mmu.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <linux/swap.h>
  27. #include <linux/hugetlb.h>
  28. #include <linux/compiler.h>
  29. #include <asm/page.h>
  30. #include <asm/cmpxchg.h>
  31. #include <asm/io.h>
  32. #include <asm/vmx.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. static int oos_shadow = 1;
  60. module_param(oos_shadow, bool, 0644);
  61. #ifndef MMU_DEBUG
  62. #define ASSERT(x) do { } while (0)
  63. #else
  64. #define ASSERT(x) \
  65. if (!(x)) { \
  66. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  67. __FILE__, __LINE__, #x); \
  68. }
  69. #endif
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  73. #define PT64_LEVEL_BITS 9
  74. #define PT64_LEVEL_SHIFT(level) \
  75. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  76. #define PT64_LEVEL_MASK(level) \
  77. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  78. #define PT64_INDEX(address, level)\
  79. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  80. #define PT32_LEVEL_BITS 10
  81. #define PT32_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  83. #define PT32_LEVEL_MASK(level) \
  84. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  85. #define PT32_INDEX(address, level)\
  86. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  87. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  88. #define PT64_DIR_BASE_ADDR_MASK \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  90. #define PT32_BASE_ADDR_MASK PAGE_MASK
  91. #define PT32_DIR_BASE_ADDR_MASK \
  92. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  93. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  94. | PT64_NX_MASK)
  95. #define PFERR_PRESENT_MASK (1U << 0)
  96. #define PFERR_WRITE_MASK (1U << 1)
  97. #define PFERR_USER_MASK (1U << 2)
  98. #define PFERR_FETCH_MASK (1U << 4)
  99. #define PT_DIRECTORY_LEVEL 2
  100. #define PT_PAGE_TABLE_LEVEL 1
  101. #define RMAP_EXT 4
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  107. struct kvm_rmap_desc {
  108. u64 *shadow_ptes[RMAP_EXT];
  109. struct kvm_rmap_desc *more;
  110. };
  111. struct kvm_shadow_walk {
  112. int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
  113. u64 addr, u64 *spte, int level);
  114. };
  115. struct kvm_unsync_walk {
  116. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  117. };
  118. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  119. static struct kmem_cache *pte_chain_cache;
  120. static struct kmem_cache *rmap_desc_cache;
  121. static struct kmem_cache *mmu_page_header_cache;
  122. static u64 __read_mostly shadow_trap_nonpresent_pte;
  123. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  124. static u64 __read_mostly shadow_base_present_pte;
  125. static u64 __read_mostly shadow_nx_mask;
  126. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  127. static u64 __read_mostly shadow_user_mask;
  128. static u64 __read_mostly shadow_accessed_mask;
  129. static u64 __read_mostly shadow_dirty_mask;
  130. static u64 __read_mostly shadow_mt_mask;
  131. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  132. {
  133. shadow_trap_nonpresent_pte = trap_pte;
  134. shadow_notrap_nonpresent_pte = notrap_pte;
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  137. void kvm_mmu_set_base_ptes(u64 base_pte)
  138. {
  139. shadow_base_present_pte = base_pte;
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  142. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  143. u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
  144. {
  145. shadow_user_mask = user_mask;
  146. shadow_accessed_mask = accessed_mask;
  147. shadow_dirty_mask = dirty_mask;
  148. shadow_nx_mask = nx_mask;
  149. shadow_x_mask = x_mask;
  150. shadow_mt_mask = mt_mask;
  151. }
  152. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  153. static int is_write_protection(struct kvm_vcpu *vcpu)
  154. {
  155. return vcpu->arch.cr0 & X86_CR0_WP;
  156. }
  157. static int is_cpuid_PSE36(void)
  158. {
  159. return 1;
  160. }
  161. static int is_nx(struct kvm_vcpu *vcpu)
  162. {
  163. return vcpu->arch.shadow_efer & EFER_NX;
  164. }
  165. static int is_present_pte(unsigned long pte)
  166. {
  167. return pte & PT_PRESENT_MASK;
  168. }
  169. static int is_shadow_present_pte(u64 pte)
  170. {
  171. return pte != shadow_trap_nonpresent_pte
  172. && pte != shadow_notrap_nonpresent_pte;
  173. }
  174. static int is_large_pte(u64 pte)
  175. {
  176. return pte & PT_PAGE_SIZE_MASK;
  177. }
  178. static int is_writeble_pte(unsigned long pte)
  179. {
  180. return pte & PT_WRITABLE_MASK;
  181. }
  182. static int is_dirty_pte(unsigned long pte)
  183. {
  184. return pte & shadow_dirty_mask;
  185. }
  186. static int is_rmap_pte(u64 pte)
  187. {
  188. return is_shadow_present_pte(pte);
  189. }
  190. static pfn_t spte_to_pfn(u64 pte)
  191. {
  192. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  193. }
  194. static gfn_t pse36_gfn_delta(u32 gpte)
  195. {
  196. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  197. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  198. }
  199. static void set_shadow_pte(u64 *sptep, u64 spte)
  200. {
  201. #ifdef CONFIG_X86_64
  202. set_64bit((unsigned long *)sptep, spte);
  203. #else
  204. set_64bit((unsigned long long *)sptep, spte);
  205. #endif
  206. }
  207. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  208. struct kmem_cache *base_cache, int min)
  209. {
  210. void *obj;
  211. if (cache->nobjs >= min)
  212. return 0;
  213. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  214. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  215. if (!obj)
  216. return -ENOMEM;
  217. cache->objects[cache->nobjs++] = obj;
  218. }
  219. return 0;
  220. }
  221. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  222. {
  223. while (mc->nobjs)
  224. kfree(mc->objects[--mc->nobjs]);
  225. }
  226. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  227. int min)
  228. {
  229. struct page *page;
  230. if (cache->nobjs >= min)
  231. return 0;
  232. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  233. page = alloc_page(GFP_KERNEL);
  234. if (!page)
  235. return -ENOMEM;
  236. set_page_private(page, 0);
  237. cache->objects[cache->nobjs++] = page_address(page);
  238. }
  239. return 0;
  240. }
  241. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  242. {
  243. while (mc->nobjs)
  244. free_page((unsigned long)mc->objects[--mc->nobjs]);
  245. }
  246. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  247. {
  248. int r;
  249. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  250. pte_chain_cache, 4);
  251. if (r)
  252. goto out;
  253. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  254. rmap_desc_cache, 4);
  255. if (r)
  256. goto out;
  257. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  258. if (r)
  259. goto out;
  260. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  261. mmu_page_header_cache, 4);
  262. out:
  263. return r;
  264. }
  265. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  266. {
  267. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  268. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  269. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  270. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  271. }
  272. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  273. size_t size)
  274. {
  275. void *p;
  276. BUG_ON(!mc->nobjs);
  277. p = mc->objects[--mc->nobjs];
  278. memset(p, 0, size);
  279. return p;
  280. }
  281. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  282. {
  283. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  284. sizeof(struct kvm_pte_chain));
  285. }
  286. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  287. {
  288. kfree(pc);
  289. }
  290. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  291. {
  292. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  293. sizeof(struct kvm_rmap_desc));
  294. }
  295. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  296. {
  297. kfree(rd);
  298. }
  299. /*
  300. * Return the pointer to the largepage write count for a given
  301. * gfn, handling slots that are not large page aligned.
  302. */
  303. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  304. {
  305. unsigned long idx;
  306. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  307. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  308. return &slot->lpage_info[idx].write_count;
  309. }
  310. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  311. {
  312. int *write_count;
  313. gfn = unalias_gfn(kvm, gfn);
  314. write_count = slot_largepage_idx(gfn,
  315. gfn_to_memslot_unaliased(kvm, gfn));
  316. *write_count += 1;
  317. }
  318. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  319. {
  320. int *write_count;
  321. gfn = unalias_gfn(kvm, gfn);
  322. write_count = slot_largepage_idx(gfn,
  323. gfn_to_memslot_unaliased(kvm, gfn));
  324. *write_count -= 1;
  325. WARN_ON(*write_count < 0);
  326. }
  327. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  328. {
  329. struct kvm_memory_slot *slot;
  330. int *largepage_idx;
  331. gfn = unalias_gfn(kvm, gfn);
  332. slot = gfn_to_memslot_unaliased(kvm, gfn);
  333. if (slot) {
  334. largepage_idx = slot_largepage_idx(gfn, slot);
  335. return *largepage_idx;
  336. }
  337. return 1;
  338. }
  339. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  340. {
  341. struct vm_area_struct *vma;
  342. unsigned long addr;
  343. int ret = 0;
  344. addr = gfn_to_hva(kvm, gfn);
  345. if (kvm_is_error_hva(addr))
  346. return ret;
  347. down_read(&current->mm->mmap_sem);
  348. vma = find_vma(current->mm, addr);
  349. if (vma && is_vm_hugetlb_page(vma))
  350. ret = 1;
  351. up_read(&current->mm->mmap_sem);
  352. return ret;
  353. }
  354. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  355. {
  356. struct kvm_memory_slot *slot;
  357. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  358. return 0;
  359. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  360. return 0;
  361. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  362. if (slot && slot->dirty_bitmap)
  363. return 0;
  364. return 1;
  365. }
  366. /*
  367. * Take gfn and return the reverse mapping to it.
  368. * Note: gfn must be unaliased before this function get called
  369. */
  370. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  371. {
  372. struct kvm_memory_slot *slot;
  373. unsigned long idx;
  374. slot = gfn_to_memslot(kvm, gfn);
  375. if (!lpage)
  376. return &slot->rmap[gfn - slot->base_gfn];
  377. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  378. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  379. return &slot->lpage_info[idx].rmap_pde;
  380. }
  381. /*
  382. * Reverse mapping data structures:
  383. *
  384. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  385. * that points to page_address(page).
  386. *
  387. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  388. * containing more mappings.
  389. */
  390. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  391. {
  392. struct kvm_mmu_page *sp;
  393. struct kvm_rmap_desc *desc;
  394. unsigned long *rmapp;
  395. int i;
  396. if (!is_rmap_pte(*spte))
  397. return;
  398. gfn = unalias_gfn(vcpu->kvm, gfn);
  399. sp = page_header(__pa(spte));
  400. sp->gfns[spte - sp->spt] = gfn;
  401. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  402. if (!*rmapp) {
  403. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  404. *rmapp = (unsigned long)spte;
  405. } else if (!(*rmapp & 1)) {
  406. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  407. desc = mmu_alloc_rmap_desc(vcpu);
  408. desc->shadow_ptes[0] = (u64 *)*rmapp;
  409. desc->shadow_ptes[1] = spte;
  410. *rmapp = (unsigned long)desc | 1;
  411. } else {
  412. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  413. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  414. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  415. desc = desc->more;
  416. if (desc->shadow_ptes[RMAP_EXT-1]) {
  417. desc->more = mmu_alloc_rmap_desc(vcpu);
  418. desc = desc->more;
  419. }
  420. for (i = 0; desc->shadow_ptes[i]; ++i)
  421. ;
  422. desc->shadow_ptes[i] = spte;
  423. }
  424. }
  425. static void rmap_desc_remove_entry(unsigned long *rmapp,
  426. struct kvm_rmap_desc *desc,
  427. int i,
  428. struct kvm_rmap_desc *prev_desc)
  429. {
  430. int j;
  431. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  432. ;
  433. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  434. desc->shadow_ptes[j] = NULL;
  435. if (j != 0)
  436. return;
  437. if (!prev_desc && !desc->more)
  438. *rmapp = (unsigned long)desc->shadow_ptes[0];
  439. else
  440. if (prev_desc)
  441. prev_desc->more = desc->more;
  442. else
  443. *rmapp = (unsigned long)desc->more | 1;
  444. mmu_free_rmap_desc(desc);
  445. }
  446. static void rmap_remove(struct kvm *kvm, u64 *spte)
  447. {
  448. struct kvm_rmap_desc *desc;
  449. struct kvm_rmap_desc *prev_desc;
  450. struct kvm_mmu_page *sp;
  451. pfn_t pfn;
  452. unsigned long *rmapp;
  453. int i;
  454. if (!is_rmap_pte(*spte))
  455. return;
  456. sp = page_header(__pa(spte));
  457. pfn = spte_to_pfn(*spte);
  458. if (*spte & shadow_accessed_mask)
  459. kvm_set_pfn_accessed(pfn);
  460. if (is_writeble_pte(*spte))
  461. kvm_release_pfn_dirty(pfn);
  462. else
  463. kvm_release_pfn_clean(pfn);
  464. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  465. if (!*rmapp) {
  466. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  467. BUG();
  468. } else if (!(*rmapp & 1)) {
  469. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  470. if ((u64 *)*rmapp != spte) {
  471. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  472. spte, *spte);
  473. BUG();
  474. }
  475. *rmapp = 0;
  476. } else {
  477. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  478. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  479. prev_desc = NULL;
  480. while (desc) {
  481. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  482. if (desc->shadow_ptes[i] == spte) {
  483. rmap_desc_remove_entry(rmapp,
  484. desc, i,
  485. prev_desc);
  486. return;
  487. }
  488. prev_desc = desc;
  489. desc = desc->more;
  490. }
  491. BUG();
  492. }
  493. }
  494. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  495. {
  496. struct kvm_rmap_desc *desc;
  497. struct kvm_rmap_desc *prev_desc;
  498. u64 *prev_spte;
  499. int i;
  500. if (!*rmapp)
  501. return NULL;
  502. else if (!(*rmapp & 1)) {
  503. if (!spte)
  504. return (u64 *)*rmapp;
  505. return NULL;
  506. }
  507. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  508. prev_desc = NULL;
  509. prev_spte = NULL;
  510. while (desc) {
  511. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  512. if (prev_spte == spte)
  513. return desc->shadow_ptes[i];
  514. prev_spte = desc->shadow_ptes[i];
  515. }
  516. desc = desc->more;
  517. }
  518. return NULL;
  519. }
  520. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  521. {
  522. unsigned long *rmapp;
  523. u64 *spte;
  524. int write_protected = 0;
  525. gfn = unalias_gfn(kvm, gfn);
  526. rmapp = gfn_to_rmap(kvm, gfn, 0);
  527. spte = rmap_next(kvm, rmapp, NULL);
  528. while (spte) {
  529. BUG_ON(!spte);
  530. BUG_ON(!(*spte & PT_PRESENT_MASK));
  531. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  532. if (is_writeble_pte(*spte)) {
  533. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  534. write_protected = 1;
  535. }
  536. spte = rmap_next(kvm, rmapp, spte);
  537. }
  538. if (write_protected) {
  539. pfn_t pfn;
  540. spte = rmap_next(kvm, rmapp, NULL);
  541. pfn = spte_to_pfn(*spte);
  542. kvm_set_pfn_dirty(pfn);
  543. }
  544. /* check for huge page mappings */
  545. rmapp = gfn_to_rmap(kvm, gfn, 1);
  546. spte = rmap_next(kvm, rmapp, NULL);
  547. while (spte) {
  548. BUG_ON(!spte);
  549. BUG_ON(!(*spte & PT_PRESENT_MASK));
  550. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  551. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  552. if (is_writeble_pte(*spte)) {
  553. rmap_remove(kvm, spte);
  554. --kvm->stat.lpages;
  555. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  556. spte = NULL;
  557. write_protected = 1;
  558. }
  559. spte = rmap_next(kvm, rmapp, spte);
  560. }
  561. return write_protected;
  562. }
  563. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  564. {
  565. u64 *spte;
  566. int need_tlb_flush = 0;
  567. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  568. BUG_ON(!(*spte & PT_PRESENT_MASK));
  569. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  570. rmap_remove(kvm, spte);
  571. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  572. need_tlb_flush = 1;
  573. }
  574. return need_tlb_flush;
  575. }
  576. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  577. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  578. {
  579. int i;
  580. int retval = 0;
  581. /*
  582. * If mmap_sem isn't taken, we can look the memslots with only
  583. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  584. */
  585. for (i = 0; i < kvm->nmemslots; i++) {
  586. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  587. unsigned long start = memslot->userspace_addr;
  588. unsigned long end;
  589. /* mmu_lock protects userspace_addr */
  590. if (!start)
  591. continue;
  592. end = start + (memslot->npages << PAGE_SHIFT);
  593. if (hva >= start && hva < end) {
  594. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  595. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  596. retval |= handler(kvm,
  597. &memslot->lpage_info[
  598. gfn_offset /
  599. KVM_PAGES_PER_HPAGE].rmap_pde);
  600. }
  601. }
  602. return retval;
  603. }
  604. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  605. {
  606. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  607. }
  608. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  609. {
  610. u64 *spte;
  611. int young = 0;
  612. /* always return old for EPT */
  613. if (!shadow_accessed_mask)
  614. return 0;
  615. spte = rmap_next(kvm, rmapp, NULL);
  616. while (spte) {
  617. int _young;
  618. u64 _spte = *spte;
  619. BUG_ON(!(_spte & PT_PRESENT_MASK));
  620. _young = _spte & PT_ACCESSED_MASK;
  621. if (_young) {
  622. young = 1;
  623. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  624. }
  625. spte = rmap_next(kvm, rmapp, spte);
  626. }
  627. return young;
  628. }
  629. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  630. {
  631. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  632. }
  633. #ifdef MMU_DEBUG
  634. static int is_empty_shadow_page(u64 *spt)
  635. {
  636. u64 *pos;
  637. u64 *end;
  638. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  639. if (is_shadow_present_pte(*pos)) {
  640. printk(KERN_ERR "%s: %p %llx\n", __func__,
  641. pos, *pos);
  642. return 0;
  643. }
  644. return 1;
  645. }
  646. #endif
  647. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  648. {
  649. ASSERT(is_empty_shadow_page(sp->spt));
  650. list_del(&sp->link);
  651. __free_page(virt_to_page(sp->spt));
  652. __free_page(virt_to_page(sp->gfns));
  653. kfree(sp);
  654. ++kvm->arch.n_free_mmu_pages;
  655. }
  656. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  657. {
  658. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  659. }
  660. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  661. u64 *parent_pte)
  662. {
  663. struct kvm_mmu_page *sp;
  664. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  665. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  666. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  667. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  668. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  669. INIT_LIST_HEAD(&sp->oos_link);
  670. ASSERT(is_empty_shadow_page(sp->spt));
  671. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  672. sp->multimapped = 0;
  673. sp->global = 1;
  674. sp->parent_pte = parent_pte;
  675. --vcpu->kvm->arch.n_free_mmu_pages;
  676. return sp;
  677. }
  678. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  679. struct kvm_mmu_page *sp, u64 *parent_pte)
  680. {
  681. struct kvm_pte_chain *pte_chain;
  682. struct hlist_node *node;
  683. int i;
  684. if (!parent_pte)
  685. return;
  686. if (!sp->multimapped) {
  687. u64 *old = sp->parent_pte;
  688. if (!old) {
  689. sp->parent_pte = parent_pte;
  690. return;
  691. }
  692. sp->multimapped = 1;
  693. pte_chain = mmu_alloc_pte_chain(vcpu);
  694. INIT_HLIST_HEAD(&sp->parent_ptes);
  695. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  696. pte_chain->parent_ptes[0] = old;
  697. }
  698. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  699. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  700. continue;
  701. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  702. if (!pte_chain->parent_ptes[i]) {
  703. pte_chain->parent_ptes[i] = parent_pte;
  704. return;
  705. }
  706. }
  707. pte_chain = mmu_alloc_pte_chain(vcpu);
  708. BUG_ON(!pte_chain);
  709. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  710. pte_chain->parent_ptes[0] = parent_pte;
  711. }
  712. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  713. u64 *parent_pte)
  714. {
  715. struct kvm_pte_chain *pte_chain;
  716. struct hlist_node *node;
  717. int i;
  718. if (!sp->multimapped) {
  719. BUG_ON(sp->parent_pte != parent_pte);
  720. sp->parent_pte = NULL;
  721. return;
  722. }
  723. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  724. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  725. if (!pte_chain->parent_ptes[i])
  726. break;
  727. if (pte_chain->parent_ptes[i] != parent_pte)
  728. continue;
  729. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  730. && pte_chain->parent_ptes[i + 1]) {
  731. pte_chain->parent_ptes[i]
  732. = pte_chain->parent_ptes[i + 1];
  733. ++i;
  734. }
  735. pte_chain->parent_ptes[i] = NULL;
  736. if (i == 0) {
  737. hlist_del(&pte_chain->link);
  738. mmu_free_pte_chain(pte_chain);
  739. if (hlist_empty(&sp->parent_ptes)) {
  740. sp->multimapped = 0;
  741. sp->parent_pte = NULL;
  742. }
  743. }
  744. return;
  745. }
  746. BUG();
  747. }
  748. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  749. mmu_parent_walk_fn fn)
  750. {
  751. struct kvm_pte_chain *pte_chain;
  752. struct hlist_node *node;
  753. struct kvm_mmu_page *parent_sp;
  754. int i;
  755. if (!sp->multimapped && sp->parent_pte) {
  756. parent_sp = page_header(__pa(sp->parent_pte));
  757. fn(vcpu, parent_sp);
  758. mmu_parent_walk(vcpu, parent_sp, fn);
  759. return;
  760. }
  761. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  762. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  763. if (!pte_chain->parent_ptes[i])
  764. break;
  765. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  766. fn(vcpu, parent_sp);
  767. mmu_parent_walk(vcpu, parent_sp, fn);
  768. }
  769. }
  770. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  771. {
  772. unsigned int index;
  773. struct kvm_mmu_page *sp = page_header(__pa(spte));
  774. index = spte - sp->spt;
  775. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  776. sp->unsync_children++;
  777. WARN_ON(!sp->unsync_children);
  778. }
  779. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  780. {
  781. struct kvm_pte_chain *pte_chain;
  782. struct hlist_node *node;
  783. int i;
  784. if (!sp->parent_pte)
  785. return;
  786. if (!sp->multimapped) {
  787. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  788. return;
  789. }
  790. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  791. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  792. if (!pte_chain->parent_ptes[i])
  793. break;
  794. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  795. }
  796. }
  797. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  798. {
  799. kvm_mmu_update_parents_unsync(sp);
  800. return 1;
  801. }
  802. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  803. struct kvm_mmu_page *sp)
  804. {
  805. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  806. kvm_mmu_update_parents_unsync(sp);
  807. }
  808. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  809. struct kvm_mmu_page *sp)
  810. {
  811. int i;
  812. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  813. sp->spt[i] = shadow_trap_nonpresent_pte;
  814. }
  815. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  816. struct kvm_mmu_page *sp)
  817. {
  818. return 1;
  819. }
  820. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  821. {
  822. }
  823. #define KVM_PAGE_ARRAY_NR 16
  824. struct kvm_mmu_pages {
  825. struct mmu_page_and_offset {
  826. struct kvm_mmu_page *sp;
  827. unsigned int idx;
  828. } page[KVM_PAGE_ARRAY_NR];
  829. unsigned int nr;
  830. };
  831. #define for_each_unsync_children(bitmap, idx) \
  832. for (idx = find_first_bit(bitmap, 512); \
  833. idx < 512; \
  834. idx = find_next_bit(bitmap, 512, idx+1))
  835. int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  836. int idx)
  837. {
  838. int i;
  839. if (sp->unsync)
  840. for (i=0; i < pvec->nr; i++)
  841. if (pvec->page[i].sp == sp)
  842. return 0;
  843. pvec->page[pvec->nr].sp = sp;
  844. pvec->page[pvec->nr].idx = idx;
  845. pvec->nr++;
  846. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  847. }
  848. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  849. struct kvm_mmu_pages *pvec)
  850. {
  851. int i, ret, nr_unsync_leaf = 0;
  852. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  853. u64 ent = sp->spt[i];
  854. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  855. struct kvm_mmu_page *child;
  856. child = page_header(ent & PT64_BASE_ADDR_MASK);
  857. if (child->unsync_children) {
  858. if (mmu_pages_add(pvec, child, i))
  859. return -ENOSPC;
  860. ret = __mmu_unsync_walk(child, pvec);
  861. if (!ret)
  862. __clear_bit(i, sp->unsync_child_bitmap);
  863. else if (ret > 0)
  864. nr_unsync_leaf += ret;
  865. else
  866. return ret;
  867. }
  868. if (child->unsync) {
  869. nr_unsync_leaf++;
  870. if (mmu_pages_add(pvec, child, i))
  871. return -ENOSPC;
  872. }
  873. }
  874. }
  875. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  876. sp->unsync_children = 0;
  877. return nr_unsync_leaf;
  878. }
  879. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  880. struct kvm_mmu_pages *pvec)
  881. {
  882. if (!sp->unsync_children)
  883. return 0;
  884. mmu_pages_add(pvec, sp, 0);
  885. return __mmu_unsync_walk(sp, pvec);
  886. }
  887. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  888. {
  889. unsigned index;
  890. struct hlist_head *bucket;
  891. struct kvm_mmu_page *sp;
  892. struct hlist_node *node;
  893. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  894. index = kvm_page_table_hashfn(gfn);
  895. bucket = &kvm->arch.mmu_page_hash[index];
  896. hlist_for_each_entry(sp, node, bucket, hash_link)
  897. if (sp->gfn == gfn && !sp->role.metaphysical
  898. && !sp->role.invalid) {
  899. pgprintk("%s: found role %x\n",
  900. __func__, sp->role.word);
  901. return sp;
  902. }
  903. return NULL;
  904. }
  905. static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
  906. {
  907. list_del(&sp->oos_link);
  908. --kvm->stat.mmu_unsync_global;
  909. }
  910. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  911. {
  912. WARN_ON(!sp->unsync);
  913. sp->unsync = 0;
  914. if (sp->global)
  915. kvm_unlink_unsync_global(kvm, sp);
  916. --kvm->stat.mmu_unsync;
  917. }
  918. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  919. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  920. {
  921. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  922. kvm_mmu_zap_page(vcpu->kvm, sp);
  923. return 1;
  924. }
  925. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  926. kvm_flush_remote_tlbs(vcpu->kvm);
  927. kvm_unlink_unsync_page(vcpu->kvm, sp);
  928. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  929. kvm_mmu_zap_page(vcpu->kvm, sp);
  930. return 1;
  931. }
  932. kvm_mmu_flush_tlb(vcpu);
  933. return 0;
  934. }
  935. struct mmu_page_path {
  936. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  937. unsigned int idx[PT64_ROOT_LEVEL-1];
  938. };
  939. #define for_each_sp(pvec, sp, parents, i) \
  940. for (i = mmu_pages_next(&pvec, &parents, -1), \
  941. sp = pvec.page[i].sp; \
  942. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  943. i = mmu_pages_next(&pvec, &parents, i))
  944. int mmu_pages_next(struct kvm_mmu_pages *pvec, struct mmu_page_path *parents,
  945. int i)
  946. {
  947. int n;
  948. for (n = i+1; n < pvec->nr; n++) {
  949. struct kvm_mmu_page *sp = pvec->page[n].sp;
  950. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  951. parents->idx[0] = pvec->page[n].idx;
  952. return n;
  953. }
  954. parents->parent[sp->role.level-2] = sp;
  955. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  956. }
  957. return n;
  958. }
  959. void mmu_pages_clear_parents(struct mmu_page_path *parents)
  960. {
  961. struct kvm_mmu_page *sp;
  962. unsigned int level = 0;
  963. do {
  964. unsigned int idx = parents->idx[level];
  965. sp = parents->parent[level];
  966. if (!sp)
  967. return;
  968. --sp->unsync_children;
  969. WARN_ON((int)sp->unsync_children < 0);
  970. __clear_bit(idx, sp->unsync_child_bitmap);
  971. level++;
  972. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  973. }
  974. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  975. struct mmu_page_path *parents,
  976. struct kvm_mmu_pages *pvec)
  977. {
  978. parents->parent[parent->role.level-1] = NULL;
  979. pvec->nr = 0;
  980. }
  981. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  982. struct kvm_mmu_page *parent)
  983. {
  984. int i;
  985. struct kvm_mmu_page *sp;
  986. struct mmu_page_path parents;
  987. struct kvm_mmu_pages pages;
  988. kvm_mmu_pages_init(parent, &parents, &pages);
  989. while (mmu_unsync_walk(parent, &pages)) {
  990. int protected = 0;
  991. for_each_sp(pages, sp, parents, i)
  992. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  993. if (protected)
  994. kvm_flush_remote_tlbs(vcpu->kvm);
  995. for_each_sp(pages, sp, parents, i) {
  996. kvm_sync_page(vcpu, sp);
  997. mmu_pages_clear_parents(&parents);
  998. }
  999. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1000. kvm_mmu_pages_init(parent, &parents, &pages);
  1001. }
  1002. }
  1003. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1004. gfn_t gfn,
  1005. gva_t gaddr,
  1006. unsigned level,
  1007. int metaphysical,
  1008. unsigned access,
  1009. u64 *parent_pte)
  1010. {
  1011. union kvm_mmu_page_role role;
  1012. unsigned index;
  1013. unsigned quadrant;
  1014. struct hlist_head *bucket;
  1015. struct kvm_mmu_page *sp;
  1016. struct hlist_node *node, *tmp;
  1017. role = vcpu->arch.mmu.base_role;
  1018. role.level = level;
  1019. role.metaphysical = metaphysical;
  1020. role.access = access;
  1021. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1022. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1023. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1024. role.quadrant = quadrant;
  1025. }
  1026. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  1027. gfn, role.word);
  1028. index = kvm_page_table_hashfn(gfn);
  1029. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1030. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1031. if (sp->gfn == gfn) {
  1032. if (sp->unsync)
  1033. if (kvm_sync_page(vcpu, sp))
  1034. continue;
  1035. if (sp->role.word != role.word)
  1036. continue;
  1037. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1038. if (sp->unsync_children) {
  1039. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1040. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1041. }
  1042. pgprintk("%s: found\n", __func__);
  1043. return sp;
  1044. }
  1045. ++vcpu->kvm->stat.mmu_cache_miss;
  1046. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1047. if (!sp)
  1048. return sp;
  1049. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  1050. sp->gfn = gfn;
  1051. sp->role = role;
  1052. hlist_add_head(&sp->hash_link, bucket);
  1053. if (!metaphysical) {
  1054. if (rmap_write_protect(vcpu->kvm, gfn))
  1055. kvm_flush_remote_tlbs(vcpu->kvm);
  1056. account_shadowed(vcpu->kvm, gfn);
  1057. }
  1058. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1059. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1060. else
  1061. nonpaging_prefetch_page(vcpu, sp);
  1062. return sp;
  1063. }
  1064. static int walk_shadow(struct kvm_shadow_walk *walker,
  1065. struct kvm_vcpu *vcpu, u64 addr)
  1066. {
  1067. hpa_t shadow_addr;
  1068. int level;
  1069. int r;
  1070. u64 *sptep;
  1071. unsigned index;
  1072. shadow_addr = vcpu->arch.mmu.root_hpa;
  1073. level = vcpu->arch.mmu.shadow_root_level;
  1074. if (level == PT32E_ROOT_LEVEL) {
  1075. shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1076. shadow_addr &= PT64_BASE_ADDR_MASK;
  1077. if (!shadow_addr)
  1078. return 1;
  1079. --level;
  1080. }
  1081. while (level >= PT_PAGE_TABLE_LEVEL) {
  1082. index = SHADOW_PT_INDEX(addr, level);
  1083. sptep = ((u64 *)__va(shadow_addr)) + index;
  1084. r = walker->entry(walker, vcpu, addr, sptep, level);
  1085. if (r)
  1086. return r;
  1087. shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
  1088. --level;
  1089. }
  1090. return 0;
  1091. }
  1092. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1093. struct kvm_mmu_page *sp)
  1094. {
  1095. unsigned i;
  1096. u64 *pt;
  1097. u64 ent;
  1098. pt = sp->spt;
  1099. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1100. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1101. if (is_shadow_present_pte(pt[i]))
  1102. rmap_remove(kvm, &pt[i]);
  1103. pt[i] = shadow_trap_nonpresent_pte;
  1104. }
  1105. return;
  1106. }
  1107. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1108. ent = pt[i];
  1109. if (is_shadow_present_pte(ent)) {
  1110. if (!is_large_pte(ent)) {
  1111. ent &= PT64_BASE_ADDR_MASK;
  1112. mmu_page_remove_parent_pte(page_header(ent),
  1113. &pt[i]);
  1114. } else {
  1115. --kvm->stat.lpages;
  1116. rmap_remove(kvm, &pt[i]);
  1117. }
  1118. }
  1119. pt[i] = shadow_trap_nonpresent_pte;
  1120. }
  1121. }
  1122. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1123. {
  1124. mmu_page_remove_parent_pte(sp, parent_pte);
  1125. }
  1126. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1127. {
  1128. int i;
  1129. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  1130. if (kvm->vcpus[i])
  1131. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  1132. }
  1133. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1134. {
  1135. u64 *parent_pte;
  1136. while (sp->multimapped || sp->parent_pte) {
  1137. if (!sp->multimapped)
  1138. parent_pte = sp->parent_pte;
  1139. else {
  1140. struct kvm_pte_chain *chain;
  1141. chain = container_of(sp->parent_ptes.first,
  1142. struct kvm_pte_chain, link);
  1143. parent_pte = chain->parent_ptes[0];
  1144. }
  1145. BUG_ON(!parent_pte);
  1146. kvm_mmu_put_page(sp, parent_pte);
  1147. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  1148. }
  1149. }
  1150. static int mmu_zap_unsync_children(struct kvm *kvm,
  1151. struct kvm_mmu_page *parent)
  1152. {
  1153. int i, zapped = 0;
  1154. struct mmu_page_path parents;
  1155. struct kvm_mmu_pages pages;
  1156. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1157. return 0;
  1158. kvm_mmu_pages_init(parent, &parents, &pages);
  1159. while (mmu_unsync_walk(parent, &pages)) {
  1160. struct kvm_mmu_page *sp;
  1161. for_each_sp(pages, sp, parents, i) {
  1162. kvm_mmu_zap_page(kvm, sp);
  1163. mmu_pages_clear_parents(&parents);
  1164. }
  1165. zapped += pages.nr;
  1166. kvm_mmu_pages_init(parent, &parents, &pages);
  1167. }
  1168. return zapped;
  1169. }
  1170. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1171. {
  1172. int ret;
  1173. ++kvm->stat.mmu_shadow_zapped;
  1174. ret = mmu_zap_unsync_children(kvm, sp);
  1175. kvm_mmu_page_unlink_children(kvm, sp);
  1176. kvm_mmu_unlink_parents(kvm, sp);
  1177. kvm_flush_remote_tlbs(kvm);
  1178. if (!sp->role.invalid && !sp->role.metaphysical)
  1179. unaccount_shadowed(kvm, sp->gfn);
  1180. if (sp->unsync)
  1181. kvm_unlink_unsync_page(kvm, sp);
  1182. if (!sp->root_count) {
  1183. hlist_del(&sp->hash_link);
  1184. kvm_mmu_free_page(kvm, sp);
  1185. } else {
  1186. sp->role.invalid = 1;
  1187. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1188. kvm_reload_remote_mmus(kvm);
  1189. }
  1190. kvm_mmu_reset_last_pte_updated(kvm);
  1191. return ret;
  1192. }
  1193. /*
  1194. * Changing the number of mmu pages allocated to the vm
  1195. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1196. */
  1197. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1198. {
  1199. /*
  1200. * If we set the number of mmu pages to be smaller be than the
  1201. * number of actived pages , we must to free some mmu pages before we
  1202. * change the value
  1203. */
  1204. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  1205. kvm_nr_mmu_pages) {
  1206. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  1207. - kvm->arch.n_free_mmu_pages;
  1208. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  1209. struct kvm_mmu_page *page;
  1210. page = container_of(kvm->arch.active_mmu_pages.prev,
  1211. struct kvm_mmu_page, link);
  1212. kvm_mmu_zap_page(kvm, page);
  1213. n_used_mmu_pages--;
  1214. }
  1215. kvm->arch.n_free_mmu_pages = 0;
  1216. }
  1217. else
  1218. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1219. - kvm->arch.n_alloc_mmu_pages;
  1220. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1221. }
  1222. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1223. {
  1224. unsigned index;
  1225. struct hlist_head *bucket;
  1226. struct kvm_mmu_page *sp;
  1227. struct hlist_node *node, *n;
  1228. int r;
  1229. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1230. r = 0;
  1231. index = kvm_page_table_hashfn(gfn);
  1232. bucket = &kvm->arch.mmu_page_hash[index];
  1233. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1234. if (sp->gfn == gfn && !sp->role.metaphysical) {
  1235. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1236. sp->role.word);
  1237. r = 1;
  1238. if (kvm_mmu_zap_page(kvm, sp))
  1239. n = bucket->first;
  1240. }
  1241. return r;
  1242. }
  1243. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1244. {
  1245. struct kvm_mmu_page *sp;
  1246. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  1247. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  1248. kvm_mmu_zap_page(kvm, sp);
  1249. }
  1250. }
  1251. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1252. {
  1253. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1254. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1255. __set_bit(slot, sp->slot_bitmap);
  1256. }
  1257. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1258. {
  1259. int i;
  1260. u64 *pt = sp->spt;
  1261. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1262. return;
  1263. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1264. if (pt[i] == shadow_notrap_nonpresent_pte)
  1265. set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
  1266. }
  1267. }
  1268. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1269. {
  1270. struct page *page;
  1271. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1272. if (gpa == UNMAPPED_GVA)
  1273. return NULL;
  1274. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1275. return page;
  1276. }
  1277. /*
  1278. * The function is based on mtrr_type_lookup() in
  1279. * arch/x86/kernel/cpu/mtrr/generic.c
  1280. */
  1281. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1282. u64 start, u64 end)
  1283. {
  1284. int i;
  1285. u64 base, mask;
  1286. u8 prev_match, curr_match;
  1287. int num_var_ranges = KVM_NR_VAR_MTRR;
  1288. if (!mtrr_state->enabled)
  1289. return 0xFF;
  1290. /* Make end inclusive end, instead of exclusive */
  1291. end--;
  1292. /* Look in fixed ranges. Just return the type as per start */
  1293. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1294. int idx;
  1295. if (start < 0x80000) {
  1296. idx = 0;
  1297. idx += (start >> 16);
  1298. return mtrr_state->fixed_ranges[idx];
  1299. } else if (start < 0xC0000) {
  1300. idx = 1 * 8;
  1301. idx += ((start - 0x80000) >> 14);
  1302. return mtrr_state->fixed_ranges[idx];
  1303. } else if (start < 0x1000000) {
  1304. idx = 3 * 8;
  1305. idx += ((start - 0xC0000) >> 12);
  1306. return mtrr_state->fixed_ranges[idx];
  1307. }
  1308. }
  1309. /*
  1310. * Look in variable ranges
  1311. * Look of multiple ranges matching this address and pick type
  1312. * as per MTRR precedence
  1313. */
  1314. if (!(mtrr_state->enabled & 2))
  1315. return mtrr_state->def_type;
  1316. prev_match = 0xFF;
  1317. for (i = 0; i < num_var_ranges; ++i) {
  1318. unsigned short start_state, end_state;
  1319. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1320. continue;
  1321. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1322. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1323. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1324. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1325. start_state = ((start & mask) == (base & mask));
  1326. end_state = ((end & mask) == (base & mask));
  1327. if (start_state != end_state)
  1328. return 0xFE;
  1329. if ((start & mask) != (base & mask))
  1330. continue;
  1331. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1332. if (prev_match == 0xFF) {
  1333. prev_match = curr_match;
  1334. continue;
  1335. }
  1336. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1337. curr_match == MTRR_TYPE_UNCACHABLE)
  1338. return MTRR_TYPE_UNCACHABLE;
  1339. if ((prev_match == MTRR_TYPE_WRBACK &&
  1340. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1341. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1342. curr_match == MTRR_TYPE_WRBACK)) {
  1343. prev_match = MTRR_TYPE_WRTHROUGH;
  1344. curr_match = MTRR_TYPE_WRTHROUGH;
  1345. }
  1346. if (prev_match != curr_match)
  1347. return MTRR_TYPE_UNCACHABLE;
  1348. }
  1349. if (prev_match != 0xFF)
  1350. return prev_match;
  1351. return mtrr_state->def_type;
  1352. }
  1353. static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1354. {
  1355. u8 mtrr;
  1356. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1357. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1358. if (mtrr == 0xfe || mtrr == 0xff)
  1359. mtrr = MTRR_TYPE_WRBACK;
  1360. return mtrr;
  1361. }
  1362. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1363. {
  1364. unsigned index;
  1365. struct hlist_head *bucket;
  1366. struct kvm_mmu_page *s;
  1367. struct hlist_node *node, *n;
  1368. index = kvm_page_table_hashfn(sp->gfn);
  1369. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1370. /* don't unsync if pagetable is shadowed with multiple roles */
  1371. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1372. if (s->gfn != sp->gfn || s->role.metaphysical)
  1373. continue;
  1374. if (s->role.word != sp->role.word)
  1375. return 1;
  1376. }
  1377. ++vcpu->kvm->stat.mmu_unsync;
  1378. sp->unsync = 1;
  1379. if (sp->global) {
  1380. list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
  1381. ++vcpu->kvm->stat.mmu_unsync_global;
  1382. } else
  1383. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1384. mmu_convert_notrap(sp);
  1385. return 0;
  1386. }
  1387. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1388. bool can_unsync)
  1389. {
  1390. struct kvm_mmu_page *shadow;
  1391. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1392. if (shadow) {
  1393. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1394. return 1;
  1395. if (shadow->unsync)
  1396. return 0;
  1397. if (can_unsync && oos_shadow)
  1398. return kvm_unsync_page(vcpu, shadow);
  1399. return 1;
  1400. }
  1401. return 0;
  1402. }
  1403. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1404. unsigned pte_access, int user_fault,
  1405. int write_fault, int dirty, int largepage,
  1406. int global, gfn_t gfn, pfn_t pfn, bool speculative,
  1407. bool can_unsync)
  1408. {
  1409. u64 spte;
  1410. int ret = 0;
  1411. u64 mt_mask = shadow_mt_mask;
  1412. struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
  1413. if (!(vcpu->arch.cr4 & X86_CR4_PGE))
  1414. global = 0;
  1415. if (!global && sp->global) {
  1416. sp->global = 0;
  1417. if (sp->unsync) {
  1418. kvm_unlink_unsync_global(vcpu->kvm, sp);
  1419. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1420. }
  1421. }
  1422. /*
  1423. * We don't set the accessed bit, since we sometimes want to see
  1424. * whether the guest actually used the pte (in order to detect
  1425. * demand paging).
  1426. */
  1427. spte = shadow_base_present_pte | shadow_dirty_mask;
  1428. if (!speculative)
  1429. spte |= shadow_accessed_mask;
  1430. if (!dirty)
  1431. pte_access &= ~ACC_WRITE_MASK;
  1432. if (pte_access & ACC_EXEC_MASK)
  1433. spte |= shadow_x_mask;
  1434. else
  1435. spte |= shadow_nx_mask;
  1436. if (pte_access & ACC_USER_MASK)
  1437. spte |= shadow_user_mask;
  1438. if (largepage)
  1439. spte |= PT_PAGE_SIZE_MASK;
  1440. if (mt_mask) {
  1441. if (!kvm_is_mmio_pfn(pfn)) {
  1442. mt_mask = get_memory_type(vcpu, gfn) <<
  1443. kvm_x86_ops->get_mt_mask_shift();
  1444. mt_mask |= VMX_EPT_IGMT_BIT;
  1445. } else
  1446. mt_mask = MTRR_TYPE_UNCACHABLE <<
  1447. kvm_x86_ops->get_mt_mask_shift();
  1448. spte |= mt_mask;
  1449. }
  1450. spte |= (u64)pfn << PAGE_SHIFT;
  1451. if ((pte_access & ACC_WRITE_MASK)
  1452. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1453. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1454. ret = 1;
  1455. spte = shadow_trap_nonpresent_pte;
  1456. goto set_pte;
  1457. }
  1458. spte |= PT_WRITABLE_MASK;
  1459. /*
  1460. * Optimization: for pte sync, if spte was writable the hash
  1461. * lookup is unnecessary (and expensive). Write protection
  1462. * is responsibility of mmu_get_page / kvm_sync_page.
  1463. * Same reasoning can be applied to dirty page accounting.
  1464. */
  1465. if (!can_unsync && is_writeble_pte(*shadow_pte))
  1466. goto set_pte;
  1467. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1468. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1469. __func__, gfn);
  1470. ret = 1;
  1471. pte_access &= ~ACC_WRITE_MASK;
  1472. if (is_writeble_pte(spte))
  1473. spte &= ~PT_WRITABLE_MASK;
  1474. }
  1475. }
  1476. if (pte_access & ACC_WRITE_MASK)
  1477. mark_page_dirty(vcpu->kvm, gfn);
  1478. set_pte:
  1479. set_shadow_pte(shadow_pte, spte);
  1480. return ret;
  1481. }
  1482. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1483. unsigned pt_access, unsigned pte_access,
  1484. int user_fault, int write_fault, int dirty,
  1485. int *ptwrite, int largepage, int global,
  1486. gfn_t gfn, pfn_t pfn, bool speculative)
  1487. {
  1488. int was_rmapped = 0;
  1489. int was_writeble = is_writeble_pte(*shadow_pte);
  1490. pgprintk("%s: spte %llx access %x write_fault %d"
  1491. " user_fault %d gfn %lx\n",
  1492. __func__, *shadow_pte, pt_access,
  1493. write_fault, user_fault, gfn);
  1494. if (is_rmap_pte(*shadow_pte)) {
  1495. /*
  1496. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1497. * the parent of the now unreachable PTE.
  1498. */
  1499. if (largepage && !is_large_pte(*shadow_pte)) {
  1500. struct kvm_mmu_page *child;
  1501. u64 pte = *shadow_pte;
  1502. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1503. mmu_page_remove_parent_pte(child, shadow_pte);
  1504. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1505. pgprintk("hfn old %lx new %lx\n",
  1506. spte_to_pfn(*shadow_pte), pfn);
  1507. rmap_remove(vcpu->kvm, shadow_pte);
  1508. } else {
  1509. if (largepage)
  1510. was_rmapped = is_large_pte(*shadow_pte);
  1511. else
  1512. was_rmapped = 1;
  1513. }
  1514. }
  1515. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1516. dirty, largepage, global, gfn, pfn, speculative, true)) {
  1517. if (write_fault)
  1518. *ptwrite = 1;
  1519. kvm_x86_ops->tlb_flush(vcpu);
  1520. }
  1521. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1522. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1523. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1524. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1525. *shadow_pte, shadow_pte);
  1526. if (!was_rmapped && is_large_pte(*shadow_pte))
  1527. ++vcpu->kvm->stat.lpages;
  1528. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1529. if (!was_rmapped) {
  1530. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1531. if (!is_rmap_pte(*shadow_pte))
  1532. kvm_release_pfn_clean(pfn);
  1533. } else {
  1534. if (was_writeble)
  1535. kvm_release_pfn_dirty(pfn);
  1536. else
  1537. kvm_release_pfn_clean(pfn);
  1538. }
  1539. if (speculative) {
  1540. vcpu->arch.last_pte_updated = shadow_pte;
  1541. vcpu->arch.last_pte_gfn = gfn;
  1542. }
  1543. }
  1544. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1545. {
  1546. }
  1547. struct direct_shadow_walk {
  1548. struct kvm_shadow_walk walker;
  1549. pfn_t pfn;
  1550. int write;
  1551. int largepage;
  1552. int pt_write;
  1553. };
  1554. static int direct_map_entry(struct kvm_shadow_walk *_walk,
  1555. struct kvm_vcpu *vcpu,
  1556. u64 addr, u64 *sptep, int level)
  1557. {
  1558. struct direct_shadow_walk *walk =
  1559. container_of(_walk, struct direct_shadow_walk, walker);
  1560. struct kvm_mmu_page *sp;
  1561. gfn_t pseudo_gfn;
  1562. gfn_t gfn = addr >> PAGE_SHIFT;
  1563. if (level == PT_PAGE_TABLE_LEVEL
  1564. || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
  1565. mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
  1566. 0, walk->write, 1, &walk->pt_write,
  1567. walk->largepage, 0, gfn, walk->pfn, false);
  1568. ++vcpu->stat.pf_fixed;
  1569. return 1;
  1570. }
  1571. if (*sptep == shadow_trap_nonpresent_pte) {
  1572. pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1573. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
  1574. 1, ACC_ALL, sptep);
  1575. if (!sp) {
  1576. pgprintk("nonpaging_map: ENOMEM\n");
  1577. kvm_release_pfn_clean(walk->pfn);
  1578. return -ENOMEM;
  1579. }
  1580. set_shadow_pte(sptep,
  1581. __pa(sp->spt)
  1582. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1583. | shadow_user_mask | shadow_x_mask);
  1584. }
  1585. return 0;
  1586. }
  1587. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1588. int largepage, gfn_t gfn, pfn_t pfn)
  1589. {
  1590. int r;
  1591. struct direct_shadow_walk walker = {
  1592. .walker = { .entry = direct_map_entry, },
  1593. .pfn = pfn,
  1594. .largepage = largepage,
  1595. .write = write,
  1596. .pt_write = 0,
  1597. };
  1598. r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
  1599. if (r < 0)
  1600. return r;
  1601. return walker.pt_write;
  1602. }
  1603. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1604. {
  1605. int r;
  1606. int largepage = 0;
  1607. pfn_t pfn;
  1608. unsigned long mmu_seq;
  1609. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1610. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1611. largepage = 1;
  1612. }
  1613. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1614. smp_rmb();
  1615. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1616. /* mmio */
  1617. if (is_error_pfn(pfn)) {
  1618. kvm_release_pfn_clean(pfn);
  1619. return 1;
  1620. }
  1621. spin_lock(&vcpu->kvm->mmu_lock);
  1622. if (mmu_notifier_retry(vcpu, mmu_seq))
  1623. goto out_unlock;
  1624. kvm_mmu_free_some_pages(vcpu);
  1625. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1626. spin_unlock(&vcpu->kvm->mmu_lock);
  1627. return r;
  1628. out_unlock:
  1629. spin_unlock(&vcpu->kvm->mmu_lock);
  1630. kvm_release_pfn_clean(pfn);
  1631. return 0;
  1632. }
  1633. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1634. {
  1635. int i;
  1636. struct kvm_mmu_page *sp;
  1637. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1638. return;
  1639. spin_lock(&vcpu->kvm->mmu_lock);
  1640. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1641. hpa_t root = vcpu->arch.mmu.root_hpa;
  1642. sp = page_header(root);
  1643. --sp->root_count;
  1644. if (!sp->root_count && sp->role.invalid)
  1645. kvm_mmu_zap_page(vcpu->kvm, sp);
  1646. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1647. spin_unlock(&vcpu->kvm->mmu_lock);
  1648. return;
  1649. }
  1650. for (i = 0; i < 4; ++i) {
  1651. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1652. if (root) {
  1653. root &= PT64_BASE_ADDR_MASK;
  1654. sp = page_header(root);
  1655. --sp->root_count;
  1656. if (!sp->root_count && sp->role.invalid)
  1657. kvm_mmu_zap_page(vcpu->kvm, sp);
  1658. }
  1659. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1660. }
  1661. spin_unlock(&vcpu->kvm->mmu_lock);
  1662. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1663. }
  1664. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1665. {
  1666. int i;
  1667. gfn_t root_gfn;
  1668. struct kvm_mmu_page *sp;
  1669. int metaphysical = 0;
  1670. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1671. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1672. hpa_t root = vcpu->arch.mmu.root_hpa;
  1673. ASSERT(!VALID_PAGE(root));
  1674. if (tdp_enabled)
  1675. metaphysical = 1;
  1676. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1677. PT64_ROOT_LEVEL, metaphysical,
  1678. ACC_ALL, NULL);
  1679. root = __pa(sp->spt);
  1680. ++sp->root_count;
  1681. vcpu->arch.mmu.root_hpa = root;
  1682. return;
  1683. }
  1684. metaphysical = !is_paging(vcpu);
  1685. if (tdp_enabled)
  1686. metaphysical = 1;
  1687. for (i = 0; i < 4; ++i) {
  1688. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1689. ASSERT(!VALID_PAGE(root));
  1690. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1691. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1692. vcpu->arch.mmu.pae_root[i] = 0;
  1693. continue;
  1694. }
  1695. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1696. } else if (vcpu->arch.mmu.root_level == 0)
  1697. root_gfn = 0;
  1698. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1699. PT32_ROOT_LEVEL, metaphysical,
  1700. ACC_ALL, NULL);
  1701. root = __pa(sp->spt);
  1702. ++sp->root_count;
  1703. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1704. }
  1705. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1706. }
  1707. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1708. {
  1709. int i;
  1710. struct kvm_mmu_page *sp;
  1711. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1712. return;
  1713. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1714. hpa_t root = vcpu->arch.mmu.root_hpa;
  1715. sp = page_header(root);
  1716. mmu_sync_children(vcpu, sp);
  1717. return;
  1718. }
  1719. for (i = 0; i < 4; ++i) {
  1720. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1721. if (root) {
  1722. root &= PT64_BASE_ADDR_MASK;
  1723. sp = page_header(root);
  1724. mmu_sync_children(vcpu, sp);
  1725. }
  1726. }
  1727. }
  1728. static void mmu_sync_global(struct kvm_vcpu *vcpu)
  1729. {
  1730. struct kvm *kvm = vcpu->kvm;
  1731. struct kvm_mmu_page *sp, *n;
  1732. list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
  1733. kvm_sync_page(vcpu, sp);
  1734. }
  1735. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1736. {
  1737. spin_lock(&vcpu->kvm->mmu_lock);
  1738. mmu_sync_roots(vcpu);
  1739. spin_unlock(&vcpu->kvm->mmu_lock);
  1740. }
  1741. void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
  1742. {
  1743. spin_lock(&vcpu->kvm->mmu_lock);
  1744. mmu_sync_global(vcpu);
  1745. spin_unlock(&vcpu->kvm->mmu_lock);
  1746. }
  1747. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1748. {
  1749. return vaddr;
  1750. }
  1751. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1752. u32 error_code)
  1753. {
  1754. gfn_t gfn;
  1755. int r;
  1756. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1757. r = mmu_topup_memory_caches(vcpu);
  1758. if (r)
  1759. return r;
  1760. ASSERT(vcpu);
  1761. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1762. gfn = gva >> PAGE_SHIFT;
  1763. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1764. error_code & PFERR_WRITE_MASK, gfn);
  1765. }
  1766. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1767. u32 error_code)
  1768. {
  1769. pfn_t pfn;
  1770. int r;
  1771. int largepage = 0;
  1772. gfn_t gfn = gpa >> PAGE_SHIFT;
  1773. unsigned long mmu_seq;
  1774. ASSERT(vcpu);
  1775. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1776. r = mmu_topup_memory_caches(vcpu);
  1777. if (r)
  1778. return r;
  1779. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1780. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1781. largepage = 1;
  1782. }
  1783. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1784. smp_rmb();
  1785. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1786. if (is_error_pfn(pfn)) {
  1787. kvm_release_pfn_clean(pfn);
  1788. return 1;
  1789. }
  1790. spin_lock(&vcpu->kvm->mmu_lock);
  1791. if (mmu_notifier_retry(vcpu, mmu_seq))
  1792. goto out_unlock;
  1793. kvm_mmu_free_some_pages(vcpu);
  1794. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1795. largepage, gfn, pfn);
  1796. spin_unlock(&vcpu->kvm->mmu_lock);
  1797. return r;
  1798. out_unlock:
  1799. spin_unlock(&vcpu->kvm->mmu_lock);
  1800. kvm_release_pfn_clean(pfn);
  1801. return 0;
  1802. }
  1803. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1804. {
  1805. mmu_free_roots(vcpu);
  1806. }
  1807. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1808. {
  1809. struct kvm_mmu *context = &vcpu->arch.mmu;
  1810. context->new_cr3 = nonpaging_new_cr3;
  1811. context->page_fault = nonpaging_page_fault;
  1812. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1813. context->free = nonpaging_free;
  1814. context->prefetch_page = nonpaging_prefetch_page;
  1815. context->sync_page = nonpaging_sync_page;
  1816. context->invlpg = nonpaging_invlpg;
  1817. context->root_level = 0;
  1818. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1819. context->root_hpa = INVALID_PAGE;
  1820. return 0;
  1821. }
  1822. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1823. {
  1824. ++vcpu->stat.tlb_flush;
  1825. kvm_x86_ops->tlb_flush(vcpu);
  1826. }
  1827. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1828. {
  1829. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1830. mmu_free_roots(vcpu);
  1831. }
  1832. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1833. u64 addr,
  1834. u32 err_code)
  1835. {
  1836. kvm_inject_page_fault(vcpu, addr, err_code);
  1837. }
  1838. static void paging_free(struct kvm_vcpu *vcpu)
  1839. {
  1840. nonpaging_free(vcpu);
  1841. }
  1842. #define PTTYPE 64
  1843. #include "paging_tmpl.h"
  1844. #undef PTTYPE
  1845. #define PTTYPE 32
  1846. #include "paging_tmpl.h"
  1847. #undef PTTYPE
  1848. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1849. {
  1850. struct kvm_mmu *context = &vcpu->arch.mmu;
  1851. ASSERT(is_pae(vcpu));
  1852. context->new_cr3 = paging_new_cr3;
  1853. context->page_fault = paging64_page_fault;
  1854. context->gva_to_gpa = paging64_gva_to_gpa;
  1855. context->prefetch_page = paging64_prefetch_page;
  1856. context->sync_page = paging64_sync_page;
  1857. context->invlpg = paging64_invlpg;
  1858. context->free = paging_free;
  1859. context->root_level = level;
  1860. context->shadow_root_level = level;
  1861. context->root_hpa = INVALID_PAGE;
  1862. return 0;
  1863. }
  1864. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1865. {
  1866. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1867. }
  1868. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1869. {
  1870. struct kvm_mmu *context = &vcpu->arch.mmu;
  1871. context->new_cr3 = paging_new_cr3;
  1872. context->page_fault = paging32_page_fault;
  1873. context->gva_to_gpa = paging32_gva_to_gpa;
  1874. context->free = paging_free;
  1875. context->prefetch_page = paging32_prefetch_page;
  1876. context->sync_page = paging32_sync_page;
  1877. context->invlpg = paging32_invlpg;
  1878. context->root_level = PT32_ROOT_LEVEL;
  1879. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1880. context->root_hpa = INVALID_PAGE;
  1881. return 0;
  1882. }
  1883. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1884. {
  1885. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1886. }
  1887. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1888. {
  1889. struct kvm_mmu *context = &vcpu->arch.mmu;
  1890. context->new_cr3 = nonpaging_new_cr3;
  1891. context->page_fault = tdp_page_fault;
  1892. context->free = nonpaging_free;
  1893. context->prefetch_page = nonpaging_prefetch_page;
  1894. context->sync_page = nonpaging_sync_page;
  1895. context->invlpg = nonpaging_invlpg;
  1896. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1897. context->root_hpa = INVALID_PAGE;
  1898. if (!is_paging(vcpu)) {
  1899. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1900. context->root_level = 0;
  1901. } else if (is_long_mode(vcpu)) {
  1902. context->gva_to_gpa = paging64_gva_to_gpa;
  1903. context->root_level = PT64_ROOT_LEVEL;
  1904. } else if (is_pae(vcpu)) {
  1905. context->gva_to_gpa = paging64_gva_to_gpa;
  1906. context->root_level = PT32E_ROOT_LEVEL;
  1907. } else {
  1908. context->gva_to_gpa = paging32_gva_to_gpa;
  1909. context->root_level = PT32_ROOT_LEVEL;
  1910. }
  1911. return 0;
  1912. }
  1913. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1914. {
  1915. int r;
  1916. ASSERT(vcpu);
  1917. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1918. if (!is_paging(vcpu))
  1919. r = nonpaging_init_context(vcpu);
  1920. else if (is_long_mode(vcpu))
  1921. r = paging64_init_context(vcpu);
  1922. else if (is_pae(vcpu))
  1923. r = paging32E_init_context(vcpu);
  1924. else
  1925. r = paging32_init_context(vcpu);
  1926. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  1927. return r;
  1928. }
  1929. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1930. {
  1931. vcpu->arch.update_pte.pfn = bad_pfn;
  1932. if (tdp_enabled)
  1933. return init_kvm_tdp_mmu(vcpu);
  1934. else
  1935. return init_kvm_softmmu(vcpu);
  1936. }
  1937. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1938. {
  1939. ASSERT(vcpu);
  1940. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1941. vcpu->arch.mmu.free(vcpu);
  1942. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1943. }
  1944. }
  1945. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1946. {
  1947. destroy_kvm_mmu(vcpu);
  1948. return init_kvm_mmu(vcpu);
  1949. }
  1950. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1951. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1952. {
  1953. int r;
  1954. r = mmu_topup_memory_caches(vcpu);
  1955. if (r)
  1956. goto out;
  1957. spin_lock(&vcpu->kvm->mmu_lock);
  1958. kvm_mmu_free_some_pages(vcpu);
  1959. mmu_alloc_roots(vcpu);
  1960. mmu_sync_roots(vcpu);
  1961. spin_unlock(&vcpu->kvm->mmu_lock);
  1962. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1963. kvm_mmu_flush_tlb(vcpu);
  1964. out:
  1965. return r;
  1966. }
  1967. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1968. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1969. {
  1970. mmu_free_roots(vcpu);
  1971. }
  1972. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1973. struct kvm_mmu_page *sp,
  1974. u64 *spte)
  1975. {
  1976. u64 pte;
  1977. struct kvm_mmu_page *child;
  1978. pte = *spte;
  1979. if (is_shadow_present_pte(pte)) {
  1980. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1981. is_large_pte(pte))
  1982. rmap_remove(vcpu->kvm, spte);
  1983. else {
  1984. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1985. mmu_page_remove_parent_pte(child, spte);
  1986. }
  1987. }
  1988. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1989. if (is_large_pte(pte))
  1990. --vcpu->kvm->stat.lpages;
  1991. }
  1992. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1993. struct kvm_mmu_page *sp,
  1994. u64 *spte,
  1995. const void *new)
  1996. {
  1997. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1998. if (!vcpu->arch.update_pte.largepage ||
  1999. sp->role.glevels == PT32_ROOT_LEVEL) {
  2000. ++vcpu->kvm->stat.mmu_pde_zapped;
  2001. return;
  2002. }
  2003. }
  2004. ++vcpu->kvm->stat.mmu_pte_updated;
  2005. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2006. paging32_update_pte(vcpu, sp, spte, new);
  2007. else
  2008. paging64_update_pte(vcpu, sp, spte, new);
  2009. }
  2010. static bool need_remote_flush(u64 old, u64 new)
  2011. {
  2012. if (!is_shadow_present_pte(old))
  2013. return false;
  2014. if (!is_shadow_present_pte(new))
  2015. return true;
  2016. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2017. return true;
  2018. old ^= PT64_NX_MASK;
  2019. new ^= PT64_NX_MASK;
  2020. return (old & ~new & PT64_PERM_MASK) != 0;
  2021. }
  2022. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2023. {
  2024. if (need_remote_flush(old, new))
  2025. kvm_flush_remote_tlbs(vcpu->kvm);
  2026. else
  2027. kvm_mmu_flush_tlb(vcpu);
  2028. }
  2029. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2030. {
  2031. u64 *spte = vcpu->arch.last_pte_updated;
  2032. return !!(spte && (*spte & shadow_accessed_mask));
  2033. }
  2034. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2035. const u8 *new, int bytes)
  2036. {
  2037. gfn_t gfn;
  2038. int r;
  2039. u64 gpte = 0;
  2040. pfn_t pfn;
  2041. vcpu->arch.update_pte.largepage = 0;
  2042. if (bytes != 4 && bytes != 8)
  2043. return;
  2044. /*
  2045. * Assume that the pte write on a page table of the same type
  2046. * as the current vcpu paging mode. This is nearly always true
  2047. * (might be false while changing modes). Note it is verified later
  2048. * by update_pte().
  2049. */
  2050. if (is_pae(vcpu)) {
  2051. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2052. if ((bytes == 4) && (gpa % 4 == 0)) {
  2053. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2054. if (r)
  2055. return;
  2056. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2057. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2058. memcpy((void *)&gpte, new, 8);
  2059. }
  2060. } else {
  2061. if ((bytes == 4) && (gpa % 4 == 0))
  2062. memcpy((void *)&gpte, new, 4);
  2063. }
  2064. if (!is_present_pte(gpte))
  2065. return;
  2066. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2067. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  2068. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  2069. vcpu->arch.update_pte.largepage = 1;
  2070. }
  2071. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2072. smp_rmb();
  2073. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2074. if (is_error_pfn(pfn)) {
  2075. kvm_release_pfn_clean(pfn);
  2076. return;
  2077. }
  2078. vcpu->arch.update_pte.gfn = gfn;
  2079. vcpu->arch.update_pte.pfn = pfn;
  2080. }
  2081. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2082. {
  2083. u64 *spte = vcpu->arch.last_pte_updated;
  2084. if (spte
  2085. && vcpu->arch.last_pte_gfn == gfn
  2086. && shadow_accessed_mask
  2087. && !(*spte & shadow_accessed_mask)
  2088. && is_shadow_present_pte(*spte))
  2089. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2090. }
  2091. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2092. const u8 *new, int bytes,
  2093. bool guest_initiated)
  2094. {
  2095. gfn_t gfn = gpa >> PAGE_SHIFT;
  2096. struct kvm_mmu_page *sp;
  2097. struct hlist_node *node, *n;
  2098. struct hlist_head *bucket;
  2099. unsigned index;
  2100. u64 entry, gentry;
  2101. u64 *spte;
  2102. unsigned offset = offset_in_page(gpa);
  2103. unsigned pte_size;
  2104. unsigned page_offset;
  2105. unsigned misaligned;
  2106. unsigned quadrant;
  2107. int level;
  2108. int flooded = 0;
  2109. int npte;
  2110. int r;
  2111. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2112. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2113. spin_lock(&vcpu->kvm->mmu_lock);
  2114. kvm_mmu_access_page(vcpu, gfn);
  2115. kvm_mmu_free_some_pages(vcpu);
  2116. ++vcpu->kvm->stat.mmu_pte_write;
  2117. kvm_mmu_audit(vcpu, "pre pte write");
  2118. if (guest_initiated) {
  2119. if (gfn == vcpu->arch.last_pt_write_gfn
  2120. && !last_updated_pte_accessed(vcpu)) {
  2121. ++vcpu->arch.last_pt_write_count;
  2122. if (vcpu->arch.last_pt_write_count >= 3)
  2123. flooded = 1;
  2124. } else {
  2125. vcpu->arch.last_pt_write_gfn = gfn;
  2126. vcpu->arch.last_pt_write_count = 1;
  2127. vcpu->arch.last_pte_updated = NULL;
  2128. }
  2129. }
  2130. index = kvm_page_table_hashfn(gfn);
  2131. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2132. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2133. if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
  2134. continue;
  2135. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2136. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2137. misaligned |= bytes < 4;
  2138. if (misaligned || flooded) {
  2139. /*
  2140. * Misaligned accesses are too much trouble to fix
  2141. * up; also, they usually indicate a page is not used
  2142. * as a page table.
  2143. *
  2144. * If we're seeing too many writes to a page,
  2145. * it may no longer be a page table, or we may be
  2146. * forking, in which case it is better to unmap the
  2147. * page.
  2148. */
  2149. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2150. gpa, bytes, sp->role.word);
  2151. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2152. n = bucket->first;
  2153. ++vcpu->kvm->stat.mmu_flooded;
  2154. continue;
  2155. }
  2156. page_offset = offset;
  2157. level = sp->role.level;
  2158. npte = 1;
  2159. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2160. page_offset <<= 1; /* 32->64 */
  2161. /*
  2162. * A 32-bit pde maps 4MB while the shadow pdes map
  2163. * only 2MB. So we need to double the offset again
  2164. * and zap two pdes instead of one.
  2165. */
  2166. if (level == PT32_ROOT_LEVEL) {
  2167. page_offset &= ~7; /* kill rounding error */
  2168. page_offset <<= 1;
  2169. npte = 2;
  2170. }
  2171. quadrant = page_offset >> PAGE_SHIFT;
  2172. page_offset &= ~PAGE_MASK;
  2173. if (quadrant != sp->role.quadrant)
  2174. continue;
  2175. }
  2176. spte = &sp->spt[page_offset / sizeof(*spte)];
  2177. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2178. gentry = 0;
  2179. r = kvm_read_guest_atomic(vcpu->kvm,
  2180. gpa & ~(u64)(pte_size - 1),
  2181. &gentry, pte_size);
  2182. new = (const void *)&gentry;
  2183. if (r < 0)
  2184. new = NULL;
  2185. }
  2186. while (npte--) {
  2187. entry = *spte;
  2188. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2189. if (new)
  2190. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2191. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2192. ++spte;
  2193. }
  2194. }
  2195. kvm_mmu_audit(vcpu, "post pte write");
  2196. spin_unlock(&vcpu->kvm->mmu_lock);
  2197. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2198. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2199. vcpu->arch.update_pte.pfn = bad_pfn;
  2200. }
  2201. }
  2202. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2203. {
  2204. gpa_t gpa;
  2205. int r;
  2206. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2207. spin_lock(&vcpu->kvm->mmu_lock);
  2208. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2209. spin_unlock(&vcpu->kvm->mmu_lock);
  2210. return r;
  2211. }
  2212. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2213. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2214. {
  2215. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  2216. struct kvm_mmu_page *sp;
  2217. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2218. struct kvm_mmu_page, link);
  2219. kvm_mmu_zap_page(vcpu->kvm, sp);
  2220. ++vcpu->kvm->stat.mmu_recycled;
  2221. }
  2222. }
  2223. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2224. {
  2225. int r;
  2226. enum emulation_result er;
  2227. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2228. if (r < 0)
  2229. goto out;
  2230. if (!r) {
  2231. r = 1;
  2232. goto out;
  2233. }
  2234. r = mmu_topup_memory_caches(vcpu);
  2235. if (r)
  2236. goto out;
  2237. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2238. switch (er) {
  2239. case EMULATE_DONE:
  2240. return 1;
  2241. case EMULATE_DO_MMIO:
  2242. ++vcpu->stat.mmio_exits;
  2243. return 0;
  2244. case EMULATE_FAIL:
  2245. kvm_report_emulation_failure(vcpu, "pagetable");
  2246. return 1;
  2247. default:
  2248. BUG();
  2249. }
  2250. out:
  2251. return r;
  2252. }
  2253. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2254. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2255. {
  2256. vcpu->arch.mmu.invlpg(vcpu, gva);
  2257. kvm_mmu_flush_tlb(vcpu);
  2258. ++vcpu->stat.invlpg;
  2259. }
  2260. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2261. void kvm_enable_tdp(void)
  2262. {
  2263. tdp_enabled = true;
  2264. }
  2265. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2266. void kvm_disable_tdp(void)
  2267. {
  2268. tdp_enabled = false;
  2269. }
  2270. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2271. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2272. {
  2273. struct kvm_mmu_page *sp;
  2274. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2275. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  2276. struct kvm_mmu_page, link);
  2277. kvm_mmu_zap_page(vcpu->kvm, sp);
  2278. cond_resched();
  2279. }
  2280. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2281. }
  2282. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2283. {
  2284. struct page *page;
  2285. int i;
  2286. ASSERT(vcpu);
  2287. if (vcpu->kvm->arch.n_requested_mmu_pages)
  2288. vcpu->kvm->arch.n_free_mmu_pages =
  2289. vcpu->kvm->arch.n_requested_mmu_pages;
  2290. else
  2291. vcpu->kvm->arch.n_free_mmu_pages =
  2292. vcpu->kvm->arch.n_alloc_mmu_pages;
  2293. /*
  2294. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2295. * Therefore we need to allocate shadow page tables in the first
  2296. * 4GB of memory, which happens to fit the DMA32 zone.
  2297. */
  2298. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2299. if (!page)
  2300. goto error_1;
  2301. vcpu->arch.mmu.pae_root = page_address(page);
  2302. for (i = 0; i < 4; ++i)
  2303. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2304. return 0;
  2305. error_1:
  2306. free_mmu_pages(vcpu);
  2307. return -ENOMEM;
  2308. }
  2309. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2310. {
  2311. ASSERT(vcpu);
  2312. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2313. return alloc_mmu_pages(vcpu);
  2314. }
  2315. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2316. {
  2317. ASSERT(vcpu);
  2318. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2319. return init_kvm_mmu(vcpu);
  2320. }
  2321. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2322. {
  2323. ASSERT(vcpu);
  2324. destroy_kvm_mmu(vcpu);
  2325. free_mmu_pages(vcpu);
  2326. mmu_free_memory_caches(vcpu);
  2327. }
  2328. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2329. {
  2330. struct kvm_mmu_page *sp;
  2331. spin_lock(&kvm->mmu_lock);
  2332. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2333. int i;
  2334. u64 *pt;
  2335. if (!test_bit(slot, sp->slot_bitmap))
  2336. continue;
  2337. pt = sp->spt;
  2338. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2339. /* avoid RMW */
  2340. if (pt[i] & PT_WRITABLE_MASK)
  2341. pt[i] &= ~PT_WRITABLE_MASK;
  2342. }
  2343. kvm_flush_remote_tlbs(kvm);
  2344. spin_unlock(&kvm->mmu_lock);
  2345. }
  2346. void kvm_mmu_zap_all(struct kvm *kvm)
  2347. {
  2348. struct kvm_mmu_page *sp, *node;
  2349. spin_lock(&kvm->mmu_lock);
  2350. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2351. if (kvm_mmu_zap_page(kvm, sp))
  2352. node = container_of(kvm->arch.active_mmu_pages.next,
  2353. struct kvm_mmu_page, link);
  2354. spin_unlock(&kvm->mmu_lock);
  2355. kvm_flush_remote_tlbs(kvm);
  2356. }
  2357. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2358. {
  2359. struct kvm_mmu_page *page;
  2360. page = container_of(kvm->arch.active_mmu_pages.prev,
  2361. struct kvm_mmu_page, link);
  2362. kvm_mmu_zap_page(kvm, page);
  2363. }
  2364. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2365. {
  2366. struct kvm *kvm;
  2367. struct kvm *kvm_freed = NULL;
  2368. int cache_count = 0;
  2369. spin_lock(&kvm_lock);
  2370. list_for_each_entry(kvm, &vm_list, vm_list) {
  2371. int npages;
  2372. if (!down_read_trylock(&kvm->slots_lock))
  2373. continue;
  2374. spin_lock(&kvm->mmu_lock);
  2375. npages = kvm->arch.n_alloc_mmu_pages -
  2376. kvm->arch.n_free_mmu_pages;
  2377. cache_count += npages;
  2378. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2379. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2380. cache_count--;
  2381. kvm_freed = kvm;
  2382. }
  2383. nr_to_scan--;
  2384. spin_unlock(&kvm->mmu_lock);
  2385. up_read(&kvm->slots_lock);
  2386. }
  2387. if (kvm_freed)
  2388. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2389. spin_unlock(&kvm_lock);
  2390. return cache_count;
  2391. }
  2392. static struct shrinker mmu_shrinker = {
  2393. .shrink = mmu_shrink,
  2394. .seeks = DEFAULT_SEEKS * 10,
  2395. };
  2396. static void mmu_destroy_caches(void)
  2397. {
  2398. if (pte_chain_cache)
  2399. kmem_cache_destroy(pte_chain_cache);
  2400. if (rmap_desc_cache)
  2401. kmem_cache_destroy(rmap_desc_cache);
  2402. if (mmu_page_header_cache)
  2403. kmem_cache_destroy(mmu_page_header_cache);
  2404. }
  2405. void kvm_mmu_module_exit(void)
  2406. {
  2407. mmu_destroy_caches();
  2408. unregister_shrinker(&mmu_shrinker);
  2409. }
  2410. int kvm_mmu_module_init(void)
  2411. {
  2412. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2413. sizeof(struct kvm_pte_chain),
  2414. 0, 0, NULL);
  2415. if (!pte_chain_cache)
  2416. goto nomem;
  2417. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2418. sizeof(struct kvm_rmap_desc),
  2419. 0, 0, NULL);
  2420. if (!rmap_desc_cache)
  2421. goto nomem;
  2422. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2423. sizeof(struct kvm_mmu_page),
  2424. 0, 0, NULL);
  2425. if (!mmu_page_header_cache)
  2426. goto nomem;
  2427. register_shrinker(&mmu_shrinker);
  2428. return 0;
  2429. nomem:
  2430. mmu_destroy_caches();
  2431. return -ENOMEM;
  2432. }
  2433. /*
  2434. * Caculate mmu pages needed for kvm.
  2435. */
  2436. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2437. {
  2438. int i;
  2439. unsigned int nr_mmu_pages;
  2440. unsigned int nr_pages = 0;
  2441. for (i = 0; i < kvm->nmemslots; i++)
  2442. nr_pages += kvm->memslots[i].npages;
  2443. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2444. nr_mmu_pages = max(nr_mmu_pages,
  2445. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2446. return nr_mmu_pages;
  2447. }
  2448. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2449. unsigned len)
  2450. {
  2451. if (len > buffer->len)
  2452. return NULL;
  2453. return buffer->ptr;
  2454. }
  2455. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2456. unsigned len)
  2457. {
  2458. void *ret;
  2459. ret = pv_mmu_peek_buffer(buffer, len);
  2460. if (!ret)
  2461. return ret;
  2462. buffer->ptr += len;
  2463. buffer->len -= len;
  2464. buffer->processed += len;
  2465. return ret;
  2466. }
  2467. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2468. gpa_t addr, gpa_t value)
  2469. {
  2470. int bytes = 8;
  2471. int r;
  2472. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2473. bytes = 4;
  2474. r = mmu_topup_memory_caches(vcpu);
  2475. if (r)
  2476. return r;
  2477. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2478. return -EFAULT;
  2479. return 1;
  2480. }
  2481. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2482. {
  2483. kvm_x86_ops->tlb_flush(vcpu);
  2484. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  2485. return 1;
  2486. }
  2487. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2488. {
  2489. spin_lock(&vcpu->kvm->mmu_lock);
  2490. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2491. spin_unlock(&vcpu->kvm->mmu_lock);
  2492. return 1;
  2493. }
  2494. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2495. struct kvm_pv_mmu_op_buffer *buffer)
  2496. {
  2497. struct kvm_mmu_op_header *header;
  2498. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2499. if (!header)
  2500. return 0;
  2501. switch (header->op) {
  2502. case KVM_MMU_OP_WRITE_PTE: {
  2503. struct kvm_mmu_op_write_pte *wpte;
  2504. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2505. if (!wpte)
  2506. return 0;
  2507. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2508. wpte->pte_val);
  2509. }
  2510. case KVM_MMU_OP_FLUSH_TLB: {
  2511. struct kvm_mmu_op_flush_tlb *ftlb;
  2512. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2513. if (!ftlb)
  2514. return 0;
  2515. return kvm_pv_mmu_flush_tlb(vcpu);
  2516. }
  2517. case KVM_MMU_OP_RELEASE_PT: {
  2518. struct kvm_mmu_op_release_pt *rpt;
  2519. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2520. if (!rpt)
  2521. return 0;
  2522. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2523. }
  2524. default: return 0;
  2525. }
  2526. }
  2527. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2528. gpa_t addr, unsigned long *ret)
  2529. {
  2530. int r;
  2531. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2532. buffer->ptr = buffer->buf;
  2533. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2534. buffer->processed = 0;
  2535. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2536. if (r)
  2537. goto out;
  2538. while (buffer->len) {
  2539. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2540. if (r < 0)
  2541. goto out;
  2542. if (r == 0)
  2543. break;
  2544. }
  2545. r = 1;
  2546. out:
  2547. *ret = buffer->processed;
  2548. return r;
  2549. }
  2550. #ifdef AUDIT
  2551. static const char *audit_msg;
  2552. static gva_t canonicalize(gva_t gva)
  2553. {
  2554. #ifdef CONFIG_X86_64
  2555. gva = (long long)(gva << 16) >> 16;
  2556. #endif
  2557. return gva;
  2558. }
  2559. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2560. gva_t va, int level)
  2561. {
  2562. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2563. int i;
  2564. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2565. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2566. u64 ent = pt[i];
  2567. if (ent == shadow_trap_nonpresent_pte)
  2568. continue;
  2569. va = canonicalize(va);
  2570. if (level > 1) {
  2571. if (ent == shadow_notrap_nonpresent_pte)
  2572. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2573. " in nonleaf level: levels %d gva %lx"
  2574. " level %d pte %llx\n", audit_msg,
  2575. vcpu->arch.mmu.root_level, va, level, ent);
  2576. audit_mappings_page(vcpu, ent, va, level - 1);
  2577. } else {
  2578. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2579. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2580. if (is_shadow_present_pte(ent)
  2581. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2582. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2583. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2584. audit_msg, vcpu->arch.mmu.root_level,
  2585. va, gpa, hpa, ent,
  2586. is_shadow_present_pte(ent));
  2587. else if (ent == shadow_notrap_nonpresent_pte
  2588. && !is_error_hpa(hpa))
  2589. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2590. " valid guest gva %lx\n", audit_msg, va);
  2591. kvm_release_pfn_clean(pfn);
  2592. }
  2593. }
  2594. }
  2595. static void audit_mappings(struct kvm_vcpu *vcpu)
  2596. {
  2597. unsigned i;
  2598. if (vcpu->arch.mmu.root_level == 4)
  2599. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2600. else
  2601. for (i = 0; i < 4; ++i)
  2602. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2603. audit_mappings_page(vcpu,
  2604. vcpu->arch.mmu.pae_root[i],
  2605. i << 30,
  2606. 2);
  2607. }
  2608. static int count_rmaps(struct kvm_vcpu *vcpu)
  2609. {
  2610. int nmaps = 0;
  2611. int i, j, k;
  2612. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2613. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2614. struct kvm_rmap_desc *d;
  2615. for (j = 0; j < m->npages; ++j) {
  2616. unsigned long *rmapp = &m->rmap[j];
  2617. if (!*rmapp)
  2618. continue;
  2619. if (!(*rmapp & 1)) {
  2620. ++nmaps;
  2621. continue;
  2622. }
  2623. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2624. while (d) {
  2625. for (k = 0; k < RMAP_EXT; ++k)
  2626. if (d->shadow_ptes[k])
  2627. ++nmaps;
  2628. else
  2629. break;
  2630. d = d->more;
  2631. }
  2632. }
  2633. }
  2634. return nmaps;
  2635. }
  2636. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2637. {
  2638. int nmaps = 0;
  2639. struct kvm_mmu_page *sp;
  2640. int i;
  2641. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2642. u64 *pt = sp->spt;
  2643. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2644. continue;
  2645. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2646. u64 ent = pt[i];
  2647. if (!(ent & PT_PRESENT_MASK))
  2648. continue;
  2649. if (!(ent & PT_WRITABLE_MASK))
  2650. continue;
  2651. ++nmaps;
  2652. }
  2653. }
  2654. return nmaps;
  2655. }
  2656. static void audit_rmap(struct kvm_vcpu *vcpu)
  2657. {
  2658. int n_rmap = count_rmaps(vcpu);
  2659. int n_actual = count_writable_mappings(vcpu);
  2660. if (n_rmap != n_actual)
  2661. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2662. __func__, audit_msg, n_rmap, n_actual);
  2663. }
  2664. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2665. {
  2666. struct kvm_mmu_page *sp;
  2667. struct kvm_memory_slot *slot;
  2668. unsigned long *rmapp;
  2669. gfn_t gfn;
  2670. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2671. if (sp->role.metaphysical)
  2672. continue;
  2673. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2674. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2675. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2676. if (*rmapp)
  2677. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2678. " mappings: gfn %lx role %x\n",
  2679. __func__, audit_msg, sp->gfn,
  2680. sp->role.word);
  2681. }
  2682. }
  2683. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2684. {
  2685. int olddbg = dbg;
  2686. dbg = 0;
  2687. audit_msg = msg;
  2688. audit_rmap(vcpu);
  2689. audit_write_protection(vcpu);
  2690. audit_mappings(vcpu);
  2691. dbg = olddbg;
  2692. }
  2693. #endif