perf_counter.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226
  1. /*
  2. * Performance counter x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. *
  10. * For licencing details see kernel-base/COPYING
  11. */
  12. #include <linux/perf_counter.h>
  13. #include <linux/capability.h>
  14. #include <linux/notifier.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/kprobes.h>
  17. #include <linux/module.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/sched.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/apic.h>
  22. #include <asm/stacktrace.h>
  23. #include <asm/nmi.h>
  24. static u64 perf_counter_mask __read_mostly;
  25. struct cpu_hw_counters {
  26. struct perf_counter *counters[X86_PMC_IDX_MAX];
  27. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  28. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  29. unsigned long interrupts;
  30. int enabled;
  31. };
  32. /*
  33. * struct x86_pmu - generic x86 pmu
  34. */
  35. struct x86_pmu {
  36. const char *name;
  37. int version;
  38. int (*handle_irq)(struct pt_regs *, int);
  39. void (*disable_all)(void);
  40. void (*enable_all)(void);
  41. void (*enable)(struct hw_perf_counter *, int);
  42. void (*disable)(struct hw_perf_counter *, int);
  43. unsigned eventsel;
  44. unsigned perfctr;
  45. u64 (*event_map)(int);
  46. u64 (*raw_event)(u64);
  47. int max_events;
  48. int num_counters;
  49. int num_counters_fixed;
  50. int counter_bits;
  51. u64 counter_mask;
  52. u64 max_period;
  53. u64 intel_ctrl;
  54. };
  55. static struct x86_pmu x86_pmu __read_mostly;
  56. static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
  57. .enabled = 1,
  58. };
  59. /*
  60. * Intel PerfMon v3. Used on Core2 and later.
  61. */
  62. static const u64 intel_perfmon_event_map[] =
  63. {
  64. [PERF_COUNT_CPU_CYCLES] = 0x003c,
  65. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  66. [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
  67. [PERF_COUNT_CACHE_MISSES] = 0x412e,
  68. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  69. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  70. [PERF_COUNT_BUS_CYCLES] = 0x013c,
  71. };
  72. static u64 intel_pmu_event_map(int event)
  73. {
  74. return intel_perfmon_event_map[event];
  75. }
  76. static u64 intel_pmu_raw_event(u64 event)
  77. {
  78. #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
  79. #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
  80. #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
  81. #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
  82. #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
  83. #define CORE_EVNTSEL_MASK \
  84. (CORE_EVNTSEL_EVENT_MASK | \
  85. CORE_EVNTSEL_UNIT_MASK | \
  86. CORE_EVNTSEL_EDGE_MASK | \
  87. CORE_EVNTSEL_INV_MASK | \
  88. CORE_EVNTSEL_COUNTER_MASK)
  89. return event & CORE_EVNTSEL_MASK;
  90. }
  91. /*
  92. * AMD Performance Monitor K7 and later.
  93. */
  94. static const u64 amd_perfmon_event_map[] =
  95. {
  96. [PERF_COUNT_CPU_CYCLES] = 0x0076,
  97. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  98. [PERF_COUNT_CACHE_REFERENCES] = 0x0080,
  99. [PERF_COUNT_CACHE_MISSES] = 0x0081,
  100. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  101. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  102. };
  103. static u64 amd_pmu_event_map(int event)
  104. {
  105. return amd_perfmon_event_map[event];
  106. }
  107. static u64 amd_pmu_raw_event(u64 event)
  108. {
  109. #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
  110. #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
  111. #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
  112. #define K7_EVNTSEL_INV_MASK 0x000800000ULL
  113. #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
  114. #define K7_EVNTSEL_MASK \
  115. (K7_EVNTSEL_EVENT_MASK | \
  116. K7_EVNTSEL_UNIT_MASK | \
  117. K7_EVNTSEL_EDGE_MASK | \
  118. K7_EVNTSEL_INV_MASK | \
  119. K7_EVNTSEL_COUNTER_MASK)
  120. return event & K7_EVNTSEL_MASK;
  121. }
  122. /*
  123. * Propagate counter elapsed time into the generic counter.
  124. * Can only be executed on the CPU where the counter is active.
  125. * Returns the delta events processed.
  126. */
  127. static u64
  128. x86_perf_counter_update(struct perf_counter *counter,
  129. struct hw_perf_counter *hwc, int idx)
  130. {
  131. int shift = 64 - x86_pmu.counter_bits;
  132. u64 prev_raw_count, new_raw_count;
  133. s64 delta;
  134. /*
  135. * Careful: an NMI might modify the previous counter value.
  136. *
  137. * Our tactic to handle this is to first atomically read and
  138. * exchange a new raw count - then add that new-prev delta
  139. * count to the generic counter atomically:
  140. */
  141. again:
  142. prev_raw_count = atomic64_read(&hwc->prev_count);
  143. rdmsrl(hwc->counter_base + idx, new_raw_count);
  144. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  145. new_raw_count) != prev_raw_count)
  146. goto again;
  147. /*
  148. * Now we have the new raw value and have updated the prev
  149. * timestamp already. We can now calculate the elapsed delta
  150. * (counter-)time and add that to the generic counter.
  151. *
  152. * Careful, not all hw sign-extends above the physical width
  153. * of the count.
  154. */
  155. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  156. delta >>= shift;
  157. atomic64_add(delta, &counter->count);
  158. atomic64_sub(delta, &hwc->period_left);
  159. return new_raw_count;
  160. }
  161. static atomic_t active_counters;
  162. static DEFINE_MUTEX(pmc_reserve_mutex);
  163. static bool reserve_pmc_hardware(void)
  164. {
  165. int i;
  166. if (nmi_watchdog == NMI_LOCAL_APIC)
  167. disable_lapic_nmi_watchdog();
  168. for (i = 0; i < x86_pmu.num_counters; i++) {
  169. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  170. goto perfctr_fail;
  171. }
  172. for (i = 0; i < x86_pmu.num_counters; i++) {
  173. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  174. goto eventsel_fail;
  175. }
  176. return true;
  177. eventsel_fail:
  178. for (i--; i >= 0; i--)
  179. release_evntsel_nmi(x86_pmu.eventsel + i);
  180. i = x86_pmu.num_counters;
  181. perfctr_fail:
  182. for (i--; i >= 0; i--)
  183. release_perfctr_nmi(x86_pmu.perfctr + i);
  184. if (nmi_watchdog == NMI_LOCAL_APIC)
  185. enable_lapic_nmi_watchdog();
  186. return false;
  187. }
  188. static void release_pmc_hardware(void)
  189. {
  190. int i;
  191. for (i = 0; i < x86_pmu.num_counters; i++) {
  192. release_perfctr_nmi(x86_pmu.perfctr + i);
  193. release_evntsel_nmi(x86_pmu.eventsel + i);
  194. }
  195. if (nmi_watchdog == NMI_LOCAL_APIC)
  196. enable_lapic_nmi_watchdog();
  197. }
  198. static void hw_perf_counter_destroy(struct perf_counter *counter)
  199. {
  200. if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
  201. release_pmc_hardware();
  202. mutex_unlock(&pmc_reserve_mutex);
  203. }
  204. }
  205. static inline int x86_pmu_initialized(void)
  206. {
  207. return x86_pmu.handle_irq != NULL;
  208. }
  209. /*
  210. * Setup the hardware configuration for a given hw_event_type
  211. */
  212. static int __hw_perf_counter_init(struct perf_counter *counter)
  213. {
  214. struct perf_counter_hw_event *hw_event = &counter->hw_event;
  215. struct hw_perf_counter *hwc = &counter->hw;
  216. int err;
  217. if (!x86_pmu_initialized())
  218. return -ENODEV;
  219. err = 0;
  220. if (!atomic_inc_not_zero(&active_counters)) {
  221. mutex_lock(&pmc_reserve_mutex);
  222. if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
  223. err = -EBUSY;
  224. else
  225. atomic_inc(&active_counters);
  226. mutex_unlock(&pmc_reserve_mutex);
  227. }
  228. if (err)
  229. return err;
  230. /*
  231. * Generate PMC IRQs:
  232. * (keep 'enabled' bit clear for now)
  233. */
  234. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  235. /*
  236. * Count user and OS events unless requested not to.
  237. */
  238. if (!hw_event->exclude_user)
  239. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  240. if (!hw_event->exclude_kernel)
  241. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  242. /*
  243. * If privileged enough, allow NMI events:
  244. */
  245. hwc->nmi = 0;
  246. if (hw_event->nmi) {
  247. if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
  248. return -EACCES;
  249. hwc->nmi = 1;
  250. }
  251. perf_counters_lapic_init(hwc->nmi);
  252. if (!hwc->irq_period)
  253. hwc->irq_period = x86_pmu.max_period;
  254. atomic64_set(&hwc->period_left,
  255. min(x86_pmu.max_period, hwc->irq_period));
  256. /*
  257. * Raw event type provide the config in the event structure
  258. */
  259. if (perf_event_raw(hw_event)) {
  260. hwc->config |= x86_pmu.raw_event(perf_event_config(hw_event));
  261. } else {
  262. if (perf_event_id(hw_event) >= x86_pmu.max_events)
  263. return -EINVAL;
  264. /*
  265. * The generic map:
  266. */
  267. hwc->config |= x86_pmu.event_map(perf_event_id(hw_event));
  268. }
  269. counter->destroy = hw_perf_counter_destroy;
  270. return 0;
  271. }
  272. static void intel_pmu_disable_all(void)
  273. {
  274. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  275. }
  276. static void amd_pmu_disable_all(void)
  277. {
  278. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  279. int idx;
  280. if (!cpuc->enabled)
  281. return;
  282. cpuc->enabled = 0;
  283. /*
  284. * ensure we write the disable before we start disabling the
  285. * counters proper, so that amd_pmu_enable_counter() does the
  286. * right thing.
  287. */
  288. barrier();
  289. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  290. u64 val;
  291. if (!test_bit(idx, cpuc->active_mask))
  292. continue;
  293. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  294. if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
  295. continue;
  296. val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
  297. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  298. }
  299. }
  300. void hw_perf_disable(void)
  301. {
  302. if (!x86_pmu_initialized())
  303. return;
  304. return x86_pmu.disable_all();
  305. }
  306. static void intel_pmu_enable_all(void)
  307. {
  308. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  309. }
  310. static void amd_pmu_enable_all(void)
  311. {
  312. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  313. int idx;
  314. if (cpuc->enabled)
  315. return;
  316. cpuc->enabled = 1;
  317. barrier();
  318. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  319. u64 val;
  320. if (!test_bit(idx, cpuc->active_mask))
  321. continue;
  322. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  323. if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
  324. continue;
  325. val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
  326. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  327. }
  328. }
  329. void hw_perf_enable(void)
  330. {
  331. if (!x86_pmu_initialized())
  332. return;
  333. x86_pmu.enable_all();
  334. }
  335. static inline u64 intel_pmu_get_status(void)
  336. {
  337. u64 status;
  338. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  339. return status;
  340. }
  341. static inline void intel_pmu_ack_status(u64 ack)
  342. {
  343. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  344. }
  345. static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  346. {
  347. int err;
  348. err = checking_wrmsrl(hwc->config_base + idx,
  349. hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
  350. }
  351. static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  352. {
  353. int err;
  354. err = checking_wrmsrl(hwc->config_base + idx,
  355. hwc->config);
  356. }
  357. static inline void
  358. intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
  359. {
  360. int idx = __idx - X86_PMC_IDX_FIXED;
  361. u64 ctrl_val, mask;
  362. int err;
  363. mask = 0xfULL << (idx * 4);
  364. rdmsrl(hwc->config_base, ctrl_val);
  365. ctrl_val &= ~mask;
  366. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  367. }
  368. static inline void
  369. intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  370. {
  371. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  372. intel_pmu_disable_fixed(hwc, idx);
  373. return;
  374. }
  375. x86_pmu_disable_counter(hwc, idx);
  376. }
  377. static inline void
  378. amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  379. {
  380. x86_pmu_disable_counter(hwc, idx);
  381. }
  382. static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
  383. /*
  384. * Set the next IRQ period, based on the hwc->period_left value.
  385. * To be called with the counter disabled in hw:
  386. */
  387. static void
  388. x86_perf_counter_set_period(struct perf_counter *counter,
  389. struct hw_perf_counter *hwc, int idx)
  390. {
  391. s64 left = atomic64_read(&hwc->period_left);
  392. s64 period = min(x86_pmu.max_period, hwc->irq_period);
  393. int err;
  394. /*
  395. * If we are way outside a reasoable range then just skip forward:
  396. */
  397. if (unlikely(left <= -period)) {
  398. left = period;
  399. atomic64_set(&hwc->period_left, left);
  400. }
  401. if (unlikely(left <= 0)) {
  402. left += period;
  403. atomic64_set(&hwc->period_left, left);
  404. }
  405. /*
  406. * Quirk: certain CPUs dont like it if just 1 event is left:
  407. */
  408. if (unlikely(left < 2))
  409. left = 2;
  410. per_cpu(prev_left[idx], smp_processor_id()) = left;
  411. /*
  412. * The hw counter starts counting from this counter offset,
  413. * mark it to be able to extra future deltas:
  414. */
  415. atomic64_set(&hwc->prev_count, (u64)-left);
  416. err = checking_wrmsrl(hwc->counter_base + idx,
  417. (u64)(-left) & x86_pmu.counter_mask);
  418. }
  419. static inline void
  420. intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
  421. {
  422. int idx = __idx - X86_PMC_IDX_FIXED;
  423. u64 ctrl_val, bits, mask;
  424. int err;
  425. /*
  426. * Enable IRQ generation (0x8),
  427. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  428. * if requested:
  429. */
  430. bits = 0x8ULL;
  431. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  432. bits |= 0x2;
  433. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  434. bits |= 0x1;
  435. bits <<= (idx * 4);
  436. mask = 0xfULL << (idx * 4);
  437. rdmsrl(hwc->config_base, ctrl_val);
  438. ctrl_val &= ~mask;
  439. ctrl_val |= bits;
  440. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  441. }
  442. static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  443. {
  444. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  445. intel_pmu_enable_fixed(hwc, idx);
  446. return;
  447. }
  448. x86_pmu_enable_counter(hwc, idx);
  449. }
  450. static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  451. {
  452. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  453. if (cpuc->enabled)
  454. x86_pmu_enable_counter(hwc, idx);
  455. else
  456. x86_pmu_disable_counter(hwc, idx);
  457. }
  458. static int
  459. fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
  460. {
  461. unsigned int event;
  462. if (!x86_pmu.num_counters_fixed)
  463. return -1;
  464. if (unlikely(hwc->nmi))
  465. return -1;
  466. event = hwc->config & ARCH_PERFMON_EVENT_MASK;
  467. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
  468. return X86_PMC_IDX_FIXED_INSTRUCTIONS;
  469. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
  470. return X86_PMC_IDX_FIXED_CPU_CYCLES;
  471. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
  472. return X86_PMC_IDX_FIXED_BUS_CYCLES;
  473. return -1;
  474. }
  475. /*
  476. * Find a PMC slot for the freshly enabled / scheduled in counter:
  477. */
  478. static int x86_pmu_enable(struct perf_counter *counter)
  479. {
  480. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  481. struct hw_perf_counter *hwc = &counter->hw;
  482. int idx;
  483. idx = fixed_mode_idx(counter, hwc);
  484. if (idx >= 0) {
  485. /*
  486. * Try to get the fixed counter, if that is already taken
  487. * then try to get a generic counter:
  488. */
  489. if (test_and_set_bit(idx, cpuc->used_mask))
  490. goto try_generic;
  491. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  492. /*
  493. * We set it so that counter_base + idx in wrmsr/rdmsr maps to
  494. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  495. */
  496. hwc->counter_base =
  497. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  498. hwc->idx = idx;
  499. } else {
  500. idx = hwc->idx;
  501. /* Try to get the previous generic counter again */
  502. if (test_and_set_bit(idx, cpuc->used_mask)) {
  503. try_generic:
  504. idx = find_first_zero_bit(cpuc->used_mask,
  505. x86_pmu.num_counters);
  506. if (idx == x86_pmu.num_counters)
  507. return -EAGAIN;
  508. set_bit(idx, cpuc->used_mask);
  509. hwc->idx = idx;
  510. }
  511. hwc->config_base = x86_pmu.eventsel;
  512. hwc->counter_base = x86_pmu.perfctr;
  513. }
  514. x86_pmu.disable(hwc, idx);
  515. cpuc->counters[idx] = counter;
  516. set_bit(idx, cpuc->active_mask);
  517. x86_perf_counter_set_period(counter, hwc, idx);
  518. x86_pmu.enable(hwc, idx);
  519. return 0;
  520. }
  521. static void x86_pmu_unthrottle(struct perf_counter *counter)
  522. {
  523. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  524. struct hw_perf_counter *hwc = &counter->hw;
  525. if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
  526. cpuc->counters[hwc->idx] != counter))
  527. return;
  528. x86_pmu.enable(hwc, hwc->idx);
  529. }
  530. void perf_counter_print_debug(void)
  531. {
  532. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  533. struct cpu_hw_counters *cpuc;
  534. unsigned long flags;
  535. int cpu, idx;
  536. if (!x86_pmu.num_counters)
  537. return;
  538. local_irq_save(flags);
  539. cpu = smp_processor_id();
  540. cpuc = &per_cpu(cpu_hw_counters, cpu);
  541. if (x86_pmu.version >= 2) {
  542. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  543. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  544. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  545. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  546. pr_info("\n");
  547. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  548. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  549. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  550. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  551. }
  552. pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
  553. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  554. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  555. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  556. prev_left = per_cpu(prev_left[idx], cpu);
  557. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  558. cpu, idx, pmc_ctrl);
  559. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  560. cpu, idx, pmc_count);
  561. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  562. cpu, idx, prev_left);
  563. }
  564. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  565. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  566. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  567. cpu, idx, pmc_count);
  568. }
  569. local_irq_restore(flags);
  570. }
  571. static void x86_pmu_disable(struct perf_counter *counter)
  572. {
  573. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  574. struct hw_perf_counter *hwc = &counter->hw;
  575. int idx = hwc->idx;
  576. /*
  577. * Must be done before we disable, otherwise the nmi handler
  578. * could reenable again:
  579. */
  580. clear_bit(idx, cpuc->active_mask);
  581. x86_pmu.disable(hwc, idx);
  582. /*
  583. * Make sure the cleared pointer becomes visible before we
  584. * (potentially) free the counter:
  585. */
  586. barrier();
  587. /*
  588. * Drain the remaining delta count out of a counter
  589. * that we are disabling:
  590. */
  591. x86_perf_counter_update(counter, hwc, idx);
  592. cpuc->counters[idx] = NULL;
  593. clear_bit(idx, cpuc->used_mask);
  594. }
  595. /*
  596. * Save and restart an expired counter. Called by NMI contexts,
  597. * so it has to be careful about preempting normal counter ops:
  598. */
  599. static void intel_pmu_save_and_restart(struct perf_counter *counter)
  600. {
  601. struct hw_perf_counter *hwc = &counter->hw;
  602. int idx = hwc->idx;
  603. x86_perf_counter_update(counter, hwc, idx);
  604. x86_perf_counter_set_period(counter, hwc, idx);
  605. if (counter->state == PERF_COUNTER_STATE_ACTIVE)
  606. intel_pmu_enable_counter(hwc, idx);
  607. }
  608. /*
  609. * This handler is triggered by the local APIC, so the APIC IRQ handling
  610. * rules apply:
  611. */
  612. static int intel_pmu_handle_irq(struct pt_regs *regs, int nmi)
  613. {
  614. struct cpu_hw_counters *cpuc;
  615. struct cpu_hw_counters;
  616. int bit, cpu, loops;
  617. u64 ack, status;
  618. cpu = smp_processor_id();
  619. cpuc = &per_cpu(cpu_hw_counters, cpu);
  620. perf_disable();
  621. status = intel_pmu_get_status();
  622. if (!status) {
  623. perf_enable();
  624. return 0;
  625. }
  626. loops = 0;
  627. again:
  628. if (++loops > 100) {
  629. WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
  630. perf_counter_print_debug();
  631. return 1;
  632. }
  633. inc_irq_stat(apic_perf_irqs);
  634. ack = status;
  635. for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  636. struct perf_counter *counter = cpuc->counters[bit];
  637. clear_bit(bit, (unsigned long *) &status);
  638. if (!test_bit(bit, cpuc->active_mask))
  639. continue;
  640. intel_pmu_save_and_restart(counter);
  641. if (perf_counter_overflow(counter, nmi, regs, 0))
  642. intel_pmu_disable_counter(&counter->hw, bit);
  643. }
  644. intel_pmu_ack_status(ack);
  645. /*
  646. * Repeat if there is more work to be done:
  647. */
  648. status = intel_pmu_get_status();
  649. if (status)
  650. goto again;
  651. perf_enable();
  652. return 1;
  653. }
  654. static int amd_pmu_handle_irq(struct pt_regs *regs, int nmi)
  655. {
  656. int cpu, idx, handled = 0;
  657. struct cpu_hw_counters *cpuc;
  658. struct perf_counter *counter;
  659. struct hw_perf_counter *hwc;
  660. u64 val;
  661. cpu = smp_processor_id();
  662. cpuc = &per_cpu(cpu_hw_counters, cpu);
  663. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  664. if (!test_bit(idx, cpuc->active_mask))
  665. continue;
  666. counter = cpuc->counters[idx];
  667. hwc = &counter->hw;
  668. if (counter->hw_event.nmi != nmi)
  669. continue;
  670. val = x86_perf_counter_update(counter, hwc, idx);
  671. if (val & (1ULL << (x86_pmu.counter_bits - 1)))
  672. continue;
  673. /* counter overflow */
  674. x86_perf_counter_set_period(counter, hwc, idx);
  675. handled = 1;
  676. inc_irq_stat(apic_perf_irqs);
  677. if (perf_counter_overflow(counter, nmi, regs, 0))
  678. amd_pmu_disable_counter(hwc, idx);
  679. }
  680. return handled;
  681. }
  682. void smp_perf_counter_interrupt(struct pt_regs *regs)
  683. {
  684. irq_enter();
  685. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  686. ack_APIC_irq();
  687. x86_pmu.handle_irq(regs, 0);
  688. irq_exit();
  689. }
  690. void smp_perf_pending_interrupt(struct pt_regs *regs)
  691. {
  692. irq_enter();
  693. ack_APIC_irq();
  694. inc_irq_stat(apic_pending_irqs);
  695. perf_counter_do_pending();
  696. irq_exit();
  697. }
  698. void set_perf_counter_pending(void)
  699. {
  700. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  701. }
  702. void perf_counters_lapic_init(int nmi)
  703. {
  704. u32 apic_val;
  705. if (!x86_pmu_initialized())
  706. return;
  707. /*
  708. * Enable the performance counter vector in the APIC LVT:
  709. */
  710. apic_val = apic_read(APIC_LVTERR);
  711. apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED);
  712. if (nmi)
  713. apic_write(APIC_LVTPC, APIC_DM_NMI);
  714. else
  715. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  716. apic_write(APIC_LVTERR, apic_val);
  717. }
  718. static int __kprobes
  719. perf_counter_nmi_handler(struct notifier_block *self,
  720. unsigned long cmd, void *__args)
  721. {
  722. struct die_args *args = __args;
  723. struct pt_regs *regs;
  724. if (!atomic_read(&active_counters))
  725. return NOTIFY_DONE;
  726. switch (cmd) {
  727. case DIE_NMI:
  728. case DIE_NMI_IPI:
  729. break;
  730. default:
  731. return NOTIFY_DONE;
  732. }
  733. regs = args->regs;
  734. apic_write(APIC_LVTPC, APIC_DM_NMI);
  735. /*
  736. * Can't rely on the handled return value to say it was our NMI, two
  737. * counters could trigger 'simultaneously' raising two back-to-back NMIs.
  738. *
  739. * If the first NMI handles both, the latter will be empty and daze
  740. * the CPU.
  741. */
  742. x86_pmu.handle_irq(regs, 1);
  743. return NOTIFY_STOP;
  744. }
  745. static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
  746. .notifier_call = perf_counter_nmi_handler,
  747. .next = NULL,
  748. .priority = 1
  749. };
  750. static struct x86_pmu intel_pmu = {
  751. .name = "Intel",
  752. .handle_irq = intel_pmu_handle_irq,
  753. .disable_all = intel_pmu_disable_all,
  754. .enable_all = intel_pmu_enable_all,
  755. .enable = intel_pmu_enable_counter,
  756. .disable = intel_pmu_disable_counter,
  757. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  758. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  759. .event_map = intel_pmu_event_map,
  760. .raw_event = intel_pmu_raw_event,
  761. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  762. /*
  763. * Intel PMCs cannot be accessed sanely above 32 bit width,
  764. * so we install an artificial 1<<31 period regardless of
  765. * the generic counter period:
  766. */
  767. .max_period = (1ULL << 31) - 1,
  768. };
  769. static struct x86_pmu amd_pmu = {
  770. .name = "AMD",
  771. .handle_irq = amd_pmu_handle_irq,
  772. .disable_all = amd_pmu_disable_all,
  773. .enable_all = amd_pmu_enable_all,
  774. .enable = amd_pmu_enable_counter,
  775. .disable = amd_pmu_disable_counter,
  776. .eventsel = MSR_K7_EVNTSEL0,
  777. .perfctr = MSR_K7_PERFCTR0,
  778. .event_map = amd_pmu_event_map,
  779. .raw_event = amd_pmu_raw_event,
  780. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  781. .num_counters = 4,
  782. .counter_bits = 48,
  783. .counter_mask = (1ULL << 48) - 1,
  784. /* use highest bit to detect overflow */
  785. .max_period = (1ULL << 47) - 1,
  786. };
  787. static int intel_pmu_init(void)
  788. {
  789. union cpuid10_edx edx;
  790. union cpuid10_eax eax;
  791. unsigned int unused;
  792. unsigned int ebx;
  793. int version;
  794. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
  795. return -ENODEV;
  796. /*
  797. * Check whether the Architectural PerfMon supports
  798. * Branch Misses Retired Event or not.
  799. */
  800. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  801. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  802. return -ENODEV;
  803. version = eax.split.version_id;
  804. if (version < 2)
  805. return -ENODEV;
  806. x86_pmu = intel_pmu;
  807. x86_pmu.version = version;
  808. x86_pmu.num_counters = eax.split.num_counters;
  809. /*
  810. * Quirk: v2 perfmon does not report fixed-purpose counters, so
  811. * assume at least 3 counters:
  812. */
  813. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  814. x86_pmu.counter_bits = eax.split.bit_width;
  815. x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
  816. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  817. return 0;
  818. }
  819. static int amd_pmu_init(void)
  820. {
  821. x86_pmu = amd_pmu;
  822. return 0;
  823. }
  824. void __init init_hw_perf_counters(void)
  825. {
  826. int err;
  827. switch (boot_cpu_data.x86_vendor) {
  828. case X86_VENDOR_INTEL:
  829. err = intel_pmu_init();
  830. break;
  831. case X86_VENDOR_AMD:
  832. err = amd_pmu_init();
  833. break;
  834. default:
  835. return;
  836. }
  837. if (err != 0)
  838. return;
  839. pr_info("%s Performance Monitoring support detected.\n", x86_pmu.name);
  840. pr_info("... version: %d\n", x86_pmu.version);
  841. pr_info("... bit width: %d\n", x86_pmu.counter_bits);
  842. pr_info("... num counters: %d\n", x86_pmu.num_counters);
  843. if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
  844. x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
  845. WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
  846. x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
  847. }
  848. perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
  849. perf_max_counters = x86_pmu.num_counters;
  850. pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
  851. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  852. if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
  853. x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
  854. WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
  855. x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
  856. }
  857. pr_info("... fixed counters: %d\n", x86_pmu.num_counters_fixed);
  858. perf_counter_mask |=
  859. ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
  860. pr_info("... counter mask: %016Lx\n", perf_counter_mask);
  861. perf_counters_lapic_init(1);
  862. register_die_notifier(&perf_counter_nmi_notifier);
  863. }
  864. static inline void x86_pmu_read(struct perf_counter *counter)
  865. {
  866. x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
  867. }
  868. static const struct pmu pmu = {
  869. .enable = x86_pmu_enable,
  870. .disable = x86_pmu_disable,
  871. .read = x86_pmu_read,
  872. .unthrottle = x86_pmu_unthrottle,
  873. };
  874. const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
  875. {
  876. int err;
  877. err = __hw_perf_counter_init(counter);
  878. if (err)
  879. return ERR_PTR(err);
  880. return &pmu;
  881. }
  882. /*
  883. * callchain support
  884. */
  885. static inline
  886. void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
  887. {
  888. if (entry->nr < MAX_STACK_DEPTH)
  889. entry->ip[entry->nr++] = ip;
  890. }
  891. static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
  892. static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
  893. static void
  894. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  895. {
  896. /* Ignore warnings */
  897. }
  898. static void backtrace_warning(void *data, char *msg)
  899. {
  900. /* Ignore warnings */
  901. }
  902. static int backtrace_stack(void *data, char *name)
  903. {
  904. /* Don't bother with IRQ stacks for now */
  905. return -1;
  906. }
  907. static void backtrace_address(void *data, unsigned long addr, int reliable)
  908. {
  909. struct perf_callchain_entry *entry = data;
  910. if (reliable)
  911. callchain_store(entry, addr);
  912. }
  913. static const struct stacktrace_ops backtrace_ops = {
  914. .warning = backtrace_warning,
  915. .warning_symbol = backtrace_warning_symbol,
  916. .stack = backtrace_stack,
  917. .address = backtrace_address,
  918. };
  919. static void
  920. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  921. {
  922. unsigned long bp;
  923. char *stack;
  924. int nr = entry->nr;
  925. callchain_store(entry, instruction_pointer(regs));
  926. stack = ((char *)regs + sizeof(struct pt_regs));
  927. #ifdef CONFIG_FRAME_POINTER
  928. bp = frame_pointer(regs);
  929. #else
  930. bp = 0;
  931. #endif
  932. dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
  933. entry->kernel = entry->nr - nr;
  934. }
  935. struct stack_frame {
  936. const void __user *next_fp;
  937. unsigned long return_address;
  938. };
  939. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  940. {
  941. int ret;
  942. if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
  943. return 0;
  944. ret = 1;
  945. pagefault_disable();
  946. if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
  947. ret = 0;
  948. pagefault_enable();
  949. return ret;
  950. }
  951. static void
  952. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  953. {
  954. struct stack_frame frame;
  955. const void __user *fp;
  956. int nr = entry->nr;
  957. regs = (struct pt_regs *)current->thread.sp0 - 1;
  958. fp = (void __user *)regs->bp;
  959. callchain_store(entry, regs->ip);
  960. while (entry->nr < MAX_STACK_DEPTH) {
  961. frame.next_fp = NULL;
  962. frame.return_address = 0;
  963. if (!copy_stack_frame(fp, &frame))
  964. break;
  965. if ((unsigned long)fp < user_stack_pointer(regs))
  966. break;
  967. callchain_store(entry, frame.return_address);
  968. fp = frame.next_fp;
  969. }
  970. entry->user = entry->nr - nr;
  971. }
  972. static void
  973. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  974. {
  975. int is_user;
  976. if (!regs)
  977. return;
  978. is_user = user_mode(regs);
  979. if (!current || current->pid == 0)
  980. return;
  981. if (is_user && current->state != TASK_RUNNING)
  982. return;
  983. if (!is_user)
  984. perf_callchain_kernel(regs, entry);
  985. if (current->mm)
  986. perf_callchain_user(regs, entry);
  987. }
  988. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  989. {
  990. struct perf_callchain_entry *entry;
  991. if (in_nmi())
  992. entry = &__get_cpu_var(nmi_entry);
  993. else
  994. entry = &__get_cpu_var(irq_entry);
  995. entry->nr = 0;
  996. entry->hv = 0;
  997. entry->kernel = 0;
  998. entry->user = 0;
  999. perf_do_callchain(regs, entry);
  1000. return entry;
  1001. }