vmx.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <linux/sched.h>
  25. #include <asm/io.h>
  26. #include <asm/desc.h>
  27. #include "segment_descriptor.h"
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  31. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  32. static struct page *vmx_io_bitmap_a;
  33. static struct page *vmx_io_bitmap_b;
  34. #ifdef CONFIG_X86_64
  35. #define HOST_IS_64 1
  36. #else
  37. #define HOST_IS_64 0
  38. #endif
  39. static struct vmcs_descriptor {
  40. int size;
  41. int order;
  42. u32 revision_id;
  43. } vmcs_descriptor;
  44. #define VMX_SEGMENT_FIELD(seg) \
  45. [VCPU_SREG_##seg] = { \
  46. .selector = GUEST_##seg##_SELECTOR, \
  47. .base = GUEST_##seg##_BASE, \
  48. .limit = GUEST_##seg##_LIMIT, \
  49. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  50. }
  51. static struct kvm_vmx_segment_field {
  52. unsigned selector;
  53. unsigned base;
  54. unsigned limit;
  55. unsigned ar_bytes;
  56. } kvm_vmx_segment_fields[] = {
  57. VMX_SEGMENT_FIELD(CS),
  58. VMX_SEGMENT_FIELD(DS),
  59. VMX_SEGMENT_FIELD(ES),
  60. VMX_SEGMENT_FIELD(FS),
  61. VMX_SEGMENT_FIELD(GS),
  62. VMX_SEGMENT_FIELD(SS),
  63. VMX_SEGMENT_FIELD(TR),
  64. VMX_SEGMENT_FIELD(LDTR),
  65. };
  66. /*
  67. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  68. * away by decrementing the array size.
  69. */
  70. static const u32 vmx_msr_index[] = {
  71. #ifdef CONFIG_X86_64
  72. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  73. #endif
  74. MSR_EFER, MSR_K6_STAR,
  75. };
  76. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  77. static inline int is_page_fault(u32 intr_info)
  78. {
  79. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  80. INTR_INFO_VALID_MASK)) ==
  81. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  82. }
  83. static inline int is_no_device(u32 intr_info)
  84. {
  85. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  86. INTR_INFO_VALID_MASK)) ==
  87. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  88. }
  89. static inline int is_external_interrupt(u32 intr_info)
  90. {
  91. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  92. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  93. }
  94. static int __find_msr_index(struct kvm_vcpu *vcpu, u32 msr)
  95. {
  96. int i;
  97. for (i = 0; i < vcpu->nmsrs; ++i)
  98. if (vcpu->guest_msrs[i].index == msr)
  99. return i;
  100. return -1;
  101. }
  102. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  103. {
  104. int i;
  105. i = __find_msr_index(vcpu, msr);
  106. if (i >= 0)
  107. return &vcpu->guest_msrs[i];
  108. return NULL;
  109. }
  110. static void vmcs_clear(struct vmcs *vmcs)
  111. {
  112. u64 phys_addr = __pa(vmcs);
  113. u8 error;
  114. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  115. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  116. : "cc", "memory");
  117. if (error)
  118. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  119. vmcs, phys_addr);
  120. }
  121. static void __vcpu_clear(void *arg)
  122. {
  123. struct kvm_vcpu *vcpu = arg;
  124. int cpu = raw_smp_processor_id();
  125. if (vcpu->cpu == cpu)
  126. vmcs_clear(vcpu->vmcs);
  127. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  128. per_cpu(current_vmcs, cpu) = NULL;
  129. }
  130. static void vcpu_clear(struct kvm_vcpu *vcpu)
  131. {
  132. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  133. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  134. else
  135. __vcpu_clear(vcpu);
  136. vcpu->launched = 0;
  137. }
  138. static unsigned long vmcs_readl(unsigned long field)
  139. {
  140. unsigned long value;
  141. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  142. : "=a"(value) : "d"(field) : "cc");
  143. return value;
  144. }
  145. static u16 vmcs_read16(unsigned long field)
  146. {
  147. return vmcs_readl(field);
  148. }
  149. static u32 vmcs_read32(unsigned long field)
  150. {
  151. return vmcs_readl(field);
  152. }
  153. static u64 vmcs_read64(unsigned long field)
  154. {
  155. #ifdef CONFIG_X86_64
  156. return vmcs_readl(field);
  157. #else
  158. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  159. #endif
  160. }
  161. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  162. {
  163. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  164. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  165. dump_stack();
  166. }
  167. static void vmcs_writel(unsigned long field, unsigned long value)
  168. {
  169. u8 error;
  170. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  171. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  172. if (unlikely(error))
  173. vmwrite_error(field, value);
  174. }
  175. static void vmcs_write16(unsigned long field, u16 value)
  176. {
  177. vmcs_writel(field, value);
  178. }
  179. static void vmcs_write32(unsigned long field, u32 value)
  180. {
  181. vmcs_writel(field, value);
  182. }
  183. static void vmcs_write64(unsigned long field, u64 value)
  184. {
  185. #ifdef CONFIG_X86_64
  186. vmcs_writel(field, value);
  187. #else
  188. vmcs_writel(field, value);
  189. asm volatile ("");
  190. vmcs_writel(field+1, value >> 32);
  191. #endif
  192. }
  193. static void vmcs_clear_bits(unsigned long field, u32 mask)
  194. {
  195. vmcs_writel(field, vmcs_readl(field) & ~mask);
  196. }
  197. static void vmcs_set_bits(unsigned long field, u32 mask)
  198. {
  199. vmcs_writel(field, vmcs_readl(field) | mask);
  200. }
  201. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  202. {
  203. u32 eb;
  204. eb = 1u << PF_VECTOR;
  205. if (!vcpu->fpu_active)
  206. eb |= 1u << NM_VECTOR;
  207. if (vcpu->guest_debug.enabled)
  208. eb |= 1u << 1;
  209. if (vcpu->rmode.active)
  210. eb = ~0;
  211. vmcs_write32(EXCEPTION_BITMAP, eb);
  212. }
  213. static void reload_tss(void)
  214. {
  215. #ifndef CONFIG_X86_64
  216. /*
  217. * VT restores TR but not its size. Useless.
  218. */
  219. struct descriptor_table gdt;
  220. struct segment_descriptor *descs;
  221. get_gdt(&gdt);
  222. descs = (void *)gdt.base;
  223. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  224. load_TR_desc();
  225. #endif
  226. }
  227. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  228. {
  229. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  230. if (hs->loaded)
  231. return;
  232. hs->loaded = 1;
  233. /*
  234. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  235. * allow segment selectors with cpl > 0 or ti == 1.
  236. */
  237. hs->ldt_sel = read_ldt();
  238. hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
  239. hs->fs_sel = read_fs();
  240. if (!(hs->fs_sel & 7))
  241. vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
  242. else {
  243. vmcs_write16(HOST_FS_SELECTOR, 0);
  244. hs->fs_gs_ldt_reload_needed = 1;
  245. }
  246. hs->gs_sel = read_gs();
  247. if (!(hs->gs_sel & 7))
  248. vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
  249. else {
  250. vmcs_write16(HOST_GS_SELECTOR, 0);
  251. hs->fs_gs_ldt_reload_needed = 1;
  252. }
  253. #ifdef CONFIG_X86_64
  254. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  255. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  256. #else
  257. vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
  258. vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
  259. #endif
  260. #ifdef CONFIG_X86_64
  261. if (is_long_mode(vcpu)) {
  262. save_msrs(vcpu->host_msrs + vcpu->msr_offset_kernel_gs_base, 1);
  263. }
  264. #endif
  265. load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  266. }
  267. static void vmx_load_host_state(struct kvm_vcpu *vcpu)
  268. {
  269. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  270. if (!hs->loaded)
  271. return;
  272. hs->loaded = 0;
  273. if (hs->fs_gs_ldt_reload_needed) {
  274. load_ldt(hs->ldt_sel);
  275. load_fs(hs->fs_sel);
  276. /*
  277. * If we have to reload gs, we must take care to
  278. * preserve our gs base.
  279. */
  280. local_irq_disable();
  281. load_gs(hs->gs_sel);
  282. #ifdef CONFIG_X86_64
  283. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  284. #endif
  285. local_irq_enable();
  286. reload_tss();
  287. }
  288. save_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  289. load_msrs(vcpu->host_msrs, vcpu->save_nmsrs);
  290. }
  291. /*
  292. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  293. * vcpu mutex is already taken.
  294. */
  295. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  296. {
  297. u64 phys_addr = __pa(vcpu->vmcs);
  298. int cpu;
  299. cpu = get_cpu();
  300. if (vcpu->cpu != cpu)
  301. vcpu_clear(vcpu);
  302. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  303. u8 error;
  304. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  305. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  306. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  307. : "cc");
  308. if (error)
  309. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  310. vcpu->vmcs, phys_addr);
  311. }
  312. if (vcpu->cpu != cpu) {
  313. struct descriptor_table dt;
  314. unsigned long sysenter_esp;
  315. vcpu->cpu = cpu;
  316. /*
  317. * Linux uses per-cpu TSS and GDT, so set these when switching
  318. * processors.
  319. */
  320. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  321. get_gdt(&dt);
  322. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  323. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  324. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  325. }
  326. }
  327. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  328. {
  329. vmx_load_host_state(vcpu);
  330. kvm_put_guest_fpu(vcpu);
  331. put_cpu();
  332. }
  333. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  334. {
  335. if (vcpu->fpu_active)
  336. return;
  337. vcpu->fpu_active = 1;
  338. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  339. if (vcpu->cr0 & CR0_TS_MASK)
  340. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  341. update_exception_bitmap(vcpu);
  342. }
  343. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  344. {
  345. if (!vcpu->fpu_active)
  346. return;
  347. vcpu->fpu_active = 0;
  348. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  349. update_exception_bitmap(vcpu);
  350. }
  351. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  352. {
  353. vcpu_clear(vcpu);
  354. }
  355. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  356. {
  357. return vmcs_readl(GUEST_RFLAGS);
  358. }
  359. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  360. {
  361. vmcs_writel(GUEST_RFLAGS, rflags);
  362. }
  363. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  364. {
  365. unsigned long rip;
  366. u32 interruptibility;
  367. rip = vmcs_readl(GUEST_RIP);
  368. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  369. vmcs_writel(GUEST_RIP, rip);
  370. /*
  371. * We emulated an instruction, so temporary interrupt blocking
  372. * should be removed, if set.
  373. */
  374. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  375. if (interruptibility & 3)
  376. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  377. interruptibility & ~3);
  378. vcpu->interrupt_window_open = 1;
  379. }
  380. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  381. {
  382. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  383. vmcs_readl(GUEST_RIP));
  384. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  385. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  386. GP_VECTOR |
  387. INTR_TYPE_EXCEPTION |
  388. INTR_INFO_DELIEVER_CODE_MASK |
  389. INTR_INFO_VALID_MASK);
  390. }
  391. /*
  392. * Swap MSR entry in host/guest MSR entry array.
  393. */
  394. void move_msr_up(struct kvm_vcpu *vcpu, int from, int to)
  395. {
  396. struct vmx_msr_entry tmp;
  397. tmp = vcpu->guest_msrs[to];
  398. vcpu->guest_msrs[to] = vcpu->guest_msrs[from];
  399. vcpu->guest_msrs[from] = tmp;
  400. tmp = vcpu->host_msrs[to];
  401. vcpu->host_msrs[to] = vcpu->host_msrs[from];
  402. vcpu->host_msrs[from] = tmp;
  403. }
  404. /*
  405. * Set up the vmcs to automatically save and restore system
  406. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  407. * mode, as fiddling with msrs is very expensive.
  408. */
  409. static void setup_msrs(struct kvm_vcpu *vcpu)
  410. {
  411. int index, save_nmsrs;
  412. save_nmsrs = 0;
  413. #ifdef CONFIG_X86_64
  414. if (is_long_mode(vcpu)) {
  415. index = __find_msr_index(vcpu, MSR_SYSCALL_MASK);
  416. if (index >= 0)
  417. move_msr_up(vcpu, index, save_nmsrs++);
  418. index = __find_msr_index(vcpu, MSR_LSTAR);
  419. if (index >= 0)
  420. move_msr_up(vcpu, index, save_nmsrs++);
  421. index = __find_msr_index(vcpu, MSR_CSTAR);
  422. if (index >= 0)
  423. move_msr_up(vcpu, index, save_nmsrs++);
  424. index = __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  425. if (index >= 0)
  426. move_msr_up(vcpu, index, save_nmsrs++);
  427. /*
  428. * MSR_K6_STAR is only needed on long mode guests, and only
  429. * if efer.sce is enabled.
  430. */
  431. index = __find_msr_index(vcpu, MSR_K6_STAR);
  432. if ((index >= 0) && (vcpu->shadow_efer & EFER_SCE))
  433. move_msr_up(vcpu, index, save_nmsrs++);
  434. }
  435. #endif
  436. vcpu->save_nmsrs = save_nmsrs;
  437. #ifdef CONFIG_X86_64
  438. vcpu->msr_offset_kernel_gs_base =
  439. __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  440. #endif
  441. index = __find_msr_index(vcpu, MSR_EFER);
  442. if (index >= 0)
  443. save_nmsrs = 1;
  444. else {
  445. save_nmsrs = 0;
  446. index = 0;
  447. }
  448. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  449. virt_to_phys(vcpu->guest_msrs + index));
  450. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  451. virt_to_phys(vcpu->guest_msrs + index));
  452. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  453. virt_to_phys(vcpu->host_msrs + index));
  454. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, save_nmsrs);
  455. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, save_nmsrs);
  456. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, save_nmsrs);
  457. }
  458. /*
  459. * reads and returns guest's timestamp counter "register"
  460. * guest_tsc = host_tsc + tsc_offset -- 21.3
  461. */
  462. static u64 guest_read_tsc(void)
  463. {
  464. u64 host_tsc, tsc_offset;
  465. rdtscll(host_tsc);
  466. tsc_offset = vmcs_read64(TSC_OFFSET);
  467. return host_tsc + tsc_offset;
  468. }
  469. /*
  470. * writes 'guest_tsc' into guest's timestamp counter "register"
  471. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  472. */
  473. static void guest_write_tsc(u64 guest_tsc)
  474. {
  475. u64 host_tsc;
  476. rdtscll(host_tsc);
  477. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  478. }
  479. /*
  480. * Reads an msr value (of 'msr_index') into 'pdata'.
  481. * Returns 0 on success, non-0 otherwise.
  482. * Assumes vcpu_load() was already called.
  483. */
  484. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  485. {
  486. u64 data;
  487. struct vmx_msr_entry *msr;
  488. if (!pdata) {
  489. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  490. return -EINVAL;
  491. }
  492. switch (msr_index) {
  493. #ifdef CONFIG_X86_64
  494. case MSR_FS_BASE:
  495. data = vmcs_readl(GUEST_FS_BASE);
  496. break;
  497. case MSR_GS_BASE:
  498. data = vmcs_readl(GUEST_GS_BASE);
  499. break;
  500. case MSR_EFER:
  501. return kvm_get_msr_common(vcpu, msr_index, pdata);
  502. #endif
  503. case MSR_IA32_TIME_STAMP_COUNTER:
  504. data = guest_read_tsc();
  505. break;
  506. case MSR_IA32_SYSENTER_CS:
  507. data = vmcs_read32(GUEST_SYSENTER_CS);
  508. break;
  509. case MSR_IA32_SYSENTER_EIP:
  510. data = vmcs_readl(GUEST_SYSENTER_EIP);
  511. break;
  512. case MSR_IA32_SYSENTER_ESP:
  513. data = vmcs_readl(GUEST_SYSENTER_ESP);
  514. break;
  515. default:
  516. msr = find_msr_entry(vcpu, msr_index);
  517. if (msr) {
  518. data = msr->data;
  519. break;
  520. }
  521. return kvm_get_msr_common(vcpu, msr_index, pdata);
  522. }
  523. *pdata = data;
  524. return 0;
  525. }
  526. /*
  527. * Writes msr value into into the appropriate "register".
  528. * Returns 0 on success, non-0 otherwise.
  529. * Assumes vcpu_load() was already called.
  530. */
  531. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  532. {
  533. struct vmx_msr_entry *msr;
  534. switch (msr_index) {
  535. #ifdef CONFIG_X86_64
  536. case MSR_EFER:
  537. return kvm_set_msr_common(vcpu, msr_index, data);
  538. case MSR_FS_BASE:
  539. vmcs_writel(GUEST_FS_BASE, data);
  540. break;
  541. case MSR_GS_BASE:
  542. vmcs_writel(GUEST_GS_BASE, data);
  543. break;
  544. #endif
  545. case MSR_IA32_SYSENTER_CS:
  546. vmcs_write32(GUEST_SYSENTER_CS, data);
  547. break;
  548. case MSR_IA32_SYSENTER_EIP:
  549. vmcs_writel(GUEST_SYSENTER_EIP, data);
  550. break;
  551. case MSR_IA32_SYSENTER_ESP:
  552. vmcs_writel(GUEST_SYSENTER_ESP, data);
  553. break;
  554. case MSR_IA32_TIME_STAMP_COUNTER:
  555. guest_write_tsc(data);
  556. break;
  557. default:
  558. msr = find_msr_entry(vcpu, msr_index);
  559. if (msr) {
  560. msr->data = data;
  561. if (vcpu->vmx_host_state.loaded)
  562. load_msrs(vcpu->guest_msrs,vcpu->save_nmsrs);
  563. break;
  564. }
  565. return kvm_set_msr_common(vcpu, msr_index, data);
  566. msr->data = data;
  567. break;
  568. }
  569. return 0;
  570. }
  571. /*
  572. * Sync the rsp and rip registers into the vcpu structure. This allows
  573. * registers to be accessed by indexing vcpu->regs.
  574. */
  575. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  576. {
  577. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  578. vcpu->rip = vmcs_readl(GUEST_RIP);
  579. }
  580. /*
  581. * Syncs rsp and rip back into the vmcs. Should be called after possible
  582. * modification.
  583. */
  584. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  585. {
  586. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  587. vmcs_writel(GUEST_RIP, vcpu->rip);
  588. }
  589. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  590. {
  591. unsigned long dr7 = 0x400;
  592. int old_singlestep;
  593. old_singlestep = vcpu->guest_debug.singlestep;
  594. vcpu->guest_debug.enabled = dbg->enabled;
  595. if (vcpu->guest_debug.enabled) {
  596. int i;
  597. dr7 |= 0x200; /* exact */
  598. for (i = 0; i < 4; ++i) {
  599. if (!dbg->breakpoints[i].enabled)
  600. continue;
  601. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  602. dr7 |= 2 << (i*2); /* global enable */
  603. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  604. }
  605. vcpu->guest_debug.singlestep = dbg->singlestep;
  606. } else
  607. vcpu->guest_debug.singlestep = 0;
  608. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  609. unsigned long flags;
  610. flags = vmcs_readl(GUEST_RFLAGS);
  611. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  612. vmcs_writel(GUEST_RFLAGS, flags);
  613. }
  614. update_exception_bitmap(vcpu);
  615. vmcs_writel(GUEST_DR7, dr7);
  616. return 0;
  617. }
  618. static __init int cpu_has_kvm_support(void)
  619. {
  620. unsigned long ecx = cpuid_ecx(1);
  621. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  622. }
  623. static __init int vmx_disabled_by_bios(void)
  624. {
  625. u64 msr;
  626. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  627. return (msr & 5) == 1; /* locked but not enabled */
  628. }
  629. static void hardware_enable(void *garbage)
  630. {
  631. int cpu = raw_smp_processor_id();
  632. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  633. u64 old;
  634. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  635. if ((old & 5) != 5)
  636. /* enable and lock */
  637. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  638. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  639. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  640. : "memory", "cc");
  641. }
  642. static void hardware_disable(void *garbage)
  643. {
  644. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  645. }
  646. static __init void setup_vmcs_descriptor(void)
  647. {
  648. u32 vmx_msr_low, vmx_msr_high;
  649. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  650. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  651. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  652. vmcs_descriptor.revision_id = vmx_msr_low;
  653. }
  654. static struct vmcs *alloc_vmcs_cpu(int cpu)
  655. {
  656. int node = cpu_to_node(cpu);
  657. struct page *pages;
  658. struct vmcs *vmcs;
  659. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  660. if (!pages)
  661. return NULL;
  662. vmcs = page_address(pages);
  663. memset(vmcs, 0, vmcs_descriptor.size);
  664. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  665. return vmcs;
  666. }
  667. static struct vmcs *alloc_vmcs(void)
  668. {
  669. return alloc_vmcs_cpu(raw_smp_processor_id());
  670. }
  671. static void free_vmcs(struct vmcs *vmcs)
  672. {
  673. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  674. }
  675. static void free_kvm_area(void)
  676. {
  677. int cpu;
  678. for_each_online_cpu(cpu)
  679. free_vmcs(per_cpu(vmxarea, cpu));
  680. }
  681. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  682. static __init int alloc_kvm_area(void)
  683. {
  684. int cpu;
  685. for_each_online_cpu(cpu) {
  686. struct vmcs *vmcs;
  687. vmcs = alloc_vmcs_cpu(cpu);
  688. if (!vmcs) {
  689. free_kvm_area();
  690. return -ENOMEM;
  691. }
  692. per_cpu(vmxarea, cpu) = vmcs;
  693. }
  694. return 0;
  695. }
  696. static __init int hardware_setup(void)
  697. {
  698. setup_vmcs_descriptor();
  699. return alloc_kvm_area();
  700. }
  701. static __exit void hardware_unsetup(void)
  702. {
  703. free_kvm_area();
  704. }
  705. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  706. {
  707. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  708. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  709. vmcs_write16(sf->selector, save->selector);
  710. vmcs_writel(sf->base, save->base);
  711. vmcs_write32(sf->limit, save->limit);
  712. vmcs_write32(sf->ar_bytes, save->ar);
  713. } else {
  714. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  715. << AR_DPL_SHIFT;
  716. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  717. }
  718. }
  719. static void enter_pmode(struct kvm_vcpu *vcpu)
  720. {
  721. unsigned long flags;
  722. vcpu->rmode.active = 0;
  723. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  724. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  725. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  726. flags = vmcs_readl(GUEST_RFLAGS);
  727. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  728. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  729. vmcs_writel(GUEST_RFLAGS, flags);
  730. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  731. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  732. update_exception_bitmap(vcpu);
  733. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  734. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  735. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  736. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  737. vmcs_write16(GUEST_SS_SELECTOR, 0);
  738. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  739. vmcs_write16(GUEST_CS_SELECTOR,
  740. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  741. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  742. }
  743. static int rmode_tss_base(struct kvm* kvm)
  744. {
  745. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  746. return base_gfn << PAGE_SHIFT;
  747. }
  748. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  749. {
  750. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  751. save->selector = vmcs_read16(sf->selector);
  752. save->base = vmcs_readl(sf->base);
  753. save->limit = vmcs_read32(sf->limit);
  754. save->ar = vmcs_read32(sf->ar_bytes);
  755. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  756. vmcs_write32(sf->limit, 0xffff);
  757. vmcs_write32(sf->ar_bytes, 0xf3);
  758. }
  759. static void enter_rmode(struct kvm_vcpu *vcpu)
  760. {
  761. unsigned long flags;
  762. vcpu->rmode.active = 1;
  763. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  764. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  765. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  766. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  767. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  768. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  769. flags = vmcs_readl(GUEST_RFLAGS);
  770. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  771. flags |= IOPL_MASK | X86_EFLAGS_VM;
  772. vmcs_writel(GUEST_RFLAGS, flags);
  773. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  774. update_exception_bitmap(vcpu);
  775. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  776. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  777. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  778. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  779. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  780. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  781. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  782. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  783. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  784. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  785. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  786. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  787. }
  788. #ifdef CONFIG_X86_64
  789. static void enter_lmode(struct kvm_vcpu *vcpu)
  790. {
  791. u32 guest_tr_ar;
  792. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  793. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  794. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  795. __FUNCTION__);
  796. vmcs_write32(GUEST_TR_AR_BYTES,
  797. (guest_tr_ar & ~AR_TYPE_MASK)
  798. | AR_TYPE_BUSY_64_TSS);
  799. }
  800. vcpu->shadow_efer |= EFER_LMA;
  801. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  802. vmcs_write32(VM_ENTRY_CONTROLS,
  803. vmcs_read32(VM_ENTRY_CONTROLS)
  804. | VM_ENTRY_CONTROLS_IA32E_MASK);
  805. }
  806. static void exit_lmode(struct kvm_vcpu *vcpu)
  807. {
  808. vcpu->shadow_efer &= ~EFER_LMA;
  809. vmcs_write32(VM_ENTRY_CONTROLS,
  810. vmcs_read32(VM_ENTRY_CONTROLS)
  811. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  812. }
  813. #endif
  814. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  815. {
  816. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  817. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  818. }
  819. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  820. {
  821. vmx_fpu_deactivate(vcpu);
  822. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  823. enter_pmode(vcpu);
  824. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  825. enter_rmode(vcpu);
  826. #ifdef CONFIG_X86_64
  827. if (vcpu->shadow_efer & EFER_LME) {
  828. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  829. enter_lmode(vcpu);
  830. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  831. exit_lmode(vcpu);
  832. }
  833. #endif
  834. vmcs_writel(CR0_READ_SHADOW, cr0);
  835. vmcs_writel(GUEST_CR0,
  836. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  837. vcpu->cr0 = cr0;
  838. if (!(cr0 & CR0_TS_MASK) || !(cr0 & CR0_PE_MASK))
  839. vmx_fpu_activate(vcpu);
  840. }
  841. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  842. {
  843. vmcs_writel(GUEST_CR3, cr3);
  844. if (vcpu->cr0 & CR0_PE_MASK)
  845. vmx_fpu_deactivate(vcpu);
  846. }
  847. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  848. {
  849. vmcs_writel(CR4_READ_SHADOW, cr4);
  850. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  851. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  852. vcpu->cr4 = cr4;
  853. }
  854. #ifdef CONFIG_X86_64
  855. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  856. {
  857. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  858. vcpu->shadow_efer = efer;
  859. if (efer & EFER_LMA) {
  860. vmcs_write32(VM_ENTRY_CONTROLS,
  861. vmcs_read32(VM_ENTRY_CONTROLS) |
  862. VM_ENTRY_CONTROLS_IA32E_MASK);
  863. msr->data = efer;
  864. } else {
  865. vmcs_write32(VM_ENTRY_CONTROLS,
  866. vmcs_read32(VM_ENTRY_CONTROLS) &
  867. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  868. msr->data = efer & ~EFER_LME;
  869. }
  870. setup_msrs(vcpu);
  871. }
  872. #endif
  873. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  874. {
  875. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  876. return vmcs_readl(sf->base);
  877. }
  878. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  879. struct kvm_segment *var, int seg)
  880. {
  881. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  882. u32 ar;
  883. var->base = vmcs_readl(sf->base);
  884. var->limit = vmcs_read32(sf->limit);
  885. var->selector = vmcs_read16(sf->selector);
  886. ar = vmcs_read32(sf->ar_bytes);
  887. if (ar & AR_UNUSABLE_MASK)
  888. ar = 0;
  889. var->type = ar & 15;
  890. var->s = (ar >> 4) & 1;
  891. var->dpl = (ar >> 5) & 3;
  892. var->present = (ar >> 7) & 1;
  893. var->avl = (ar >> 12) & 1;
  894. var->l = (ar >> 13) & 1;
  895. var->db = (ar >> 14) & 1;
  896. var->g = (ar >> 15) & 1;
  897. var->unusable = (ar >> 16) & 1;
  898. }
  899. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  900. {
  901. u32 ar;
  902. if (var->unusable)
  903. ar = 1 << 16;
  904. else {
  905. ar = var->type & 15;
  906. ar |= (var->s & 1) << 4;
  907. ar |= (var->dpl & 3) << 5;
  908. ar |= (var->present & 1) << 7;
  909. ar |= (var->avl & 1) << 12;
  910. ar |= (var->l & 1) << 13;
  911. ar |= (var->db & 1) << 14;
  912. ar |= (var->g & 1) << 15;
  913. }
  914. if (ar == 0) /* a 0 value means unusable */
  915. ar = AR_UNUSABLE_MASK;
  916. return ar;
  917. }
  918. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  919. struct kvm_segment *var, int seg)
  920. {
  921. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  922. u32 ar;
  923. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  924. vcpu->rmode.tr.selector = var->selector;
  925. vcpu->rmode.tr.base = var->base;
  926. vcpu->rmode.tr.limit = var->limit;
  927. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  928. return;
  929. }
  930. vmcs_writel(sf->base, var->base);
  931. vmcs_write32(sf->limit, var->limit);
  932. vmcs_write16(sf->selector, var->selector);
  933. if (vcpu->rmode.active && var->s) {
  934. /*
  935. * Hack real-mode segments into vm86 compatibility.
  936. */
  937. if (var->base == 0xffff0000 && var->selector == 0xf000)
  938. vmcs_writel(sf->base, 0xf0000);
  939. ar = 0xf3;
  940. } else
  941. ar = vmx_segment_access_rights(var);
  942. vmcs_write32(sf->ar_bytes, ar);
  943. }
  944. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  945. {
  946. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  947. *db = (ar >> 14) & 1;
  948. *l = (ar >> 13) & 1;
  949. }
  950. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  951. {
  952. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  953. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  954. }
  955. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  956. {
  957. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  958. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  959. }
  960. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  961. {
  962. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  963. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  964. }
  965. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  966. {
  967. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  968. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  969. }
  970. static int init_rmode_tss(struct kvm* kvm)
  971. {
  972. struct page *p1, *p2, *p3;
  973. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  974. char *page;
  975. p1 = gfn_to_page(kvm, fn++);
  976. p2 = gfn_to_page(kvm, fn++);
  977. p3 = gfn_to_page(kvm, fn);
  978. if (!p1 || !p2 || !p3) {
  979. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  980. return 0;
  981. }
  982. page = kmap_atomic(p1, KM_USER0);
  983. memset(page, 0, PAGE_SIZE);
  984. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  985. kunmap_atomic(page, KM_USER0);
  986. page = kmap_atomic(p2, KM_USER0);
  987. memset(page, 0, PAGE_SIZE);
  988. kunmap_atomic(page, KM_USER0);
  989. page = kmap_atomic(p3, KM_USER0);
  990. memset(page, 0, PAGE_SIZE);
  991. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  992. kunmap_atomic(page, KM_USER0);
  993. return 1;
  994. }
  995. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  996. {
  997. u32 msr_high, msr_low;
  998. rdmsr(msr, msr_low, msr_high);
  999. val &= msr_high;
  1000. val |= msr_low;
  1001. vmcs_write32(vmcs_field, val);
  1002. }
  1003. static void seg_setup(int seg)
  1004. {
  1005. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1006. vmcs_write16(sf->selector, 0);
  1007. vmcs_writel(sf->base, 0);
  1008. vmcs_write32(sf->limit, 0xffff);
  1009. vmcs_write32(sf->ar_bytes, 0x93);
  1010. }
  1011. /*
  1012. * Sets up the vmcs for emulated real mode.
  1013. */
  1014. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  1015. {
  1016. u32 host_sysenter_cs;
  1017. u32 junk;
  1018. unsigned long a;
  1019. struct descriptor_table dt;
  1020. int i;
  1021. int ret = 0;
  1022. unsigned long kvm_vmx_return;
  1023. if (!init_rmode_tss(vcpu->kvm)) {
  1024. ret = -ENOMEM;
  1025. goto out;
  1026. }
  1027. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  1028. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1029. vcpu->cr8 = 0;
  1030. vcpu->apic_base = 0xfee00000 |
  1031. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  1032. MSR_IA32_APICBASE_ENABLE;
  1033. fx_init(vcpu);
  1034. /*
  1035. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1036. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1037. */
  1038. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1039. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1040. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1041. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1042. seg_setup(VCPU_SREG_DS);
  1043. seg_setup(VCPU_SREG_ES);
  1044. seg_setup(VCPU_SREG_FS);
  1045. seg_setup(VCPU_SREG_GS);
  1046. seg_setup(VCPU_SREG_SS);
  1047. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1048. vmcs_writel(GUEST_TR_BASE, 0);
  1049. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1050. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1051. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1052. vmcs_writel(GUEST_LDTR_BASE, 0);
  1053. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1054. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1055. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1056. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1057. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1058. vmcs_writel(GUEST_RFLAGS, 0x02);
  1059. vmcs_writel(GUEST_RIP, 0xfff0);
  1060. vmcs_writel(GUEST_RSP, 0);
  1061. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1062. vmcs_writel(GUEST_DR7, 0x400);
  1063. vmcs_writel(GUEST_GDTR_BASE, 0);
  1064. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1065. vmcs_writel(GUEST_IDTR_BASE, 0);
  1066. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1067. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1068. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1069. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1070. /* I/O */
  1071. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1072. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1073. guest_write_tsc(0);
  1074. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1075. /* Special registers */
  1076. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1077. /* Control */
  1078. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  1079. PIN_BASED_VM_EXEC_CONTROL,
  1080. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  1081. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  1082. );
  1083. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  1084. CPU_BASED_VM_EXEC_CONTROL,
  1085. CPU_BASED_HLT_EXITING /* 20.6.2 */
  1086. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  1087. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  1088. | CPU_BASED_ACTIVATE_IO_BITMAP /* 20.6.2 */
  1089. | CPU_BASED_MOV_DR_EXITING
  1090. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  1091. );
  1092. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1093. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1094. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1095. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1096. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1097. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1098. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1099. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1100. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1101. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1102. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1103. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1104. #ifdef CONFIG_X86_64
  1105. rdmsrl(MSR_FS_BASE, a);
  1106. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1107. rdmsrl(MSR_GS_BASE, a);
  1108. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1109. #else
  1110. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1111. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1112. #endif
  1113. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1114. get_idt(&dt);
  1115. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1116. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1117. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1118. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1119. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1120. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1121. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1122. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1123. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1124. for (i = 0; i < NR_VMX_MSR; ++i) {
  1125. u32 index = vmx_msr_index[i];
  1126. u32 data_low, data_high;
  1127. u64 data;
  1128. int j = vcpu->nmsrs;
  1129. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1130. continue;
  1131. if (wrmsr_safe(index, data_low, data_high) < 0)
  1132. continue;
  1133. data = data_low | ((u64)data_high << 32);
  1134. vcpu->host_msrs[j].index = index;
  1135. vcpu->host_msrs[j].reserved = 0;
  1136. vcpu->host_msrs[j].data = data;
  1137. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  1138. ++vcpu->nmsrs;
  1139. }
  1140. setup_msrs(vcpu);
  1141. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1142. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1143. /* 22.2.1, 20.8.1 */
  1144. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1145. VM_ENTRY_CONTROLS, 0);
  1146. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1147. #ifdef CONFIG_X86_64
  1148. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1149. vmcs_writel(TPR_THRESHOLD, 0);
  1150. #endif
  1151. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1152. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1153. vcpu->cr0 = 0x60000010;
  1154. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1155. vmx_set_cr4(vcpu, 0);
  1156. #ifdef CONFIG_X86_64
  1157. vmx_set_efer(vcpu, 0);
  1158. #endif
  1159. vmx_fpu_activate(vcpu);
  1160. update_exception_bitmap(vcpu);
  1161. return 0;
  1162. out:
  1163. return ret;
  1164. }
  1165. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1166. {
  1167. u16 ent[2];
  1168. u16 cs;
  1169. u16 ip;
  1170. unsigned long flags;
  1171. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1172. u16 sp = vmcs_readl(GUEST_RSP);
  1173. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1174. if (sp > ss_limit || sp < 6 ) {
  1175. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1176. __FUNCTION__,
  1177. vmcs_readl(GUEST_RSP),
  1178. vmcs_readl(GUEST_SS_BASE),
  1179. vmcs_read32(GUEST_SS_LIMIT));
  1180. return;
  1181. }
  1182. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1183. sizeof(ent)) {
  1184. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1185. return;
  1186. }
  1187. flags = vmcs_readl(GUEST_RFLAGS);
  1188. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1189. ip = vmcs_readl(GUEST_RIP);
  1190. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1191. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1192. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1193. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1194. return;
  1195. }
  1196. vmcs_writel(GUEST_RFLAGS, flags &
  1197. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1198. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1199. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1200. vmcs_writel(GUEST_RIP, ent[0]);
  1201. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1202. }
  1203. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1204. {
  1205. int word_index = __ffs(vcpu->irq_summary);
  1206. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1207. int irq = word_index * BITS_PER_LONG + bit_index;
  1208. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1209. if (!vcpu->irq_pending[word_index])
  1210. clear_bit(word_index, &vcpu->irq_summary);
  1211. if (vcpu->rmode.active) {
  1212. inject_rmode_irq(vcpu, irq);
  1213. return;
  1214. }
  1215. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1216. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1217. }
  1218. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1219. struct kvm_run *kvm_run)
  1220. {
  1221. u32 cpu_based_vm_exec_control;
  1222. vcpu->interrupt_window_open =
  1223. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1224. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1225. if (vcpu->interrupt_window_open &&
  1226. vcpu->irq_summary &&
  1227. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1228. /*
  1229. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1230. */
  1231. kvm_do_inject_irq(vcpu);
  1232. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1233. if (!vcpu->interrupt_window_open &&
  1234. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1235. /*
  1236. * Interrupts blocked. Wait for unblock.
  1237. */
  1238. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1239. else
  1240. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1241. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1242. }
  1243. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1244. {
  1245. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1246. set_debugreg(dbg->bp[0], 0);
  1247. set_debugreg(dbg->bp[1], 1);
  1248. set_debugreg(dbg->bp[2], 2);
  1249. set_debugreg(dbg->bp[3], 3);
  1250. if (dbg->singlestep) {
  1251. unsigned long flags;
  1252. flags = vmcs_readl(GUEST_RFLAGS);
  1253. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1254. vmcs_writel(GUEST_RFLAGS, flags);
  1255. }
  1256. }
  1257. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1258. int vec, u32 err_code)
  1259. {
  1260. if (!vcpu->rmode.active)
  1261. return 0;
  1262. /*
  1263. * Instruction with address size override prefix opcode 0x67
  1264. * Cause the #SS fault with 0 error code in VM86 mode.
  1265. */
  1266. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1267. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1268. return 1;
  1269. return 0;
  1270. }
  1271. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1272. {
  1273. u32 intr_info, error_code;
  1274. unsigned long cr2, rip;
  1275. u32 vect_info;
  1276. enum emulation_result er;
  1277. int r;
  1278. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1279. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1280. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1281. !is_page_fault(intr_info)) {
  1282. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1283. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1284. }
  1285. if (is_external_interrupt(vect_info)) {
  1286. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1287. set_bit(irq, vcpu->irq_pending);
  1288. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1289. }
  1290. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1291. asm ("int $2");
  1292. return 1;
  1293. }
  1294. if (is_no_device(intr_info)) {
  1295. vmx_fpu_activate(vcpu);
  1296. return 1;
  1297. }
  1298. error_code = 0;
  1299. rip = vmcs_readl(GUEST_RIP);
  1300. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1301. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1302. if (is_page_fault(intr_info)) {
  1303. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1304. spin_lock(&vcpu->kvm->lock);
  1305. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1306. if (r < 0) {
  1307. spin_unlock(&vcpu->kvm->lock);
  1308. return r;
  1309. }
  1310. if (!r) {
  1311. spin_unlock(&vcpu->kvm->lock);
  1312. return 1;
  1313. }
  1314. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1315. spin_unlock(&vcpu->kvm->lock);
  1316. switch (er) {
  1317. case EMULATE_DONE:
  1318. return 1;
  1319. case EMULATE_DO_MMIO:
  1320. ++vcpu->stat.mmio_exits;
  1321. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1322. return 0;
  1323. case EMULATE_FAIL:
  1324. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1325. break;
  1326. default:
  1327. BUG();
  1328. }
  1329. }
  1330. if (vcpu->rmode.active &&
  1331. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1332. error_code))
  1333. return 1;
  1334. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1335. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1336. return 0;
  1337. }
  1338. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1339. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1340. kvm_run->ex.error_code = error_code;
  1341. return 0;
  1342. }
  1343. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1344. struct kvm_run *kvm_run)
  1345. {
  1346. ++vcpu->stat.irq_exits;
  1347. return 1;
  1348. }
  1349. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1350. {
  1351. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1352. return 0;
  1353. }
  1354. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1355. {
  1356. u64 inst;
  1357. gva_t rip;
  1358. int countr_size;
  1359. int i, n;
  1360. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1361. countr_size = 2;
  1362. } else {
  1363. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1364. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1365. (cs_ar & AR_DB_MASK) ? 4: 2;
  1366. }
  1367. rip = vmcs_readl(GUEST_RIP);
  1368. if (countr_size != 8)
  1369. rip += vmcs_readl(GUEST_CS_BASE);
  1370. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1371. for (i = 0; i < n; i++) {
  1372. switch (((u8*)&inst)[i]) {
  1373. case 0xf0:
  1374. case 0xf2:
  1375. case 0xf3:
  1376. case 0x2e:
  1377. case 0x36:
  1378. case 0x3e:
  1379. case 0x26:
  1380. case 0x64:
  1381. case 0x65:
  1382. case 0x66:
  1383. break;
  1384. case 0x67:
  1385. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1386. default:
  1387. goto done;
  1388. }
  1389. }
  1390. return 0;
  1391. done:
  1392. countr_size *= 8;
  1393. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1394. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1395. return 1;
  1396. }
  1397. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1398. {
  1399. u64 exit_qualification;
  1400. int size, down, in, string, rep;
  1401. unsigned port;
  1402. unsigned long count;
  1403. gva_t address;
  1404. ++vcpu->stat.io_exits;
  1405. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1406. in = (exit_qualification & 8) != 0;
  1407. size = (exit_qualification & 7) + 1;
  1408. string = (exit_qualification & 16) != 0;
  1409. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1410. count = 1;
  1411. rep = (exit_qualification & 32) != 0;
  1412. port = exit_qualification >> 16;
  1413. address = 0;
  1414. if (string) {
  1415. if (rep && !get_io_count(vcpu, &count))
  1416. return 1;
  1417. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1418. }
  1419. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1420. address, rep, port);
  1421. }
  1422. static void
  1423. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1424. {
  1425. /*
  1426. * Patch in the VMCALL instruction:
  1427. */
  1428. hypercall[0] = 0x0f;
  1429. hypercall[1] = 0x01;
  1430. hypercall[2] = 0xc1;
  1431. hypercall[3] = 0xc3;
  1432. }
  1433. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1434. {
  1435. u64 exit_qualification;
  1436. int cr;
  1437. int reg;
  1438. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1439. cr = exit_qualification & 15;
  1440. reg = (exit_qualification >> 8) & 15;
  1441. switch ((exit_qualification >> 4) & 3) {
  1442. case 0: /* mov to cr */
  1443. switch (cr) {
  1444. case 0:
  1445. vcpu_load_rsp_rip(vcpu);
  1446. set_cr0(vcpu, vcpu->regs[reg]);
  1447. skip_emulated_instruction(vcpu);
  1448. return 1;
  1449. case 3:
  1450. vcpu_load_rsp_rip(vcpu);
  1451. set_cr3(vcpu, vcpu->regs[reg]);
  1452. skip_emulated_instruction(vcpu);
  1453. return 1;
  1454. case 4:
  1455. vcpu_load_rsp_rip(vcpu);
  1456. set_cr4(vcpu, vcpu->regs[reg]);
  1457. skip_emulated_instruction(vcpu);
  1458. return 1;
  1459. case 8:
  1460. vcpu_load_rsp_rip(vcpu);
  1461. set_cr8(vcpu, vcpu->regs[reg]);
  1462. skip_emulated_instruction(vcpu);
  1463. return 1;
  1464. };
  1465. break;
  1466. case 2: /* clts */
  1467. vcpu_load_rsp_rip(vcpu);
  1468. vmx_fpu_deactivate(vcpu);
  1469. vcpu->cr0 &= ~CR0_TS_MASK;
  1470. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1471. vmx_fpu_activate(vcpu);
  1472. skip_emulated_instruction(vcpu);
  1473. return 1;
  1474. case 1: /*mov from cr*/
  1475. switch (cr) {
  1476. case 3:
  1477. vcpu_load_rsp_rip(vcpu);
  1478. vcpu->regs[reg] = vcpu->cr3;
  1479. vcpu_put_rsp_rip(vcpu);
  1480. skip_emulated_instruction(vcpu);
  1481. return 1;
  1482. case 8:
  1483. vcpu_load_rsp_rip(vcpu);
  1484. vcpu->regs[reg] = vcpu->cr8;
  1485. vcpu_put_rsp_rip(vcpu);
  1486. skip_emulated_instruction(vcpu);
  1487. return 1;
  1488. }
  1489. break;
  1490. case 3: /* lmsw */
  1491. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1492. skip_emulated_instruction(vcpu);
  1493. return 1;
  1494. default:
  1495. break;
  1496. }
  1497. kvm_run->exit_reason = 0;
  1498. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1499. (int)(exit_qualification >> 4) & 3, cr);
  1500. return 0;
  1501. }
  1502. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1503. {
  1504. u64 exit_qualification;
  1505. unsigned long val;
  1506. int dr, reg;
  1507. /*
  1508. * FIXME: this code assumes the host is debugging the guest.
  1509. * need to deal with guest debugging itself too.
  1510. */
  1511. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1512. dr = exit_qualification & 7;
  1513. reg = (exit_qualification >> 8) & 15;
  1514. vcpu_load_rsp_rip(vcpu);
  1515. if (exit_qualification & 16) {
  1516. /* mov from dr */
  1517. switch (dr) {
  1518. case 6:
  1519. val = 0xffff0ff0;
  1520. break;
  1521. case 7:
  1522. val = 0x400;
  1523. break;
  1524. default:
  1525. val = 0;
  1526. }
  1527. vcpu->regs[reg] = val;
  1528. } else {
  1529. /* mov to dr */
  1530. }
  1531. vcpu_put_rsp_rip(vcpu);
  1532. skip_emulated_instruction(vcpu);
  1533. return 1;
  1534. }
  1535. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1536. {
  1537. kvm_emulate_cpuid(vcpu);
  1538. return 1;
  1539. }
  1540. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1541. {
  1542. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1543. u64 data;
  1544. if (vmx_get_msr(vcpu, ecx, &data)) {
  1545. vmx_inject_gp(vcpu, 0);
  1546. return 1;
  1547. }
  1548. /* FIXME: handling of bits 32:63 of rax, rdx */
  1549. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1550. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1551. skip_emulated_instruction(vcpu);
  1552. return 1;
  1553. }
  1554. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1555. {
  1556. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1557. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1558. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1559. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1560. vmx_inject_gp(vcpu, 0);
  1561. return 1;
  1562. }
  1563. skip_emulated_instruction(vcpu);
  1564. return 1;
  1565. }
  1566. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1567. struct kvm_run *kvm_run)
  1568. {
  1569. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1570. kvm_run->cr8 = vcpu->cr8;
  1571. kvm_run->apic_base = vcpu->apic_base;
  1572. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1573. vcpu->irq_summary == 0);
  1574. }
  1575. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1576. struct kvm_run *kvm_run)
  1577. {
  1578. /*
  1579. * If the user space waits to inject interrupts, exit as soon as
  1580. * possible
  1581. */
  1582. if (kvm_run->request_interrupt_window &&
  1583. !vcpu->irq_summary) {
  1584. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1585. ++vcpu->stat.irq_window_exits;
  1586. return 0;
  1587. }
  1588. return 1;
  1589. }
  1590. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1591. {
  1592. skip_emulated_instruction(vcpu);
  1593. if (vcpu->irq_summary)
  1594. return 1;
  1595. kvm_run->exit_reason = KVM_EXIT_HLT;
  1596. ++vcpu->stat.halt_exits;
  1597. return 0;
  1598. }
  1599. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1600. {
  1601. skip_emulated_instruction(vcpu);
  1602. return kvm_hypercall(vcpu, kvm_run);
  1603. }
  1604. /*
  1605. * The exit handlers return 1 if the exit was handled fully and guest execution
  1606. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1607. * to be done to userspace and return 0.
  1608. */
  1609. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1610. struct kvm_run *kvm_run) = {
  1611. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1612. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1613. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1614. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1615. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1616. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1617. [EXIT_REASON_CPUID] = handle_cpuid,
  1618. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1619. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1620. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1621. [EXIT_REASON_HLT] = handle_halt,
  1622. [EXIT_REASON_VMCALL] = handle_vmcall,
  1623. };
  1624. static const int kvm_vmx_max_exit_handlers =
  1625. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1626. /*
  1627. * The guest has exited. See if we can fix it or if we need userspace
  1628. * assistance.
  1629. */
  1630. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1631. {
  1632. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1633. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1634. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1635. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1636. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1637. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1638. if (exit_reason < kvm_vmx_max_exit_handlers
  1639. && kvm_vmx_exit_handlers[exit_reason])
  1640. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1641. else {
  1642. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1643. kvm_run->hw.hardware_exit_reason = exit_reason;
  1644. }
  1645. return 0;
  1646. }
  1647. /*
  1648. * Check if userspace requested an interrupt window, and that the
  1649. * interrupt window is open.
  1650. *
  1651. * No need to exit to userspace if we already have an interrupt queued.
  1652. */
  1653. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1654. struct kvm_run *kvm_run)
  1655. {
  1656. return (!vcpu->irq_summary &&
  1657. kvm_run->request_interrupt_window &&
  1658. vcpu->interrupt_window_open &&
  1659. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1660. }
  1661. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1662. {
  1663. u8 fail;
  1664. int r;
  1665. preempted:
  1666. if (!vcpu->mmio_read_completed)
  1667. do_interrupt_requests(vcpu, kvm_run);
  1668. if (vcpu->guest_debug.enabled)
  1669. kvm_guest_debug_pre(vcpu);
  1670. again:
  1671. vmx_save_host_state(vcpu);
  1672. kvm_load_guest_fpu(vcpu);
  1673. /*
  1674. * Loading guest fpu may have cleared host cr0.ts
  1675. */
  1676. vmcs_writel(HOST_CR0, read_cr0());
  1677. asm (
  1678. /* Store host registers */
  1679. "pushf \n\t"
  1680. #ifdef CONFIG_X86_64
  1681. "push %%rax; push %%rbx; push %%rdx;"
  1682. "push %%rsi; push %%rdi; push %%rbp;"
  1683. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1684. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1685. "push %%rcx \n\t"
  1686. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1687. #else
  1688. "pusha; push %%ecx \n\t"
  1689. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1690. #endif
  1691. /* Check if vmlaunch of vmresume is needed */
  1692. "cmp $0, %1 \n\t"
  1693. /* Load guest registers. Don't clobber flags. */
  1694. #ifdef CONFIG_X86_64
  1695. "mov %c[cr2](%3), %%rax \n\t"
  1696. "mov %%rax, %%cr2 \n\t"
  1697. "mov %c[rax](%3), %%rax \n\t"
  1698. "mov %c[rbx](%3), %%rbx \n\t"
  1699. "mov %c[rdx](%3), %%rdx \n\t"
  1700. "mov %c[rsi](%3), %%rsi \n\t"
  1701. "mov %c[rdi](%3), %%rdi \n\t"
  1702. "mov %c[rbp](%3), %%rbp \n\t"
  1703. "mov %c[r8](%3), %%r8 \n\t"
  1704. "mov %c[r9](%3), %%r9 \n\t"
  1705. "mov %c[r10](%3), %%r10 \n\t"
  1706. "mov %c[r11](%3), %%r11 \n\t"
  1707. "mov %c[r12](%3), %%r12 \n\t"
  1708. "mov %c[r13](%3), %%r13 \n\t"
  1709. "mov %c[r14](%3), %%r14 \n\t"
  1710. "mov %c[r15](%3), %%r15 \n\t"
  1711. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1712. #else
  1713. "mov %c[cr2](%3), %%eax \n\t"
  1714. "mov %%eax, %%cr2 \n\t"
  1715. "mov %c[rax](%3), %%eax \n\t"
  1716. "mov %c[rbx](%3), %%ebx \n\t"
  1717. "mov %c[rdx](%3), %%edx \n\t"
  1718. "mov %c[rsi](%3), %%esi \n\t"
  1719. "mov %c[rdi](%3), %%edi \n\t"
  1720. "mov %c[rbp](%3), %%ebp \n\t"
  1721. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1722. #endif
  1723. /* Enter guest mode */
  1724. "jne .Llaunched \n\t"
  1725. ASM_VMX_VMLAUNCH "\n\t"
  1726. "jmp .Lkvm_vmx_return \n\t"
  1727. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1728. ".Lkvm_vmx_return: "
  1729. /* Save guest registers, load host registers, keep flags */
  1730. #ifdef CONFIG_X86_64
  1731. "xchg %3, (%%rsp) \n\t"
  1732. "mov %%rax, %c[rax](%3) \n\t"
  1733. "mov %%rbx, %c[rbx](%3) \n\t"
  1734. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1735. "mov %%rdx, %c[rdx](%3) \n\t"
  1736. "mov %%rsi, %c[rsi](%3) \n\t"
  1737. "mov %%rdi, %c[rdi](%3) \n\t"
  1738. "mov %%rbp, %c[rbp](%3) \n\t"
  1739. "mov %%r8, %c[r8](%3) \n\t"
  1740. "mov %%r9, %c[r9](%3) \n\t"
  1741. "mov %%r10, %c[r10](%3) \n\t"
  1742. "mov %%r11, %c[r11](%3) \n\t"
  1743. "mov %%r12, %c[r12](%3) \n\t"
  1744. "mov %%r13, %c[r13](%3) \n\t"
  1745. "mov %%r14, %c[r14](%3) \n\t"
  1746. "mov %%r15, %c[r15](%3) \n\t"
  1747. "mov %%cr2, %%rax \n\t"
  1748. "mov %%rax, %c[cr2](%3) \n\t"
  1749. "mov (%%rsp), %3 \n\t"
  1750. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1751. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1752. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1753. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1754. #else
  1755. "xchg %3, (%%esp) \n\t"
  1756. "mov %%eax, %c[rax](%3) \n\t"
  1757. "mov %%ebx, %c[rbx](%3) \n\t"
  1758. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1759. "mov %%edx, %c[rdx](%3) \n\t"
  1760. "mov %%esi, %c[rsi](%3) \n\t"
  1761. "mov %%edi, %c[rdi](%3) \n\t"
  1762. "mov %%ebp, %c[rbp](%3) \n\t"
  1763. "mov %%cr2, %%eax \n\t"
  1764. "mov %%eax, %c[cr2](%3) \n\t"
  1765. "mov (%%esp), %3 \n\t"
  1766. "pop %%ecx; popa \n\t"
  1767. #endif
  1768. "setbe %0 \n\t"
  1769. "popf \n\t"
  1770. : "=q" (fail)
  1771. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1772. "c"(vcpu),
  1773. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1774. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1775. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1776. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1777. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1778. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1779. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1780. #ifdef CONFIG_X86_64
  1781. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1782. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1783. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1784. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1785. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1786. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1787. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1788. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1789. #endif
  1790. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1791. : "cc", "memory" );
  1792. ++vcpu->stat.exits;
  1793. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1794. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1795. if (unlikely(fail)) {
  1796. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1797. kvm_run->fail_entry.hardware_entry_failure_reason
  1798. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1799. r = 0;
  1800. goto out;
  1801. }
  1802. /*
  1803. * Profile KVM exit RIPs:
  1804. */
  1805. if (unlikely(prof_on == KVM_PROFILING))
  1806. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1807. vcpu->launched = 1;
  1808. r = kvm_handle_exit(kvm_run, vcpu);
  1809. if (r > 0) {
  1810. /* Give scheduler a change to reschedule. */
  1811. if (signal_pending(current)) {
  1812. r = -EINTR;
  1813. kvm_run->exit_reason = KVM_EXIT_INTR;
  1814. ++vcpu->stat.signal_exits;
  1815. goto out;
  1816. }
  1817. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1818. r = -EINTR;
  1819. kvm_run->exit_reason = KVM_EXIT_INTR;
  1820. ++vcpu->stat.request_irq_exits;
  1821. goto out;
  1822. }
  1823. if (!need_resched()) {
  1824. ++vcpu->stat.light_exits;
  1825. goto again;
  1826. }
  1827. }
  1828. out:
  1829. if (r > 0) {
  1830. kvm_resched(vcpu);
  1831. goto preempted;
  1832. }
  1833. post_kvm_run_save(vcpu, kvm_run);
  1834. return r;
  1835. }
  1836. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1837. {
  1838. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1839. }
  1840. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1841. unsigned long addr,
  1842. u32 err_code)
  1843. {
  1844. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1845. ++vcpu->stat.pf_guest;
  1846. if (is_page_fault(vect_info)) {
  1847. printk(KERN_DEBUG "inject_page_fault: "
  1848. "double fault 0x%lx @ 0x%lx\n",
  1849. addr, vmcs_readl(GUEST_RIP));
  1850. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1851. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1852. DF_VECTOR |
  1853. INTR_TYPE_EXCEPTION |
  1854. INTR_INFO_DELIEVER_CODE_MASK |
  1855. INTR_INFO_VALID_MASK);
  1856. return;
  1857. }
  1858. vcpu->cr2 = addr;
  1859. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1860. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1861. PF_VECTOR |
  1862. INTR_TYPE_EXCEPTION |
  1863. INTR_INFO_DELIEVER_CODE_MASK |
  1864. INTR_INFO_VALID_MASK);
  1865. }
  1866. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1867. {
  1868. if (vcpu->vmcs) {
  1869. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1870. free_vmcs(vcpu->vmcs);
  1871. vcpu->vmcs = NULL;
  1872. }
  1873. }
  1874. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1875. {
  1876. vmx_free_vmcs(vcpu);
  1877. }
  1878. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1879. {
  1880. struct vmcs *vmcs;
  1881. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1882. if (!vcpu->guest_msrs)
  1883. return -ENOMEM;
  1884. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1885. if (!vcpu->host_msrs)
  1886. goto out_free_guest_msrs;
  1887. vmcs = alloc_vmcs();
  1888. if (!vmcs)
  1889. goto out_free_msrs;
  1890. vmcs_clear(vmcs);
  1891. vcpu->vmcs = vmcs;
  1892. vcpu->launched = 0;
  1893. return 0;
  1894. out_free_msrs:
  1895. kfree(vcpu->host_msrs);
  1896. vcpu->host_msrs = NULL;
  1897. out_free_guest_msrs:
  1898. kfree(vcpu->guest_msrs);
  1899. vcpu->guest_msrs = NULL;
  1900. return -ENOMEM;
  1901. }
  1902. static struct kvm_arch_ops vmx_arch_ops = {
  1903. .cpu_has_kvm_support = cpu_has_kvm_support,
  1904. .disabled_by_bios = vmx_disabled_by_bios,
  1905. .hardware_setup = hardware_setup,
  1906. .hardware_unsetup = hardware_unsetup,
  1907. .hardware_enable = hardware_enable,
  1908. .hardware_disable = hardware_disable,
  1909. .vcpu_create = vmx_create_vcpu,
  1910. .vcpu_free = vmx_free_vcpu,
  1911. .vcpu_load = vmx_vcpu_load,
  1912. .vcpu_put = vmx_vcpu_put,
  1913. .vcpu_decache = vmx_vcpu_decache,
  1914. .set_guest_debug = set_guest_debug,
  1915. .get_msr = vmx_get_msr,
  1916. .set_msr = vmx_set_msr,
  1917. .get_segment_base = vmx_get_segment_base,
  1918. .get_segment = vmx_get_segment,
  1919. .set_segment = vmx_set_segment,
  1920. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1921. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  1922. .set_cr0 = vmx_set_cr0,
  1923. .set_cr3 = vmx_set_cr3,
  1924. .set_cr4 = vmx_set_cr4,
  1925. #ifdef CONFIG_X86_64
  1926. .set_efer = vmx_set_efer,
  1927. #endif
  1928. .get_idt = vmx_get_idt,
  1929. .set_idt = vmx_set_idt,
  1930. .get_gdt = vmx_get_gdt,
  1931. .set_gdt = vmx_set_gdt,
  1932. .cache_regs = vcpu_load_rsp_rip,
  1933. .decache_regs = vcpu_put_rsp_rip,
  1934. .get_rflags = vmx_get_rflags,
  1935. .set_rflags = vmx_set_rflags,
  1936. .tlb_flush = vmx_flush_tlb,
  1937. .inject_page_fault = vmx_inject_page_fault,
  1938. .inject_gp = vmx_inject_gp,
  1939. .run = vmx_vcpu_run,
  1940. .skip_emulated_instruction = skip_emulated_instruction,
  1941. .vcpu_setup = vmx_vcpu_setup,
  1942. .patch_hypercall = vmx_patch_hypercall,
  1943. };
  1944. static int __init vmx_init(void)
  1945. {
  1946. void *iova;
  1947. int r;
  1948. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1949. if (!vmx_io_bitmap_a)
  1950. return -ENOMEM;
  1951. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1952. if (!vmx_io_bitmap_b) {
  1953. r = -ENOMEM;
  1954. goto out;
  1955. }
  1956. /*
  1957. * Allow direct access to the PC debug port (it is often used for I/O
  1958. * delays, but the vmexits simply slow things down).
  1959. */
  1960. iova = kmap(vmx_io_bitmap_a);
  1961. memset(iova, 0xff, PAGE_SIZE);
  1962. clear_bit(0x80, iova);
  1963. kunmap(vmx_io_bitmap_a);
  1964. iova = kmap(vmx_io_bitmap_b);
  1965. memset(iova, 0xff, PAGE_SIZE);
  1966. kunmap(vmx_io_bitmap_b);
  1967. r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1968. if (r)
  1969. goto out1;
  1970. return 0;
  1971. out1:
  1972. __free_page(vmx_io_bitmap_b);
  1973. out:
  1974. __free_page(vmx_io_bitmap_a);
  1975. return r;
  1976. }
  1977. static void __exit vmx_exit(void)
  1978. {
  1979. __free_page(vmx_io_bitmap_b);
  1980. __free_page(vmx_io_bitmap_a);
  1981. kvm_exit_arch();
  1982. }
  1983. module_init(vmx_init)
  1984. module_exit(vmx_exit)