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4213. const char *page, size_t length)
  4214. {
  4215. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4216. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4217. ssize_t rv;
  4218. if (!entry->store)
  4219. return -EIO;
  4220. if (!capable(CAP_SYS_ADMIN))
  4221. return -EACCES;
  4222. spin_lock(&all_mddevs_lock);
  4223. if (list_empty(&mddev->all_mddevs)) {
  4224. spin_unlock(&all_mddevs_lock);
  4225. return -EBUSY;
  4226. }
  4227. mddev_get(mddev);
  4228. spin_unlock(&all_mddevs_lock);
  4229. if (entry->store == new_dev_store)
  4230. flush_workqueue(md_misc_wq);
  4231. rv = mddev_lock(mddev);
  4232. if (!rv) {
  4233. rv = entry->store(mddev, page, length);
  4234. mddev_unlock(mddev);
  4235. }
  4236. mddev_put(mddev);
  4237. return rv;
  4238. }
  4239. static void md_free(struct kobject *ko)
  4240. {
  4241. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4242. if (mddev->sysfs_state)
  4243. sysfs_put(mddev->sysfs_state);
  4244. if (mddev->gendisk) {
  4245. del_gendisk(mddev->gendisk);
  4246. put_disk(mddev->gendisk);
  4247. }
  4248. if (mddev->queue)
  4249. blk_cleanup_queue(mddev->queue);
  4250. kfree(mddev);
  4251. }
  4252. static const struct sysfs_ops md_sysfs_ops = {
  4253. .show = md_attr_show,
  4254. .store = md_attr_store,
  4255. };
  4256. static struct kobj_type md_ktype = {
  4257. .release = md_free,
  4258. .sysfs_ops = &md_sysfs_ops,
  4259. .default_attrs = md_default_attrs,
  4260. };
  4261. int mdp_major = 0;
  4262. static void mddev_delayed_delete(struct work_struct *ws)
  4263. {
  4264. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4265. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4266. kobject_del(&mddev->kobj);
  4267. kobject_put(&mddev->kobj);
  4268. }
  4269. static int md_alloc(dev_t dev, char *name)
  4270. {
  4271. static DEFINE_MUTEX(disks_mutex);
  4272. struct mddev *mddev = mddev_find(dev);
  4273. struct gendisk *disk;
  4274. int partitioned;
  4275. int shift;
  4276. int unit;
  4277. int error;
  4278. if (!mddev)
  4279. return -ENODEV;
  4280. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4281. shift = partitioned ? MdpMinorShift : 0;
  4282. unit = MINOR(mddev->unit) >> shift;
  4283. /* wait for any previous instance of this device to be
  4284. * completely removed (mddev_delayed_delete).
  4285. */
  4286. flush_workqueue(md_misc_wq);
  4287. mutex_lock(&disks_mutex);
  4288. error = -EEXIST;
  4289. if (mddev->gendisk)
  4290. goto abort;
  4291. if (name) {
  4292. /* Need to ensure that 'name' is not a duplicate.
  4293. */
  4294. struct mddev *mddev2;
  4295. spin_lock(&all_mddevs_lock);
  4296. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4297. if (mddev2->gendisk &&
  4298. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4299. spin_unlock(&all_mddevs_lock);
  4300. goto abort;
  4301. }
  4302. spin_unlock(&all_mddevs_lock);
  4303. }
  4304. error = -ENOMEM;
  4305. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4306. if (!mddev->queue)
  4307. goto abort;
  4308. mddev->queue->queuedata = mddev;
  4309. blk_queue_make_request(mddev->queue, md_make_request);
  4310. blk_set_stacking_limits(&mddev->queue->limits);
  4311. disk = alloc_disk(1 << shift);
  4312. if (!disk) {
  4313. blk_cleanup_queue(mddev->queue);
  4314. mddev->queue = NULL;
  4315. goto abort;
  4316. }
  4317. disk->major = MAJOR(mddev->unit);
  4318. disk->first_minor = unit << shift;
  4319. if (name)
  4320. strcpy(disk->disk_name, name);
  4321. else if (partitioned)
  4322. sprintf(disk->disk_name, "md_d%d", unit);
  4323. else
  4324. sprintf(disk->disk_name, "md%d", unit);
  4325. disk->fops = &md_fops;
  4326. disk->private_data = mddev;
  4327. disk->queue = mddev->queue;
  4328. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4329. /* Allow extended partitions. This makes the
  4330. * 'mdp' device redundant, but we can't really
  4331. * remove it now.
  4332. */
  4333. disk->flags |= GENHD_FL_EXT_DEVT;
  4334. mddev->gendisk = disk;
  4335. /* As soon as we call add_disk(), another thread could get
  4336. * through to md_open, so make sure it doesn't get too far
  4337. */
  4338. mutex_lock(&mddev->open_mutex);
  4339. add_disk(disk);
  4340. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4341. &disk_to_dev(disk)->kobj, "%s", "md");
  4342. if (error) {
  4343. /* This isn't possible, but as kobject_init_and_add is marked
  4344. * __must_check, we must do something with the result
  4345. */
  4346. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4347. disk->disk_name);
  4348. error = 0;
  4349. }
  4350. if (mddev->kobj.sd &&
  4351. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4352. printk(KERN_DEBUG "pointless warning\n");
  4353. mutex_unlock(&mddev->open_mutex);
  4354. abort:
  4355. mutex_unlock(&disks_mutex);
  4356. if (!error && mddev->kobj.sd) {
  4357. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4358. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4359. }
  4360. mddev_put(mddev);
  4361. return error;
  4362. }
  4363. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4364. {
  4365. md_alloc(dev, NULL);
  4366. return NULL;
  4367. }
  4368. static int add_named_array(const char *val, struct kernel_param *kp)
  4369. {
  4370. /* val must be "md_*" where * is not all digits.
  4371. * We allocate an array with a large free minor number, and
  4372. * set the name to val. val must not already be an active name.
  4373. */
  4374. int len = strlen(val);
  4375. char buf[DISK_NAME_LEN];
  4376. while (len && val[len-1] == '\n')
  4377. len--;
  4378. if (len >= DISK_NAME_LEN)
  4379. return -E2BIG;
  4380. strlcpy(buf, val, len+1);
  4381. if (strncmp(buf, "md_", 3) != 0)
  4382. return -EINVAL;
  4383. return md_alloc(0, buf);
  4384. }
  4385. static void md_safemode_timeout(unsigned long data)
  4386. {
  4387. struct mddev *mddev = (struct mddev *) data;
  4388. if (!atomic_read(&mddev->writes_pending)) {
  4389. mddev->safemode = 1;
  4390. if (mddev->external)
  4391. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4392. }
  4393. md_wakeup_thread(mddev->thread);
  4394. }
  4395. static int start_dirty_degraded;
  4396. int md_run(struct mddev *mddev)
  4397. {
  4398. int err;
  4399. struct md_rdev *rdev;
  4400. struct md_personality *pers;
  4401. if (list_empty(&mddev->disks))
  4402. /* cannot run an array with no devices.. */
  4403. return -EINVAL;
  4404. if (mddev->pers)
  4405. return -EBUSY;
  4406. /* Cannot run until previous stop completes properly */
  4407. if (mddev->sysfs_active)
  4408. return -EBUSY;
  4409. /*
  4410. * Analyze all RAID superblock(s)
  4411. */
  4412. if (!mddev->raid_disks) {
  4413. if (!mddev->persistent)
  4414. return -EINVAL;
  4415. analyze_sbs(mddev);
  4416. }
  4417. if (mddev->level != LEVEL_NONE)
  4418. request_module("md-level-%d", mddev->level);
  4419. else if (mddev->clevel[0])
  4420. request_module("md-%s", mddev->clevel);
  4421. /*
  4422. * Drop all container device buffers, from now on
  4423. * the only valid external interface is through the md
  4424. * device.
  4425. */
  4426. rdev_for_each(rdev, mddev) {
  4427. if (test_bit(Faulty, &rdev->flags))
  4428. continue;
  4429. sync_blockdev(rdev->bdev);
  4430. invalidate_bdev(rdev->bdev);
  4431. /* perform some consistency tests on the device.
  4432. * We don't want the data to overlap the metadata,
  4433. * Internal Bitmap issues have been handled elsewhere.
  4434. */
  4435. if (rdev->meta_bdev) {
  4436. /* Nothing to check */;
  4437. } else if (rdev->data_offset < rdev->sb_start) {
  4438. if (mddev->dev_sectors &&
  4439. rdev->data_offset + mddev->dev_sectors
  4440. > rdev->sb_start) {
  4441. printk("md: %s: data overlaps metadata\n",
  4442. mdname(mddev));
  4443. return -EINVAL;
  4444. }
  4445. } else {
  4446. if (rdev->sb_start + rdev->sb_size/512
  4447. > rdev->data_offset) {
  4448. printk("md: %s: metadata overlaps data\n",
  4449. mdname(mddev));
  4450. return -EINVAL;
  4451. }
  4452. }
  4453. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4454. }
  4455. if (mddev->bio_set == NULL)
  4456. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4457. spin_lock(&pers_lock);
  4458. pers = find_pers(mddev->level, mddev->clevel);
  4459. if (!pers || !try_module_get(pers->owner)) {
  4460. spin_unlock(&pers_lock);
  4461. if (mddev->level != LEVEL_NONE)
  4462. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4463. mddev->level);
  4464. else
  4465. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4466. mddev->clevel);
  4467. return -EINVAL;
  4468. }
  4469. mddev->pers = pers;
  4470. spin_unlock(&pers_lock);
  4471. if (mddev->level != pers->level) {
  4472. mddev->level = pers->level;
  4473. mddev->new_level = pers->level;
  4474. }
  4475. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4476. if (mddev->reshape_position != MaxSector &&
  4477. pers->start_reshape == NULL) {
  4478. /* This personality cannot handle reshaping... */
  4479. mddev->pers = NULL;
  4480. module_put(pers->owner);
  4481. return -EINVAL;
  4482. }
  4483. if (pers->sync_request) {
  4484. /* Warn if this is a potentially silly
  4485. * configuration.
  4486. */
  4487. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4488. struct md_rdev *rdev2;
  4489. int warned = 0;
  4490. rdev_for_each(rdev, mddev)
  4491. rdev_for_each(rdev2, mddev) {
  4492. if (rdev < rdev2 &&
  4493. rdev->bdev->bd_contains ==
  4494. rdev2->bdev->bd_contains) {
  4495. printk(KERN_WARNING
  4496. "%s: WARNING: %s appears to be"
  4497. " on the same physical disk as"
  4498. " %s.\n",
  4499. mdname(mddev),
  4500. bdevname(rdev->bdev,b),
  4501. bdevname(rdev2->bdev,b2));
  4502. warned = 1;
  4503. }
  4504. }
  4505. if (warned)
  4506. printk(KERN_WARNING
  4507. "True protection against single-disk"
  4508. " failure might be compromised.\n");
  4509. }
  4510. mddev->recovery = 0;
  4511. /* may be over-ridden by personality */
  4512. mddev->resync_max_sectors = mddev->dev_sectors;
  4513. mddev->ok_start_degraded = start_dirty_degraded;
  4514. if (start_readonly && mddev->ro == 0)
  4515. mddev->ro = 2; /* read-only, but switch on first write */
  4516. err = mddev->pers->run(mddev);
  4517. if (err)
  4518. printk(KERN_ERR "md: pers->run() failed ...\n");
  4519. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4520. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4521. " but 'external_size' not in effect?\n", __func__);
  4522. printk(KERN_ERR
  4523. "md: invalid array_size %llu > default size %llu\n",
  4524. (unsigned long long)mddev->array_sectors / 2,
  4525. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4526. err = -EINVAL;
  4527. mddev->pers->stop(mddev);
  4528. }
  4529. if (err == 0 && mddev->pers->sync_request &&
  4530. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4531. err = bitmap_create(mddev);
  4532. if (err) {
  4533. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4534. mdname(mddev), err);
  4535. mddev->pers->stop(mddev);
  4536. }
  4537. }
  4538. if (err) {
  4539. module_put(mddev->pers->owner);
  4540. mddev->pers = NULL;
  4541. bitmap_destroy(mddev);
  4542. return err;
  4543. }
  4544. if (mddev->pers->sync_request) {
  4545. if (mddev->kobj.sd &&
  4546. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4547. printk(KERN_WARNING
  4548. "md: cannot register extra attributes for %s\n",
  4549. mdname(mddev));
  4550. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4551. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4552. mddev->ro = 0;
  4553. atomic_set(&mddev->writes_pending,0);
  4554. atomic_set(&mddev->max_corr_read_errors,
  4555. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4556. mddev->safemode = 0;
  4557. mddev->safemode_timer.function = md_safemode_timeout;
  4558. mddev->safemode_timer.data = (unsigned long) mddev;
  4559. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4560. mddev->in_sync = 1;
  4561. smp_wmb();
  4562. mddev->ready = 1;
  4563. rdev_for_each(rdev, mddev)
  4564. if (rdev->raid_disk >= 0)
  4565. if (sysfs_link_rdev(mddev, rdev))
  4566. /* failure here is OK */;
  4567. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4568. if (mddev->flags)
  4569. md_update_sb(mddev, 0);
  4570. md_new_event(mddev);
  4571. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4572. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4573. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4574. return 0;
  4575. }
  4576. EXPORT_SYMBOL_GPL(md_run);
  4577. static int do_md_run(struct mddev *mddev)
  4578. {
  4579. int err;
  4580. err = md_run(mddev);
  4581. if (err)
  4582. goto out;
  4583. err = bitmap_load(mddev);
  4584. if (err) {
  4585. bitmap_destroy(mddev);
  4586. goto out;
  4587. }
  4588. md_wakeup_thread(mddev->thread);
  4589. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4590. set_capacity(mddev->gendisk, mddev->array_sectors);
  4591. revalidate_disk(mddev->gendisk);
  4592. mddev->changed = 1;
  4593. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4594. out:
  4595. return err;
  4596. }
  4597. static int restart_array(struct mddev *mddev)
  4598. {
  4599. struct gendisk *disk = mddev->gendisk;
  4600. /* Complain if it has no devices */
  4601. if (list_empty(&mddev->disks))
  4602. return -ENXIO;
  4603. if (!mddev->pers)
  4604. return -EINVAL;
  4605. if (!mddev->ro)
  4606. return -EBUSY;
  4607. mddev->safemode = 0;
  4608. mddev->ro = 0;
  4609. set_disk_ro(disk, 0);
  4610. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4611. mdname(mddev));
  4612. /* Kick recovery or resync if necessary */
  4613. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4614. md_wakeup_thread(mddev->thread);
  4615. md_wakeup_thread(mddev->sync_thread);
  4616. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4617. return 0;
  4618. }
  4619. /* similar to deny_write_access, but accounts for our holding a reference
  4620. * to the file ourselves */
  4621. static int deny_bitmap_write_access(struct file * file)
  4622. {
  4623. struct inode *inode = file->f_mapping->host;
  4624. spin_lock(&inode->i_lock);
  4625. if (atomic_read(&inode->i_writecount) > 1) {
  4626. spin_unlock(&inode->i_lock);
  4627. return -ETXTBSY;
  4628. }
  4629. atomic_set(&inode->i_writecount, -1);
  4630. spin_unlock(&inode->i_lock);
  4631. return 0;
  4632. }
  4633. void restore_bitmap_write_access(struct file *file)
  4634. {
  4635. struct inode *inode = file->f_mapping->host;
  4636. spin_lock(&inode->i_lock);
  4637. atomic_set(&inode->i_writecount, 1);
  4638. spin_unlock(&inode->i_lock);
  4639. }
  4640. static void md_clean(struct mddev *mddev)
  4641. {
  4642. mddev->array_sectors = 0;
  4643. mddev->external_size = 0;
  4644. mddev->dev_sectors = 0;
  4645. mddev->raid_disks = 0;
  4646. mddev->recovery_cp = 0;
  4647. mddev->resync_min = 0;
  4648. mddev->resync_max = MaxSector;
  4649. mddev->reshape_position = MaxSector;
  4650. mddev->external = 0;
  4651. mddev->persistent = 0;
  4652. mddev->level = LEVEL_NONE;
  4653. mddev->clevel[0] = 0;
  4654. mddev->flags = 0;
  4655. mddev->ro = 0;
  4656. mddev->metadata_type[0] = 0;
  4657. mddev->chunk_sectors = 0;
  4658. mddev->ctime = mddev->utime = 0;
  4659. mddev->layout = 0;
  4660. mddev->max_disks = 0;
  4661. mddev->events = 0;
  4662. mddev->can_decrease_events = 0;
  4663. mddev->delta_disks = 0;
  4664. mddev->reshape_backwards = 0;
  4665. mddev->new_level = LEVEL_NONE;
  4666. mddev->new_layout = 0;
  4667. mddev->new_chunk_sectors = 0;
  4668. mddev->curr_resync = 0;
  4669. atomic64_set(&mddev->resync_mismatches, 0);
  4670. mddev->suspend_lo = mddev->suspend_hi = 0;
  4671. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4672. mddev->recovery = 0;
  4673. mddev->in_sync = 0;
  4674. mddev->changed = 0;
  4675. mddev->degraded = 0;
  4676. mddev->safemode = 0;
  4677. mddev->merge_check_needed = 0;
  4678. mddev->bitmap_info.offset = 0;
  4679. mddev->bitmap_info.default_offset = 0;
  4680. mddev->bitmap_info.default_space = 0;
  4681. mddev->bitmap_info.chunksize = 0;
  4682. mddev->bitmap_info.daemon_sleep = 0;
  4683. mddev->bitmap_info.max_write_behind = 0;
  4684. }
  4685. static void __md_stop_writes(struct mddev *mddev)
  4686. {
  4687. if (mddev->sync_thread) {
  4688. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4689. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4690. reap_sync_thread(mddev);
  4691. }
  4692. del_timer_sync(&mddev->safemode_timer);
  4693. bitmap_flush(mddev);
  4694. md_super_wait(mddev);
  4695. if (!mddev->in_sync || mddev->flags) {
  4696. /* mark array as shutdown cleanly */
  4697. mddev->in_sync = 1;
  4698. md_update_sb(mddev, 1);
  4699. }
  4700. }
  4701. void md_stop_writes(struct mddev *mddev)
  4702. {
  4703. mddev_lock(mddev);
  4704. __md_stop_writes(mddev);
  4705. mddev_unlock(mddev);
  4706. }
  4707. EXPORT_SYMBOL_GPL(md_stop_writes);
  4708. static void __md_stop(struct mddev *mddev)
  4709. {
  4710. mddev->ready = 0;
  4711. mddev->pers->stop(mddev);
  4712. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4713. mddev->to_remove = &md_redundancy_group;
  4714. module_put(mddev->pers->owner);
  4715. mddev->pers = NULL;
  4716. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4717. }
  4718. void md_stop(struct mddev *mddev)
  4719. {
  4720. /* stop the array and free an attached data structures.
  4721. * This is called from dm-raid
  4722. */
  4723. __md_stop(mddev);
  4724. bitmap_destroy(mddev);
  4725. if (mddev->bio_set)
  4726. bioset_free(mddev->bio_set);
  4727. }
  4728. EXPORT_SYMBOL_GPL(md_stop);
  4729. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4730. {
  4731. int err = 0;
  4732. mutex_lock(&mddev->open_mutex);
  4733. if (atomic_read(&mddev->openers) > !!bdev) {
  4734. printk("md: %s still in use.\n",mdname(mddev));
  4735. err = -EBUSY;
  4736. goto out;
  4737. }
  4738. if (bdev)
  4739. sync_blockdev(bdev);
  4740. if (mddev->pers) {
  4741. __md_stop_writes(mddev);
  4742. err = -ENXIO;
  4743. if (mddev->ro==1)
  4744. goto out;
  4745. mddev->ro = 1;
  4746. set_disk_ro(mddev->gendisk, 1);
  4747. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4748. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4749. err = 0;
  4750. }
  4751. out:
  4752. mutex_unlock(&mddev->open_mutex);
  4753. return err;
  4754. }
  4755. /* mode:
  4756. * 0 - completely stop and dis-assemble array
  4757. * 2 - stop but do not disassemble array
  4758. */
  4759. static int do_md_stop(struct mddev * mddev, int mode,
  4760. struct block_device *bdev)
  4761. {
  4762. struct gendisk *disk = mddev->gendisk;
  4763. struct md_rdev *rdev;
  4764. mutex_lock(&mddev->open_mutex);
  4765. if (atomic_read(&mddev->openers) > !!bdev ||
  4766. mddev->sysfs_active) {
  4767. printk("md: %s still in use.\n",mdname(mddev));
  4768. mutex_unlock(&mddev->open_mutex);
  4769. return -EBUSY;
  4770. }
  4771. if (bdev)
  4772. /* It is possible IO was issued on some other
  4773. * open file which was closed before we took ->open_mutex.
  4774. * As that was not the last close __blkdev_put will not
  4775. * have called sync_blockdev, so we must.
  4776. */
  4777. sync_blockdev(bdev);
  4778. if (mddev->pers) {
  4779. if (mddev->ro)
  4780. set_disk_ro(disk, 0);
  4781. __md_stop_writes(mddev);
  4782. __md_stop(mddev);
  4783. mddev->queue->merge_bvec_fn = NULL;
  4784. mddev->queue->backing_dev_info.congested_fn = NULL;
  4785. /* tell userspace to handle 'inactive' */
  4786. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4787. rdev_for_each(rdev, mddev)
  4788. if (rdev->raid_disk >= 0)
  4789. sysfs_unlink_rdev(mddev, rdev);
  4790. set_capacity(disk, 0);
  4791. mutex_unlock(&mddev->open_mutex);
  4792. mddev->changed = 1;
  4793. revalidate_disk(disk);
  4794. if (mddev->ro)
  4795. mddev->ro = 0;
  4796. } else
  4797. mutex_unlock(&mddev->open_mutex);
  4798. /*
  4799. * Free resources if final stop
  4800. */
  4801. if (mode == 0) {
  4802. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4803. bitmap_destroy(mddev);
  4804. if (mddev->bitmap_info.file) {
  4805. restore_bitmap_write_access(mddev->bitmap_info.file);
  4806. fput(mddev->bitmap_info.file);
  4807. mddev->bitmap_info.file = NULL;
  4808. }
  4809. mddev->bitmap_info.offset = 0;
  4810. export_array(mddev);
  4811. md_clean(mddev);
  4812. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4813. if (mddev->hold_active == UNTIL_STOP)
  4814. mddev->hold_active = 0;
  4815. }
  4816. blk_integrity_unregister(disk);
  4817. md_new_event(mddev);
  4818. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4819. return 0;
  4820. }
  4821. #ifndef MODULE
  4822. static void autorun_array(struct mddev *mddev)
  4823. {
  4824. struct md_rdev *rdev;
  4825. int err;
  4826. if (list_empty(&mddev->disks))
  4827. return;
  4828. printk(KERN_INFO "md: running: ");
  4829. rdev_for_each(rdev, mddev) {
  4830. char b[BDEVNAME_SIZE];
  4831. printk("<%s>", bdevname(rdev->bdev,b));
  4832. }
  4833. printk("\n");
  4834. err = do_md_run(mddev);
  4835. if (err) {
  4836. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4837. do_md_stop(mddev, 0, NULL);
  4838. }
  4839. }
  4840. /*
  4841. * lets try to run arrays based on all disks that have arrived
  4842. * until now. (those are in pending_raid_disks)
  4843. *
  4844. * the method: pick the first pending disk, collect all disks with
  4845. * the same UUID, remove all from the pending list and put them into
  4846. * the 'same_array' list. Then order this list based on superblock
  4847. * update time (freshest comes first), kick out 'old' disks and
  4848. * compare superblocks. If everything's fine then run it.
  4849. *
  4850. * If "unit" is allocated, then bump its reference count
  4851. */
  4852. static void autorun_devices(int part)
  4853. {
  4854. struct md_rdev *rdev0, *rdev, *tmp;
  4855. struct mddev *mddev;
  4856. char b[BDEVNAME_SIZE];
  4857. printk(KERN_INFO "md: autorun ...\n");
  4858. while (!list_empty(&pending_raid_disks)) {
  4859. int unit;
  4860. dev_t dev;
  4861. LIST_HEAD(candidates);
  4862. rdev0 = list_entry(pending_raid_disks.next,
  4863. struct md_rdev, same_set);
  4864. printk(KERN_INFO "md: considering %s ...\n",
  4865. bdevname(rdev0->bdev,b));
  4866. INIT_LIST_HEAD(&candidates);
  4867. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4868. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4869. printk(KERN_INFO "md: adding %s ...\n",
  4870. bdevname(rdev->bdev,b));
  4871. list_move(&rdev->same_set, &candidates);
  4872. }
  4873. /*
  4874. * now we have a set of devices, with all of them having
  4875. * mostly sane superblocks. It's time to allocate the
  4876. * mddev.
  4877. */
  4878. if (part) {
  4879. dev = MKDEV(mdp_major,
  4880. rdev0->preferred_minor << MdpMinorShift);
  4881. unit = MINOR(dev) >> MdpMinorShift;
  4882. } else {
  4883. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4884. unit = MINOR(dev);
  4885. }
  4886. if (rdev0->preferred_minor != unit) {
  4887. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4888. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4889. break;
  4890. }
  4891. md_probe(dev, NULL, NULL);
  4892. mddev = mddev_find(dev);
  4893. if (!mddev || !mddev->gendisk) {
  4894. if (mddev)
  4895. mddev_put(mddev);
  4896. printk(KERN_ERR
  4897. "md: cannot allocate memory for md drive.\n");
  4898. break;
  4899. }
  4900. if (mddev_lock(mddev))
  4901. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4902. mdname(mddev));
  4903. else if (mddev->raid_disks || mddev->major_version
  4904. || !list_empty(&mddev->disks)) {
  4905. printk(KERN_WARNING
  4906. "md: %s already running, cannot run %s\n",
  4907. mdname(mddev), bdevname(rdev0->bdev,b));
  4908. mddev_unlock(mddev);
  4909. } else {
  4910. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4911. mddev->persistent = 1;
  4912. rdev_for_each_list(rdev, tmp, &candidates) {
  4913. list_del_init(&rdev->same_set);
  4914. if (bind_rdev_to_array(rdev, mddev))
  4915. export_rdev(rdev);
  4916. }
  4917. autorun_array(mddev);
  4918. mddev_unlock(mddev);
  4919. }
  4920. /* on success, candidates will be empty, on error
  4921. * it won't...
  4922. */
  4923. rdev_for_each_list(rdev, tmp, &candidates) {
  4924. list_del_init(&rdev->same_set);
  4925. export_rdev(rdev);
  4926. }
  4927. mddev_put(mddev);
  4928. }
  4929. printk(KERN_INFO "md: ... autorun DONE.\n");
  4930. }
  4931. #endif /* !MODULE */
  4932. static int get_version(void __user * arg)
  4933. {
  4934. mdu_version_t ver;
  4935. ver.major = MD_MAJOR_VERSION;
  4936. ver.minor = MD_MINOR_VERSION;
  4937. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4938. if (copy_to_user(arg, &ver, sizeof(ver)))
  4939. return -EFAULT;
  4940. return 0;
  4941. }
  4942. static int get_array_info(struct mddev * mddev, void __user * arg)
  4943. {
  4944. mdu_array_info_t info;
  4945. int nr,working,insync,failed,spare;
  4946. struct md_rdev *rdev;
  4947. nr = working = insync = failed = spare = 0;
  4948. rcu_read_lock();
  4949. rdev_for_each_rcu(rdev, mddev) {
  4950. nr++;
  4951. if (test_bit(Faulty, &rdev->flags))
  4952. failed++;
  4953. else {
  4954. working++;
  4955. if (test_bit(In_sync, &rdev->flags))
  4956. insync++;
  4957. else
  4958. spare++;
  4959. }
  4960. }
  4961. rcu_read_unlock();
  4962. info.major_version = mddev->major_version;
  4963. info.minor_version = mddev->minor_version;
  4964. info.patch_version = MD_PATCHLEVEL_VERSION;
  4965. info.ctime = mddev->ctime;
  4966. info.level = mddev->level;
  4967. info.size = mddev->dev_sectors / 2;
  4968. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4969. info.size = -1;
  4970. info.nr_disks = nr;
  4971. info.raid_disks = mddev->raid_disks;
  4972. info.md_minor = mddev->md_minor;
  4973. info.not_persistent= !mddev->persistent;
  4974. info.utime = mddev->utime;
  4975. info.state = 0;
  4976. if (mddev->in_sync)
  4977. info.state = (1<<MD_SB_CLEAN);
  4978. if (mddev->bitmap && mddev->bitmap_info.offset)
  4979. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4980. info.active_disks = insync;
  4981. info.working_disks = working;
  4982. info.failed_disks = failed;
  4983. info.spare_disks = spare;
  4984. info.layout = mddev->layout;
  4985. info.chunk_size = mddev->chunk_sectors << 9;
  4986. if (copy_to_user(arg, &info, sizeof(info)))
  4987. return -EFAULT;
  4988. return 0;
  4989. }
  4990. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4991. {
  4992. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4993. char *ptr, *buf = NULL;
  4994. int err = -ENOMEM;
  4995. if (md_allow_write(mddev))
  4996. file = kmalloc(sizeof(*file), GFP_NOIO);
  4997. else
  4998. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4999. if (!file)
  5000. goto out;
  5001. /* bitmap disabled, zero the first byte and copy out */
  5002. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  5003. file->pathname[0] = '\0';
  5004. goto copy_out;
  5005. }
  5006. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  5007. if (!buf)
  5008. goto out;
  5009. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  5010. buf, sizeof(file->pathname));
  5011. if (IS_ERR(ptr))
  5012. goto out;
  5013. strcpy(file->pathname, ptr);
  5014. copy_out:
  5015. err = 0;
  5016. if (copy_to_user(arg, file, sizeof(*file)))
  5017. err = -EFAULT;
  5018. out:
  5019. kfree(buf);
  5020. kfree(file);
  5021. return err;
  5022. }
  5023. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5024. {
  5025. mdu_disk_info_t info;
  5026. struct md_rdev *rdev;
  5027. if (copy_from_user(&info, arg, sizeof(info)))
  5028. return -EFAULT;
  5029. rcu_read_lock();
  5030. rdev = find_rdev_nr_rcu(mddev, info.number);
  5031. if (rdev) {
  5032. info.major = MAJOR(rdev->bdev->bd_dev);
  5033. info.minor = MINOR(rdev->bdev->bd_dev);
  5034. info.raid_disk = rdev->raid_disk;
  5035. info.state = 0;
  5036. if (test_bit(Faulty, &rdev->flags))
  5037. info.state |= (1<<MD_DISK_FAULTY);
  5038. else if (test_bit(In_sync, &rdev->flags)) {
  5039. info.state |= (1<<MD_DISK_ACTIVE);
  5040. info.state |= (1<<MD_DISK_SYNC);
  5041. }
  5042. if (test_bit(WriteMostly, &rdev->flags))
  5043. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5044. } else {
  5045. info.major = info.minor = 0;
  5046. info.raid_disk = -1;
  5047. info.state = (1<<MD_DISK_REMOVED);
  5048. }
  5049. rcu_read_unlock();
  5050. if (copy_to_user(arg, &info, sizeof(info)))
  5051. return -EFAULT;
  5052. return 0;
  5053. }
  5054. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5055. {
  5056. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5057. struct md_rdev *rdev;
  5058. dev_t dev = MKDEV(info->major,info->minor);
  5059. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5060. return -EOVERFLOW;
  5061. if (!mddev->raid_disks) {
  5062. int err;
  5063. /* expecting a device which has a superblock */
  5064. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5065. if (IS_ERR(rdev)) {
  5066. printk(KERN_WARNING
  5067. "md: md_import_device returned %ld\n",
  5068. PTR_ERR(rdev));
  5069. return PTR_ERR(rdev);
  5070. }
  5071. if (!list_empty(&mddev->disks)) {
  5072. struct md_rdev *rdev0
  5073. = list_entry(mddev->disks.next,
  5074. struct md_rdev, same_set);
  5075. err = super_types[mddev->major_version]
  5076. .load_super(rdev, rdev0, mddev->minor_version);
  5077. if (err < 0) {
  5078. printk(KERN_WARNING
  5079. "md: %s has different UUID to %s\n",
  5080. bdevname(rdev->bdev,b),
  5081. bdevname(rdev0->bdev,b2));
  5082. export_rdev(rdev);
  5083. return -EINVAL;
  5084. }
  5085. }
  5086. err = bind_rdev_to_array(rdev, mddev);
  5087. if (err)
  5088. export_rdev(rdev);
  5089. return err;
  5090. }
  5091. /*
  5092. * add_new_disk can be used once the array is assembled
  5093. * to add "hot spares". They must already have a superblock
  5094. * written
  5095. */
  5096. if (mddev->pers) {
  5097. int err;
  5098. if (!mddev->pers->hot_add_disk) {
  5099. printk(KERN_WARNING
  5100. "%s: personality does not support diskops!\n",
  5101. mdname(mddev));
  5102. return -EINVAL;
  5103. }
  5104. if (mddev->persistent)
  5105. rdev = md_import_device(dev, mddev->major_version,
  5106. mddev->minor_version);
  5107. else
  5108. rdev = md_import_device(dev, -1, -1);
  5109. if (IS_ERR(rdev)) {
  5110. printk(KERN_WARNING
  5111. "md: md_import_device returned %ld\n",
  5112. PTR_ERR(rdev));
  5113. return PTR_ERR(rdev);
  5114. }
  5115. /* set saved_raid_disk if appropriate */
  5116. if (!mddev->persistent) {
  5117. if (info->state & (1<<MD_DISK_SYNC) &&
  5118. info->raid_disk < mddev->raid_disks) {
  5119. rdev->raid_disk = info->raid_disk;
  5120. set_bit(In_sync, &rdev->flags);
  5121. } else
  5122. rdev->raid_disk = -1;
  5123. } else
  5124. super_types[mddev->major_version].
  5125. validate_super(mddev, rdev);
  5126. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5127. rdev->raid_disk != info->raid_disk) {
  5128. /* This was a hot-add request, but events doesn't
  5129. * match, so reject it.
  5130. */
  5131. export_rdev(rdev);
  5132. return -EINVAL;
  5133. }
  5134. if (test_bit(In_sync, &rdev->flags))
  5135. rdev->saved_raid_disk = rdev->raid_disk;
  5136. else
  5137. rdev->saved_raid_disk = -1;
  5138. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5139. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5140. set_bit(WriteMostly, &rdev->flags);
  5141. else
  5142. clear_bit(WriteMostly, &rdev->flags);
  5143. rdev->raid_disk = -1;
  5144. err = bind_rdev_to_array(rdev, mddev);
  5145. if (!err && !mddev->pers->hot_remove_disk) {
  5146. /* If there is hot_add_disk but no hot_remove_disk
  5147. * then added disks for geometry changes,
  5148. * and should be added immediately.
  5149. */
  5150. super_types[mddev->major_version].
  5151. validate_super(mddev, rdev);
  5152. err = mddev->pers->hot_add_disk(mddev, rdev);
  5153. if (err)
  5154. unbind_rdev_from_array(rdev);
  5155. }
  5156. if (err)
  5157. export_rdev(rdev);
  5158. else
  5159. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5160. md_update_sb(mddev, 1);
  5161. if (mddev->degraded)
  5162. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5163. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5164. if (!err)
  5165. md_new_event(mddev);
  5166. md_wakeup_thread(mddev->thread);
  5167. return err;
  5168. }
  5169. /* otherwise, add_new_disk is only allowed
  5170. * for major_version==0 superblocks
  5171. */
  5172. if (mddev->major_version != 0) {
  5173. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5174. mdname(mddev));
  5175. return -EINVAL;
  5176. }
  5177. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5178. int err;
  5179. rdev = md_import_device(dev, -1, 0);
  5180. if (IS_ERR(rdev)) {
  5181. printk(KERN_WARNING
  5182. "md: error, md_import_device() returned %ld\n",
  5183. PTR_ERR(rdev));
  5184. return PTR_ERR(rdev);
  5185. }
  5186. rdev->desc_nr = info->number;
  5187. if (info->raid_disk < mddev->raid_disks)
  5188. rdev->raid_disk = info->raid_disk;
  5189. else
  5190. rdev->raid_disk = -1;
  5191. if (rdev->raid_disk < mddev->raid_disks)
  5192. if (info->state & (1<<MD_DISK_SYNC))
  5193. set_bit(In_sync, &rdev->flags);
  5194. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5195. set_bit(WriteMostly, &rdev->flags);
  5196. if (!mddev->persistent) {
  5197. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5198. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5199. } else
  5200. rdev->sb_start = calc_dev_sboffset(rdev);
  5201. rdev->sectors = rdev->sb_start;
  5202. err = bind_rdev_to_array(rdev, mddev);
  5203. if (err) {
  5204. export_rdev(rdev);
  5205. return err;
  5206. }
  5207. }
  5208. return 0;
  5209. }
  5210. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5211. {
  5212. char b[BDEVNAME_SIZE];
  5213. struct md_rdev *rdev;
  5214. rdev = find_rdev(mddev, dev);
  5215. if (!rdev)
  5216. return -ENXIO;
  5217. if (rdev->raid_disk >= 0)
  5218. goto busy;
  5219. kick_rdev_from_array(rdev);
  5220. md_update_sb(mddev, 1);
  5221. md_new_event(mddev);
  5222. return 0;
  5223. busy:
  5224. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5225. bdevname(rdev->bdev,b), mdname(mddev));
  5226. return -EBUSY;
  5227. }
  5228. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5229. {
  5230. char b[BDEVNAME_SIZE];
  5231. int err;
  5232. struct md_rdev *rdev;
  5233. if (!mddev->pers)
  5234. return -ENODEV;
  5235. if (mddev->major_version != 0) {
  5236. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5237. " version-0 superblocks.\n",
  5238. mdname(mddev));
  5239. return -EINVAL;
  5240. }
  5241. if (!mddev->pers->hot_add_disk) {
  5242. printk(KERN_WARNING
  5243. "%s: personality does not support diskops!\n",
  5244. mdname(mddev));
  5245. return -EINVAL;
  5246. }
  5247. rdev = md_import_device(dev, -1, 0);
  5248. if (IS_ERR(rdev)) {
  5249. printk(KERN_WARNING
  5250. "md: error, md_import_device() returned %ld\n",
  5251. PTR_ERR(rdev));
  5252. return -EINVAL;
  5253. }
  5254. if (mddev->persistent)
  5255. rdev->sb_start = calc_dev_sboffset(rdev);
  5256. else
  5257. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5258. rdev->sectors = rdev->sb_start;
  5259. if (test_bit(Faulty, &rdev->flags)) {
  5260. printk(KERN_WARNING
  5261. "md: can not hot-add faulty %s disk to %s!\n",
  5262. bdevname(rdev->bdev,b), mdname(mddev));
  5263. err = -EINVAL;
  5264. goto abort_export;
  5265. }
  5266. clear_bit(In_sync, &rdev->flags);
  5267. rdev->desc_nr = -1;
  5268. rdev->saved_raid_disk = -1;
  5269. err = bind_rdev_to_array(rdev, mddev);
  5270. if (err)
  5271. goto abort_export;
  5272. /*
  5273. * The rest should better be atomic, we can have disk failures
  5274. * noticed in interrupt contexts ...
  5275. */
  5276. rdev->raid_disk = -1;
  5277. md_update_sb(mddev, 1);
  5278. /*
  5279. * Kick recovery, maybe this spare has to be added to the
  5280. * array immediately.
  5281. */
  5282. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5283. md_wakeup_thread(mddev->thread);
  5284. md_new_event(mddev);
  5285. return 0;
  5286. abort_export:
  5287. export_rdev(rdev);
  5288. return err;
  5289. }
  5290. static int set_bitmap_file(struct mddev *mddev, int fd)
  5291. {
  5292. int err;
  5293. if (mddev->pers) {
  5294. if (!mddev->pers->quiesce)
  5295. return -EBUSY;
  5296. if (mddev->recovery || mddev->sync_thread)
  5297. return -EBUSY;
  5298. /* we should be able to change the bitmap.. */
  5299. }
  5300. if (fd >= 0) {
  5301. if (mddev->bitmap)
  5302. return -EEXIST; /* cannot add when bitmap is present */
  5303. mddev->bitmap_info.file = fget(fd);
  5304. if (mddev->bitmap_info.file == NULL) {
  5305. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5306. mdname(mddev));
  5307. return -EBADF;
  5308. }
  5309. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5310. if (err) {
  5311. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5312. mdname(mddev));
  5313. fput(mddev->bitmap_info.file);
  5314. mddev->bitmap_info.file = NULL;
  5315. return err;
  5316. }
  5317. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5318. } else if (mddev->bitmap == NULL)
  5319. return -ENOENT; /* cannot remove what isn't there */
  5320. err = 0;
  5321. if (mddev->pers) {
  5322. mddev->pers->quiesce(mddev, 1);
  5323. if (fd >= 0) {
  5324. err = bitmap_create(mddev);
  5325. if (!err)
  5326. err = bitmap_load(mddev);
  5327. }
  5328. if (fd < 0 || err) {
  5329. bitmap_destroy(mddev);
  5330. fd = -1; /* make sure to put the file */
  5331. }
  5332. mddev->pers->quiesce(mddev, 0);
  5333. }
  5334. if (fd < 0) {
  5335. if (mddev->bitmap_info.file) {
  5336. restore_bitmap_write_access(mddev->bitmap_info.file);
  5337. fput(mddev->bitmap_info.file);
  5338. }
  5339. mddev->bitmap_info.file = NULL;
  5340. }
  5341. return err;
  5342. }
  5343. /*
  5344. * set_array_info is used two different ways
  5345. * The original usage is when creating a new array.
  5346. * In this usage, raid_disks is > 0 and it together with
  5347. * level, size, not_persistent,layout,chunksize determine the
  5348. * shape of the array.
  5349. * This will always create an array with a type-0.90.0 superblock.
  5350. * The newer usage is when assembling an array.
  5351. * In this case raid_disks will be 0, and the major_version field is
  5352. * use to determine which style super-blocks are to be found on the devices.
  5353. * The minor and patch _version numbers are also kept incase the
  5354. * super_block handler wishes to interpret them.
  5355. */
  5356. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5357. {
  5358. if (info->raid_disks == 0) {
  5359. /* just setting version number for superblock loading */
  5360. if (info->major_version < 0 ||
  5361. info->major_version >= ARRAY_SIZE(super_types) ||
  5362. super_types[info->major_version].name == NULL) {
  5363. /* maybe try to auto-load a module? */
  5364. printk(KERN_INFO
  5365. "md: superblock version %d not known\n",
  5366. info->major_version);
  5367. return -EINVAL;
  5368. }
  5369. mddev->major_version = info->major_version;
  5370. mddev->minor_version = info->minor_version;
  5371. mddev->patch_version = info->patch_version;
  5372. mddev->persistent = !info->not_persistent;
  5373. /* ensure mddev_put doesn't delete this now that there
  5374. * is some minimal configuration.
  5375. */
  5376. mddev->ctime = get_seconds();
  5377. return 0;
  5378. }
  5379. mddev->major_version = MD_MAJOR_VERSION;
  5380. mddev->minor_version = MD_MINOR_VERSION;
  5381. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5382. mddev->ctime = get_seconds();
  5383. mddev->level = info->level;
  5384. mddev->clevel[0] = 0;
  5385. mddev->dev_sectors = 2 * (sector_t)info->size;
  5386. mddev->raid_disks = info->raid_disks;
  5387. /* don't set md_minor, it is determined by which /dev/md* was
  5388. * openned
  5389. */
  5390. if (info->state & (1<<MD_SB_CLEAN))
  5391. mddev->recovery_cp = MaxSector;
  5392. else
  5393. mddev->recovery_cp = 0;
  5394. mddev->persistent = ! info->not_persistent;
  5395. mddev->external = 0;
  5396. mddev->layout = info->layout;
  5397. mddev->chunk_sectors = info->chunk_size >> 9;
  5398. mddev->max_disks = MD_SB_DISKS;
  5399. if (mddev->persistent)
  5400. mddev->flags = 0;
  5401. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5402. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5403. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5404. mddev->bitmap_info.offset = 0;
  5405. mddev->reshape_position = MaxSector;
  5406. /*
  5407. * Generate a 128 bit UUID
  5408. */
  5409. get_random_bytes(mddev->uuid, 16);
  5410. mddev->new_level = mddev->level;
  5411. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5412. mddev->new_layout = mddev->layout;
  5413. mddev->delta_disks = 0;
  5414. mddev->reshape_backwards = 0;
  5415. return 0;
  5416. }
  5417. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5418. {
  5419. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5420. if (mddev->external_size)
  5421. return;
  5422. mddev->array_sectors = array_sectors;
  5423. }
  5424. EXPORT_SYMBOL(md_set_array_sectors);
  5425. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5426. {
  5427. struct md_rdev *rdev;
  5428. int rv;
  5429. int fit = (num_sectors == 0);
  5430. if (mddev->pers->resize == NULL)
  5431. return -EINVAL;
  5432. /* The "num_sectors" is the number of sectors of each device that
  5433. * is used. This can only make sense for arrays with redundancy.
  5434. * linear and raid0 always use whatever space is available. We can only
  5435. * consider changing this number if no resync or reconstruction is
  5436. * happening, and if the new size is acceptable. It must fit before the
  5437. * sb_start or, if that is <data_offset, it must fit before the size
  5438. * of each device. If num_sectors is zero, we find the largest size
  5439. * that fits.
  5440. */
  5441. if (mddev->sync_thread)
  5442. return -EBUSY;
  5443. rdev_for_each(rdev, mddev) {
  5444. sector_t avail = rdev->sectors;
  5445. if (fit && (num_sectors == 0 || num_sectors > avail))
  5446. num_sectors = avail;
  5447. if (avail < num_sectors)
  5448. return -ENOSPC;
  5449. }
  5450. rv = mddev->pers->resize(mddev, num_sectors);
  5451. if (!rv)
  5452. revalidate_disk(mddev->gendisk);
  5453. return rv;
  5454. }
  5455. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5456. {
  5457. int rv;
  5458. struct md_rdev *rdev;
  5459. /* change the number of raid disks */
  5460. if (mddev->pers->check_reshape == NULL)
  5461. return -EINVAL;
  5462. if (raid_disks <= 0 ||
  5463. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5464. return -EINVAL;
  5465. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5466. return -EBUSY;
  5467. rdev_for_each(rdev, mddev) {
  5468. if (mddev->raid_disks < raid_disks &&
  5469. rdev->data_offset < rdev->new_data_offset)
  5470. return -EINVAL;
  5471. if (mddev->raid_disks > raid_disks &&
  5472. rdev->data_offset > rdev->new_data_offset)
  5473. return -EINVAL;
  5474. }
  5475. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5476. if (mddev->delta_disks < 0)
  5477. mddev->reshape_backwards = 1;
  5478. else if (mddev->delta_disks > 0)
  5479. mddev->reshape_backwards = 0;
  5480. rv = mddev->pers->check_reshape(mddev);
  5481. if (rv < 0) {
  5482. mddev->delta_disks = 0;
  5483. mddev->reshape_backwards = 0;
  5484. }
  5485. return rv;
  5486. }
  5487. /*
  5488. * update_array_info is used to change the configuration of an
  5489. * on-line array.
  5490. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5491. * fields in the info are checked against the array.
  5492. * Any differences that cannot be handled will cause an error.
  5493. * Normally, only one change can be managed at a time.
  5494. */
  5495. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5496. {
  5497. int rv = 0;
  5498. int cnt = 0;
  5499. int state = 0;
  5500. /* calculate expected state,ignoring low bits */
  5501. if (mddev->bitmap && mddev->bitmap_info.offset)
  5502. state |= (1 << MD_SB_BITMAP_PRESENT);
  5503. if (mddev->major_version != info->major_version ||
  5504. mddev->minor_version != info->minor_version ||
  5505. /* mddev->patch_version != info->patch_version || */
  5506. mddev->ctime != info->ctime ||
  5507. mddev->level != info->level ||
  5508. /* mddev->layout != info->layout || */
  5509. !mddev->persistent != info->not_persistent||
  5510. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5511. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5512. ((state^info->state) & 0xfffffe00)
  5513. )
  5514. return -EINVAL;
  5515. /* Check there is only one change */
  5516. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5517. cnt++;
  5518. if (mddev->raid_disks != info->raid_disks)
  5519. cnt++;
  5520. if (mddev->layout != info->layout)
  5521. cnt++;
  5522. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5523. cnt++;
  5524. if (cnt == 0)
  5525. return 0;
  5526. if (cnt > 1)
  5527. return -EINVAL;
  5528. if (mddev->layout != info->layout) {
  5529. /* Change layout
  5530. * we don't need to do anything at the md level, the
  5531. * personality will take care of it all.
  5532. */
  5533. if (mddev->pers->check_reshape == NULL)
  5534. return -EINVAL;
  5535. else {
  5536. mddev->new_layout = info->layout;
  5537. rv = mddev->pers->check_reshape(mddev);
  5538. if (rv)
  5539. mddev->new_layout = mddev->layout;
  5540. return rv;
  5541. }
  5542. }
  5543. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5544. rv = update_size(mddev, (sector_t)info->size * 2);
  5545. if (mddev->raid_disks != info->raid_disks)
  5546. rv = update_raid_disks(mddev, info->raid_disks);
  5547. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5548. if (mddev->pers->quiesce == NULL)
  5549. return -EINVAL;
  5550. if (mddev->recovery || mddev->sync_thread)
  5551. return -EBUSY;
  5552. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5553. /* add the bitmap */
  5554. if (mddev->bitmap)
  5555. return -EEXIST;
  5556. if (mddev->bitmap_info.default_offset == 0)
  5557. return -EINVAL;
  5558. mddev->bitmap_info.offset =
  5559. mddev->bitmap_info.default_offset;
  5560. mddev->bitmap_info.space =
  5561. mddev->bitmap_info.default_space;
  5562. mddev->pers->quiesce(mddev, 1);
  5563. rv = bitmap_create(mddev);
  5564. if (!rv)
  5565. rv = bitmap_load(mddev);
  5566. if (rv)
  5567. bitmap_destroy(mddev);
  5568. mddev->pers->quiesce(mddev, 0);
  5569. } else {
  5570. /* remove the bitmap */
  5571. if (!mddev->bitmap)
  5572. return -ENOENT;
  5573. if (mddev->bitmap->storage.file)
  5574. return -EINVAL;
  5575. mddev->pers->quiesce(mddev, 1);
  5576. bitmap_destroy(mddev);
  5577. mddev->pers->quiesce(mddev, 0);
  5578. mddev->bitmap_info.offset = 0;
  5579. }
  5580. }
  5581. md_update_sb(mddev, 1);
  5582. return rv;
  5583. }
  5584. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5585. {
  5586. struct md_rdev *rdev;
  5587. int err = 0;
  5588. if (mddev->pers == NULL)
  5589. return -ENODEV;
  5590. rcu_read_lock();
  5591. rdev = find_rdev_rcu(mddev, dev);
  5592. if (!rdev)
  5593. err = -ENODEV;
  5594. else {
  5595. md_error(mddev, rdev);
  5596. if (!test_bit(Faulty, &rdev->flags))
  5597. err = -EBUSY;
  5598. }
  5599. rcu_read_unlock();
  5600. return err;
  5601. }
  5602. /*
  5603. * We have a problem here : there is no easy way to give a CHS
  5604. * virtual geometry. We currently pretend that we have a 2 heads
  5605. * 4 sectors (with a BIG number of cylinders...). This drives
  5606. * dosfs just mad... ;-)
  5607. */
  5608. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5609. {
  5610. struct mddev *mddev = bdev->bd_disk->private_data;
  5611. geo->heads = 2;
  5612. geo->sectors = 4;
  5613. geo->cylinders = mddev->array_sectors / 8;
  5614. return 0;
  5615. }
  5616. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5617. unsigned int cmd, unsigned long arg)
  5618. {
  5619. int err = 0;
  5620. void __user *argp = (void __user *)arg;
  5621. struct mddev *mddev = NULL;
  5622. int ro;
  5623. switch (cmd) {
  5624. case RAID_VERSION:
  5625. case GET_ARRAY_INFO:
  5626. case GET_DISK_INFO:
  5627. break;
  5628. default:
  5629. if (!capable(CAP_SYS_ADMIN))
  5630. return -EACCES;
  5631. }
  5632. /*
  5633. * Commands dealing with the RAID driver but not any
  5634. * particular array:
  5635. */
  5636. switch (cmd)
  5637. {
  5638. case RAID_VERSION:
  5639. err = get_version(argp);
  5640. goto done;
  5641. case PRINT_RAID_DEBUG:
  5642. err = 0;
  5643. md_print_devices();
  5644. goto done;
  5645. #ifndef MODULE
  5646. case RAID_AUTORUN:
  5647. err = 0;
  5648. autostart_arrays(arg);
  5649. goto done;
  5650. #endif
  5651. default:;
  5652. }
  5653. /*
  5654. * Commands creating/starting a new array:
  5655. */
  5656. mddev = bdev->bd_disk->private_data;
  5657. if (!mddev) {
  5658. BUG();
  5659. goto abort;
  5660. }
  5661. /* Some actions do not requires the mutex */
  5662. switch (cmd) {
  5663. case GET_ARRAY_INFO:
  5664. if (!mddev->raid_disks && !mddev->external)
  5665. err = -ENODEV;
  5666. else
  5667. err = get_array_info(mddev, argp);
  5668. goto abort;
  5669. case GET_DISK_INFO:
  5670. if (!mddev->raid_disks && !mddev->external)
  5671. err = -ENODEV;
  5672. else
  5673. err = get_disk_info(mddev, argp);
  5674. goto abort;
  5675. case SET_DISK_FAULTY:
  5676. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5677. goto abort;
  5678. }
  5679. if (cmd == ADD_NEW_DISK)
  5680. /* need to ensure md_delayed_delete() has completed */
  5681. flush_workqueue(md_misc_wq);
  5682. err = mddev_lock(mddev);
  5683. if (err) {
  5684. printk(KERN_INFO
  5685. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5686. err, cmd);
  5687. goto abort;
  5688. }
  5689. switch (cmd)
  5690. {
  5691. case SET_ARRAY_INFO:
  5692. {
  5693. mdu_array_info_t info;
  5694. if (!arg)
  5695. memset(&info, 0, sizeof(info));
  5696. else if (copy_from_user(&info, argp, sizeof(info))) {
  5697. err = -EFAULT;
  5698. goto abort_unlock;
  5699. }
  5700. if (mddev->pers) {
  5701. err = update_array_info(mddev, &info);
  5702. if (err) {
  5703. printk(KERN_WARNING "md: couldn't update"
  5704. " array info. %d\n", err);
  5705. goto abort_unlock;
  5706. }
  5707. goto done_unlock;
  5708. }
  5709. if (!list_empty(&mddev->disks)) {
  5710. printk(KERN_WARNING
  5711. "md: array %s already has disks!\n",
  5712. mdname(mddev));
  5713. err = -EBUSY;
  5714. goto abort_unlock;
  5715. }
  5716. if (mddev->raid_disks) {
  5717. printk(KERN_WARNING
  5718. "md: array %s already initialised!\n",
  5719. mdname(mddev));
  5720. err = -EBUSY;
  5721. goto abort_unlock;
  5722. }
  5723. err = set_array_info(mddev, &info);
  5724. if (err) {
  5725. printk(KERN_WARNING "md: couldn't set"
  5726. " array info. %d\n", err);
  5727. goto abort_unlock;
  5728. }
  5729. }
  5730. goto done_unlock;
  5731. default:;
  5732. }
  5733. /*
  5734. * Commands querying/configuring an existing array:
  5735. */
  5736. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5737. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5738. if ((!mddev->raid_disks && !mddev->external)
  5739. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5740. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5741. && cmd != GET_BITMAP_FILE) {
  5742. err = -ENODEV;
  5743. goto abort_unlock;
  5744. }
  5745. /*
  5746. * Commands even a read-only array can execute:
  5747. */
  5748. switch (cmd)
  5749. {
  5750. case GET_BITMAP_FILE:
  5751. err = get_bitmap_file(mddev, argp);
  5752. goto done_unlock;
  5753. case RESTART_ARRAY_RW:
  5754. err = restart_array(mddev);
  5755. goto done_unlock;
  5756. case STOP_ARRAY:
  5757. err = do_md_stop(mddev, 0, bdev);
  5758. goto done_unlock;
  5759. case STOP_ARRAY_RO:
  5760. err = md_set_readonly(mddev, bdev);
  5761. goto done_unlock;
  5762. case BLKROSET:
  5763. if (get_user(ro, (int __user *)(arg))) {
  5764. err = -EFAULT;
  5765. goto done_unlock;
  5766. }
  5767. err = -EINVAL;
  5768. /* if the bdev is going readonly the value of mddev->ro
  5769. * does not matter, no writes are coming
  5770. */
  5771. if (ro)
  5772. goto done_unlock;
  5773. /* are we are already prepared for writes? */
  5774. if (mddev->ro != 1)
  5775. goto done_unlock;
  5776. /* transitioning to readauto need only happen for
  5777. * arrays that call md_write_start
  5778. */
  5779. if (mddev->pers) {
  5780. err = restart_array(mddev);
  5781. if (err == 0) {
  5782. mddev->ro = 2;
  5783. set_disk_ro(mddev->gendisk, 0);
  5784. }
  5785. }
  5786. goto done_unlock;
  5787. }
  5788. /*
  5789. * The remaining ioctls are changing the state of the
  5790. * superblock, so we do not allow them on read-only arrays.
  5791. * However non-MD ioctls (e.g. get-size) will still come through
  5792. * here and hit the 'default' below, so only disallow
  5793. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5794. */
  5795. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5796. if (mddev->ro == 2) {
  5797. mddev->ro = 0;
  5798. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5799. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5800. md_wakeup_thread(mddev->thread);
  5801. } else {
  5802. err = -EROFS;
  5803. goto abort_unlock;
  5804. }
  5805. }
  5806. switch (cmd)
  5807. {
  5808. case ADD_NEW_DISK:
  5809. {
  5810. mdu_disk_info_t info;
  5811. if (copy_from_user(&info, argp, sizeof(info)))
  5812. err = -EFAULT;
  5813. else
  5814. err = add_new_disk(mddev, &info);
  5815. goto done_unlock;
  5816. }
  5817. case HOT_REMOVE_DISK:
  5818. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5819. goto done_unlock;
  5820. case HOT_ADD_DISK:
  5821. err = hot_add_disk(mddev, new_decode_dev(arg));
  5822. goto done_unlock;
  5823. case RUN_ARRAY:
  5824. err = do_md_run(mddev);
  5825. goto done_unlock;
  5826. case SET_BITMAP_FILE:
  5827. err = set_bitmap_file(mddev, (int)arg);
  5828. goto done_unlock;
  5829. default:
  5830. err = -EINVAL;
  5831. goto abort_unlock;
  5832. }
  5833. done_unlock:
  5834. abort_unlock:
  5835. if (mddev->hold_active == UNTIL_IOCTL &&
  5836. err != -EINVAL)
  5837. mddev->hold_active = 0;
  5838. mddev_unlock(mddev);
  5839. return err;
  5840. done:
  5841. if (err)
  5842. MD_BUG();
  5843. abort:
  5844. return err;
  5845. }
  5846. #ifdef CONFIG_COMPAT
  5847. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5848. unsigned int cmd, unsigned long arg)
  5849. {
  5850. switch (cmd) {
  5851. case HOT_REMOVE_DISK:
  5852. case HOT_ADD_DISK:
  5853. case SET_DISK_FAULTY:
  5854. case SET_BITMAP_FILE:
  5855. /* These take in integer arg, do not convert */
  5856. break;
  5857. default:
  5858. arg = (unsigned long)compat_ptr(arg);
  5859. break;
  5860. }
  5861. return md_ioctl(bdev, mode, cmd, arg);
  5862. }
  5863. #endif /* CONFIG_COMPAT */
  5864. static int md_open(struct block_device *bdev, fmode_t mode)
  5865. {
  5866. /*
  5867. * Succeed if we can lock the mddev, which confirms that
  5868. * it isn't being stopped right now.
  5869. */
  5870. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5871. int err;
  5872. if (!mddev)
  5873. return -ENODEV;
  5874. if (mddev->gendisk != bdev->bd_disk) {
  5875. /* we are racing with mddev_put which is discarding this
  5876. * bd_disk.
  5877. */
  5878. mddev_put(mddev);
  5879. /* Wait until bdev->bd_disk is definitely gone */
  5880. flush_workqueue(md_misc_wq);
  5881. /* Then retry the open from the top */
  5882. return -ERESTARTSYS;
  5883. }
  5884. BUG_ON(mddev != bdev->bd_disk->private_data);
  5885. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5886. goto out;
  5887. err = 0;
  5888. atomic_inc(&mddev->openers);
  5889. mutex_unlock(&mddev->open_mutex);
  5890. check_disk_change(bdev);
  5891. out:
  5892. return err;
  5893. }
  5894. static int md_release(struct gendisk *disk, fmode_t mode)
  5895. {
  5896. struct mddev *mddev = disk->private_data;
  5897. BUG_ON(!mddev);
  5898. atomic_dec(&mddev->openers);
  5899. mddev_put(mddev);
  5900. return 0;
  5901. }
  5902. static int md_media_changed(struct gendisk *disk)
  5903. {
  5904. struct mddev *mddev = disk->private_data;
  5905. return mddev->changed;
  5906. }
  5907. static int md_revalidate(struct gendisk *disk)
  5908. {
  5909. struct mddev *mddev = disk->private_data;
  5910. mddev->changed = 0;
  5911. return 0;
  5912. }
  5913. static const struct block_device_operations md_fops =
  5914. {
  5915. .owner = THIS_MODULE,
  5916. .open = md_open,
  5917. .release = md_release,
  5918. .ioctl = md_ioctl,
  5919. #ifdef CONFIG_COMPAT
  5920. .compat_ioctl = md_compat_ioctl,
  5921. #endif
  5922. .getgeo = md_getgeo,
  5923. .media_changed = md_media_changed,
  5924. .revalidate_disk= md_revalidate,
  5925. };
  5926. static int md_thread(void * arg)
  5927. {
  5928. struct md_thread *thread = arg;
  5929. /*
  5930. * md_thread is a 'system-thread', it's priority should be very
  5931. * high. We avoid resource deadlocks individually in each
  5932. * raid personality. (RAID5 does preallocation) We also use RR and
  5933. * the very same RT priority as kswapd, thus we will never get
  5934. * into a priority inversion deadlock.
  5935. *
  5936. * we definitely have to have equal or higher priority than
  5937. * bdflush, otherwise bdflush will deadlock if there are too
  5938. * many dirty RAID5 blocks.
  5939. */
  5940. allow_signal(SIGKILL);
  5941. while (!kthread_should_stop()) {
  5942. /* We need to wait INTERRUPTIBLE so that
  5943. * we don't add to the load-average.
  5944. * That means we need to be sure no signals are
  5945. * pending
  5946. */
  5947. if (signal_pending(current))
  5948. flush_signals(current);
  5949. wait_event_interruptible_timeout
  5950. (thread->wqueue,
  5951. test_bit(THREAD_WAKEUP, &thread->flags)
  5952. || kthread_should_stop(),
  5953. thread->timeout);
  5954. clear_bit(THREAD_WAKEUP, &thread->flags);
  5955. if (!kthread_should_stop())
  5956. thread->run(thread);
  5957. }
  5958. return 0;
  5959. }
  5960. void md_wakeup_thread(struct md_thread *thread)
  5961. {
  5962. if (thread) {
  5963. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5964. set_bit(THREAD_WAKEUP, &thread->flags);
  5965. wake_up(&thread->wqueue);
  5966. }
  5967. }
  5968. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  5969. struct mddev *mddev, const char *name)
  5970. {
  5971. struct md_thread *thread;
  5972. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5973. if (!thread)
  5974. return NULL;
  5975. init_waitqueue_head(&thread->wqueue);
  5976. thread->run = run;
  5977. thread->mddev = mddev;
  5978. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5979. thread->tsk = kthread_run(md_thread, thread,
  5980. "%s_%s",
  5981. mdname(thread->mddev),
  5982. name);
  5983. if (IS_ERR(thread->tsk)) {
  5984. kfree(thread);
  5985. return NULL;
  5986. }
  5987. return thread;
  5988. }
  5989. void md_unregister_thread(struct md_thread **threadp)
  5990. {
  5991. struct md_thread *thread = *threadp;
  5992. if (!thread)
  5993. return;
  5994. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5995. /* Locking ensures that mddev_unlock does not wake_up a
  5996. * non-existent thread
  5997. */
  5998. spin_lock(&pers_lock);
  5999. *threadp = NULL;
  6000. spin_unlock(&pers_lock);
  6001. kthread_stop(thread->tsk);
  6002. kfree(thread);
  6003. }
  6004. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6005. {
  6006. if (!mddev) {
  6007. MD_BUG();
  6008. return;
  6009. }
  6010. if (!rdev || test_bit(Faulty, &rdev->flags))
  6011. return;
  6012. if (!mddev->pers || !mddev->pers->error_handler)
  6013. return;
  6014. mddev->pers->error_handler(mddev,rdev);
  6015. if (mddev->degraded)
  6016. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6017. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6018. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6019. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6020. md_wakeup_thread(mddev->thread);
  6021. if (mddev->event_work.func)
  6022. queue_work(md_misc_wq, &mddev->event_work);
  6023. md_new_event_inintr(mddev);
  6024. }
  6025. /* seq_file implementation /proc/mdstat */
  6026. static void status_unused(struct seq_file *seq)
  6027. {
  6028. int i = 0;
  6029. struct md_rdev *rdev;
  6030. seq_printf(seq, "unused devices: ");
  6031. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6032. char b[BDEVNAME_SIZE];
  6033. i++;
  6034. seq_printf(seq, "%s ",
  6035. bdevname(rdev->bdev,b));
  6036. }
  6037. if (!i)
  6038. seq_printf(seq, "<none>");
  6039. seq_printf(seq, "\n");
  6040. }
  6041. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6042. {
  6043. sector_t max_sectors, resync, res;
  6044. unsigned long dt, db;
  6045. sector_t rt;
  6046. int scale;
  6047. unsigned int per_milli;
  6048. if (mddev->curr_resync <= 3)
  6049. resync = 0;
  6050. else
  6051. resync = mddev->curr_resync
  6052. - atomic_read(&mddev->recovery_active);
  6053. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6054. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6055. max_sectors = mddev->resync_max_sectors;
  6056. else
  6057. max_sectors = mddev->dev_sectors;
  6058. /*
  6059. * Should not happen.
  6060. */
  6061. if (!max_sectors) {
  6062. MD_BUG();
  6063. return;
  6064. }
  6065. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6066. * in a sector_t, and (max_sectors>>scale) will fit in a
  6067. * u32, as those are the requirements for sector_div.
  6068. * Thus 'scale' must be at least 10
  6069. */
  6070. scale = 10;
  6071. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6072. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6073. scale++;
  6074. }
  6075. res = (resync>>scale)*1000;
  6076. sector_div(res, (u32)((max_sectors>>scale)+1));
  6077. per_milli = res;
  6078. {
  6079. int i, x = per_milli/50, y = 20-x;
  6080. seq_printf(seq, "[");
  6081. for (i = 0; i < x; i++)
  6082. seq_printf(seq, "=");
  6083. seq_printf(seq, ">");
  6084. for (i = 0; i < y; i++)
  6085. seq_printf(seq, ".");
  6086. seq_printf(seq, "] ");
  6087. }
  6088. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6089. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6090. "reshape" :
  6091. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6092. "check" :
  6093. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6094. "resync" : "recovery"))),
  6095. per_milli/10, per_milli % 10,
  6096. (unsigned long long) resync/2,
  6097. (unsigned long long) max_sectors/2);
  6098. /*
  6099. * dt: time from mark until now
  6100. * db: blocks written from mark until now
  6101. * rt: remaining time
  6102. *
  6103. * rt is a sector_t, so could be 32bit or 64bit.
  6104. * So we divide before multiply in case it is 32bit and close
  6105. * to the limit.
  6106. * We scale the divisor (db) by 32 to avoid losing precision
  6107. * near the end of resync when the number of remaining sectors
  6108. * is close to 'db'.
  6109. * We then divide rt by 32 after multiplying by db to compensate.
  6110. * The '+1' avoids division by zero if db is very small.
  6111. */
  6112. dt = ((jiffies - mddev->resync_mark) / HZ);
  6113. if (!dt) dt++;
  6114. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6115. - mddev->resync_mark_cnt;
  6116. rt = max_sectors - resync; /* number of remaining sectors */
  6117. sector_div(rt, db/32+1);
  6118. rt *= dt;
  6119. rt >>= 5;
  6120. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6121. ((unsigned long)rt % 60)/6);
  6122. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6123. }
  6124. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6125. {
  6126. struct list_head *tmp;
  6127. loff_t l = *pos;
  6128. struct mddev *mddev;
  6129. if (l >= 0x10000)
  6130. return NULL;
  6131. if (!l--)
  6132. /* header */
  6133. return (void*)1;
  6134. spin_lock(&all_mddevs_lock);
  6135. list_for_each(tmp,&all_mddevs)
  6136. if (!l--) {
  6137. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6138. mddev_get(mddev);
  6139. spin_unlock(&all_mddevs_lock);
  6140. return mddev;
  6141. }
  6142. spin_unlock(&all_mddevs_lock);
  6143. if (!l--)
  6144. return (void*)2;/* tail */
  6145. return NULL;
  6146. }
  6147. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6148. {
  6149. struct list_head *tmp;
  6150. struct mddev *next_mddev, *mddev = v;
  6151. ++*pos;
  6152. if (v == (void*)2)
  6153. return NULL;
  6154. spin_lock(&all_mddevs_lock);
  6155. if (v == (void*)1)
  6156. tmp = all_mddevs.next;
  6157. else
  6158. tmp = mddev->all_mddevs.next;
  6159. if (tmp != &all_mddevs)
  6160. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6161. else {
  6162. next_mddev = (void*)2;
  6163. *pos = 0x10000;
  6164. }
  6165. spin_unlock(&all_mddevs_lock);
  6166. if (v != (void*)1)
  6167. mddev_put(mddev);
  6168. return next_mddev;
  6169. }
  6170. static void md_seq_stop(struct seq_file *seq, void *v)
  6171. {
  6172. struct mddev *mddev = v;
  6173. if (mddev && v != (void*)1 && v != (void*)2)
  6174. mddev_put(mddev);
  6175. }
  6176. static int md_seq_show(struct seq_file *seq, void *v)
  6177. {
  6178. struct mddev *mddev = v;
  6179. sector_t sectors;
  6180. struct md_rdev *rdev;
  6181. if (v == (void*)1) {
  6182. struct md_personality *pers;
  6183. seq_printf(seq, "Personalities : ");
  6184. spin_lock(&pers_lock);
  6185. list_for_each_entry(pers, &pers_list, list)
  6186. seq_printf(seq, "[%s] ", pers->name);
  6187. spin_unlock(&pers_lock);
  6188. seq_printf(seq, "\n");
  6189. seq->poll_event = atomic_read(&md_event_count);
  6190. return 0;
  6191. }
  6192. if (v == (void*)2) {
  6193. status_unused(seq);
  6194. return 0;
  6195. }
  6196. if (mddev_lock(mddev) < 0)
  6197. return -EINTR;
  6198. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6199. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6200. mddev->pers ? "" : "in");
  6201. if (mddev->pers) {
  6202. if (mddev->ro==1)
  6203. seq_printf(seq, " (read-only)");
  6204. if (mddev->ro==2)
  6205. seq_printf(seq, " (auto-read-only)");
  6206. seq_printf(seq, " %s", mddev->pers->name);
  6207. }
  6208. sectors = 0;
  6209. rdev_for_each(rdev, mddev) {
  6210. char b[BDEVNAME_SIZE];
  6211. seq_printf(seq, " %s[%d]",
  6212. bdevname(rdev->bdev,b), rdev->desc_nr);
  6213. if (test_bit(WriteMostly, &rdev->flags))
  6214. seq_printf(seq, "(W)");
  6215. if (test_bit(Faulty, &rdev->flags)) {
  6216. seq_printf(seq, "(F)");
  6217. continue;
  6218. }
  6219. if (rdev->raid_disk < 0)
  6220. seq_printf(seq, "(S)"); /* spare */
  6221. if (test_bit(Replacement, &rdev->flags))
  6222. seq_printf(seq, "(R)");
  6223. sectors += rdev->sectors;
  6224. }
  6225. if (!list_empty(&mddev->disks)) {
  6226. if (mddev->pers)
  6227. seq_printf(seq, "\n %llu blocks",
  6228. (unsigned long long)
  6229. mddev->array_sectors / 2);
  6230. else
  6231. seq_printf(seq, "\n %llu blocks",
  6232. (unsigned long long)sectors / 2);
  6233. }
  6234. if (mddev->persistent) {
  6235. if (mddev->major_version != 0 ||
  6236. mddev->minor_version != 90) {
  6237. seq_printf(seq," super %d.%d",
  6238. mddev->major_version,
  6239. mddev->minor_version);
  6240. }
  6241. } else if (mddev->external)
  6242. seq_printf(seq, " super external:%s",
  6243. mddev->metadata_type);
  6244. else
  6245. seq_printf(seq, " super non-persistent");
  6246. if (mddev->pers) {
  6247. mddev->pers->status(seq, mddev);
  6248. seq_printf(seq, "\n ");
  6249. if (mddev->pers->sync_request) {
  6250. if (mddev->curr_resync > 2) {
  6251. status_resync(seq, mddev);
  6252. seq_printf(seq, "\n ");
  6253. } else if (mddev->curr_resync >= 1)
  6254. seq_printf(seq, "\tresync=DELAYED\n ");
  6255. else if (mddev->recovery_cp < MaxSector)
  6256. seq_printf(seq, "\tresync=PENDING\n ");
  6257. }
  6258. } else
  6259. seq_printf(seq, "\n ");
  6260. bitmap_status(seq, mddev->bitmap);
  6261. seq_printf(seq, "\n");
  6262. }
  6263. mddev_unlock(mddev);
  6264. return 0;
  6265. }
  6266. static const struct seq_operations md_seq_ops = {
  6267. .start = md_seq_start,
  6268. .next = md_seq_next,
  6269. .stop = md_seq_stop,
  6270. .show = md_seq_show,
  6271. };
  6272. static int md_seq_open(struct inode *inode, struct file *file)
  6273. {
  6274. struct seq_file *seq;
  6275. int error;
  6276. error = seq_open(file, &md_seq_ops);
  6277. if (error)
  6278. return error;
  6279. seq = file->private_data;
  6280. seq->poll_event = atomic_read(&md_event_count);
  6281. return error;
  6282. }
  6283. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6284. {
  6285. struct seq_file *seq = filp->private_data;
  6286. int mask;
  6287. poll_wait(filp, &md_event_waiters, wait);
  6288. /* always allow read */
  6289. mask = POLLIN | POLLRDNORM;
  6290. if (seq->poll_event != atomic_read(&md_event_count))
  6291. mask |= POLLERR | POLLPRI;
  6292. return mask;
  6293. }
  6294. static const struct file_operations md_seq_fops = {
  6295. .owner = THIS_MODULE,
  6296. .open = md_seq_open,
  6297. .read = seq_read,
  6298. .llseek = seq_lseek,
  6299. .release = seq_release_private,
  6300. .poll = mdstat_poll,
  6301. };
  6302. int register_md_personality(struct md_personality *p)
  6303. {
  6304. spin_lock(&pers_lock);
  6305. list_add_tail(&p->list, &pers_list);
  6306. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6307. spin_unlock(&pers_lock);
  6308. return 0;
  6309. }
  6310. int unregister_md_personality(struct md_personality *p)
  6311. {
  6312. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6313. spin_lock(&pers_lock);
  6314. list_del_init(&p->list);
  6315. spin_unlock(&pers_lock);
  6316. return 0;
  6317. }
  6318. static int is_mddev_idle(struct mddev *mddev, int init)
  6319. {
  6320. struct md_rdev * rdev;
  6321. int idle;
  6322. int curr_events;
  6323. idle = 1;
  6324. rcu_read_lock();
  6325. rdev_for_each_rcu(rdev, mddev) {
  6326. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6327. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6328. (int)part_stat_read(&disk->part0, sectors[1]) -
  6329. atomic_read(&disk->sync_io);
  6330. /* sync IO will cause sync_io to increase before the disk_stats
  6331. * as sync_io is counted when a request starts, and
  6332. * disk_stats is counted when it completes.
  6333. * So resync activity will cause curr_events to be smaller than
  6334. * when there was no such activity.
  6335. * non-sync IO will cause disk_stat to increase without
  6336. * increasing sync_io so curr_events will (eventually)
  6337. * be larger than it was before. Once it becomes
  6338. * substantially larger, the test below will cause
  6339. * the array to appear non-idle, and resync will slow
  6340. * down.
  6341. * If there is a lot of outstanding resync activity when
  6342. * we set last_event to curr_events, then all that activity
  6343. * completing might cause the array to appear non-idle
  6344. * and resync will be slowed down even though there might
  6345. * not have been non-resync activity. This will only
  6346. * happen once though. 'last_events' will soon reflect
  6347. * the state where there is little or no outstanding
  6348. * resync requests, and further resync activity will
  6349. * always make curr_events less than last_events.
  6350. *
  6351. */
  6352. if (init || curr_events - rdev->last_events > 64) {
  6353. rdev->last_events = curr_events;
  6354. idle = 0;
  6355. }
  6356. }
  6357. rcu_read_unlock();
  6358. return idle;
  6359. }
  6360. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6361. {
  6362. /* another "blocks" (512byte) blocks have been synced */
  6363. atomic_sub(blocks, &mddev->recovery_active);
  6364. wake_up(&mddev->recovery_wait);
  6365. if (!ok) {
  6366. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6367. md_wakeup_thread(mddev->thread);
  6368. // stop recovery, signal do_sync ....
  6369. }
  6370. }
  6371. /* md_write_start(mddev, bi)
  6372. * If we need to update some array metadata (e.g. 'active' flag
  6373. * in superblock) before writing, schedule a superblock update
  6374. * and wait for it to complete.
  6375. */
  6376. void md_write_start(struct mddev *mddev, struct bio *bi)
  6377. {
  6378. int did_change = 0;
  6379. if (bio_data_dir(bi) != WRITE)
  6380. return;
  6381. BUG_ON(mddev->ro == 1);
  6382. if (mddev->ro == 2) {
  6383. /* need to switch to read/write */
  6384. mddev->ro = 0;
  6385. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6386. md_wakeup_thread(mddev->thread);
  6387. md_wakeup_thread(mddev->sync_thread);
  6388. did_change = 1;
  6389. }
  6390. atomic_inc(&mddev->writes_pending);
  6391. if (mddev->safemode == 1)
  6392. mddev->safemode = 0;
  6393. if (mddev->in_sync) {
  6394. spin_lock_irq(&mddev->write_lock);
  6395. if (mddev->in_sync) {
  6396. mddev->in_sync = 0;
  6397. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6398. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6399. md_wakeup_thread(mddev->thread);
  6400. did_change = 1;
  6401. }
  6402. spin_unlock_irq(&mddev->write_lock);
  6403. }
  6404. if (did_change)
  6405. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6406. wait_event(mddev->sb_wait,
  6407. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6408. }
  6409. void md_write_end(struct mddev *mddev)
  6410. {
  6411. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6412. if (mddev->safemode == 2)
  6413. md_wakeup_thread(mddev->thread);
  6414. else if (mddev->safemode_delay)
  6415. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6416. }
  6417. }
  6418. /* md_allow_write(mddev)
  6419. * Calling this ensures that the array is marked 'active' so that writes
  6420. * may proceed without blocking. It is important to call this before
  6421. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6422. * Must be called with mddev_lock held.
  6423. *
  6424. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6425. * is dropped, so return -EAGAIN after notifying userspace.
  6426. */
  6427. int md_allow_write(struct mddev *mddev)
  6428. {
  6429. if (!mddev->pers)
  6430. return 0;
  6431. if (mddev->ro)
  6432. return 0;
  6433. if (!mddev->pers->sync_request)
  6434. return 0;
  6435. spin_lock_irq(&mddev->write_lock);
  6436. if (mddev->in_sync) {
  6437. mddev->in_sync = 0;
  6438. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6439. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6440. if (mddev->safemode_delay &&
  6441. mddev->safemode == 0)
  6442. mddev->safemode = 1;
  6443. spin_unlock_irq(&mddev->write_lock);
  6444. md_update_sb(mddev, 0);
  6445. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6446. } else
  6447. spin_unlock_irq(&mddev->write_lock);
  6448. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6449. return -EAGAIN;
  6450. else
  6451. return 0;
  6452. }
  6453. EXPORT_SYMBOL_GPL(md_allow_write);
  6454. #define SYNC_MARKS 10
  6455. #define SYNC_MARK_STEP (3*HZ)
  6456. void md_do_sync(struct md_thread *thread)
  6457. {
  6458. struct mddev *mddev = thread->mddev;
  6459. struct mddev *mddev2;
  6460. unsigned int currspeed = 0,
  6461. window;
  6462. sector_t max_sectors,j, io_sectors;
  6463. unsigned long mark[SYNC_MARKS];
  6464. sector_t mark_cnt[SYNC_MARKS];
  6465. int last_mark,m;
  6466. struct list_head *tmp;
  6467. sector_t last_check;
  6468. int skipped = 0;
  6469. struct md_rdev *rdev;
  6470. char *desc;
  6471. struct blk_plug plug;
  6472. /* just incase thread restarts... */
  6473. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6474. return;
  6475. if (mddev->ro) /* never try to sync a read-only array */
  6476. return;
  6477. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6478. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6479. desc = "data-check";
  6480. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6481. desc = "requested-resync";
  6482. else
  6483. desc = "resync";
  6484. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6485. desc = "reshape";
  6486. else
  6487. desc = "recovery";
  6488. /* we overload curr_resync somewhat here.
  6489. * 0 == not engaged in resync at all
  6490. * 2 == checking that there is no conflict with another sync
  6491. * 1 == like 2, but have yielded to allow conflicting resync to
  6492. * commense
  6493. * other == active in resync - this many blocks
  6494. *
  6495. * Before starting a resync we must have set curr_resync to
  6496. * 2, and then checked that every "conflicting" array has curr_resync
  6497. * less than ours. When we find one that is the same or higher
  6498. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6499. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6500. * This will mean we have to start checking from the beginning again.
  6501. *
  6502. */
  6503. do {
  6504. mddev->curr_resync = 2;
  6505. try_again:
  6506. if (kthread_should_stop())
  6507. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6508. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6509. goto skip;
  6510. for_each_mddev(mddev2, tmp) {
  6511. if (mddev2 == mddev)
  6512. continue;
  6513. if (!mddev->parallel_resync
  6514. && mddev2->curr_resync
  6515. && match_mddev_units(mddev, mddev2)) {
  6516. DEFINE_WAIT(wq);
  6517. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6518. /* arbitrarily yield */
  6519. mddev->curr_resync = 1;
  6520. wake_up(&resync_wait);
  6521. }
  6522. if (mddev > mddev2 && mddev->curr_resync == 1)
  6523. /* no need to wait here, we can wait the next
  6524. * time 'round when curr_resync == 2
  6525. */
  6526. continue;
  6527. /* We need to wait 'interruptible' so as not to
  6528. * contribute to the load average, and not to
  6529. * be caught by 'softlockup'
  6530. */
  6531. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6532. if (!kthread_should_stop() &&
  6533. mddev2->curr_resync >= mddev->curr_resync) {
  6534. printk(KERN_INFO "md: delaying %s of %s"
  6535. " until %s has finished (they"
  6536. " share one or more physical units)\n",
  6537. desc, mdname(mddev), mdname(mddev2));
  6538. mddev_put(mddev2);
  6539. if (signal_pending(current))
  6540. flush_signals(current);
  6541. schedule();
  6542. finish_wait(&resync_wait, &wq);
  6543. goto try_again;
  6544. }
  6545. finish_wait(&resync_wait, &wq);
  6546. }
  6547. }
  6548. } while (mddev->curr_resync < 2);
  6549. j = 0;
  6550. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6551. /* resync follows the size requested by the personality,
  6552. * which defaults to physical size, but can be virtual size
  6553. */
  6554. max_sectors = mddev->resync_max_sectors;
  6555. atomic64_set(&mddev->resync_mismatches, 0);
  6556. /* we don't use the checkpoint if there's a bitmap */
  6557. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6558. j = mddev->resync_min;
  6559. else if (!mddev->bitmap)
  6560. j = mddev->recovery_cp;
  6561. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6562. max_sectors = mddev->resync_max_sectors;
  6563. else {
  6564. /* recovery follows the physical size of devices */
  6565. max_sectors = mddev->dev_sectors;
  6566. j = MaxSector;
  6567. rcu_read_lock();
  6568. rdev_for_each_rcu(rdev, mddev)
  6569. if (rdev->raid_disk >= 0 &&
  6570. !test_bit(Faulty, &rdev->flags) &&
  6571. !test_bit(In_sync, &rdev->flags) &&
  6572. rdev->recovery_offset < j)
  6573. j = rdev->recovery_offset;
  6574. rcu_read_unlock();
  6575. }
  6576. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6577. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6578. " %d KB/sec/disk.\n", speed_min(mddev));
  6579. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6580. "(but not more than %d KB/sec) for %s.\n",
  6581. speed_max(mddev), desc);
  6582. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6583. io_sectors = 0;
  6584. for (m = 0; m < SYNC_MARKS; m++) {
  6585. mark[m] = jiffies;
  6586. mark_cnt[m] = io_sectors;
  6587. }
  6588. last_mark = 0;
  6589. mddev->resync_mark = mark[last_mark];
  6590. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6591. /*
  6592. * Tune reconstruction:
  6593. */
  6594. window = 32*(PAGE_SIZE/512);
  6595. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6596. window/2, (unsigned long long)max_sectors/2);
  6597. atomic_set(&mddev->recovery_active, 0);
  6598. last_check = 0;
  6599. if (j>2) {
  6600. printk(KERN_INFO
  6601. "md: resuming %s of %s from checkpoint.\n",
  6602. desc, mdname(mddev));
  6603. mddev->curr_resync = j;
  6604. } else
  6605. mddev->curr_resync = 3; /* no longer delayed */
  6606. mddev->curr_resync_completed = j;
  6607. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6608. md_new_event(mddev);
  6609. blk_start_plug(&plug);
  6610. while (j < max_sectors) {
  6611. sector_t sectors;
  6612. skipped = 0;
  6613. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6614. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6615. (mddev->curr_resync - mddev->curr_resync_completed)
  6616. > (max_sectors >> 4)) ||
  6617. (j - mddev->curr_resync_completed)*2
  6618. >= mddev->resync_max - mddev->curr_resync_completed
  6619. )) {
  6620. /* time to update curr_resync_completed */
  6621. wait_event(mddev->recovery_wait,
  6622. atomic_read(&mddev->recovery_active) == 0);
  6623. mddev->curr_resync_completed = j;
  6624. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6625. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6626. }
  6627. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6628. /* As this condition is controlled by user-space,
  6629. * we can block indefinitely, so use '_interruptible'
  6630. * to avoid triggering warnings.
  6631. */
  6632. flush_signals(current); /* just in case */
  6633. wait_event_interruptible(mddev->recovery_wait,
  6634. mddev->resync_max > j
  6635. || kthread_should_stop());
  6636. }
  6637. if (kthread_should_stop())
  6638. goto interrupted;
  6639. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6640. currspeed < speed_min(mddev));
  6641. if (sectors == 0) {
  6642. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6643. goto out;
  6644. }
  6645. if (!skipped) { /* actual IO requested */
  6646. io_sectors += sectors;
  6647. atomic_add(sectors, &mddev->recovery_active);
  6648. }
  6649. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6650. break;
  6651. j += sectors;
  6652. if (j > 2)
  6653. mddev->curr_resync = j;
  6654. mddev->curr_mark_cnt = io_sectors;
  6655. if (last_check == 0)
  6656. /* this is the earliest that rebuild will be
  6657. * visible in /proc/mdstat
  6658. */
  6659. md_new_event(mddev);
  6660. if (last_check + window > io_sectors || j == max_sectors)
  6661. continue;
  6662. last_check = io_sectors;
  6663. repeat:
  6664. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6665. /* step marks */
  6666. int next = (last_mark+1) % SYNC_MARKS;
  6667. mddev->resync_mark = mark[next];
  6668. mddev->resync_mark_cnt = mark_cnt[next];
  6669. mark[next] = jiffies;
  6670. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6671. last_mark = next;
  6672. }
  6673. if (kthread_should_stop())
  6674. goto interrupted;
  6675. /*
  6676. * this loop exits only if either when we are slower than
  6677. * the 'hard' speed limit, or the system was IO-idle for
  6678. * a jiffy.
  6679. * the system might be non-idle CPU-wise, but we only care
  6680. * about not overloading the IO subsystem. (things like an
  6681. * e2fsck being done on the RAID array should execute fast)
  6682. */
  6683. cond_resched();
  6684. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6685. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6686. if (currspeed > speed_min(mddev)) {
  6687. if ((currspeed > speed_max(mddev)) ||
  6688. !is_mddev_idle(mddev, 0)) {
  6689. msleep(500);
  6690. goto repeat;
  6691. }
  6692. }
  6693. }
  6694. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6695. /*
  6696. * this also signals 'finished resyncing' to md_stop
  6697. */
  6698. out:
  6699. blk_finish_plug(&plug);
  6700. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6701. /* tell personality that we are finished */
  6702. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6703. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6704. mddev->curr_resync > 2) {
  6705. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6706. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6707. if (mddev->curr_resync >= mddev->recovery_cp) {
  6708. printk(KERN_INFO
  6709. "md: checkpointing %s of %s.\n",
  6710. desc, mdname(mddev));
  6711. mddev->recovery_cp =
  6712. mddev->curr_resync_completed;
  6713. }
  6714. } else
  6715. mddev->recovery_cp = MaxSector;
  6716. } else {
  6717. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6718. mddev->curr_resync = MaxSector;
  6719. rcu_read_lock();
  6720. rdev_for_each_rcu(rdev, mddev)
  6721. if (rdev->raid_disk >= 0 &&
  6722. mddev->delta_disks >= 0 &&
  6723. !test_bit(Faulty, &rdev->flags) &&
  6724. !test_bit(In_sync, &rdev->flags) &&
  6725. rdev->recovery_offset < mddev->curr_resync)
  6726. rdev->recovery_offset = mddev->curr_resync;
  6727. rcu_read_unlock();
  6728. }
  6729. }
  6730. skip:
  6731. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6732. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6733. /* We completed so min/max setting can be forgotten if used. */
  6734. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6735. mddev->resync_min = 0;
  6736. mddev->resync_max = MaxSector;
  6737. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6738. mddev->resync_min = mddev->curr_resync_completed;
  6739. mddev->curr_resync = 0;
  6740. wake_up(&resync_wait);
  6741. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6742. md_wakeup_thread(mddev->thread);
  6743. return;
  6744. interrupted:
  6745. /*
  6746. * got a signal, exit.
  6747. */
  6748. printk(KERN_INFO
  6749. "md: md_do_sync() got signal ... exiting\n");
  6750. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6751. goto out;
  6752. }
  6753. EXPORT_SYMBOL_GPL(md_do_sync);
  6754. static int remove_and_add_spares(struct mddev *mddev)
  6755. {
  6756. struct md_rdev *rdev;
  6757. int spares = 0;
  6758. int removed = 0;
  6759. rdev_for_each(rdev, mddev)
  6760. if (rdev->raid_disk >= 0 &&
  6761. !test_bit(Blocked, &rdev->flags) &&
  6762. (test_bit(Faulty, &rdev->flags) ||
  6763. ! test_bit(In_sync, &rdev->flags)) &&
  6764. atomic_read(&rdev->nr_pending)==0) {
  6765. if (mddev->pers->hot_remove_disk(
  6766. mddev, rdev) == 0) {
  6767. sysfs_unlink_rdev(mddev, rdev);
  6768. rdev->raid_disk = -1;
  6769. removed++;
  6770. }
  6771. }
  6772. if (removed)
  6773. sysfs_notify(&mddev->kobj, NULL,
  6774. "degraded");
  6775. rdev_for_each(rdev, mddev) {
  6776. if (rdev->raid_disk >= 0 &&
  6777. !test_bit(In_sync, &rdev->flags) &&
  6778. !test_bit(Faulty, &rdev->flags))
  6779. spares++;
  6780. if (rdev->raid_disk < 0
  6781. && !test_bit(Faulty, &rdev->flags)) {
  6782. rdev->recovery_offset = 0;
  6783. if (mddev->pers->
  6784. hot_add_disk(mddev, rdev) == 0) {
  6785. if (sysfs_link_rdev(mddev, rdev))
  6786. /* failure here is OK */;
  6787. spares++;
  6788. md_new_event(mddev);
  6789. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6790. }
  6791. }
  6792. }
  6793. if (removed)
  6794. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6795. return spares;
  6796. }
  6797. static void reap_sync_thread(struct mddev *mddev)
  6798. {
  6799. struct md_rdev *rdev;
  6800. /* resync has finished, collect result */
  6801. md_unregister_thread(&mddev->sync_thread);
  6802. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6803. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6804. /* success...*/
  6805. /* activate any spares */
  6806. if (mddev->pers->spare_active(mddev)) {
  6807. sysfs_notify(&mddev->kobj, NULL,
  6808. "degraded");
  6809. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6810. }
  6811. }
  6812. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6813. mddev->pers->finish_reshape)
  6814. mddev->pers->finish_reshape(mddev);
  6815. /* If array is no-longer degraded, then any saved_raid_disk
  6816. * information must be scrapped. Also if any device is now
  6817. * In_sync we must scrape the saved_raid_disk for that device
  6818. * do the superblock for an incrementally recovered device
  6819. * written out.
  6820. */
  6821. rdev_for_each(rdev, mddev)
  6822. if (!mddev->degraded ||
  6823. test_bit(In_sync, &rdev->flags))
  6824. rdev->saved_raid_disk = -1;
  6825. md_update_sb(mddev, 1);
  6826. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6827. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6828. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6829. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6830. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6831. /* flag recovery needed just to double check */
  6832. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6833. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6834. md_new_event(mddev);
  6835. if (mddev->event_work.func)
  6836. queue_work(md_misc_wq, &mddev->event_work);
  6837. }
  6838. /*
  6839. * This routine is regularly called by all per-raid-array threads to
  6840. * deal with generic issues like resync and super-block update.
  6841. * Raid personalities that don't have a thread (linear/raid0) do not
  6842. * need this as they never do any recovery or update the superblock.
  6843. *
  6844. * It does not do any resync itself, but rather "forks" off other threads
  6845. * to do that as needed.
  6846. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6847. * "->recovery" and create a thread at ->sync_thread.
  6848. * When the thread finishes it sets MD_RECOVERY_DONE
  6849. * and wakeups up this thread which will reap the thread and finish up.
  6850. * This thread also removes any faulty devices (with nr_pending == 0).
  6851. *
  6852. * The overall approach is:
  6853. * 1/ if the superblock needs updating, update it.
  6854. * 2/ If a recovery thread is running, don't do anything else.
  6855. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6856. * 4/ If there are any faulty devices, remove them.
  6857. * 5/ If array is degraded, try to add spares devices
  6858. * 6/ If array has spares or is not in-sync, start a resync thread.
  6859. */
  6860. void md_check_recovery(struct mddev *mddev)
  6861. {
  6862. if (mddev->suspended)
  6863. return;
  6864. if (mddev->bitmap)
  6865. bitmap_daemon_work(mddev);
  6866. if (signal_pending(current)) {
  6867. if (mddev->pers->sync_request && !mddev->external) {
  6868. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6869. mdname(mddev));
  6870. mddev->safemode = 2;
  6871. }
  6872. flush_signals(current);
  6873. }
  6874. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6875. return;
  6876. if ( ! (
  6877. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6878. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6879. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6880. (mddev->external == 0 && mddev->safemode == 1) ||
  6881. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6882. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6883. ))
  6884. return;
  6885. if (mddev_trylock(mddev)) {
  6886. int spares = 0;
  6887. if (mddev->ro) {
  6888. /* Only thing we do on a ro array is remove
  6889. * failed devices.
  6890. */
  6891. struct md_rdev *rdev;
  6892. rdev_for_each(rdev, mddev)
  6893. if (rdev->raid_disk >= 0 &&
  6894. !test_bit(Blocked, &rdev->flags) &&
  6895. test_bit(Faulty, &rdev->flags) &&
  6896. atomic_read(&rdev->nr_pending)==0) {
  6897. if (mddev->pers->hot_remove_disk(
  6898. mddev, rdev) == 0) {
  6899. sysfs_unlink_rdev(mddev, rdev);
  6900. rdev->raid_disk = -1;
  6901. }
  6902. }
  6903. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6904. goto unlock;
  6905. }
  6906. if (!mddev->external) {
  6907. int did_change = 0;
  6908. spin_lock_irq(&mddev->write_lock);
  6909. if (mddev->safemode &&
  6910. !atomic_read(&mddev->writes_pending) &&
  6911. !mddev->in_sync &&
  6912. mddev->recovery_cp == MaxSector) {
  6913. mddev->in_sync = 1;
  6914. did_change = 1;
  6915. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6916. }
  6917. if (mddev->safemode == 1)
  6918. mddev->safemode = 0;
  6919. spin_unlock_irq(&mddev->write_lock);
  6920. if (did_change)
  6921. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6922. }
  6923. if (mddev->flags)
  6924. md_update_sb(mddev, 0);
  6925. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6926. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6927. /* resync/recovery still happening */
  6928. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6929. goto unlock;
  6930. }
  6931. if (mddev->sync_thread) {
  6932. reap_sync_thread(mddev);
  6933. goto unlock;
  6934. }
  6935. /* Set RUNNING before clearing NEEDED to avoid
  6936. * any transients in the value of "sync_action".
  6937. */
  6938. mddev->curr_resync_completed = 0;
  6939. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6940. /* Clear some bits that don't mean anything, but
  6941. * might be left set
  6942. */
  6943. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6944. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6945. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6946. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6947. goto unlock;
  6948. /* no recovery is running.
  6949. * remove any failed drives, then
  6950. * add spares if possible.
  6951. * Spares are also removed and re-added, to allow
  6952. * the personality to fail the re-add.
  6953. */
  6954. if (mddev->reshape_position != MaxSector) {
  6955. if (mddev->pers->check_reshape == NULL ||
  6956. mddev->pers->check_reshape(mddev) != 0)
  6957. /* Cannot proceed */
  6958. goto unlock;
  6959. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6960. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6961. } else if ((spares = remove_and_add_spares(mddev))) {
  6962. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6963. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6964. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6965. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6966. } else if (mddev->recovery_cp < MaxSector) {
  6967. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6968. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6969. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6970. /* nothing to be done ... */
  6971. goto unlock;
  6972. if (mddev->pers->sync_request) {
  6973. if (spares) {
  6974. /* We are adding a device or devices to an array
  6975. * which has the bitmap stored on all devices.
  6976. * So make sure all bitmap pages get written
  6977. */
  6978. bitmap_write_all(mddev->bitmap);
  6979. }
  6980. mddev->sync_thread = md_register_thread(md_do_sync,
  6981. mddev,
  6982. "resync");
  6983. if (!mddev->sync_thread) {
  6984. printk(KERN_ERR "%s: could not start resync"
  6985. " thread...\n",
  6986. mdname(mddev));
  6987. /* leave the spares where they are, it shouldn't hurt */
  6988. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6989. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6990. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6991. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6992. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6993. } else
  6994. md_wakeup_thread(mddev->sync_thread);
  6995. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6996. md_new_event(mddev);
  6997. }
  6998. unlock:
  6999. if (!mddev->sync_thread) {
  7000. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7001. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7002. &mddev->recovery))
  7003. if (mddev->sysfs_action)
  7004. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7005. }
  7006. mddev_unlock(mddev);
  7007. }
  7008. }
  7009. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7010. {
  7011. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7012. wait_event_timeout(rdev->blocked_wait,
  7013. !test_bit(Blocked, &rdev->flags) &&
  7014. !test_bit(BlockedBadBlocks, &rdev->flags),
  7015. msecs_to_jiffies(5000));
  7016. rdev_dec_pending(rdev, mddev);
  7017. }
  7018. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7019. void md_finish_reshape(struct mddev *mddev)
  7020. {
  7021. /* called be personality module when reshape completes. */
  7022. struct md_rdev *rdev;
  7023. rdev_for_each(rdev, mddev) {
  7024. if (rdev->data_offset > rdev->new_data_offset)
  7025. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7026. else
  7027. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7028. rdev->data_offset = rdev->new_data_offset;
  7029. }
  7030. }
  7031. EXPORT_SYMBOL(md_finish_reshape);
  7032. /* Bad block management.
  7033. * We can record which blocks on each device are 'bad' and so just
  7034. * fail those blocks, or that stripe, rather than the whole device.
  7035. * Entries in the bad-block table are 64bits wide. This comprises:
  7036. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7037. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7038. * A 'shift' can be set so that larger blocks are tracked and
  7039. * consequently larger devices can be covered.
  7040. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7041. *
  7042. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7043. * might need to retry if it is very unlucky.
  7044. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7045. * so we use the write_seqlock_irq variant.
  7046. *
  7047. * When looking for a bad block we specify a range and want to
  7048. * know if any block in the range is bad. So we binary-search
  7049. * to the last range that starts at-or-before the given endpoint,
  7050. * (or "before the sector after the target range")
  7051. * then see if it ends after the given start.
  7052. * We return
  7053. * 0 if there are no known bad blocks in the range
  7054. * 1 if there are known bad block which are all acknowledged
  7055. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7056. * plus the start/length of the first bad section we overlap.
  7057. */
  7058. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7059. sector_t *first_bad, int *bad_sectors)
  7060. {
  7061. int hi;
  7062. int lo;
  7063. u64 *p = bb->page;
  7064. int rv;
  7065. sector_t target = s + sectors;
  7066. unsigned seq;
  7067. if (bb->shift > 0) {
  7068. /* round the start down, and the end up */
  7069. s >>= bb->shift;
  7070. target += (1<<bb->shift) - 1;
  7071. target >>= bb->shift;
  7072. sectors = target - s;
  7073. }
  7074. /* 'target' is now the first block after the bad range */
  7075. retry:
  7076. seq = read_seqbegin(&bb->lock);
  7077. lo = 0;
  7078. rv = 0;
  7079. hi = bb->count;
  7080. /* Binary search between lo and hi for 'target'
  7081. * i.e. for the last range that starts before 'target'
  7082. */
  7083. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7084. * are known not to be the last range before target.
  7085. * VARIANT: hi-lo is the number of possible
  7086. * ranges, and decreases until it reaches 1
  7087. */
  7088. while (hi - lo > 1) {
  7089. int mid = (lo + hi) / 2;
  7090. sector_t a = BB_OFFSET(p[mid]);
  7091. if (a < target)
  7092. /* This could still be the one, earlier ranges
  7093. * could not. */
  7094. lo = mid;
  7095. else
  7096. /* This and later ranges are definitely out. */
  7097. hi = mid;
  7098. }
  7099. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7100. if (hi > lo) {
  7101. /* need to check all range that end after 's' to see if
  7102. * any are unacknowledged.
  7103. */
  7104. while (lo >= 0 &&
  7105. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7106. if (BB_OFFSET(p[lo]) < target) {
  7107. /* starts before the end, and finishes after
  7108. * the start, so they must overlap
  7109. */
  7110. if (rv != -1 && BB_ACK(p[lo]))
  7111. rv = 1;
  7112. else
  7113. rv = -1;
  7114. *first_bad = BB_OFFSET(p[lo]);
  7115. *bad_sectors = BB_LEN(p[lo]);
  7116. }
  7117. lo--;
  7118. }
  7119. }
  7120. if (read_seqretry(&bb->lock, seq))
  7121. goto retry;
  7122. return rv;
  7123. }
  7124. EXPORT_SYMBOL_GPL(md_is_badblock);
  7125. /*
  7126. * Add a range of bad blocks to the table.
  7127. * This might extend the table, or might contract it
  7128. * if two adjacent ranges can be merged.
  7129. * We binary-search to find the 'insertion' point, then
  7130. * decide how best to handle it.
  7131. */
  7132. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7133. int acknowledged)
  7134. {
  7135. u64 *p;
  7136. int lo, hi;
  7137. int rv = 1;
  7138. if (bb->shift < 0)
  7139. /* badblocks are disabled */
  7140. return 0;
  7141. if (bb->shift) {
  7142. /* round the start down, and the end up */
  7143. sector_t next = s + sectors;
  7144. s >>= bb->shift;
  7145. next += (1<<bb->shift) - 1;
  7146. next >>= bb->shift;
  7147. sectors = next - s;
  7148. }
  7149. write_seqlock_irq(&bb->lock);
  7150. p = bb->page;
  7151. lo = 0;
  7152. hi = bb->count;
  7153. /* Find the last range that starts at-or-before 's' */
  7154. while (hi - lo > 1) {
  7155. int mid = (lo + hi) / 2;
  7156. sector_t a = BB_OFFSET(p[mid]);
  7157. if (a <= s)
  7158. lo = mid;
  7159. else
  7160. hi = mid;
  7161. }
  7162. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7163. hi = lo;
  7164. if (hi > lo) {
  7165. /* we found a range that might merge with the start
  7166. * of our new range
  7167. */
  7168. sector_t a = BB_OFFSET(p[lo]);
  7169. sector_t e = a + BB_LEN(p[lo]);
  7170. int ack = BB_ACK(p[lo]);
  7171. if (e >= s) {
  7172. /* Yes, we can merge with a previous range */
  7173. if (s == a && s + sectors >= e)
  7174. /* new range covers old */
  7175. ack = acknowledged;
  7176. else
  7177. ack = ack && acknowledged;
  7178. if (e < s + sectors)
  7179. e = s + sectors;
  7180. if (e - a <= BB_MAX_LEN) {
  7181. p[lo] = BB_MAKE(a, e-a, ack);
  7182. s = e;
  7183. } else {
  7184. /* does not all fit in one range,
  7185. * make p[lo] maximal
  7186. */
  7187. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7188. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7189. s = a + BB_MAX_LEN;
  7190. }
  7191. sectors = e - s;
  7192. }
  7193. }
  7194. if (sectors && hi < bb->count) {
  7195. /* 'hi' points to the first range that starts after 's'.
  7196. * Maybe we can merge with the start of that range */
  7197. sector_t a = BB_OFFSET(p[hi]);
  7198. sector_t e = a + BB_LEN(p[hi]);
  7199. int ack = BB_ACK(p[hi]);
  7200. if (a <= s + sectors) {
  7201. /* merging is possible */
  7202. if (e <= s + sectors) {
  7203. /* full overlap */
  7204. e = s + sectors;
  7205. ack = acknowledged;
  7206. } else
  7207. ack = ack && acknowledged;
  7208. a = s;
  7209. if (e - a <= BB_MAX_LEN) {
  7210. p[hi] = BB_MAKE(a, e-a, ack);
  7211. s = e;
  7212. } else {
  7213. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7214. s = a + BB_MAX_LEN;
  7215. }
  7216. sectors = e - s;
  7217. lo = hi;
  7218. hi++;
  7219. }
  7220. }
  7221. if (sectors == 0 && hi < bb->count) {
  7222. /* we might be able to combine lo and hi */
  7223. /* Note: 's' is at the end of 'lo' */
  7224. sector_t a = BB_OFFSET(p[hi]);
  7225. int lolen = BB_LEN(p[lo]);
  7226. int hilen = BB_LEN(p[hi]);
  7227. int newlen = lolen + hilen - (s - a);
  7228. if (s >= a && newlen < BB_MAX_LEN) {
  7229. /* yes, we can combine them */
  7230. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7231. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7232. memmove(p + hi, p + hi + 1,
  7233. (bb->count - hi - 1) * 8);
  7234. bb->count--;
  7235. }
  7236. }
  7237. while (sectors) {
  7238. /* didn't merge (it all).
  7239. * Need to add a range just before 'hi' */
  7240. if (bb->count >= MD_MAX_BADBLOCKS) {
  7241. /* No room for more */
  7242. rv = 0;
  7243. break;
  7244. } else {
  7245. int this_sectors = sectors;
  7246. memmove(p + hi + 1, p + hi,
  7247. (bb->count - hi) * 8);
  7248. bb->count++;
  7249. if (this_sectors > BB_MAX_LEN)
  7250. this_sectors = BB_MAX_LEN;
  7251. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7252. sectors -= this_sectors;
  7253. s += this_sectors;
  7254. }
  7255. }
  7256. bb->changed = 1;
  7257. if (!acknowledged)
  7258. bb->unacked_exist = 1;
  7259. write_sequnlock_irq(&bb->lock);
  7260. return rv;
  7261. }
  7262. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7263. int is_new)
  7264. {
  7265. int rv;
  7266. if (is_new)
  7267. s += rdev->new_data_offset;
  7268. else
  7269. s += rdev->data_offset;
  7270. rv = md_set_badblocks(&rdev->badblocks,
  7271. s, sectors, 0);
  7272. if (rv) {
  7273. /* Make sure they get written out promptly */
  7274. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7275. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7276. md_wakeup_thread(rdev->mddev->thread);
  7277. }
  7278. return rv;
  7279. }
  7280. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7281. /*
  7282. * Remove a range of bad blocks from the table.
  7283. * This may involve extending the table if we spilt a region,
  7284. * but it must not fail. So if the table becomes full, we just
  7285. * drop the remove request.
  7286. */
  7287. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7288. {
  7289. u64 *p;
  7290. int lo, hi;
  7291. sector_t target = s + sectors;
  7292. int rv = 0;
  7293. if (bb->shift > 0) {
  7294. /* When clearing we round the start up and the end down.
  7295. * This should not matter as the shift should align with
  7296. * the block size and no rounding should ever be needed.
  7297. * However it is better the think a block is bad when it
  7298. * isn't than to think a block is not bad when it is.
  7299. */
  7300. s += (1<<bb->shift) - 1;
  7301. s >>= bb->shift;
  7302. target >>= bb->shift;
  7303. sectors = target - s;
  7304. }
  7305. write_seqlock_irq(&bb->lock);
  7306. p = bb->page;
  7307. lo = 0;
  7308. hi = bb->count;
  7309. /* Find the last range that starts before 'target' */
  7310. while (hi - lo > 1) {
  7311. int mid = (lo + hi) / 2;
  7312. sector_t a = BB_OFFSET(p[mid]);
  7313. if (a < target)
  7314. lo = mid;
  7315. else
  7316. hi = mid;
  7317. }
  7318. if (hi > lo) {
  7319. /* p[lo] is the last range that could overlap the
  7320. * current range. Earlier ranges could also overlap,
  7321. * but only this one can overlap the end of the range.
  7322. */
  7323. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7324. /* Partial overlap, leave the tail of this range */
  7325. int ack = BB_ACK(p[lo]);
  7326. sector_t a = BB_OFFSET(p[lo]);
  7327. sector_t end = a + BB_LEN(p[lo]);
  7328. if (a < s) {
  7329. /* we need to split this range */
  7330. if (bb->count >= MD_MAX_BADBLOCKS) {
  7331. rv = 0;
  7332. goto out;
  7333. }
  7334. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7335. bb->count++;
  7336. p[lo] = BB_MAKE(a, s-a, ack);
  7337. lo++;
  7338. }
  7339. p[lo] = BB_MAKE(target, end - target, ack);
  7340. /* there is no longer an overlap */
  7341. hi = lo;
  7342. lo--;
  7343. }
  7344. while (lo >= 0 &&
  7345. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7346. /* This range does overlap */
  7347. if (BB_OFFSET(p[lo]) < s) {
  7348. /* Keep the early parts of this range. */
  7349. int ack = BB_ACK(p[lo]);
  7350. sector_t start = BB_OFFSET(p[lo]);
  7351. p[lo] = BB_MAKE(start, s - start, ack);
  7352. /* now low doesn't overlap, so.. */
  7353. break;
  7354. }
  7355. lo--;
  7356. }
  7357. /* 'lo' is strictly before, 'hi' is strictly after,
  7358. * anything between needs to be discarded
  7359. */
  7360. if (hi - lo > 1) {
  7361. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7362. bb->count -= (hi - lo - 1);
  7363. }
  7364. }
  7365. bb->changed = 1;
  7366. out:
  7367. write_sequnlock_irq(&bb->lock);
  7368. return rv;
  7369. }
  7370. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7371. int is_new)
  7372. {
  7373. if (is_new)
  7374. s += rdev->new_data_offset;
  7375. else
  7376. s += rdev->data_offset;
  7377. return md_clear_badblocks(&rdev->badblocks,
  7378. s, sectors);
  7379. }
  7380. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7381. /*
  7382. * Acknowledge all bad blocks in a list.
  7383. * This only succeeds if ->changed is clear. It is used by
  7384. * in-kernel metadata updates
  7385. */
  7386. void md_ack_all_badblocks(struct badblocks *bb)
  7387. {
  7388. if (bb->page == NULL || bb->changed)
  7389. /* no point even trying */
  7390. return;
  7391. write_seqlock_irq(&bb->lock);
  7392. if (bb->changed == 0 && bb->unacked_exist) {
  7393. u64 *p = bb->page;
  7394. int i;
  7395. for (i = 0; i < bb->count ; i++) {
  7396. if (!BB_ACK(p[i])) {
  7397. sector_t start = BB_OFFSET(p[i]);
  7398. int len = BB_LEN(p[i]);
  7399. p[i] = BB_MAKE(start, len, 1);
  7400. }
  7401. }
  7402. bb->unacked_exist = 0;
  7403. }
  7404. write_sequnlock_irq(&bb->lock);
  7405. }
  7406. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7407. /* sysfs access to bad-blocks list.
  7408. * We present two files.
  7409. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7410. * are recorded as bad. The list is truncated to fit within
  7411. * the one-page limit of sysfs.
  7412. * Writing "sector length" to this file adds an acknowledged
  7413. * bad block list.
  7414. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7415. * been acknowledged. Writing to this file adds bad blocks
  7416. * without acknowledging them. This is largely for testing.
  7417. */
  7418. static ssize_t
  7419. badblocks_show(struct badblocks *bb, char *page, int unack)
  7420. {
  7421. size_t len;
  7422. int i;
  7423. u64 *p = bb->page;
  7424. unsigned seq;
  7425. if (bb->shift < 0)
  7426. return 0;
  7427. retry:
  7428. seq = read_seqbegin(&bb->lock);
  7429. len = 0;
  7430. i = 0;
  7431. while (len < PAGE_SIZE && i < bb->count) {
  7432. sector_t s = BB_OFFSET(p[i]);
  7433. unsigned int length = BB_LEN(p[i]);
  7434. int ack = BB_ACK(p[i]);
  7435. i++;
  7436. if (unack && ack)
  7437. continue;
  7438. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7439. (unsigned long long)s << bb->shift,
  7440. length << bb->shift);
  7441. }
  7442. if (unack && len == 0)
  7443. bb->unacked_exist = 0;
  7444. if (read_seqretry(&bb->lock, seq))
  7445. goto retry;
  7446. return len;
  7447. }
  7448. #define DO_DEBUG 1
  7449. static ssize_t
  7450. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7451. {
  7452. unsigned long long sector;
  7453. int length;
  7454. char newline;
  7455. #ifdef DO_DEBUG
  7456. /* Allow clearing via sysfs *only* for testing/debugging.
  7457. * Normally only a successful write may clear a badblock
  7458. */
  7459. int clear = 0;
  7460. if (page[0] == '-') {
  7461. clear = 1;
  7462. page++;
  7463. }
  7464. #endif /* DO_DEBUG */
  7465. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7466. case 3:
  7467. if (newline != '\n')
  7468. return -EINVAL;
  7469. case 2:
  7470. if (length <= 0)
  7471. return -EINVAL;
  7472. break;
  7473. default:
  7474. return -EINVAL;
  7475. }
  7476. #ifdef DO_DEBUG
  7477. if (clear) {
  7478. md_clear_badblocks(bb, sector, length);
  7479. return len;
  7480. }
  7481. #endif /* DO_DEBUG */
  7482. if (md_set_badblocks(bb, sector, length, !unack))
  7483. return len;
  7484. else
  7485. return -ENOSPC;
  7486. }
  7487. static int md_notify_reboot(struct notifier_block *this,
  7488. unsigned long code, void *x)
  7489. {
  7490. struct list_head *tmp;
  7491. struct mddev *mddev;
  7492. int need_delay = 0;
  7493. for_each_mddev(mddev, tmp) {
  7494. if (mddev_trylock(mddev)) {
  7495. if (mddev->pers)
  7496. __md_stop_writes(mddev);
  7497. mddev->safemode = 2;
  7498. mddev_unlock(mddev);
  7499. }
  7500. need_delay = 1;
  7501. }
  7502. /*
  7503. * certain more exotic SCSI devices are known to be
  7504. * volatile wrt too early system reboots. While the
  7505. * right place to handle this issue is the given
  7506. * driver, we do want to have a safe RAID driver ...
  7507. */
  7508. if (need_delay)
  7509. mdelay(1000*1);
  7510. return NOTIFY_DONE;
  7511. }
  7512. static struct notifier_block md_notifier = {
  7513. .notifier_call = md_notify_reboot,
  7514. .next = NULL,
  7515. .priority = INT_MAX, /* before any real devices */
  7516. };
  7517. static void md_geninit(void)
  7518. {
  7519. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7520. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7521. }
  7522. static int __init md_init(void)
  7523. {
  7524. int ret = -ENOMEM;
  7525. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7526. if (!md_wq)
  7527. goto err_wq;
  7528. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7529. if (!md_misc_wq)
  7530. goto err_misc_wq;
  7531. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7532. goto err_md;
  7533. if ((ret = register_blkdev(0, "mdp")) < 0)
  7534. goto err_mdp;
  7535. mdp_major = ret;
  7536. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7537. md_probe, NULL, NULL);
  7538. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7539. md_probe, NULL, NULL);
  7540. register_reboot_notifier(&md_notifier);
  7541. raid_table_header = register_sysctl_table(raid_root_table);
  7542. md_geninit();
  7543. return 0;
  7544. err_mdp:
  7545. unregister_blkdev(MD_MAJOR, "md");
  7546. err_md:
  7547. destroy_workqueue(md_misc_wq);
  7548. err_misc_wq:
  7549. destroy_workqueue(md_wq);
  7550. err_wq:
  7551. return ret;
  7552. }
  7553. #ifndef MODULE
  7554. /*
  7555. * Searches all registered partitions for autorun RAID arrays
  7556. * at boot time.
  7557. */
  7558. static LIST_HEAD(all_detected_devices);
  7559. struct detected_devices_node {
  7560. struct list_head list;
  7561. dev_t dev;
  7562. };
  7563. void md_autodetect_dev(dev_t dev)
  7564. {
  7565. struct detected_devices_node *node_detected_dev;
  7566. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7567. if (node_detected_dev) {
  7568. node_detected_dev->dev = dev;
  7569. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7570. } else {
  7571. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7572. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7573. }
  7574. }
  7575. static void autostart_arrays(int part)
  7576. {
  7577. struct md_rdev *rdev;
  7578. struct detected_devices_node *node_detected_dev;
  7579. dev_t dev;
  7580. int i_scanned, i_passed;
  7581. i_scanned = 0;
  7582. i_passed = 0;
  7583. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7584. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7585. i_scanned++;
  7586. node_detected_dev = list_entry(all_detected_devices.next,
  7587. struct detected_devices_node, list);
  7588. list_del(&node_detected_dev->list);
  7589. dev = node_detected_dev->dev;
  7590. kfree(node_detected_dev);
  7591. rdev = md_import_device(dev,0, 90);
  7592. if (IS_ERR(rdev))
  7593. continue;
  7594. if (test_bit(Faulty, &rdev->flags)) {
  7595. MD_BUG();
  7596. continue;
  7597. }
  7598. set_bit(AutoDetected, &rdev->flags);
  7599. list_add(&rdev->same_set, &pending_raid_disks);
  7600. i_passed++;
  7601. }
  7602. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7603. i_scanned, i_passed);
  7604. autorun_devices(part);
  7605. }
  7606. #endif /* !MODULE */
  7607. static __exit void md_exit(void)
  7608. {
  7609. struct mddev *mddev;
  7610. struct list_head *tmp;
  7611. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7612. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7613. unregister_blkdev(MD_MAJOR,"md");
  7614. unregister_blkdev(mdp_major, "mdp");
  7615. unregister_reboot_notifier(&md_notifier);
  7616. unregister_sysctl_table(raid_table_header);
  7617. remove_proc_entry("mdstat", NULL);
  7618. for_each_mddev(mddev, tmp) {
  7619. export_array(mddev);
  7620. mddev->hold_active = 0;
  7621. }
  7622. destroy_workqueue(md_misc_wq);
  7623. destroy_workqueue(md_wq);
  7624. }
  7625. subsys_initcall(md_init);
  7626. module_exit(md_exit)
  7627. static int get_ro(char *buffer, struct kernel_param *kp)
  7628. {
  7629. return sprintf(buffer, "%d", start_readonly);
  7630. }
  7631. static int set_ro(const char *val, struct kernel_param *kp)
  7632. {
  7633. char *e;
  7634. int num = simple_strtoul(val, &e, 10);
  7635. if (*val && (*e == '\0' || *e == '\n')) {
  7636. start_readonly = num;
  7637. return 0;
  7638. }
  7639. return -EINVAL;
  7640. }
  7641. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7642. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7643. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7644. EXPORT_SYMBOL(register_md_personality);
  7645. EXPORT_SYMBOL(unregister_md_personality);
  7646. EXPORT_SYMBOL(md_error);
  7647. EXPORT_SYMBOL(md_done_sync);
  7648. EXPORT_SYMBOL(md_write_start);
  7649. EXPORT_SYMBOL(md_write_end);
  7650. EXPORT_SYMBOL(md_register_thread);
  7651. EXPORT_SYMBOL(md_unregister_thread);
  7652. EXPORT_SYMBOL(md_wakeup_thread);
  7653. EXPORT_SYMBOL(md_check_recovery);
  7654. MODULE_LICENSE("GPL");
  7655. MODULE_DESCRIPTION("MD RAID framework");
  7656. MODULE_ALIAS("md");
  7657. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);