intel_pm.c 166 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <drm/i915_powerwell.h>
  33. /**
  34. * RC6 is a special power stage which allows the GPU to enter an very
  35. * low-voltage mode when idle, using down to 0V while at this stage. This
  36. * stage is entered automatically when the GPU is idle when RC6 support is
  37. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  38. *
  39. * There are different RC6 modes available in Intel GPU, which differentiate
  40. * among each other with the latency required to enter and leave RC6 and
  41. * voltage consumed by the GPU in different states.
  42. *
  43. * The combination of the following flags define which states GPU is allowed
  44. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  45. * RC6pp is deepest RC6. Their support by hardware varies according to the
  46. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  47. * which brings the most power savings; deeper states save more power, but
  48. * require higher latency to switch to and wake up.
  49. */
  50. #define INTEL_RC6_ENABLE (1<<0)
  51. #define INTEL_RC6p_ENABLE (1<<1)
  52. #define INTEL_RC6pp_ENABLE (1<<2)
  53. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  54. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  55. * during in-memory transfers and, therefore, reduce the power packet.
  56. *
  57. * The benefits of FBC are mostly visible with solid backgrounds and
  58. * variation-less patterns.
  59. *
  60. * FBC-related functionality can be enabled by the means of the
  61. * i915.i915_enable_fbc parameter
  62. */
  63. static void i8xx_disable_fbc(struct drm_device *dev)
  64. {
  65. struct drm_i915_private *dev_priv = dev->dev_private;
  66. u32 fbc_ctl;
  67. /* Disable compression */
  68. fbc_ctl = I915_READ(FBC_CONTROL);
  69. if ((fbc_ctl & FBC_CTL_EN) == 0)
  70. return;
  71. fbc_ctl &= ~FBC_CTL_EN;
  72. I915_WRITE(FBC_CONTROL, fbc_ctl);
  73. /* Wait for compressing bit to clear */
  74. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  75. DRM_DEBUG_KMS("FBC idle timed out\n");
  76. return;
  77. }
  78. DRM_DEBUG_KMS("disabled FBC\n");
  79. }
  80. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  81. {
  82. struct drm_device *dev = crtc->dev;
  83. struct drm_i915_private *dev_priv = dev->dev_private;
  84. struct drm_framebuffer *fb = crtc->fb;
  85. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  86. struct drm_i915_gem_object *obj = intel_fb->obj;
  87. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  88. int cfb_pitch;
  89. int plane, i;
  90. u32 fbc_ctl, fbc_ctl2;
  91. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  92. if (fb->pitches[0] < cfb_pitch)
  93. cfb_pitch = fb->pitches[0];
  94. /* FBC_CTL wants 64B units */
  95. cfb_pitch = (cfb_pitch / 64) - 1;
  96. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  97. /* Clear old tags */
  98. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  99. I915_WRITE(FBC_TAG + (i * 4), 0);
  100. /* Set it up... */
  101. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  102. fbc_ctl2 |= plane;
  103. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  104. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  105. /* enable it... */
  106. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  107. if (IS_I945GM(dev))
  108. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  109. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  110. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  111. fbc_ctl |= obj->fence_reg;
  112. I915_WRITE(FBC_CONTROL, fbc_ctl);
  113. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  114. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  115. }
  116. static bool i8xx_fbc_enabled(struct drm_device *dev)
  117. {
  118. struct drm_i915_private *dev_priv = dev->dev_private;
  119. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  120. }
  121. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  122. {
  123. struct drm_device *dev = crtc->dev;
  124. struct drm_i915_private *dev_priv = dev->dev_private;
  125. struct drm_framebuffer *fb = crtc->fb;
  126. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  127. struct drm_i915_gem_object *obj = intel_fb->obj;
  128. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  129. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  130. unsigned long stall_watermark = 200;
  131. u32 dpfc_ctl;
  132. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  133. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  134. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  135. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  136. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  137. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  138. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  139. /* enable it... */
  140. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  141. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  142. }
  143. static void g4x_disable_fbc(struct drm_device *dev)
  144. {
  145. struct drm_i915_private *dev_priv = dev->dev_private;
  146. u32 dpfc_ctl;
  147. /* Disable compression */
  148. dpfc_ctl = I915_READ(DPFC_CONTROL);
  149. if (dpfc_ctl & DPFC_CTL_EN) {
  150. dpfc_ctl &= ~DPFC_CTL_EN;
  151. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  152. DRM_DEBUG_KMS("disabled FBC\n");
  153. }
  154. }
  155. static bool g4x_fbc_enabled(struct drm_device *dev)
  156. {
  157. struct drm_i915_private *dev_priv = dev->dev_private;
  158. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  159. }
  160. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  161. {
  162. struct drm_i915_private *dev_priv = dev->dev_private;
  163. u32 blt_ecoskpd;
  164. /* Make sure blitter notifies FBC of writes */
  165. gen6_gt_force_wake_get(dev_priv);
  166. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  167. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  168. GEN6_BLITTER_LOCK_SHIFT;
  169. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  170. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  171. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  172. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  173. GEN6_BLITTER_LOCK_SHIFT);
  174. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  175. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  176. gen6_gt_force_wake_put(dev_priv);
  177. }
  178. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  179. {
  180. struct drm_device *dev = crtc->dev;
  181. struct drm_i915_private *dev_priv = dev->dev_private;
  182. struct drm_framebuffer *fb = crtc->fb;
  183. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  184. struct drm_i915_gem_object *obj = intel_fb->obj;
  185. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  186. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  187. unsigned long stall_watermark = 200;
  188. u32 dpfc_ctl;
  189. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  190. dpfc_ctl &= DPFC_RESERVED;
  191. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  192. /* Set persistent mode for front-buffer rendering, ala X. */
  193. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  194. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  195. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  196. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  197. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  198. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  199. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  200. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  201. /* enable it... */
  202. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  203. if (IS_GEN6(dev)) {
  204. I915_WRITE(SNB_DPFC_CTL_SA,
  205. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  206. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  207. sandybridge_blit_fbc_update(dev);
  208. }
  209. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  210. }
  211. static void ironlake_disable_fbc(struct drm_device *dev)
  212. {
  213. struct drm_i915_private *dev_priv = dev->dev_private;
  214. u32 dpfc_ctl;
  215. /* Disable compression */
  216. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  217. if (dpfc_ctl & DPFC_CTL_EN) {
  218. dpfc_ctl &= ~DPFC_CTL_EN;
  219. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  220. if (IS_HASWELL(dev))
  221. /* WaFbcDisableDpfcClockGating:hsw */
  222. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  223. I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
  224. ~HSW_DPFC_GATING_DISABLE);
  225. DRM_DEBUG_KMS("disabled FBC\n");
  226. }
  227. }
  228. static bool ironlake_fbc_enabled(struct drm_device *dev)
  229. {
  230. struct drm_i915_private *dev_priv = dev->dev_private;
  231. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  232. }
  233. static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  234. {
  235. struct drm_device *dev = crtc->dev;
  236. struct drm_i915_private *dev_priv = dev->dev_private;
  237. struct drm_framebuffer *fb = crtc->fb;
  238. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  239. struct drm_i915_gem_object *obj = intel_fb->obj;
  240. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  241. I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
  242. I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
  243. IVB_DPFC_CTL_FENCE_EN |
  244. intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
  245. if (IS_IVYBRIDGE(dev)) {
  246. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  247. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  248. } else {
  249. /* WaFbcAsynchFlipDisableFbcQueue:hsw */
  250. I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
  251. HSW_BYPASS_FBC_QUEUE);
  252. /* WaFbcDisableDpfcClockGating:hsw */
  253. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  254. I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
  255. HSW_DPFC_GATING_DISABLE);
  256. }
  257. I915_WRITE(SNB_DPFC_CTL_SA,
  258. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  259. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  260. sandybridge_blit_fbc_update(dev);
  261. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  262. }
  263. bool intel_fbc_enabled(struct drm_device *dev)
  264. {
  265. struct drm_i915_private *dev_priv = dev->dev_private;
  266. if (!dev_priv->display.fbc_enabled)
  267. return false;
  268. return dev_priv->display.fbc_enabled(dev);
  269. }
  270. static void intel_fbc_work_fn(struct work_struct *__work)
  271. {
  272. struct intel_fbc_work *work =
  273. container_of(to_delayed_work(__work),
  274. struct intel_fbc_work, work);
  275. struct drm_device *dev = work->crtc->dev;
  276. struct drm_i915_private *dev_priv = dev->dev_private;
  277. mutex_lock(&dev->struct_mutex);
  278. if (work == dev_priv->fbc.fbc_work) {
  279. /* Double check that we haven't switched fb without cancelling
  280. * the prior work.
  281. */
  282. if (work->crtc->fb == work->fb) {
  283. dev_priv->display.enable_fbc(work->crtc,
  284. work->interval);
  285. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  286. dev_priv->fbc.fb_id = work->crtc->fb->base.id;
  287. dev_priv->fbc.y = work->crtc->y;
  288. }
  289. dev_priv->fbc.fbc_work = NULL;
  290. }
  291. mutex_unlock(&dev->struct_mutex);
  292. kfree(work);
  293. }
  294. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  295. {
  296. if (dev_priv->fbc.fbc_work == NULL)
  297. return;
  298. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  299. /* Synchronisation is provided by struct_mutex and checking of
  300. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  301. * entirely asynchronously.
  302. */
  303. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  304. /* tasklet was killed before being run, clean up */
  305. kfree(dev_priv->fbc.fbc_work);
  306. /* Mark the work as no longer wanted so that if it does
  307. * wake-up (because the work was already running and waiting
  308. * for our mutex), it will discover that is no longer
  309. * necessary to run.
  310. */
  311. dev_priv->fbc.fbc_work = NULL;
  312. }
  313. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  314. {
  315. struct intel_fbc_work *work;
  316. struct drm_device *dev = crtc->dev;
  317. struct drm_i915_private *dev_priv = dev->dev_private;
  318. if (!dev_priv->display.enable_fbc)
  319. return;
  320. intel_cancel_fbc_work(dev_priv);
  321. work = kzalloc(sizeof(*work), GFP_KERNEL);
  322. if (work == NULL) {
  323. DRM_ERROR("Failed to allocate FBC work structure\n");
  324. dev_priv->display.enable_fbc(crtc, interval);
  325. return;
  326. }
  327. work->crtc = crtc;
  328. work->fb = crtc->fb;
  329. work->interval = interval;
  330. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  331. dev_priv->fbc.fbc_work = work;
  332. /* Delay the actual enabling to let pageflipping cease and the
  333. * display to settle before starting the compression. Note that
  334. * this delay also serves a second purpose: it allows for a
  335. * vblank to pass after disabling the FBC before we attempt
  336. * to modify the control registers.
  337. *
  338. * A more complicated solution would involve tracking vblanks
  339. * following the termination of the page-flipping sequence
  340. * and indeed performing the enable as a co-routine and not
  341. * waiting synchronously upon the vblank.
  342. *
  343. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  344. */
  345. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  346. }
  347. void intel_disable_fbc(struct drm_device *dev)
  348. {
  349. struct drm_i915_private *dev_priv = dev->dev_private;
  350. intel_cancel_fbc_work(dev_priv);
  351. if (!dev_priv->display.disable_fbc)
  352. return;
  353. dev_priv->display.disable_fbc(dev);
  354. dev_priv->fbc.plane = -1;
  355. }
  356. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  357. enum no_fbc_reason reason)
  358. {
  359. if (dev_priv->fbc.no_fbc_reason == reason)
  360. return false;
  361. dev_priv->fbc.no_fbc_reason = reason;
  362. return true;
  363. }
  364. /**
  365. * intel_update_fbc - enable/disable FBC as needed
  366. * @dev: the drm_device
  367. *
  368. * Set up the framebuffer compression hardware at mode set time. We
  369. * enable it if possible:
  370. * - plane A only (on pre-965)
  371. * - no pixel mulitply/line duplication
  372. * - no alpha buffer discard
  373. * - no dual wide
  374. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  375. *
  376. * We can't assume that any compression will take place (worst case),
  377. * so the compressed buffer has to be the same size as the uncompressed
  378. * one. It also must reside (along with the line length buffer) in
  379. * stolen memory.
  380. *
  381. * We need to enable/disable FBC on a global basis.
  382. */
  383. void intel_update_fbc(struct drm_device *dev)
  384. {
  385. struct drm_i915_private *dev_priv = dev->dev_private;
  386. struct drm_crtc *crtc = NULL, *tmp_crtc;
  387. struct intel_crtc *intel_crtc;
  388. struct drm_framebuffer *fb;
  389. struct intel_framebuffer *intel_fb;
  390. struct drm_i915_gem_object *obj;
  391. const struct drm_display_mode *adjusted_mode;
  392. unsigned int max_width, max_height;
  393. if (!I915_HAS_FBC(dev)) {
  394. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  395. return;
  396. }
  397. if (!i915_powersave) {
  398. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  399. DRM_DEBUG_KMS("fbc disabled per module param\n");
  400. return;
  401. }
  402. /*
  403. * If FBC is already on, we just have to verify that we can
  404. * keep it that way...
  405. * Need to disable if:
  406. * - more than one pipe is active
  407. * - changing FBC params (stride, fence, mode)
  408. * - new fb is too large to fit in compressed buffer
  409. * - going to an unsupported config (interlace, pixel multiply, etc.)
  410. */
  411. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  412. if (intel_crtc_active(tmp_crtc) &&
  413. to_intel_crtc(tmp_crtc)->primary_enabled) {
  414. if (crtc) {
  415. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  416. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  417. goto out_disable;
  418. }
  419. crtc = tmp_crtc;
  420. }
  421. }
  422. if (!crtc || crtc->fb == NULL) {
  423. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  424. DRM_DEBUG_KMS("no output, disabling\n");
  425. goto out_disable;
  426. }
  427. intel_crtc = to_intel_crtc(crtc);
  428. fb = crtc->fb;
  429. intel_fb = to_intel_framebuffer(fb);
  430. obj = intel_fb->obj;
  431. adjusted_mode = &intel_crtc->config.adjusted_mode;
  432. if (i915_enable_fbc < 0 &&
  433. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  434. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  435. DRM_DEBUG_KMS("disabled per chip default\n");
  436. goto out_disable;
  437. }
  438. if (!i915_enable_fbc) {
  439. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  440. DRM_DEBUG_KMS("fbc disabled per module param\n");
  441. goto out_disable;
  442. }
  443. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  444. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  445. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  446. DRM_DEBUG_KMS("mode incompatible with compression, "
  447. "disabling\n");
  448. goto out_disable;
  449. }
  450. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  451. max_width = 4096;
  452. max_height = 2048;
  453. } else {
  454. max_width = 2048;
  455. max_height = 1536;
  456. }
  457. if (intel_crtc->config.pipe_src_w > max_width ||
  458. intel_crtc->config.pipe_src_h > max_height) {
  459. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  460. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  461. goto out_disable;
  462. }
  463. if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
  464. intel_crtc->plane != 0) {
  465. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  466. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  467. goto out_disable;
  468. }
  469. /* The use of a CPU fence is mandatory in order to detect writes
  470. * by the CPU to the scanout and trigger updates to the FBC.
  471. */
  472. if (obj->tiling_mode != I915_TILING_X ||
  473. obj->fence_reg == I915_FENCE_REG_NONE) {
  474. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  475. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  476. goto out_disable;
  477. }
  478. /* If the kernel debugger is active, always disable compression */
  479. if (in_dbg_master())
  480. goto out_disable;
  481. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  482. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  483. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  484. goto out_disable;
  485. }
  486. /* If the scanout has not changed, don't modify the FBC settings.
  487. * Note that we make the fundamental assumption that the fb->obj
  488. * cannot be unpinned (and have its GTT offset and fence revoked)
  489. * without first being decoupled from the scanout and FBC disabled.
  490. */
  491. if (dev_priv->fbc.plane == intel_crtc->plane &&
  492. dev_priv->fbc.fb_id == fb->base.id &&
  493. dev_priv->fbc.y == crtc->y)
  494. return;
  495. if (intel_fbc_enabled(dev)) {
  496. /* We update FBC along two paths, after changing fb/crtc
  497. * configuration (modeswitching) and after page-flipping
  498. * finishes. For the latter, we know that not only did
  499. * we disable the FBC at the start of the page-flip
  500. * sequence, but also more than one vblank has passed.
  501. *
  502. * For the former case of modeswitching, it is possible
  503. * to switch between two FBC valid configurations
  504. * instantaneously so we do need to disable the FBC
  505. * before we can modify its control registers. We also
  506. * have to wait for the next vblank for that to take
  507. * effect. However, since we delay enabling FBC we can
  508. * assume that a vblank has passed since disabling and
  509. * that we can safely alter the registers in the deferred
  510. * callback.
  511. *
  512. * In the scenario that we go from a valid to invalid
  513. * and then back to valid FBC configuration we have
  514. * no strict enforcement that a vblank occurred since
  515. * disabling the FBC. However, along all current pipe
  516. * disabling paths we do need to wait for a vblank at
  517. * some point. And we wait before enabling FBC anyway.
  518. */
  519. DRM_DEBUG_KMS("disabling active FBC for update\n");
  520. intel_disable_fbc(dev);
  521. }
  522. intel_enable_fbc(crtc, 500);
  523. dev_priv->fbc.no_fbc_reason = FBC_OK;
  524. return;
  525. out_disable:
  526. /* Multiple disables should be harmless */
  527. if (intel_fbc_enabled(dev)) {
  528. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  529. intel_disable_fbc(dev);
  530. }
  531. i915_gem_stolen_cleanup_compression(dev);
  532. }
  533. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  534. {
  535. drm_i915_private_t *dev_priv = dev->dev_private;
  536. u32 tmp;
  537. tmp = I915_READ(CLKCFG);
  538. switch (tmp & CLKCFG_FSB_MASK) {
  539. case CLKCFG_FSB_533:
  540. dev_priv->fsb_freq = 533; /* 133*4 */
  541. break;
  542. case CLKCFG_FSB_800:
  543. dev_priv->fsb_freq = 800; /* 200*4 */
  544. break;
  545. case CLKCFG_FSB_667:
  546. dev_priv->fsb_freq = 667; /* 167*4 */
  547. break;
  548. case CLKCFG_FSB_400:
  549. dev_priv->fsb_freq = 400; /* 100*4 */
  550. break;
  551. }
  552. switch (tmp & CLKCFG_MEM_MASK) {
  553. case CLKCFG_MEM_533:
  554. dev_priv->mem_freq = 533;
  555. break;
  556. case CLKCFG_MEM_667:
  557. dev_priv->mem_freq = 667;
  558. break;
  559. case CLKCFG_MEM_800:
  560. dev_priv->mem_freq = 800;
  561. break;
  562. }
  563. /* detect pineview DDR3 setting */
  564. tmp = I915_READ(CSHRDDR3CTL);
  565. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  566. }
  567. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  568. {
  569. drm_i915_private_t *dev_priv = dev->dev_private;
  570. u16 ddrpll, csipll;
  571. ddrpll = I915_READ16(DDRMPLL1);
  572. csipll = I915_READ16(CSIPLL0);
  573. switch (ddrpll & 0xff) {
  574. case 0xc:
  575. dev_priv->mem_freq = 800;
  576. break;
  577. case 0x10:
  578. dev_priv->mem_freq = 1066;
  579. break;
  580. case 0x14:
  581. dev_priv->mem_freq = 1333;
  582. break;
  583. case 0x18:
  584. dev_priv->mem_freq = 1600;
  585. break;
  586. default:
  587. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  588. ddrpll & 0xff);
  589. dev_priv->mem_freq = 0;
  590. break;
  591. }
  592. dev_priv->ips.r_t = dev_priv->mem_freq;
  593. switch (csipll & 0x3ff) {
  594. case 0x00c:
  595. dev_priv->fsb_freq = 3200;
  596. break;
  597. case 0x00e:
  598. dev_priv->fsb_freq = 3733;
  599. break;
  600. case 0x010:
  601. dev_priv->fsb_freq = 4266;
  602. break;
  603. case 0x012:
  604. dev_priv->fsb_freq = 4800;
  605. break;
  606. case 0x014:
  607. dev_priv->fsb_freq = 5333;
  608. break;
  609. case 0x016:
  610. dev_priv->fsb_freq = 5866;
  611. break;
  612. case 0x018:
  613. dev_priv->fsb_freq = 6400;
  614. break;
  615. default:
  616. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  617. csipll & 0x3ff);
  618. dev_priv->fsb_freq = 0;
  619. break;
  620. }
  621. if (dev_priv->fsb_freq == 3200) {
  622. dev_priv->ips.c_m = 0;
  623. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  624. dev_priv->ips.c_m = 1;
  625. } else {
  626. dev_priv->ips.c_m = 2;
  627. }
  628. }
  629. static const struct cxsr_latency cxsr_latency_table[] = {
  630. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  631. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  632. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  633. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  634. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  635. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  636. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  637. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  638. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  639. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  640. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  641. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  642. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  643. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  644. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  645. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  646. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  647. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  648. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  649. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  650. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  651. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  652. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  653. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  654. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  655. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  656. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  657. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  658. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  659. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  660. };
  661. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  662. int is_ddr3,
  663. int fsb,
  664. int mem)
  665. {
  666. const struct cxsr_latency *latency;
  667. int i;
  668. if (fsb == 0 || mem == 0)
  669. return NULL;
  670. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  671. latency = &cxsr_latency_table[i];
  672. if (is_desktop == latency->is_desktop &&
  673. is_ddr3 == latency->is_ddr3 &&
  674. fsb == latency->fsb_freq && mem == latency->mem_freq)
  675. return latency;
  676. }
  677. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  678. return NULL;
  679. }
  680. static void pineview_disable_cxsr(struct drm_device *dev)
  681. {
  682. struct drm_i915_private *dev_priv = dev->dev_private;
  683. /* deactivate cxsr */
  684. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  685. }
  686. /*
  687. * Latency for FIFO fetches is dependent on several factors:
  688. * - memory configuration (speed, channels)
  689. * - chipset
  690. * - current MCH state
  691. * It can be fairly high in some situations, so here we assume a fairly
  692. * pessimal value. It's a tradeoff between extra memory fetches (if we
  693. * set this value too high, the FIFO will fetch frequently to stay full)
  694. * and power consumption (set it too low to save power and we might see
  695. * FIFO underruns and display "flicker").
  696. *
  697. * A value of 5us seems to be a good balance; safe for very low end
  698. * platforms but not overly aggressive on lower latency configs.
  699. */
  700. static const int latency_ns = 5000;
  701. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  702. {
  703. struct drm_i915_private *dev_priv = dev->dev_private;
  704. uint32_t dsparb = I915_READ(DSPARB);
  705. int size;
  706. size = dsparb & 0x7f;
  707. if (plane)
  708. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  709. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  710. plane ? "B" : "A", size);
  711. return size;
  712. }
  713. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  714. {
  715. struct drm_i915_private *dev_priv = dev->dev_private;
  716. uint32_t dsparb = I915_READ(DSPARB);
  717. int size;
  718. size = dsparb & 0x1ff;
  719. if (plane)
  720. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  721. size >>= 1; /* Convert to cachelines */
  722. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  723. plane ? "B" : "A", size);
  724. return size;
  725. }
  726. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  727. {
  728. struct drm_i915_private *dev_priv = dev->dev_private;
  729. uint32_t dsparb = I915_READ(DSPARB);
  730. int size;
  731. size = dsparb & 0x7f;
  732. size >>= 2; /* Convert to cachelines */
  733. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  734. plane ? "B" : "A",
  735. size);
  736. return size;
  737. }
  738. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  739. {
  740. struct drm_i915_private *dev_priv = dev->dev_private;
  741. uint32_t dsparb = I915_READ(DSPARB);
  742. int size;
  743. size = dsparb & 0x7f;
  744. size >>= 1; /* Convert to cachelines */
  745. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  746. plane ? "B" : "A", size);
  747. return size;
  748. }
  749. /* Pineview has different values for various configs */
  750. static const struct intel_watermark_params pineview_display_wm = {
  751. PINEVIEW_DISPLAY_FIFO,
  752. PINEVIEW_MAX_WM,
  753. PINEVIEW_DFT_WM,
  754. PINEVIEW_GUARD_WM,
  755. PINEVIEW_FIFO_LINE_SIZE
  756. };
  757. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  758. PINEVIEW_DISPLAY_FIFO,
  759. PINEVIEW_MAX_WM,
  760. PINEVIEW_DFT_HPLLOFF_WM,
  761. PINEVIEW_GUARD_WM,
  762. PINEVIEW_FIFO_LINE_SIZE
  763. };
  764. static const struct intel_watermark_params pineview_cursor_wm = {
  765. PINEVIEW_CURSOR_FIFO,
  766. PINEVIEW_CURSOR_MAX_WM,
  767. PINEVIEW_CURSOR_DFT_WM,
  768. PINEVIEW_CURSOR_GUARD_WM,
  769. PINEVIEW_FIFO_LINE_SIZE,
  770. };
  771. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  772. PINEVIEW_CURSOR_FIFO,
  773. PINEVIEW_CURSOR_MAX_WM,
  774. PINEVIEW_CURSOR_DFT_WM,
  775. PINEVIEW_CURSOR_GUARD_WM,
  776. PINEVIEW_FIFO_LINE_SIZE
  777. };
  778. static const struct intel_watermark_params g4x_wm_info = {
  779. G4X_FIFO_SIZE,
  780. G4X_MAX_WM,
  781. G4X_MAX_WM,
  782. 2,
  783. G4X_FIFO_LINE_SIZE,
  784. };
  785. static const struct intel_watermark_params g4x_cursor_wm_info = {
  786. I965_CURSOR_FIFO,
  787. I965_CURSOR_MAX_WM,
  788. I965_CURSOR_DFT_WM,
  789. 2,
  790. G4X_FIFO_LINE_SIZE,
  791. };
  792. static const struct intel_watermark_params valleyview_wm_info = {
  793. VALLEYVIEW_FIFO_SIZE,
  794. VALLEYVIEW_MAX_WM,
  795. VALLEYVIEW_MAX_WM,
  796. 2,
  797. G4X_FIFO_LINE_SIZE,
  798. };
  799. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  800. I965_CURSOR_FIFO,
  801. VALLEYVIEW_CURSOR_MAX_WM,
  802. I965_CURSOR_DFT_WM,
  803. 2,
  804. G4X_FIFO_LINE_SIZE,
  805. };
  806. static const struct intel_watermark_params i965_cursor_wm_info = {
  807. I965_CURSOR_FIFO,
  808. I965_CURSOR_MAX_WM,
  809. I965_CURSOR_DFT_WM,
  810. 2,
  811. I915_FIFO_LINE_SIZE,
  812. };
  813. static const struct intel_watermark_params i945_wm_info = {
  814. I945_FIFO_SIZE,
  815. I915_MAX_WM,
  816. 1,
  817. 2,
  818. I915_FIFO_LINE_SIZE
  819. };
  820. static const struct intel_watermark_params i915_wm_info = {
  821. I915_FIFO_SIZE,
  822. I915_MAX_WM,
  823. 1,
  824. 2,
  825. I915_FIFO_LINE_SIZE
  826. };
  827. static const struct intel_watermark_params i855_wm_info = {
  828. I855GM_FIFO_SIZE,
  829. I915_MAX_WM,
  830. 1,
  831. 2,
  832. I830_FIFO_LINE_SIZE
  833. };
  834. static const struct intel_watermark_params i830_wm_info = {
  835. I830_FIFO_SIZE,
  836. I915_MAX_WM,
  837. 1,
  838. 2,
  839. I830_FIFO_LINE_SIZE
  840. };
  841. static const struct intel_watermark_params ironlake_display_wm_info = {
  842. ILK_DISPLAY_FIFO,
  843. ILK_DISPLAY_MAXWM,
  844. ILK_DISPLAY_DFTWM,
  845. 2,
  846. ILK_FIFO_LINE_SIZE
  847. };
  848. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  849. ILK_CURSOR_FIFO,
  850. ILK_CURSOR_MAXWM,
  851. ILK_CURSOR_DFTWM,
  852. 2,
  853. ILK_FIFO_LINE_SIZE
  854. };
  855. static const struct intel_watermark_params ironlake_display_srwm_info = {
  856. ILK_DISPLAY_SR_FIFO,
  857. ILK_DISPLAY_MAX_SRWM,
  858. ILK_DISPLAY_DFT_SRWM,
  859. 2,
  860. ILK_FIFO_LINE_SIZE
  861. };
  862. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  863. ILK_CURSOR_SR_FIFO,
  864. ILK_CURSOR_MAX_SRWM,
  865. ILK_CURSOR_DFT_SRWM,
  866. 2,
  867. ILK_FIFO_LINE_SIZE
  868. };
  869. static const struct intel_watermark_params sandybridge_display_wm_info = {
  870. SNB_DISPLAY_FIFO,
  871. SNB_DISPLAY_MAXWM,
  872. SNB_DISPLAY_DFTWM,
  873. 2,
  874. SNB_FIFO_LINE_SIZE
  875. };
  876. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  877. SNB_CURSOR_FIFO,
  878. SNB_CURSOR_MAXWM,
  879. SNB_CURSOR_DFTWM,
  880. 2,
  881. SNB_FIFO_LINE_SIZE
  882. };
  883. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  884. SNB_DISPLAY_SR_FIFO,
  885. SNB_DISPLAY_MAX_SRWM,
  886. SNB_DISPLAY_DFT_SRWM,
  887. 2,
  888. SNB_FIFO_LINE_SIZE
  889. };
  890. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  891. SNB_CURSOR_SR_FIFO,
  892. SNB_CURSOR_MAX_SRWM,
  893. SNB_CURSOR_DFT_SRWM,
  894. 2,
  895. SNB_FIFO_LINE_SIZE
  896. };
  897. /**
  898. * intel_calculate_wm - calculate watermark level
  899. * @clock_in_khz: pixel clock
  900. * @wm: chip FIFO params
  901. * @pixel_size: display pixel size
  902. * @latency_ns: memory latency for the platform
  903. *
  904. * Calculate the watermark level (the level at which the display plane will
  905. * start fetching from memory again). Each chip has a different display
  906. * FIFO size and allocation, so the caller needs to figure that out and pass
  907. * in the correct intel_watermark_params structure.
  908. *
  909. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  910. * on the pixel size. When it reaches the watermark level, it'll start
  911. * fetching FIFO line sized based chunks from memory until the FIFO fills
  912. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  913. * will occur, and a display engine hang could result.
  914. */
  915. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  916. const struct intel_watermark_params *wm,
  917. int fifo_size,
  918. int pixel_size,
  919. unsigned long latency_ns)
  920. {
  921. long entries_required, wm_size;
  922. /*
  923. * Note: we need to make sure we don't overflow for various clock &
  924. * latency values.
  925. * clocks go from a few thousand to several hundred thousand.
  926. * latency is usually a few thousand
  927. */
  928. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  929. 1000;
  930. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  931. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  932. wm_size = fifo_size - (entries_required + wm->guard_size);
  933. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  934. /* Don't promote wm_size to unsigned... */
  935. if (wm_size > (long)wm->max_wm)
  936. wm_size = wm->max_wm;
  937. if (wm_size <= 0)
  938. wm_size = wm->default_wm;
  939. return wm_size;
  940. }
  941. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  942. {
  943. struct drm_crtc *crtc, *enabled = NULL;
  944. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  945. if (intel_crtc_active(crtc)) {
  946. if (enabled)
  947. return NULL;
  948. enabled = crtc;
  949. }
  950. }
  951. return enabled;
  952. }
  953. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  954. {
  955. struct drm_device *dev = unused_crtc->dev;
  956. struct drm_i915_private *dev_priv = dev->dev_private;
  957. struct drm_crtc *crtc;
  958. const struct cxsr_latency *latency;
  959. u32 reg;
  960. unsigned long wm;
  961. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  962. dev_priv->fsb_freq, dev_priv->mem_freq);
  963. if (!latency) {
  964. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  965. pineview_disable_cxsr(dev);
  966. return;
  967. }
  968. crtc = single_enabled_crtc(dev);
  969. if (crtc) {
  970. const struct drm_display_mode *adjusted_mode;
  971. int pixel_size = crtc->fb->bits_per_pixel / 8;
  972. int clock;
  973. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  974. clock = adjusted_mode->crtc_clock;
  975. /* Display SR */
  976. wm = intel_calculate_wm(clock, &pineview_display_wm,
  977. pineview_display_wm.fifo_size,
  978. pixel_size, latency->display_sr);
  979. reg = I915_READ(DSPFW1);
  980. reg &= ~DSPFW_SR_MASK;
  981. reg |= wm << DSPFW_SR_SHIFT;
  982. I915_WRITE(DSPFW1, reg);
  983. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  984. /* cursor SR */
  985. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  986. pineview_display_wm.fifo_size,
  987. pixel_size, latency->cursor_sr);
  988. reg = I915_READ(DSPFW3);
  989. reg &= ~DSPFW_CURSOR_SR_MASK;
  990. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  991. I915_WRITE(DSPFW3, reg);
  992. /* Display HPLL off SR */
  993. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  994. pineview_display_hplloff_wm.fifo_size,
  995. pixel_size, latency->display_hpll_disable);
  996. reg = I915_READ(DSPFW3);
  997. reg &= ~DSPFW_HPLL_SR_MASK;
  998. reg |= wm & DSPFW_HPLL_SR_MASK;
  999. I915_WRITE(DSPFW3, reg);
  1000. /* cursor HPLL off SR */
  1001. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  1002. pineview_display_hplloff_wm.fifo_size,
  1003. pixel_size, latency->cursor_hpll_disable);
  1004. reg = I915_READ(DSPFW3);
  1005. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  1006. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  1007. I915_WRITE(DSPFW3, reg);
  1008. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  1009. /* activate cxsr */
  1010. I915_WRITE(DSPFW3,
  1011. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  1012. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  1013. } else {
  1014. pineview_disable_cxsr(dev);
  1015. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  1016. }
  1017. }
  1018. static bool g4x_compute_wm0(struct drm_device *dev,
  1019. int plane,
  1020. const struct intel_watermark_params *display,
  1021. int display_latency_ns,
  1022. const struct intel_watermark_params *cursor,
  1023. int cursor_latency_ns,
  1024. int *plane_wm,
  1025. int *cursor_wm)
  1026. {
  1027. struct drm_crtc *crtc;
  1028. const struct drm_display_mode *adjusted_mode;
  1029. int htotal, hdisplay, clock, pixel_size;
  1030. int line_time_us, line_count;
  1031. int entries, tlb_miss;
  1032. crtc = intel_get_crtc_for_plane(dev, plane);
  1033. if (!intel_crtc_active(crtc)) {
  1034. *cursor_wm = cursor->guard_size;
  1035. *plane_wm = display->guard_size;
  1036. return false;
  1037. }
  1038. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1039. clock = adjusted_mode->crtc_clock;
  1040. htotal = adjusted_mode->htotal;
  1041. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1042. pixel_size = crtc->fb->bits_per_pixel / 8;
  1043. /* Use the small buffer method to calculate plane watermark */
  1044. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1045. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1046. if (tlb_miss > 0)
  1047. entries += tlb_miss;
  1048. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1049. *plane_wm = entries + display->guard_size;
  1050. if (*plane_wm > (int)display->max_wm)
  1051. *plane_wm = display->max_wm;
  1052. /* Use the large buffer method to calculate cursor watermark */
  1053. line_time_us = ((htotal * 1000) / clock);
  1054. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1055. entries = line_count * 64 * pixel_size;
  1056. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1057. if (tlb_miss > 0)
  1058. entries += tlb_miss;
  1059. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1060. *cursor_wm = entries + cursor->guard_size;
  1061. if (*cursor_wm > (int)cursor->max_wm)
  1062. *cursor_wm = (int)cursor->max_wm;
  1063. return true;
  1064. }
  1065. /*
  1066. * Check the wm result.
  1067. *
  1068. * If any calculated watermark values is larger than the maximum value that
  1069. * can be programmed into the associated watermark register, that watermark
  1070. * must be disabled.
  1071. */
  1072. static bool g4x_check_srwm(struct drm_device *dev,
  1073. int display_wm, int cursor_wm,
  1074. const struct intel_watermark_params *display,
  1075. const struct intel_watermark_params *cursor)
  1076. {
  1077. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1078. display_wm, cursor_wm);
  1079. if (display_wm > display->max_wm) {
  1080. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1081. display_wm, display->max_wm);
  1082. return false;
  1083. }
  1084. if (cursor_wm > cursor->max_wm) {
  1085. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1086. cursor_wm, cursor->max_wm);
  1087. return false;
  1088. }
  1089. if (!(display_wm || cursor_wm)) {
  1090. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1091. return false;
  1092. }
  1093. return true;
  1094. }
  1095. static bool g4x_compute_srwm(struct drm_device *dev,
  1096. int plane,
  1097. int latency_ns,
  1098. const struct intel_watermark_params *display,
  1099. const struct intel_watermark_params *cursor,
  1100. int *display_wm, int *cursor_wm)
  1101. {
  1102. struct drm_crtc *crtc;
  1103. const struct drm_display_mode *adjusted_mode;
  1104. int hdisplay, htotal, pixel_size, clock;
  1105. unsigned long line_time_us;
  1106. int line_count, line_size;
  1107. int small, large;
  1108. int entries;
  1109. if (!latency_ns) {
  1110. *display_wm = *cursor_wm = 0;
  1111. return false;
  1112. }
  1113. crtc = intel_get_crtc_for_plane(dev, plane);
  1114. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1115. clock = adjusted_mode->crtc_clock;
  1116. htotal = adjusted_mode->htotal;
  1117. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1118. pixel_size = crtc->fb->bits_per_pixel / 8;
  1119. line_time_us = (htotal * 1000) / clock;
  1120. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1121. line_size = hdisplay * pixel_size;
  1122. /* Use the minimum of the small and large buffer method for primary */
  1123. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1124. large = line_count * line_size;
  1125. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1126. *display_wm = entries + display->guard_size;
  1127. /* calculate the self-refresh watermark for display cursor */
  1128. entries = line_count * pixel_size * 64;
  1129. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1130. *cursor_wm = entries + cursor->guard_size;
  1131. return g4x_check_srwm(dev,
  1132. *display_wm, *cursor_wm,
  1133. display, cursor);
  1134. }
  1135. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1136. int plane,
  1137. int *plane_prec_mult,
  1138. int *plane_dl,
  1139. int *cursor_prec_mult,
  1140. int *cursor_dl)
  1141. {
  1142. struct drm_crtc *crtc;
  1143. int clock, pixel_size;
  1144. int entries;
  1145. crtc = intel_get_crtc_for_plane(dev, plane);
  1146. if (!intel_crtc_active(crtc))
  1147. return false;
  1148. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1149. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1150. entries = (clock / 1000) * pixel_size;
  1151. *plane_prec_mult = (entries > 256) ?
  1152. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1153. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1154. pixel_size);
  1155. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1156. *cursor_prec_mult = (entries > 256) ?
  1157. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1158. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1159. return true;
  1160. }
  1161. /*
  1162. * Update drain latency registers of memory arbiter
  1163. *
  1164. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1165. * to be programmed. Each plane has a drain latency multiplier and a drain
  1166. * latency value.
  1167. */
  1168. static void vlv_update_drain_latency(struct drm_device *dev)
  1169. {
  1170. struct drm_i915_private *dev_priv = dev->dev_private;
  1171. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1172. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1173. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1174. either 16 or 32 */
  1175. /* For plane A, Cursor A */
  1176. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1177. &cursor_prec_mult, &cursora_dl)) {
  1178. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1179. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1180. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1181. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1182. I915_WRITE(VLV_DDL1, cursora_prec |
  1183. (cursora_dl << DDL_CURSORA_SHIFT) |
  1184. planea_prec | planea_dl);
  1185. }
  1186. /* For plane B, Cursor B */
  1187. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1188. &cursor_prec_mult, &cursorb_dl)) {
  1189. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1190. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1191. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1192. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1193. I915_WRITE(VLV_DDL2, cursorb_prec |
  1194. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1195. planeb_prec | planeb_dl);
  1196. }
  1197. }
  1198. #define single_plane_enabled(mask) is_power_of_2(mask)
  1199. static void valleyview_update_wm(struct drm_crtc *crtc)
  1200. {
  1201. struct drm_device *dev = crtc->dev;
  1202. static const int sr_latency_ns = 12000;
  1203. struct drm_i915_private *dev_priv = dev->dev_private;
  1204. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1205. int plane_sr, cursor_sr;
  1206. int ignore_plane_sr, ignore_cursor_sr;
  1207. unsigned int enabled = 0;
  1208. vlv_update_drain_latency(dev);
  1209. if (g4x_compute_wm0(dev, PIPE_A,
  1210. &valleyview_wm_info, latency_ns,
  1211. &valleyview_cursor_wm_info, latency_ns,
  1212. &planea_wm, &cursora_wm))
  1213. enabled |= 1 << PIPE_A;
  1214. if (g4x_compute_wm0(dev, PIPE_B,
  1215. &valleyview_wm_info, latency_ns,
  1216. &valleyview_cursor_wm_info, latency_ns,
  1217. &planeb_wm, &cursorb_wm))
  1218. enabled |= 1 << PIPE_B;
  1219. if (single_plane_enabled(enabled) &&
  1220. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1221. sr_latency_ns,
  1222. &valleyview_wm_info,
  1223. &valleyview_cursor_wm_info,
  1224. &plane_sr, &ignore_cursor_sr) &&
  1225. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1226. 2*sr_latency_ns,
  1227. &valleyview_wm_info,
  1228. &valleyview_cursor_wm_info,
  1229. &ignore_plane_sr, &cursor_sr)) {
  1230. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1231. } else {
  1232. I915_WRITE(FW_BLC_SELF_VLV,
  1233. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1234. plane_sr = cursor_sr = 0;
  1235. }
  1236. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1237. planea_wm, cursora_wm,
  1238. planeb_wm, cursorb_wm,
  1239. plane_sr, cursor_sr);
  1240. I915_WRITE(DSPFW1,
  1241. (plane_sr << DSPFW_SR_SHIFT) |
  1242. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1243. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1244. planea_wm);
  1245. I915_WRITE(DSPFW2,
  1246. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1247. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1248. I915_WRITE(DSPFW3,
  1249. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1250. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1251. }
  1252. static void g4x_update_wm(struct drm_crtc *crtc)
  1253. {
  1254. struct drm_device *dev = crtc->dev;
  1255. static const int sr_latency_ns = 12000;
  1256. struct drm_i915_private *dev_priv = dev->dev_private;
  1257. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1258. int plane_sr, cursor_sr;
  1259. unsigned int enabled = 0;
  1260. if (g4x_compute_wm0(dev, PIPE_A,
  1261. &g4x_wm_info, latency_ns,
  1262. &g4x_cursor_wm_info, latency_ns,
  1263. &planea_wm, &cursora_wm))
  1264. enabled |= 1 << PIPE_A;
  1265. if (g4x_compute_wm0(dev, PIPE_B,
  1266. &g4x_wm_info, latency_ns,
  1267. &g4x_cursor_wm_info, latency_ns,
  1268. &planeb_wm, &cursorb_wm))
  1269. enabled |= 1 << PIPE_B;
  1270. if (single_plane_enabled(enabled) &&
  1271. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1272. sr_latency_ns,
  1273. &g4x_wm_info,
  1274. &g4x_cursor_wm_info,
  1275. &plane_sr, &cursor_sr)) {
  1276. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1277. } else {
  1278. I915_WRITE(FW_BLC_SELF,
  1279. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1280. plane_sr = cursor_sr = 0;
  1281. }
  1282. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1283. planea_wm, cursora_wm,
  1284. planeb_wm, cursorb_wm,
  1285. plane_sr, cursor_sr);
  1286. I915_WRITE(DSPFW1,
  1287. (plane_sr << DSPFW_SR_SHIFT) |
  1288. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1289. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1290. planea_wm);
  1291. I915_WRITE(DSPFW2,
  1292. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1293. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1294. /* HPLL off in SR has some issues on G4x... disable it */
  1295. I915_WRITE(DSPFW3,
  1296. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1297. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1298. }
  1299. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1300. {
  1301. struct drm_device *dev = unused_crtc->dev;
  1302. struct drm_i915_private *dev_priv = dev->dev_private;
  1303. struct drm_crtc *crtc;
  1304. int srwm = 1;
  1305. int cursor_sr = 16;
  1306. /* Calc sr entries for one plane configs */
  1307. crtc = single_enabled_crtc(dev);
  1308. if (crtc) {
  1309. /* self-refresh has much higher latency */
  1310. static const int sr_latency_ns = 12000;
  1311. const struct drm_display_mode *adjusted_mode =
  1312. &to_intel_crtc(crtc)->config.adjusted_mode;
  1313. int clock = adjusted_mode->crtc_clock;
  1314. int htotal = adjusted_mode->htotal;
  1315. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1316. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1317. unsigned long line_time_us;
  1318. int entries;
  1319. line_time_us = ((htotal * 1000) / clock);
  1320. /* Use ns/us then divide to preserve precision */
  1321. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1322. pixel_size * hdisplay;
  1323. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1324. srwm = I965_FIFO_SIZE - entries;
  1325. if (srwm < 0)
  1326. srwm = 1;
  1327. srwm &= 0x1ff;
  1328. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1329. entries, srwm);
  1330. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1331. pixel_size * 64;
  1332. entries = DIV_ROUND_UP(entries,
  1333. i965_cursor_wm_info.cacheline_size);
  1334. cursor_sr = i965_cursor_wm_info.fifo_size -
  1335. (entries + i965_cursor_wm_info.guard_size);
  1336. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1337. cursor_sr = i965_cursor_wm_info.max_wm;
  1338. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1339. "cursor %d\n", srwm, cursor_sr);
  1340. if (IS_CRESTLINE(dev))
  1341. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1342. } else {
  1343. /* Turn off self refresh if both pipes are enabled */
  1344. if (IS_CRESTLINE(dev))
  1345. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1346. & ~FW_BLC_SELF_EN);
  1347. }
  1348. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1349. srwm);
  1350. /* 965 has limitations... */
  1351. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1352. (8 << 16) | (8 << 8) | (8 << 0));
  1353. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1354. /* update cursor SR watermark */
  1355. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1356. }
  1357. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1358. {
  1359. struct drm_device *dev = unused_crtc->dev;
  1360. struct drm_i915_private *dev_priv = dev->dev_private;
  1361. const struct intel_watermark_params *wm_info;
  1362. uint32_t fwater_lo;
  1363. uint32_t fwater_hi;
  1364. int cwm, srwm = 1;
  1365. int fifo_size;
  1366. int planea_wm, planeb_wm;
  1367. struct drm_crtc *crtc, *enabled = NULL;
  1368. if (IS_I945GM(dev))
  1369. wm_info = &i945_wm_info;
  1370. else if (!IS_GEN2(dev))
  1371. wm_info = &i915_wm_info;
  1372. else
  1373. wm_info = &i855_wm_info;
  1374. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1375. crtc = intel_get_crtc_for_plane(dev, 0);
  1376. if (intel_crtc_active(crtc)) {
  1377. const struct drm_display_mode *adjusted_mode;
  1378. int cpp = crtc->fb->bits_per_pixel / 8;
  1379. if (IS_GEN2(dev))
  1380. cpp = 4;
  1381. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1382. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1383. wm_info, fifo_size, cpp,
  1384. latency_ns);
  1385. enabled = crtc;
  1386. } else
  1387. planea_wm = fifo_size - wm_info->guard_size;
  1388. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1389. crtc = intel_get_crtc_for_plane(dev, 1);
  1390. if (intel_crtc_active(crtc)) {
  1391. const struct drm_display_mode *adjusted_mode;
  1392. int cpp = crtc->fb->bits_per_pixel / 8;
  1393. if (IS_GEN2(dev))
  1394. cpp = 4;
  1395. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1396. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1397. wm_info, fifo_size, cpp,
  1398. latency_ns);
  1399. if (enabled == NULL)
  1400. enabled = crtc;
  1401. else
  1402. enabled = NULL;
  1403. } else
  1404. planeb_wm = fifo_size - wm_info->guard_size;
  1405. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1406. /*
  1407. * Overlay gets an aggressive default since video jitter is bad.
  1408. */
  1409. cwm = 2;
  1410. /* Play safe and disable self-refresh before adjusting watermarks. */
  1411. if (IS_I945G(dev) || IS_I945GM(dev))
  1412. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1413. else if (IS_I915GM(dev))
  1414. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1415. /* Calc sr entries for one plane configs */
  1416. if (HAS_FW_BLC(dev) && enabled) {
  1417. /* self-refresh has much higher latency */
  1418. static const int sr_latency_ns = 6000;
  1419. const struct drm_display_mode *adjusted_mode =
  1420. &to_intel_crtc(enabled)->config.adjusted_mode;
  1421. int clock = adjusted_mode->crtc_clock;
  1422. int htotal = adjusted_mode->htotal;
  1423. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1424. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1425. unsigned long line_time_us;
  1426. int entries;
  1427. line_time_us = (htotal * 1000) / clock;
  1428. /* Use ns/us then divide to preserve precision */
  1429. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1430. pixel_size * hdisplay;
  1431. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1432. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1433. srwm = wm_info->fifo_size - entries;
  1434. if (srwm < 0)
  1435. srwm = 1;
  1436. if (IS_I945G(dev) || IS_I945GM(dev))
  1437. I915_WRITE(FW_BLC_SELF,
  1438. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1439. else if (IS_I915GM(dev))
  1440. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1441. }
  1442. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1443. planea_wm, planeb_wm, cwm, srwm);
  1444. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1445. fwater_hi = (cwm & 0x1f);
  1446. /* Set request length to 8 cachelines per fetch */
  1447. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1448. fwater_hi = fwater_hi | (1 << 8);
  1449. I915_WRITE(FW_BLC, fwater_lo);
  1450. I915_WRITE(FW_BLC2, fwater_hi);
  1451. if (HAS_FW_BLC(dev)) {
  1452. if (enabled) {
  1453. if (IS_I945G(dev) || IS_I945GM(dev))
  1454. I915_WRITE(FW_BLC_SELF,
  1455. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1456. else if (IS_I915GM(dev))
  1457. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1458. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1459. } else
  1460. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1461. }
  1462. }
  1463. static void i830_update_wm(struct drm_crtc *unused_crtc)
  1464. {
  1465. struct drm_device *dev = unused_crtc->dev;
  1466. struct drm_i915_private *dev_priv = dev->dev_private;
  1467. struct drm_crtc *crtc;
  1468. const struct drm_display_mode *adjusted_mode;
  1469. uint32_t fwater_lo;
  1470. int planea_wm;
  1471. crtc = single_enabled_crtc(dev);
  1472. if (crtc == NULL)
  1473. return;
  1474. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1475. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1476. &i830_wm_info,
  1477. dev_priv->display.get_fifo_size(dev, 0),
  1478. 4, latency_ns);
  1479. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1480. fwater_lo |= (3<<8) | planea_wm;
  1481. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1482. I915_WRITE(FW_BLC, fwater_lo);
  1483. }
  1484. /*
  1485. * Check the wm result.
  1486. *
  1487. * If any calculated watermark values is larger than the maximum value that
  1488. * can be programmed into the associated watermark register, that watermark
  1489. * must be disabled.
  1490. */
  1491. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1492. int fbc_wm, int display_wm, int cursor_wm,
  1493. const struct intel_watermark_params *display,
  1494. const struct intel_watermark_params *cursor)
  1495. {
  1496. struct drm_i915_private *dev_priv = dev->dev_private;
  1497. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1498. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1499. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1500. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1501. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1502. /* fbc has it's own way to disable FBC WM */
  1503. I915_WRITE(DISP_ARB_CTL,
  1504. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1505. return false;
  1506. } else if (INTEL_INFO(dev)->gen >= 6) {
  1507. /* enable FBC WM (except on ILK, where it must remain off) */
  1508. I915_WRITE(DISP_ARB_CTL,
  1509. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1510. }
  1511. if (display_wm > display->max_wm) {
  1512. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1513. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1514. return false;
  1515. }
  1516. if (cursor_wm > cursor->max_wm) {
  1517. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1518. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1519. return false;
  1520. }
  1521. if (!(fbc_wm || display_wm || cursor_wm)) {
  1522. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1523. return false;
  1524. }
  1525. return true;
  1526. }
  1527. /*
  1528. * Compute watermark values of WM[1-3],
  1529. */
  1530. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1531. int latency_ns,
  1532. const struct intel_watermark_params *display,
  1533. const struct intel_watermark_params *cursor,
  1534. int *fbc_wm, int *display_wm, int *cursor_wm)
  1535. {
  1536. struct drm_crtc *crtc;
  1537. const struct drm_display_mode *adjusted_mode;
  1538. unsigned long line_time_us;
  1539. int hdisplay, htotal, pixel_size, clock;
  1540. int line_count, line_size;
  1541. int small, large;
  1542. int entries;
  1543. if (!latency_ns) {
  1544. *fbc_wm = *display_wm = *cursor_wm = 0;
  1545. return false;
  1546. }
  1547. crtc = intel_get_crtc_for_plane(dev, plane);
  1548. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1549. clock = adjusted_mode->crtc_clock;
  1550. htotal = adjusted_mode->htotal;
  1551. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1552. pixel_size = crtc->fb->bits_per_pixel / 8;
  1553. line_time_us = (htotal * 1000) / clock;
  1554. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1555. line_size = hdisplay * pixel_size;
  1556. /* Use the minimum of the small and large buffer method for primary */
  1557. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1558. large = line_count * line_size;
  1559. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1560. *display_wm = entries + display->guard_size;
  1561. /*
  1562. * Spec says:
  1563. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1564. */
  1565. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1566. /* calculate the self-refresh watermark for display cursor */
  1567. entries = line_count * pixel_size * 64;
  1568. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1569. *cursor_wm = entries + cursor->guard_size;
  1570. return ironlake_check_srwm(dev, level,
  1571. *fbc_wm, *display_wm, *cursor_wm,
  1572. display, cursor);
  1573. }
  1574. static void ironlake_update_wm(struct drm_crtc *crtc)
  1575. {
  1576. struct drm_device *dev = crtc->dev;
  1577. struct drm_i915_private *dev_priv = dev->dev_private;
  1578. int fbc_wm, plane_wm, cursor_wm;
  1579. unsigned int enabled;
  1580. enabled = 0;
  1581. if (g4x_compute_wm0(dev, PIPE_A,
  1582. &ironlake_display_wm_info,
  1583. dev_priv->wm.pri_latency[0] * 100,
  1584. &ironlake_cursor_wm_info,
  1585. dev_priv->wm.cur_latency[0] * 100,
  1586. &plane_wm, &cursor_wm)) {
  1587. I915_WRITE(WM0_PIPEA_ILK,
  1588. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1589. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1590. " plane %d, " "cursor: %d\n",
  1591. plane_wm, cursor_wm);
  1592. enabled |= 1 << PIPE_A;
  1593. }
  1594. if (g4x_compute_wm0(dev, PIPE_B,
  1595. &ironlake_display_wm_info,
  1596. dev_priv->wm.pri_latency[0] * 100,
  1597. &ironlake_cursor_wm_info,
  1598. dev_priv->wm.cur_latency[0] * 100,
  1599. &plane_wm, &cursor_wm)) {
  1600. I915_WRITE(WM0_PIPEB_ILK,
  1601. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1602. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1603. " plane %d, cursor: %d\n",
  1604. plane_wm, cursor_wm);
  1605. enabled |= 1 << PIPE_B;
  1606. }
  1607. /*
  1608. * Calculate and update the self-refresh watermark only when one
  1609. * display plane is used.
  1610. */
  1611. I915_WRITE(WM3_LP_ILK, 0);
  1612. I915_WRITE(WM2_LP_ILK, 0);
  1613. I915_WRITE(WM1_LP_ILK, 0);
  1614. if (!single_plane_enabled(enabled))
  1615. return;
  1616. enabled = ffs(enabled) - 1;
  1617. /* WM1 */
  1618. if (!ironlake_compute_srwm(dev, 1, enabled,
  1619. dev_priv->wm.pri_latency[1] * 500,
  1620. &ironlake_display_srwm_info,
  1621. &ironlake_cursor_srwm_info,
  1622. &fbc_wm, &plane_wm, &cursor_wm))
  1623. return;
  1624. I915_WRITE(WM1_LP_ILK,
  1625. WM1_LP_SR_EN |
  1626. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1627. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1628. (plane_wm << WM1_LP_SR_SHIFT) |
  1629. cursor_wm);
  1630. /* WM2 */
  1631. if (!ironlake_compute_srwm(dev, 2, enabled,
  1632. dev_priv->wm.pri_latency[2] * 500,
  1633. &ironlake_display_srwm_info,
  1634. &ironlake_cursor_srwm_info,
  1635. &fbc_wm, &plane_wm, &cursor_wm))
  1636. return;
  1637. I915_WRITE(WM2_LP_ILK,
  1638. WM2_LP_EN |
  1639. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1640. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1641. (plane_wm << WM1_LP_SR_SHIFT) |
  1642. cursor_wm);
  1643. /*
  1644. * WM3 is unsupported on ILK, probably because we don't have latency
  1645. * data for that power state
  1646. */
  1647. }
  1648. static void sandybridge_update_wm(struct drm_crtc *crtc)
  1649. {
  1650. struct drm_device *dev = crtc->dev;
  1651. struct drm_i915_private *dev_priv = dev->dev_private;
  1652. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1653. u32 val;
  1654. int fbc_wm, plane_wm, cursor_wm;
  1655. unsigned int enabled;
  1656. enabled = 0;
  1657. if (g4x_compute_wm0(dev, PIPE_A,
  1658. &sandybridge_display_wm_info, latency,
  1659. &sandybridge_cursor_wm_info, latency,
  1660. &plane_wm, &cursor_wm)) {
  1661. val = I915_READ(WM0_PIPEA_ILK);
  1662. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1663. I915_WRITE(WM0_PIPEA_ILK, val |
  1664. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1665. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1666. " plane %d, " "cursor: %d\n",
  1667. plane_wm, cursor_wm);
  1668. enabled |= 1 << PIPE_A;
  1669. }
  1670. if (g4x_compute_wm0(dev, PIPE_B,
  1671. &sandybridge_display_wm_info, latency,
  1672. &sandybridge_cursor_wm_info, latency,
  1673. &plane_wm, &cursor_wm)) {
  1674. val = I915_READ(WM0_PIPEB_ILK);
  1675. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1676. I915_WRITE(WM0_PIPEB_ILK, val |
  1677. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1678. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1679. " plane %d, cursor: %d\n",
  1680. plane_wm, cursor_wm);
  1681. enabled |= 1 << PIPE_B;
  1682. }
  1683. /*
  1684. * Calculate and update the self-refresh watermark only when one
  1685. * display plane is used.
  1686. *
  1687. * SNB support 3 levels of watermark.
  1688. *
  1689. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1690. * and disabled in the descending order
  1691. *
  1692. */
  1693. I915_WRITE(WM3_LP_ILK, 0);
  1694. I915_WRITE(WM2_LP_ILK, 0);
  1695. I915_WRITE(WM1_LP_ILK, 0);
  1696. if (!single_plane_enabled(enabled) ||
  1697. dev_priv->sprite_scaling_enabled)
  1698. return;
  1699. enabled = ffs(enabled) - 1;
  1700. /* WM1 */
  1701. if (!ironlake_compute_srwm(dev, 1, enabled,
  1702. dev_priv->wm.pri_latency[1] * 500,
  1703. &sandybridge_display_srwm_info,
  1704. &sandybridge_cursor_srwm_info,
  1705. &fbc_wm, &plane_wm, &cursor_wm))
  1706. return;
  1707. I915_WRITE(WM1_LP_ILK,
  1708. WM1_LP_SR_EN |
  1709. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1710. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1711. (plane_wm << WM1_LP_SR_SHIFT) |
  1712. cursor_wm);
  1713. /* WM2 */
  1714. if (!ironlake_compute_srwm(dev, 2, enabled,
  1715. dev_priv->wm.pri_latency[2] * 500,
  1716. &sandybridge_display_srwm_info,
  1717. &sandybridge_cursor_srwm_info,
  1718. &fbc_wm, &plane_wm, &cursor_wm))
  1719. return;
  1720. I915_WRITE(WM2_LP_ILK,
  1721. WM2_LP_EN |
  1722. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1723. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1724. (plane_wm << WM1_LP_SR_SHIFT) |
  1725. cursor_wm);
  1726. /* WM3 */
  1727. if (!ironlake_compute_srwm(dev, 3, enabled,
  1728. dev_priv->wm.pri_latency[3] * 500,
  1729. &sandybridge_display_srwm_info,
  1730. &sandybridge_cursor_srwm_info,
  1731. &fbc_wm, &plane_wm, &cursor_wm))
  1732. return;
  1733. I915_WRITE(WM3_LP_ILK,
  1734. WM3_LP_EN |
  1735. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1736. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1737. (plane_wm << WM1_LP_SR_SHIFT) |
  1738. cursor_wm);
  1739. }
  1740. static void ivybridge_update_wm(struct drm_crtc *crtc)
  1741. {
  1742. struct drm_device *dev = crtc->dev;
  1743. struct drm_i915_private *dev_priv = dev->dev_private;
  1744. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1745. u32 val;
  1746. int fbc_wm, plane_wm, cursor_wm;
  1747. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1748. unsigned int enabled;
  1749. enabled = 0;
  1750. if (g4x_compute_wm0(dev, PIPE_A,
  1751. &sandybridge_display_wm_info, latency,
  1752. &sandybridge_cursor_wm_info, latency,
  1753. &plane_wm, &cursor_wm)) {
  1754. val = I915_READ(WM0_PIPEA_ILK);
  1755. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1756. I915_WRITE(WM0_PIPEA_ILK, val |
  1757. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1758. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1759. " plane %d, " "cursor: %d\n",
  1760. plane_wm, cursor_wm);
  1761. enabled |= 1 << PIPE_A;
  1762. }
  1763. if (g4x_compute_wm0(dev, PIPE_B,
  1764. &sandybridge_display_wm_info, latency,
  1765. &sandybridge_cursor_wm_info, latency,
  1766. &plane_wm, &cursor_wm)) {
  1767. val = I915_READ(WM0_PIPEB_ILK);
  1768. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1769. I915_WRITE(WM0_PIPEB_ILK, val |
  1770. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1771. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1772. " plane %d, cursor: %d\n",
  1773. plane_wm, cursor_wm);
  1774. enabled |= 1 << PIPE_B;
  1775. }
  1776. if (g4x_compute_wm0(dev, PIPE_C,
  1777. &sandybridge_display_wm_info, latency,
  1778. &sandybridge_cursor_wm_info, latency,
  1779. &plane_wm, &cursor_wm)) {
  1780. val = I915_READ(WM0_PIPEC_IVB);
  1781. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1782. I915_WRITE(WM0_PIPEC_IVB, val |
  1783. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1784. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1785. " plane %d, cursor: %d\n",
  1786. plane_wm, cursor_wm);
  1787. enabled |= 1 << PIPE_C;
  1788. }
  1789. /*
  1790. * Calculate and update the self-refresh watermark only when one
  1791. * display plane is used.
  1792. *
  1793. * SNB support 3 levels of watermark.
  1794. *
  1795. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1796. * and disabled in the descending order
  1797. *
  1798. */
  1799. I915_WRITE(WM3_LP_ILK, 0);
  1800. I915_WRITE(WM2_LP_ILK, 0);
  1801. I915_WRITE(WM1_LP_ILK, 0);
  1802. if (!single_plane_enabled(enabled) ||
  1803. dev_priv->sprite_scaling_enabled)
  1804. return;
  1805. enabled = ffs(enabled) - 1;
  1806. /* WM1 */
  1807. if (!ironlake_compute_srwm(dev, 1, enabled,
  1808. dev_priv->wm.pri_latency[1] * 500,
  1809. &sandybridge_display_srwm_info,
  1810. &sandybridge_cursor_srwm_info,
  1811. &fbc_wm, &plane_wm, &cursor_wm))
  1812. return;
  1813. I915_WRITE(WM1_LP_ILK,
  1814. WM1_LP_SR_EN |
  1815. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1816. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1817. (plane_wm << WM1_LP_SR_SHIFT) |
  1818. cursor_wm);
  1819. /* WM2 */
  1820. if (!ironlake_compute_srwm(dev, 2, enabled,
  1821. dev_priv->wm.pri_latency[2] * 500,
  1822. &sandybridge_display_srwm_info,
  1823. &sandybridge_cursor_srwm_info,
  1824. &fbc_wm, &plane_wm, &cursor_wm))
  1825. return;
  1826. I915_WRITE(WM2_LP_ILK,
  1827. WM2_LP_EN |
  1828. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1829. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1830. (plane_wm << WM1_LP_SR_SHIFT) |
  1831. cursor_wm);
  1832. /* WM3, note we have to correct the cursor latency */
  1833. if (!ironlake_compute_srwm(dev, 3, enabled,
  1834. dev_priv->wm.pri_latency[3] * 500,
  1835. &sandybridge_display_srwm_info,
  1836. &sandybridge_cursor_srwm_info,
  1837. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1838. !ironlake_compute_srwm(dev, 3, enabled,
  1839. dev_priv->wm.cur_latency[3] * 500,
  1840. &sandybridge_display_srwm_info,
  1841. &sandybridge_cursor_srwm_info,
  1842. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1843. return;
  1844. I915_WRITE(WM3_LP_ILK,
  1845. WM3_LP_EN |
  1846. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1847. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1848. (plane_wm << WM1_LP_SR_SHIFT) |
  1849. cursor_wm);
  1850. }
  1851. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1852. struct drm_crtc *crtc)
  1853. {
  1854. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1855. uint32_t pixel_rate;
  1856. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1857. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1858. * adjust the pixel_rate here. */
  1859. if (intel_crtc->config.pch_pfit.enabled) {
  1860. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1861. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1862. pipe_w = intel_crtc->config.pipe_src_w;
  1863. pipe_h = intel_crtc->config.pipe_src_h;
  1864. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1865. pfit_h = pfit_size & 0xFFFF;
  1866. if (pipe_w < pfit_w)
  1867. pipe_w = pfit_w;
  1868. if (pipe_h < pfit_h)
  1869. pipe_h = pfit_h;
  1870. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1871. pfit_w * pfit_h);
  1872. }
  1873. return pixel_rate;
  1874. }
  1875. /* latency must be in 0.1us units. */
  1876. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1877. uint32_t latency)
  1878. {
  1879. uint64_t ret;
  1880. if (WARN(latency == 0, "Latency value missing\n"))
  1881. return UINT_MAX;
  1882. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1883. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1884. return ret;
  1885. }
  1886. /* latency must be in 0.1us units. */
  1887. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1888. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1889. uint32_t latency)
  1890. {
  1891. uint32_t ret;
  1892. if (WARN(latency == 0, "Latency value missing\n"))
  1893. return UINT_MAX;
  1894. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1895. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1896. ret = DIV_ROUND_UP(ret, 64) + 2;
  1897. return ret;
  1898. }
  1899. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1900. uint8_t bytes_per_pixel)
  1901. {
  1902. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1903. }
  1904. struct hsw_pipe_wm_parameters {
  1905. bool active;
  1906. uint32_t pipe_htotal;
  1907. uint32_t pixel_rate;
  1908. struct intel_plane_wm_parameters pri;
  1909. struct intel_plane_wm_parameters spr;
  1910. struct intel_plane_wm_parameters cur;
  1911. };
  1912. struct hsw_wm_maximums {
  1913. uint16_t pri;
  1914. uint16_t spr;
  1915. uint16_t cur;
  1916. uint16_t fbc;
  1917. };
  1918. /* used in computing the new watermarks state */
  1919. struct intel_wm_config {
  1920. unsigned int num_pipes_active;
  1921. bool sprites_enabled;
  1922. bool sprites_scaled;
  1923. };
  1924. /*
  1925. * For both WM_PIPE and WM_LP.
  1926. * mem_value must be in 0.1us units.
  1927. */
  1928. static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
  1929. uint32_t mem_value,
  1930. bool is_lp)
  1931. {
  1932. uint32_t method1, method2;
  1933. if (!params->active || !params->pri.enabled)
  1934. return 0;
  1935. method1 = ilk_wm_method1(params->pixel_rate,
  1936. params->pri.bytes_per_pixel,
  1937. mem_value);
  1938. if (!is_lp)
  1939. return method1;
  1940. method2 = ilk_wm_method2(params->pixel_rate,
  1941. params->pipe_htotal,
  1942. params->pri.horiz_pixels,
  1943. params->pri.bytes_per_pixel,
  1944. mem_value);
  1945. return min(method1, method2);
  1946. }
  1947. /*
  1948. * For both WM_PIPE and WM_LP.
  1949. * mem_value must be in 0.1us units.
  1950. */
  1951. static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
  1952. uint32_t mem_value)
  1953. {
  1954. uint32_t method1, method2;
  1955. if (!params->active || !params->spr.enabled)
  1956. return 0;
  1957. method1 = ilk_wm_method1(params->pixel_rate,
  1958. params->spr.bytes_per_pixel,
  1959. mem_value);
  1960. method2 = ilk_wm_method2(params->pixel_rate,
  1961. params->pipe_htotal,
  1962. params->spr.horiz_pixels,
  1963. params->spr.bytes_per_pixel,
  1964. mem_value);
  1965. return min(method1, method2);
  1966. }
  1967. /*
  1968. * For both WM_PIPE and WM_LP.
  1969. * mem_value must be in 0.1us units.
  1970. */
  1971. static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
  1972. uint32_t mem_value)
  1973. {
  1974. if (!params->active || !params->cur.enabled)
  1975. return 0;
  1976. return ilk_wm_method2(params->pixel_rate,
  1977. params->pipe_htotal,
  1978. params->cur.horiz_pixels,
  1979. params->cur.bytes_per_pixel,
  1980. mem_value);
  1981. }
  1982. /* Only for WM_LP. */
  1983. static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
  1984. uint32_t pri_val)
  1985. {
  1986. if (!params->active || !params->pri.enabled)
  1987. return 0;
  1988. return ilk_wm_fbc(pri_val,
  1989. params->pri.horiz_pixels,
  1990. params->pri.bytes_per_pixel);
  1991. }
  1992. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1993. {
  1994. if (INTEL_INFO(dev)->gen >= 7)
  1995. return 768;
  1996. else
  1997. return 512;
  1998. }
  1999. /* Calculate the maximum primary/sprite plane watermark */
  2000. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  2001. int level,
  2002. const struct intel_wm_config *config,
  2003. enum intel_ddb_partitioning ddb_partitioning,
  2004. bool is_sprite)
  2005. {
  2006. unsigned int fifo_size = ilk_display_fifo_size(dev);
  2007. unsigned int max;
  2008. /* if sprites aren't enabled, sprites get nothing */
  2009. if (is_sprite && !config->sprites_enabled)
  2010. return 0;
  2011. /* HSW allows LP1+ watermarks even with multiple pipes */
  2012. if (level == 0 || config->num_pipes_active > 1) {
  2013. fifo_size /= INTEL_INFO(dev)->num_pipes;
  2014. /*
  2015. * For some reason the non self refresh
  2016. * FIFO size is only half of the self
  2017. * refresh FIFO size on ILK/SNB.
  2018. */
  2019. if (INTEL_INFO(dev)->gen <= 6)
  2020. fifo_size /= 2;
  2021. }
  2022. if (config->sprites_enabled) {
  2023. /* level 0 is always calculated with 1:1 split */
  2024. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2025. if (is_sprite)
  2026. fifo_size *= 5;
  2027. fifo_size /= 6;
  2028. } else {
  2029. fifo_size /= 2;
  2030. }
  2031. }
  2032. /* clamp to max that the registers can hold */
  2033. if (INTEL_INFO(dev)->gen >= 7)
  2034. /* IVB/HSW primary/sprite plane watermarks */
  2035. max = level == 0 ? 127 : 1023;
  2036. else if (!is_sprite)
  2037. /* ILK/SNB primary plane watermarks */
  2038. max = level == 0 ? 127 : 511;
  2039. else
  2040. /* ILK/SNB sprite plane watermarks */
  2041. max = level == 0 ? 63 : 255;
  2042. return min(fifo_size, max);
  2043. }
  2044. /* Calculate the maximum cursor plane watermark */
  2045. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2046. int level,
  2047. const struct intel_wm_config *config)
  2048. {
  2049. /* HSW LP1+ watermarks w/ multiple pipes */
  2050. if (level > 0 && config->num_pipes_active > 1)
  2051. return 64;
  2052. /* otherwise just report max that registers can hold */
  2053. if (INTEL_INFO(dev)->gen >= 7)
  2054. return level == 0 ? 63 : 255;
  2055. else
  2056. return level == 0 ? 31 : 63;
  2057. }
  2058. /* Calculate the maximum FBC watermark */
  2059. static unsigned int ilk_fbc_wm_max(void)
  2060. {
  2061. /* max that registers can hold */
  2062. return 15;
  2063. }
  2064. static void ilk_compute_wm_maximums(struct drm_device *dev,
  2065. int level,
  2066. const struct intel_wm_config *config,
  2067. enum intel_ddb_partitioning ddb_partitioning,
  2068. struct hsw_wm_maximums *max)
  2069. {
  2070. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2071. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2072. max->cur = ilk_cursor_wm_max(dev, level, config);
  2073. max->fbc = ilk_fbc_wm_max();
  2074. }
  2075. static bool ilk_validate_wm_level(int level,
  2076. const struct hsw_wm_maximums *max,
  2077. struct intel_wm_level *result)
  2078. {
  2079. bool ret;
  2080. /* already determined to be invalid? */
  2081. if (!result->enable)
  2082. return false;
  2083. result->enable = result->pri_val <= max->pri &&
  2084. result->spr_val <= max->spr &&
  2085. result->cur_val <= max->cur;
  2086. ret = result->enable;
  2087. /*
  2088. * HACK until we can pre-compute everything,
  2089. * and thus fail gracefully if LP0 watermarks
  2090. * are exceeded...
  2091. */
  2092. if (level == 0 && !result->enable) {
  2093. if (result->pri_val > max->pri)
  2094. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2095. level, result->pri_val, max->pri);
  2096. if (result->spr_val > max->spr)
  2097. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2098. level, result->spr_val, max->spr);
  2099. if (result->cur_val > max->cur)
  2100. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2101. level, result->cur_val, max->cur);
  2102. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2103. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2104. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2105. result->enable = true;
  2106. }
  2107. return ret;
  2108. }
  2109. static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
  2110. int level,
  2111. const struct hsw_pipe_wm_parameters *p,
  2112. struct intel_wm_level *result)
  2113. {
  2114. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2115. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2116. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2117. /* WM1+ latency values stored in 0.5us units */
  2118. if (level > 0) {
  2119. pri_latency *= 5;
  2120. spr_latency *= 5;
  2121. cur_latency *= 5;
  2122. }
  2123. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  2124. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  2125. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  2126. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  2127. result->enable = true;
  2128. }
  2129. static uint32_t
  2130. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  2131. {
  2132. struct drm_i915_private *dev_priv = dev->dev_private;
  2133. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2134. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  2135. u32 linetime, ips_linetime;
  2136. if (!intel_crtc_active(crtc))
  2137. return 0;
  2138. /* The WM are computed with base on how long it takes to fill a single
  2139. * row at the given clock rate, multiplied by 8.
  2140. * */
  2141. linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
  2142. ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
  2143. intel_ddi_get_cdclk_freq(dev_priv));
  2144. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2145. PIPE_WM_LINETIME_TIME(linetime);
  2146. }
  2147. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2148. {
  2149. struct drm_i915_private *dev_priv = dev->dev_private;
  2150. if (IS_HASWELL(dev)) {
  2151. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2152. wm[0] = (sskpd >> 56) & 0xFF;
  2153. if (wm[0] == 0)
  2154. wm[0] = sskpd & 0xF;
  2155. wm[1] = (sskpd >> 4) & 0xFF;
  2156. wm[2] = (sskpd >> 12) & 0xFF;
  2157. wm[3] = (sskpd >> 20) & 0x1FF;
  2158. wm[4] = (sskpd >> 32) & 0x1FF;
  2159. } else if (INTEL_INFO(dev)->gen >= 6) {
  2160. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2161. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2162. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2163. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2164. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2165. } else if (INTEL_INFO(dev)->gen >= 5) {
  2166. uint32_t mltr = I915_READ(MLTR_ILK);
  2167. /* ILK primary LP0 latency is 700 ns */
  2168. wm[0] = 7;
  2169. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2170. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2171. }
  2172. }
  2173. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2174. {
  2175. /* ILK sprite LP0 latency is 1300 ns */
  2176. if (INTEL_INFO(dev)->gen == 5)
  2177. wm[0] = 13;
  2178. }
  2179. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2180. {
  2181. /* ILK cursor LP0 latency is 1300 ns */
  2182. if (INTEL_INFO(dev)->gen == 5)
  2183. wm[0] = 13;
  2184. /* WaDoubleCursorLP3Latency:ivb */
  2185. if (IS_IVYBRIDGE(dev))
  2186. wm[3] *= 2;
  2187. }
  2188. static int ilk_wm_max_level(const struct drm_device *dev)
  2189. {
  2190. /* how many WM levels are we expecting */
  2191. if (IS_HASWELL(dev))
  2192. return 4;
  2193. else if (INTEL_INFO(dev)->gen >= 6)
  2194. return 3;
  2195. else
  2196. return 2;
  2197. }
  2198. static void intel_print_wm_latency(struct drm_device *dev,
  2199. const char *name,
  2200. const uint16_t wm[5])
  2201. {
  2202. int level, max_level = ilk_wm_max_level(dev);
  2203. for (level = 0; level <= max_level; level++) {
  2204. unsigned int latency = wm[level];
  2205. if (latency == 0) {
  2206. DRM_ERROR("%s WM%d latency not provided\n",
  2207. name, level);
  2208. continue;
  2209. }
  2210. /* WM1+ latency values in 0.5us units */
  2211. if (level > 0)
  2212. latency *= 5;
  2213. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2214. name, level, wm[level],
  2215. latency / 10, latency % 10);
  2216. }
  2217. }
  2218. static void intel_setup_wm_latency(struct drm_device *dev)
  2219. {
  2220. struct drm_i915_private *dev_priv = dev->dev_private;
  2221. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2222. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2223. sizeof(dev_priv->wm.pri_latency));
  2224. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2225. sizeof(dev_priv->wm.pri_latency));
  2226. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2227. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2228. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2229. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2230. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2231. }
  2232. static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
  2233. struct hsw_pipe_wm_parameters *p,
  2234. struct intel_wm_config *config)
  2235. {
  2236. struct drm_device *dev = crtc->dev;
  2237. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2238. enum pipe pipe = intel_crtc->pipe;
  2239. struct drm_plane *plane;
  2240. p->active = intel_crtc_active(crtc);
  2241. if (p->active) {
  2242. p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
  2243. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2244. p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
  2245. p->cur.bytes_per_pixel = 4;
  2246. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  2247. p->cur.horiz_pixels = 64;
  2248. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2249. p->pri.enabled = true;
  2250. p->cur.enabled = true;
  2251. }
  2252. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2253. config->num_pipes_active += intel_crtc_active(crtc);
  2254. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2255. struct intel_plane *intel_plane = to_intel_plane(plane);
  2256. if (intel_plane->pipe == pipe)
  2257. p->spr = intel_plane->wm;
  2258. config->sprites_enabled |= intel_plane->wm.enabled;
  2259. config->sprites_scaled |= intel_plane->wm.scaled;
  2260. }
  2261. }
  2262. /* Compute new watermarks for the pipe */
  2263. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  2264. const struct hsw_pipe_wm_parameters *params,
  2265. struct intel_pipe_wm *pipe_wm)
  2266. {
  2267. struct drm_device *dev = crtc->dev;
  2268. struct drm_i915_private *dev_priv = dev->dev_private;
  2269. int level, max_level = ilk_wm_max_level(dev);
  2270. /* LP0 watermark maximums depend on this pipe alone */
  2271. struct intel_wm_config config = {
  2272. .num_pipes_active = 1,
  2273. .sprites_enabled = params->spr.enabled,
  2274. .sprites_scaled = params->spr.scaled,
  2275. };
  2276. struct hsw_wm_maximums max;
  2277. /* LP0 watermarks always use 1/2 DDB partitioning */
  2278. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2279. for (level = 0; level <= max_level; level++)
  2280. ilk_compute_wm_level(dev_priv, level, params,
  2281. &pipe_wm->wm[level]);
  2282. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  2283. /* At least LP0 must be valid */
  2284. return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
  2285. }
  2286. /*
  2287. * Merge the watermarks from all active pipes for a specific level.
  2288. */
  2289. static void ilk_merge_wm_level(struct drm_device *dev,
  2290. int level,
  2291. struct intel_wm_level *ret_wm)
  2292. {
  2293. const struct intel_crtc *intel_crtc;
  2294. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2295. const struct intel_wm_level *wm =
  2296. &intel_crtc->wm.active.wm[level];
  2297. if (!wm->enable)
  2298. return;
  2299. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2300. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2301. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2302. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2303. }
  2304. ret_wm->enable = true;
  2305. }
  2306. /*
  2307. * Merge all low power watermarks for all active pipes.
  2308. */
  2309. static void ilk_wm_merge(struct drm_device *dev,
  2310. const struct hsw_wm_maximums *max,
  2311. struct intel_pipe_wm *merged)
  2312. {
  2313. int level, max_level = ilk_wm_max_level(dev);
  2314. merged->fbc_wm_enabled = true;
  2315. /* merge each WM1+ level */
  2316. for (level = 1; level <= max_level; level++) {
  2317. struct intel_wm_level *wm = &merged->wm[level];
  2318. ilk_merge_wm_level(dev, level, wm);
  2319. if (!ilk_validate_wm_level(level, max, wm))
  2320. break;
  2321. /*
  2322. * The spec says it is preferred to disable
  2323. * FBC WMs instead of disabling a WM level.
  2324. */
  2325. if (wm->fbc_val > max->fbc) {
  2326. merged->fbc_wm_enabled = false;
  2327. wm->fbc_val = 0;
  2328. }
  2329. }
  2330. }
  2331. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2332. {
  2333. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2334. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2335. }
  2336. static void hsw_compute_wm_results(struct drm_device *dev,
  2337. const struct intel_pipe_wm *merged,
  2338. enum intel_ddb_partitioning partitioning,
  2339. struct hsw_wm_values *results)
  2340. {
  2341. struct intel_crtc *intel_crtc;
  2342. int level, wm_lp;
  2343. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2344. results->partitioning = partitioning;
  2345. /* LP1+ register values */
  2346. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2347. const struct intel_wm_level *r;
  2348. level = ilk_wm_lp_to_level(wm_lp, merged);
  2349. r = &merged->wm[level];
  2350. if (!r->enable)
  2351. break;
  2352. results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
  2353. r->fbc_val,
  2354. r->pri_val,
  2355. r->cur_val);
  2356. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2357. }
  2358. /* LP0 register values */
  2359. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2360. enum pipe pipe = intel_crtc->pipe;
  2361. const struct intel_wm_level *r =
  2362. &intel_crtc->wm.active.wm[0];
  2363. if (WARN_ON(!r->enable))
  2364. continue;
  2365. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2366. results->wm_pipe[pipe] =
  2367. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2368. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2369. r->cur_val;
  2370. }
  2371. }
  2372. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2373. * case both are at the same level. Prefer r1 in case they're the same. */
  2374. static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
  2375. struct intel_pipe_wm *r1,
  2376. struct intel_pipe_wm *r2)
  2377. {
  2378. int level, max_level = ilk_wm_max_level(dev);
  2379. int level1 = 0, level2 = 0;
  2380. for (level = 1; level <= max_level; level++) {
  2381. if (r1->wm[level].enable)
  2382. level1 = level;
  2383. if (r2->wm[level].enable)
  2384. level2 = level;
  2385. }
  2386. if (level1 == level2) {
  2387. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2388. return r2;
  2389. else
  2390. return r1;
  2391. } else if (level1 > level2) {
  2392. return r1;
  2393. } else {
  2394. return r2;
  2395. }
  2396. }
  2397. /* dirty bits used to track which watermarks need changes */
  2398. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2399. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2400. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2401. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2402. #define WM_DIRTY_FBC (1 << 24)
  2403. #define WM_DIRTY_DDB (1 << 25)
  2404. static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
  2405. const struct hsw_wm_values *old,
  2406. const struct hsw_wm_values *new)
  2407. {
  2408. unsigned int dirty = 0;
  2409. enum pipe pipe;
  2410. int wm_lp;
  2411. for_each_pipe(pipe) {
  2412. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2413. dirty |= WM_DIRTY_LINETIME(pipe);
  2414. /* Must disable LP1+ watermarks too */
  2415. dirty |= WM_DIRTY_LP_ALL;
  2416. }
  2417. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2418. dirty |= WM_DIRTY_PIPE(pipe);
  2419. /* Must disable LP1+ watermarks too */
  2420. dirty |= WM_DIRTY_LP_ALL;
  2421. }
  2422. }
  2423. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2424. dirty |= WM_DIRTY_FBC;
  2425. /* Must disable LP1+ watermarks too */
  2426. dirty |= WM_DIRTY_LP_ALL;
  2427. }
  2428. if (old->partitioning != new->partitioning) {
  2429. dirty |= WM_DIRTY_DDB;
  2430. /* Must disable LP1+ watermarks too */
  2431. dirty |= WM_DIRTY_LP_ALL;
  2432. }
  2433. /* LP1+ watermarks already deemed dirty, no need to continue */
  2434. if (dirty & WM_DIRTY_LP_ALL)
  2435. return dirty;
  2436. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2437. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2438. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2439. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2440. break;
  2441. }
  2442. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2443. for (; wm_lp <= 3; wm_lp++)
  2444. dirty |= WM_DIRTY_LP(wm_lp);
  2445. return dirty;
  2446. }
  2447. /*
  2448. * The spec says we shouldn't write when we don't need, because every write
  2449. * causes WMs to be re-evaluated, expending some power.
  2450. */
  2451. static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
  2452. struct hsw_wm_values *results)
  2453. {
  2454. struct hsw_wm_values *previous = &dev_priv->wm.hw;
  2455. unsigned int dirty;
  2456. uint32_t val;
  2457. dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
  2458. if (!dirty)
  2459. return;
  2460. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
  2461. I915_WRITE(WM3_LP_ILK, 0);
  2462. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
  2463. I915_WRITE(WM2_LP_ILK, 0);
  2464. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
  2465. I915_WRITE(WM1_LP_ILK, 0);
  2466. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2467. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2468. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2469. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2470. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2471. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2472. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2473. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2474. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2475. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2476. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2477. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2478. if (dirty & WM_DIRTY_DDB) {
  2479. val = I915_READ(WM_MISC);
  2480. if (results->partitioning == INTEL_DDB_PART_1_2)
  2481. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2482. else
  2483. val |= WM_MISC_DATA_PARTITION_5_6;
  2484. I915_WRITE(WM_MISC, val);
  2485. }
  2486. if (dirty & WM_DIRTY_FBC) {
  2487. val = I915_READ(DISP_ARB_CTL);
  2488. if (results->enable_fbc_wm)
  2489. val &= ~DISP_FBC_WM_DIS;
  2490. else
  2491. val |= DISP_FBC_WM_DIS;
  2492. I915_WRITE(DISP_ARB_CTL, val);
  2493. }
  2494. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2495. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2496. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2497. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2498. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2499. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2500. if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
  2501. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2502. if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
  2503. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2504. if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
  2505. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2506. dev_priv->wm.hw = *results;
  2507. }
  2508. static void haswell_update_wm(struct drm_crtc *crtc)
  2509. {
  2510. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2511. struct drm_device *dev = crtc->dev;
  2512. struct drm_i915_private *dev_priv = dev->dev_private;
  2513. struct hsw_wm_maximums max;
  2514. struct hsw_pipe_wm_parameters params = {};
  2515. struct hsw_wm_values results = {};
  2516. enum intel_ddb_partitioning partitioning;
  2517. struct intel_pipe_wm pipe_wm = {};
  2518. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2519. struct intel_wm_config config = {};
  2520. hsw_compute_wm_parameters(crtc, &params, &config);
  2521. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2522. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2523. return;
  2524. intel_crtc->wm.active = pipe_wm;
  2525. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2526. ilk_wm_merge(dev, &max, &lp_wm_1_2);
  2527. /* 5/6 split only in single pipe config on IVB+ */
  2528. if (INTEL_INFO(dev)->gen >= 7 &&
  2529. config.num_pipes_active == 1 && config.sprites_enabled) {
  2530. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2531. ilk_wm_merge(dev, &max, &lp_wm_5_6);
  2532. best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2533. } else {
  2534. best_lp_wm = &lp_wm_1_2;
  2535. }
  2536. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2537. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2538. hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2539. hsw_write_wm_values(dev_priv, &results);
  2540. }
  2541. static void haswell_update_sprite_wm(struct drm_plane *plane,
  2542. struct drm_crtc *crtc,
  2543. uint32_t sprite_width, int pixel_size,
  2544. bool enabled, bool scaled)
  2545. {
  2546. struct intel_plane *intel_plane = to_intel_plane(plane);
  2547. intel_plane->wm.enabled = enabled;
  2548. intel_plane->wm.scaled = scaled;
  2549. intel_plane->wm.horiz_pixels = sprite_width;
  2550. intel_plane->wm.bytes_per_pixel = pixel_size;
  2551. haswell_update_wm(crtc);
  2552. }
  2553. static bool
  2554. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  2555. uint32_t sprite_width, int pixel_size,
  2556. const struct intel_watermark_params *display,
  2557. int display_latency_ns, int *sprite_wm)
  2558. {
  2559. struct drm_crtc *crtc;
  2560. int clock;
  2561. int entries, tlb_miss;
  2562. crtc = intel_get_crtc_for_plane(dev, plane);
  2563. if (!intel_crtc_active(crtc)) {
  2564. *sprite_wm = display->guard_size;
  2565. return false;
  2566. }
  2567. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2568. /* Use the small buffer method to calculate the sprite watermark */
  2569. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  2570. tlb_miss = display->fifo_size*display->cacheline_size -
  2571. sprite_width * 8;
  2572. if (tlb_miss > 0)
  2573. entries += tlb_miss;
  2574. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  2575. *sprite_wm = entries + display->guard_size;
  2576. if (*sprite_wm > (int)display->max_wm)
  2577. *sprite_wm = display->max_wm;
  2578. return true;
  2579. }
  2580. static bool
  2581. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  2582. uint32_t sprite_width, int pixel_size,
  2583. const struct intel_watermark_params *display,
  2584. int latency_ns, int *sprite_wm)
  2585. {
  2586. struct drm_crtc *crtc;
  2587. unsigned long line_time_us;
  2588. int clock;
  2589. int line_count, line_size;
  2590. int small, large;
  2591. int entries;
  2592. if (!latency_ns) {
  2593. *sprite_wm = 0;
  2594. return false;
  2595. }
  2596. crtc = intel_get_crtc_for_plane(dev, plane);
  2597. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2598. if (!clock) {
  2599. *sprite_wm = 0;
  2600. return false;
  2601. }
  2602. line_time_us = (sprite_width * 1000) / clock;
  2603. if (!line_time_us) {
  2604. *sprite_wm = 0;
  2605. return false;
  2606. }
  2607. line_count = (latency_ns / line_time_us + 1000) / 1000;
  2608. line_size = sprite_width * pixel_size;
  2609. /* Use the minimum of the small and large buffer method for primary */
  2610. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  2611. large = line_count * line_size;
  2612. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  2613. *sprite_wm = entries + display->guard_size;
  2614. return *sprite_wm > 0x3ff ? false : true;
  2615. }
  2616. static void sandybridge_update_sprite_wm(struct drm_plane *plane,
  2617. struct drm_crtc *crtc,
  2618. uint32_t sprite_width, int pixel_size,
  2619. bool enabled, bool scaled)
  2620. {
  2621. struct drm_device *dev = plane->dev;
  2622. struct drm_i915_private *dev_priv = dev->dev_private;
  2623. int pipe = to_intel_plane(plane)->pipe;
  2624. int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
  2625. u32 val;
  2626. int sprite_wm, reg;
  2627. int ret;
  2628. if (!enabled)
  2629. return;
  2630. switch (pipe) {
  2631. case 0:
  2632. reg = WM0_PIPEA_ILK;
  2633. break;
  2634. case 1:
  2635. reg = WM0_PIPEB_ILK;
  2636. break;
  2637. case 2:
  2638. reg = WM0_PIPEC_IVB;
  2639. break;
  2640. default:
  2641. return; /* bad pipe */
  2642. }
  2643. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  2644. &sandybridge_display_wm_info,
  2645. latency, &sprite_wm);
  2646. if (!ret) {
  2647. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  2648. pipe_name(pipe));
  2649. return;
  2650. }
  2651. val = I915_READ(reg);
  2652. val &= ~WM0_PIPE_SPRITE_MASK;
  2653. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  2654. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  2655. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2656. pixel_size,
  2657. &sandybridge_display_srwm_info,
  2658. dev_priv->wm.spr_latency[1] * 500,
  2659. &sprite_wm);
  2660. if (!ret) {
  2661. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  2662. pipe_name(pipe));
  2663. return;
  2664. }
  2665. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  2666. /* Only IVB has two more LP watermarks for sprite */
  2667. if (!IS_IVYBRIDGE(dev))
  2668. return;
  2669. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2670. pixel_size,
  2671. &sandybridge_display_srwm_info,
  2672. dev_priv->wm.spr_latency[2] * 500,
  2673. &sprite_wm);
  2674. if (!ret) {
  2675. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  2676. pipe_name(pipe));
  2677. return;
  2678. }
  2679. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  2680. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2681. pixel_size,
  2682. &sandybridge_display_srwm_info,
  2683. dev_priv->wm.spr_latency[3] * 500,
  2684. &sprite_wm);
  2685. if (!ret) {
  2686. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  2687. pipe_name(pipe));
  2688. return;
  2689. }
  2690. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  2691. }
  2692. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2693. {
  2694. struct drm_device *dev = crtc->dev;
  2695. struct drm_i915_private *dev_priv = dev->dev_private;
  2696. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2697. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2698. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2699. enum pipe pipe = intel_crtc->pipe;
  2700. static const unsigned int wm0_pipe_reg[] = {
  2701. [PIPE_A] = WM0_PIPEA_ILK,
  2702. [PIPE_B] = WM0_PIPEB_ILK,
  2703. [PIPE_C] = WM0_PIPEC_IVB,
  2704. };
  2705. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2706. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2707. if (intel_crtc_active(crtc)) {
  2708. u32 tmp = hw->wm_pipe[pipe];
  2709. /*
  2710. * For active pipes LP0 watermark is marked as
  2711. * enabled, and LP1+ watermaks as disabled since
  2712. * we can't really reverse compute them in case
  2713. * multiple pipes are active.
  2714. */
  2715. active->wm[0].enable = true;
  2716. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2717. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2718. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2719. active->linetime = hw->wm_linetime[pipe];
  2720. } else {
  2721. int level, max_level = ilk_wm_max_level(dev);
  2722. /*
  2723. * For inactive pipes, all watermark levels
  2724. * should be marked as enabled but zeroed,
  2725. * which is what we'd compute them to.
  2726. */
  2727. for (level = 0; level <= max_level; level++)
  2728. active->wm[level].enable = true;
  2729. }
  2730. }
  2731. void ilk_wm_get_hw_state(struct drm_device *dev)
  2732. {
  2733. struct drm_i915_private *dev_priv = dev->dev_private;
  2734. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2735. struct drm_crtc *crtc;
  2736. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2737. ilk_pipe_wm_get_hw_state(crtc);
  2738. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2739. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2740. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2741. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2742. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2743. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2744. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2745. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2746. hw->enable_fbc_wm =
  2747. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2748. }
  2749. /**
  2750. * intel_update_watermarks - update FIFO watermark values based on current modes
  2751. *
  2752. * Calculate watermark values for the various WM regs based on current mode
  2753. * and plane configuration.
  2754. *
  2755. * There are several cases to deal with here:
  2756. * - normal (i.e. non-self-refresh)
  2757. * - self-refresh (SR) mode
  2758. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2759. * - lines are small relative to FIFO size (buffer can hold more than 2
  2760. * lines), so need to account for TLB latency
  2761. *
  2762. * The normal calculation is:
  2763. * watermark = dotclock * bytes per pixel * latency
  2764. * where latency is platform & configuration dependent (we assume pessimal
  2765. * values here).
  2766. *
  2767. * The SR calculation is:
  2768. * watermark = (trunc(latency/line time)+1) * surface width *
  2769. * bytes per pixel
  2770. * where
  2771. * line time = htotal / dotclock
  2772. * surface width = hdisplay for normal plane and 64 for cursor
  2773. * and latency is assumed to be high, as above.
  2774. *
  2775. * The final value programmed to the register should always be rounded up,
  2776. * and include an extra 2 entries to account for clock crossings.
  2777. *
  2778. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2779. * to set the non-SR watermarks to 8.
  2780. */
  2781. void intel_update_watermarks(struct drm_crtc *crtc)
  2782. {
  2783. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2784. if (dev_priv->display.update_wm)
  2785. dev_priv->display.update_wm(crtc);
  2786. }
  2787. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2788. struct drm_crtc *crtc,
  2789. uint32_t sprite_width, int pixel_size,
  2790. bool enabled, bool scaled)
  2791. {
  2792. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2793. if (dev_priv->display.update_sprite_wm)
  2794. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2795. pixel_size, enabled, scaled);
  2796. }
  2797. static struct drm_i915_gem_object *
  2798. intel_alloc_context_page(struct drm_device *dev)
  2799. {
  2800. struct drm_i915_gem_object *ctx;
  2801. int ret;
  2802. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2803. ctx = i915_gem_alloc_object(dev, 4096);
  2804. if (!ctx) {
  2805. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2806. return NULL;
  2807. }
  2808. ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
  2809. if (ret) {
  2810. DRM_ERROR("failed to pin power context: %d\n", ret);
  2811. goto err_unref;
  2812. }
  2813. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2814. if (ret) {
  2815. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2816. goto err_unpin;
  2817. }
  2818. return ctx;
  2819. err_unpin:
  2820. i915_gem_object_unpin(ctx);
  2821. err_unref:
  2822. drm_gem_object_unreference(&ctx->base);
  2823. return NULL;
  2824. }
  2825. /**
  2826. * Lock protecting IPS related data structures
  2827. */
  2828. DEFINE_SPINLOCK(mchdev_lock);
  2829. /* Global for IPS driver to get at the current i915 device. Protected by
  2830. * mchdev_lock. */
  2831. static struct drm_i915_private *i915_mch_dev;
  2832. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2833. {
  2834. struct drm_i915_private *dev_priv = dev->dev_private;
  2835. u16 rgvswctl;
  2836. assert_spin_locked(&mchdev_lock);
  2837. rgvswctl = I915_READ16(MEMSWCTL);
  2838. if (rgvswctl & MEMCTL_CMD_STS) {
  2839. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2840. return false; /* still busy with another command */
  2841. }
  2842. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2843. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2844. I915_WRITE16(MEMSWCTL, rgvswctl);
  2845. POSTING_READ16(MEMSWCTL);
  2846. rgvswctl |= MEMCTL_CMD_STS;
  2847. I915_WRITE16(MEMSWCTL, rgvswctl);
  2848. return true;
  2849. }
  2850. static void ironlake_enable_drps(struct drm_device *dev)
  2851. {
  2852. struct drm_i915_private *dev_priv = dev->dev_private;
  2853. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2854. u8 fmax, fmin, fstart, vstart;
  2855. spin_lock_irq(&mchdev_lock);
  2856. /* Enable temp reporting */
  2857. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2858. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2859. /* 100ms RC evaluation intervals */
  2860. I915_WRITE(RCUPEI, 100000);
  2861. I915_WRITE(RCDNEI, 100000);
  2862. /* Set max/min thresholds to 90ms and 80ms respectively */
  2863. I915_WRITE(RCBMAXAVG, 90000);
  2864. I915_WRITE(RCBMINAVG, 80000);
  2865. I915_WRITE(MEMIHYST, 1);
  2866. /* Set up min, max, and cur for interrupt handling */
  2867. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2868. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2869. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2870. MEMMODE_FSTART_SHIFT;
  2871. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2872. PXVFREQ_PX_SHIFT;
  2873. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2874. dev_priv->ips.fstart = fstart;
  2875. dev_priv->ips.max_delay = fstart;
  2876. dev_priv->ips.min_delay = fmin;
  2877. dev_priv->ips.cur_delay = fstart;
  2878. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2879. fmax, fmin, fstart);
  2880. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2881. /*
  2882. * Interrupts will be enabled in ironlake_irq_postinstall
  2883. */
  2884. I915_WRITE(VIDSTART, vstart);
  2885. POSTING_READ(VIDSTART);
  2886. rgvmodectl |= MEMMODE_SWMODE_EN;
  2887. I915_WRITE(MEMMODECTL, rgvmodectl);
  2888. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2889. DRM_ERROR("stuck trying to change perf mode\n");
  2890. mdelay(1);
  2891. ironlake_set_drps(dev, fstart);
  2892. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2893. I915_READ(0x112e0);
  2894. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2895. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2896. getrawmonotonic(&dev_priv->ips.last_time2);
  2897. spin_unlock_irq(&mchdev_lock);
  2898. }
  2899. static void ironlake_disable_drps(struct drm_device *dev)
  2900. {
  2901. struct drm_i915_private *dev_priv = dev->dev_private;
  2902. u16 rgvswctl;
  2903. spin_lock_irq(&mchdev_lock);
  2904. rgvswctl = I915_READ16(MEMSWCTL);
  2905. /* Ack interrupts, disable EFC interrupt */
  2906. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2907. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2908. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2909. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2910. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2911. /* Go back to the starting frequency */
  2912. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2913. mdelay(1);
  2914. rgvswctl |= MEMCTL_CMD_STS;
  2915. I915_WRITE(MEMSWCTL, rgvswctl);
  2916. mdelay(1);
  2917. spin_unlock_irq(&mchdev_lock);
  2918. }
  2919. /* There's a funny hw issue where the hw returns all 0 when reading from
  2920. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2921. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2922. * all limits and the gpu stuck at whatever frequency it is at atm).
  2923. */
  2924. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2925. {
  2926. u32 limits;
  2927. limits = 0;
  2928. if (*val >= dev_priv->rps.max_delay)
  2929. *val = dev_priv->rps.max_delay;
  2930. limits |= dev_priv->rps.max_delay << 24;
  2931. /* Only set the down limit when we've reached the lowest level to avoid
  2932. * getting more interrupts, otherwise leave this clear. This prevents a
  2933. * race in the hw when coming out of rc6: There's a tiny window where
  2934. * the hw runs at the minimal clock before selecting the desired
  2935. * frequency, if the down threshold expires in that window we will not
  2936. * receive a down interrupt. */
  2937. if (*val <= dev_priv->rps.min_delay) {
  2938. *val = dev_priv->rps.min_delay;
  2939. limits |= dev_priv->rps.min_delay << 16;
  2940. }
  2941. return limits;
  2942. }
  2943. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2944. {
  2945. int new_power;
  2946. new_power = dev_priv->rps.power;
  2947. switch (dev_priv->rps.power) {
  2948. case LOW_POWER:
  2949. if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
  2950. new_power = BETWEEN;
  2951. break;
  2952. case BETWEEN:
  2953. if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
  2954. new_power = LOW_POWER;
  2955. else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
  2956. new_power = HIGH_POWER;
  2957. break;
  2958. case HIGH_POWER:
  2959. if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
  2960. new_power = BETWEEN;
  2961. break;
  2962. }
  2963. /* Max/min bins are special */
  2964. if (val == dev_priv->rps.min_delay)
  2965. new_power = LOW_POWER;
  2966. if (val == dev_priv->rps.max_delay)
  2967. new_power = HIGH_POWER;
  2968. if (new_power == dev_priv->rps.power)
  2969. return;
  2970. /* Note the units here are not exactly 1us, but 1280ns. */
  2971. switch (new_power) {
  2972. case LOW_POWER:
  2973. /* Upclock if more than 95% busy over 16ms */
  2974. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2975. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2976. /* Downclock if less than 85% busy over 32ms */
  2977. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2978. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2979. I915_WRITE(GEN6_RP_CONTROL,
  2980. GEN6_RP_MEDIA_TURBO |
  2981. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2982. GEN6_RP_MEDIA_IS_GFX |
  2983. GEN6_RP_ENABLE |
  2984. GEN6_RP_UP_BUSY_AVG |
  2985. GEN6_RP_DOWN_IDLE_AVG);
  2986. break;
  2987. case BETWEEN:
  2988. /* Upclock if more than 90% busy over 13ms */
  2989. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2990. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2991. /* Downclock if less than 75% busy over 32ms */
  2992. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2993. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2994. I915_WRITE(GEN6_RP_CONTROL,
  2995. GEN6_RP_MEDIA_TURBO |
  2996. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2997. GEN6_RP_MEDIA_IS_GFX |
  2998. GEN6_RP_ENABLE |
  2999. GEN6_RP_UP_BUSY_AVG |
  3000. GEN6_RP_DOWN_IDLE_AVG);
  3001. break;
  3002. case HIGH_POWER:
  3003. /* Upclock if more than 85% busy over 10ms */
  3004. I915_WRITE(GEN6_RP_UP_EI, 8000);
  3005. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  3006. /* Downclock if less than 60% busy over 32ms */
  3007. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  3008. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  3009. I915_WRITE(GEN6_RP_CONTROL,
  3010. GEN6_RP_MEDIA_TURBO |
  3011. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3012. GEN6_RP_MEDIA_IS_GFX |
  3013. GEN6_RP_ENABLE |
  3014. GEN6_RP_UP_BUSY_AVG |
  3015. GEN6_RP_DOWN_IDLE_AVG);
  3016. break;
  3017. }
  3018. dev_priv->rps.power = new_power;
  3019. dev_priv->rps.last_adj = 0;
  3020. }
  3021. void gen6_set_rps(struct drm_device *dev, u8 val)
  3022. {
  3023. struct drm_i915_private *dev_priv = dev->dev_private;
  3024. u32 limits = gen6_rps_limits(dev_priv, &val);
  3025. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3026. WARN_ON(val > dev_priv->rps.max_delay);
  3027. WARN_ON(val < dev_priv->rps.min_delay);
  3028. if (val == dev_priv->rps.cur_delay)
  3029. return;
  3030. gen6_set_rps_thresholds(dev_priv, val);
  3031. if (IS_HASWELL(dev))
  3032. I915_WRITE(GEN6_RPNSWREQ,
  3033. HSW_FREQUENCY(val));
  3034. else
  3035. I915_WRITE(GEN6_RPNSWREQ,
  3036. GEN6_FREQUENCY(val) |
  3037. GEN6_OFFSET(0) |
  3038. GEN6_AGGRESSIVE_TURBO);
  3039. /* Make sure we continue to get interrupts
  3040. * until we hit the minimum or maximum frequencies.
  3041. */
  3042. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  3043. POSTING_READ(GEN6_RPNSWREQ);
  3044. dev_priv->rps.cur_delay = val;
  3045. trace_intel_gpu_freq_change(val * 50);
  3046. }
  3047. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3048. {
  3049. mutex_lock(&dev_priv->rps.hw_lock);
  3050. if (dev_priv->rps.enabled) {
  3051. if (dev_priv->info->is_valleyview)
  3052. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3053. else
  3054. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3055. dev_priv->rps.last_adj = 0;
  3056. }
  3057. mutex_unlock(&dev_priv->rps.hw_lock);
  3058. }
  3059. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  3060. {
  3061. mutex_lock(&dev_priv->rps.hw_lock);
  3062. if (dev_priv->rps.enabled) {
  3063. if (dev_priv->info->is_valleyview)
  3064. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3065. else
  3066. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3067. dev_priv->rps.last_adj = 0;
  3068. }
  3069. mutex_unlock(&dev_priv->rps.hw_lock);
  3070. }
  3071. /*
  3072. * Wait until the previous freq change has completed,
  3073. * or the timeout elapsed, and then update our notion
  3074. * of the current GPU frequency.
  3075. */
  3076. static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
  3077. {
  3078. u32 pval;
  3079. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3080. if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
  3081. DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
  3082. pval >>= 8;
  3083. if (pval != dev_priv->rps.cur_delay)
  3084. DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
  3085. vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
  3086. dev_priv->rps.cur_delay,
  3087. vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
  3088. dev_priv->rps.cur_delay = pval;
  3089. }
  3090. void valleyview_set_rps(struct drm_device *dev, u8 val)
  3091. {
  3092. struct drm_i915_private *dev_priv = dev->dev_private;
  3093. gen6_rps_limits(dev_priv, &val);
  3094. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3095. WARN_ON(val > dev_priv->rps.max_delay);
  3096. WARN_ON(val < dev_priv->rps.min_delay);
  3097. vlv_update_rps_cur_delay(dev_priv);
  3098. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  3099. vlv_gpu_freq(dev_priv->mem_freq,
  3100. dev_priv->rps.cur_delay),
  3101. dev_priv->rps.cur_delay,
  3102. vlv_gpu_freq(dev_priv->mem_freq, val), val);
  3103. if (val == dev_priv->rps.cur_delay)
  3104. return;
  3105. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3106. dev_priv->rps.cur_delay = val;
  3107. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
  3108. }
  3109. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  3110. {
  3111. struct drm_i915_private *dev_priv = dev->dev_private;
  3112. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3113. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
  3114. /* Complete PM interrupt masking here doesn't race with the rps work
  3115. * item again unmasking PM interrupts because that is using a different
  3116. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  3117. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  3118. spin_lock_irq(&dev_priv->irq_lock);
  3119. dev_priv->rps.pm_iir = 0;
  3120. spin_unlock_irq(&dev_priv->irq_lock);
  3121. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3122. }
  3123. static void gen6_disable_rps(struct drm_device *dev)
  3124. {
  3125. struct drm_i915_private *dev_priv = dev->dev_private;
  3126. I915_WRITE(GEN6_RC_CONTROL, 0);
  3127. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3128. gen6_disable_rps_interrupts(dev);
  3129. }
  3130. static void valleyview_disable_rps(struct drm_device *dev)
  3131. {
  3132. struct drm_i915_private *dev_priv = dev->dev_private;
  3133. I915_WRITE(GEN6_RC_CONTROL, 0);
  3134. gen6_disable_rps_interrupts(dev);
  3135. if (dev_priv->vlv_pctx) {
  3136. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3137. dev_priv->vlv_pctx = NULL;
  3138. }
  3139. }
  3140. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3141. {
  3142. if (IS_GEN6(dev))
  3143. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  3144. if (IS_HASWELL(dev))
  3145. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  3146. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3147. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3148. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3149. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3150. }
  3151. int intel_enable_rc6(const struct drm_device *dev)
  3152. {
  3153. /* No RC6 before Ironlake */
  3154. if (INTEL_INFO(dev)->gen < 5)
  3155. return 0;
  3156. /* Respect the kernel parameter if it is set */
  3157. if (i915_enable_rc6 >= 0)
  3158. return i915_enable_rc6;
  3159. /* Disable RC6 on Ironlake */
  3160. if (INTEL_INFO(dev)->gen == 5)
  3161. return 0;
  3162. if (IS_HASWELL(dev))
  3163. return INTEL_RC6_ENABLE;
  3164. /* snb/ivb have more than one rc6 state. */
  3165. if (INTEL_INFO(dev)->gen == 6)
  3166. return INTEL_RC6_ENABLE;
  3167. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3168. }
  3169. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  3170. {
  3171. struct drm_i915_private *dev_priv = dev->dev_private;
  3172. u32 enabled_intrs;
  3173. spin_lock_irq(&dev_priv->irq_lock);
  3174. WARN_ON(dev_priv->rps.pm_iir);
  3175. snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
  3176. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3177. spin_unlock_irq(&dev_priv->irq_lock);
  3178. /* only unmask PM interrupts we need. Mask all others. */
  3179. enabled_intrs = GEN6_PM_RPS_EVENTS;
  3180. /* IVB and SNB hard hangs on looping batchbuffer
  3181. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3182. */
  3183. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  3184. enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
  3185. I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
  3186. }
  3187. static void gen6_enable_rps(struct drm_device *dev)
  3188. {
  3189. struct drm_i915_private *dev_priv = dev->dev_private;
  3190. struct intel_ring_buffer *ring;
  3191. u32 rp_state_cap;
  3192. u32 gt_perf_status;
  3193. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  3194. u32 gtfifodbg;
  3195. int rc6_mode;
  3196. int i, ret;
  3197. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3198. /* Here begins a magic sequence of register writes to enable
  3199. * auto-downclocking.
  3200. *
  3201. * Perhaps there might be some value in exposing these to
  3202. * userspace...
  3203. */
  3204. I915_WRITE(GEN6_RC_STATE, 0);
  3205. /* Clear the DBG now so we don't confuse earlier errors */
  3206. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3207. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3208. I915_WRITE(GTFIFODBG, gtfifodbg);
  3209. }
  3210. gen6_gt_force_wake_get(dev_priv);
  3211. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3212. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  3213. /* In units of 50MHz */
  3214. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  3215. dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
  3216. dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
  3217. dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
  3218. dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
  3219. dev_priv->rps.cur_delay = 0;
  3220. /* disable the counters and set deterministic thresholds */
  3221. I915_WRITE(GEN6_RC_CONTROL, 0);
  3222. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3223. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3224. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3225. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3226. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3227. for_each_ring(ring, dev_priv, i)
  3228. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3229. I915_WRITE(GEN6_RC_SLEEP, 0);
  3230. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3231. if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
  3232. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3233. else
  3234. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3235. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3236. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3237. /* Check if we are enabling RC6 */
  3238. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3239. if (rc6_mode & INTEL_RC6_ENABLE)
  3240. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3241. /* We don't use those on Haswell */
  3242. if (!IS_HASWELL(dev)) {
  3243. if (rc6_mode & INTEL_RC6p_ENABLE)
  3244. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3245. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3246. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3247. }
  3248. intel_print_rc6_info(dev, rc6_mask);
  3249. I915_WRITE(GEN6_RC_CONTROL,
  3250. rc6_mask |
  3251. GEN6_RC_CTL_EI_MODE(1) |
  3252. GEN6_RC_CTL_HW_ENABLE);
  3253. /* Power down if completely idle for over 50ms */
  3254. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3255. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3256. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3257. if (!ret) {
  3258. pcu_mbox = 0;
  3259. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3260. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3261. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3262. (dev_priv->rps.max_delay & 0xff) * 50,
  3263. (pcu_mbox & 0xff) * 50);
  3264. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  3265. }
  3266. } else {
  3267. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3268. }
  3269. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3270. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3271. gen6_enable_rps_interrupts(dev);
  3272. rc6vids = 0;
  3273. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3274. if (IS_GEN6(dev) && ret) {
  3275. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3276. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3277. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3278. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3279. rc6vids &= 0xffff00;
  3280. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3281. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3282. if (ret)
  3283. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3284. }
  3285. gen6_gt_force_wake_put(dev_priv);
  3286. }
  3287. void gen6_update_ring_freq(struct drm_device *dev)
  3288. {
  3289. struct drm_i915_private *dev_priv = dev->dev_private;
  3290. int min_freq = 15;
  3291. unsigned int gpu_freq;
  3292. unsigned int max_ia_freq, min_ring_freq;
  3293. int scaling_factor = 180;
  3294. struct cpufreq_policy *policy;
  3295. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3296. policy = cpufreq_cpu_get(0);
  3297. if (policy) {
  3298. max_ia_freq = policy->cpuinfo.max_freq;
  3299. cpufreq_cpu_put(policy);
  3300. } else {
  3301. /*
  3302. * Default to measured freq if none found, PCU will ensure we
  3303. * don't go over
  3304. */
  3305. max_ia_freq = tsc_khz;
  3306. }
  3307. /* Convert from kHz to MHz */
  3308. max_ia_freq /= 1000;
  3309. min_ring_freq = I915_READ(DCLK) & 0xf;
  3310. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3311. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3312. /*
  3313. * For each potential GPU frequency, load a ring frequency we'd like
  3314. * to use for memory access. We do this by specifying the IA frequency
  3315. * the PCU should use as a reference to determine the ring frequency.
  3316. */
  3317. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  3318. gpu_freq--) {
  3319. int diff = dev_priv->rps.max_delay - gpu_freq;
  3320. unsigned int ia_freq = 0, ring_freq = 0;
  3321. if (IS_HASWELL(dev)) {
  3322. ring_freq = mult_frac(gpu_freq, 5, 4);
  3323. ring_freq = max(min_ring_freq, ring_freq);
  3324. /* leave ia_freq as the default, chosen by cpufreq */
  3325. } else {
  3326. /* On older processors, there is no separate ring
  3327. * clock domain, so in order to boost the bandwidth
  3328. * of the ring, we need to upclock the CPU (ia_freq).
  3329. *
  3330. * For GPU frequencies less than 750MHz,
  3331. * just use the lowest ring freq.
  3332. */
  3333. if (gpu_freq < min_freq)
  3334. ia_freq = 800;
  3335. else
  3336. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3337. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3338. }
  3339. sandybridge_pcode_write(dev_priv,
  3340. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3341. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3342. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3343. gpu_freq);
  3344. }
  3345. }
  3346. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3347. {
  3348. u32 val, rp0;
  3349. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3350. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3351. /* Clamp to max */
  3352. rp0 = min_t(u32, rp0, 0xea);
  3353. return rp0;
  3354. }
  3355. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3356. {
  3357. u32 val, rpe;
  3358. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3359. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3360. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3361. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3362. return rpe;
  3363. }
  3364. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3365. {
  3366. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3367. }
  3368. static void valleyview_setup_pctx(struct drm_device *dev)
  3369. {
  3370. struct drm_i915_private *dev_priv = dev->dev_private;
  3371. struct drm_i915_gem_object *pctx;
  3372. unsigned long pctx_paddr;
  3373. u32 pcbr;
  3374. int pctx_size = 24*1024;
  3375. pcbr = I915_READ(VLV_PCBR);
  3376. if (pcbr) {
  3377. /* BIOS set it up already, grab the pre-alloc'd space */
  3378. int pcbr_offset;
  3379. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3380. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3381. pcbr_offset,
  3382. I915_GTT_OFFSET_NONE,
  3383. pctx_size);
  3384. goto out;
  3385. }
  3386. /*
  3387. * From the Gunit register HAS:
  3388. * The Gfx driver is expected to program this register and ensure
  3389. * proper allocation within Gfx stolen memory. For example, this
  3390. * register should be programmed such than the PCBR range does not
  3391. * overlap with other ranges, such as the frame buffer, protected
  3392. * memory, or any other relevant ranges.
  3393. */
  3394. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3395. if (!pctx) {
  3396. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3397. return;
  3398. }
  3399. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3400. I915_WRITE(VLV_PCBR, pctx_paddr);
  3401. out:
  3402. dev_priv->vlv_pctx = pctx;
  3403. }
  3404. static void valleyview_enable_rps(struct drm_device *dev)
  3405. {
  3406. struct drm_i915_private *dev_priv = dev->dev_private;
  3407. struct intel_ring_buffer *ring;
  3408. u32 gtfifodbg, val, rc6_mode = 0;
  3409. int i;
  3410. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3411. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3412. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3413. gtfifodbg);
  3414. I915_WRITE(GTFIFODBG, gtfifodbg);
  3415. }
  3416. valleyview_setup_pctx(dev);
  3417. gen6_gt_force_wake_get(dev_priv);
  3418. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3419. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3420. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3421. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3422. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3423. I915_WRITE(GEN6_RP_CONTROL,
  3424. GEN6_RP_MEDIA_TURBO |
  3425. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3426. GEN6_RP_MEDIA_IS_GFX |
  3427. GEN6_RP_ENABLE |
  3428. GEN6_RP_UP_BUSY_AVG |
  3429. GEN6_RP_DOWN_IDLE_CONT);
  3430. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3431. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3432. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3433. for_each_ring(ring, dev_priv, i)
  3434. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3435. I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
  3436. /* allows RC6 residency counter to work */
  3437. I915_WRITE(VLV_COUNTER_CONTROL,
  3438. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3439. VLV_MEDIA_RC6_COUNT_EN |
  3440. VLV_RENDER_RC6_COUNT_EN));
  3441. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3442. rc6_mode = GEN7_RC_CTL_TO_MODE;
  3443. intel_print_rc6_info(dev, rc6_mode);
  3444. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3445. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3446. switch ((val >> 6) & 3) {
  3447. case 0:
  3448. case 1:
  3449. dev_priv->mem_freq = 800;
  3450. break;
  3451. case 2:
  3452. dev_priv->mem_freq = 1066;
  3453. break;
  3454. case 3:
  3455. dev_priv->mem_freq = 1333;
  3456. break;
  3457. }
  3458. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3459. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3460. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3461. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  3462. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3463. vlv_gpu_freq(dev_priv->mem_freq,
  3464. dev_priv->rps.cur_delay),
  3465. dev_priv->rps.cur_delay);
  3466. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  3467. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  3468. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3469. vlv_gpu_freq(dev_priv->mem_freq,
  3470. dev_priv->rps.max_delay),
  3471. dev_priv->rps.max_delay);
  3472. dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
  3473. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3474. vlv_gpu_freq(dev_priv->mem_freq,
  3475. dev_priv->rps.rpe_delay),
  3476. dev_priv->rps.rpe_delay);
  3477. dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
  3478. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3479. vlv_gpu_freq(dev_priv->mem_freq,
  3480. dev_priv->rps.min_delay),
  3481. dev_priv->rps.min_delay);
  3482. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3483. vlv_gpu_freq(dev_priv->mem_freq,
  3484. dev_priv->rps.rpe_delay),
  3485. dev_priv->rps.rpe_delay);
  3486. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3487. gen6_enable_rps_interrupts(dev);
  3488. gen6_gt_force_wake_put(dev_priv);
  3489. }
  3490. void ironlake_teardown_rc6(struct drm_device *dev)
  3491. {
  3492. struct drm_i915_private *dev_priv = dev->dev_private;
  3493. if (dev_priv->ips.renderctx) {
  3494. i915_gem_object_unpin(dev_priv->ips.renderctx);
  3495. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3496. dev_priv->ips.renderctx = NULL;
  3497. }
  3498. if (dev_priv->ips.pwrctx) {
  3499. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  3500. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3501. dev_priv->ips.pwrctx = NULL;
  3502. }
  3503. }
  3504. static void ironlake_disable_rc6(struct drm_device *dev)
  3505. {
  3506. struct drm_i915_private *dev_priv = dev->dev_private;
  3507. if (I915_READ(PWRCTXA)) {
  3508. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3509. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3510. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3511. 50);
  3512. I915_WRITE(PWRCTXA, 0);
  3513. POSTING_READ(PWRCTXA);
  3514. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3515. POSTING_READ(RSTDBYCTL);
  3516. }
  3517. }
  3518. static int ironlake_setup_rc6(struct drm_device *dev)
  3519. {
  3520. struct drm_i915_private *dev_priv = dev->dev_private;
  3521. if (dev_priv->ips.renderctx == NULL)
  3522. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3523. if (!dev_priv->ips.renderctx)
  3524. return -ENOMEM;
  3525. if (dev_priv->ips.pwrctx == NULL)
  3526. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3527. if (!dev_priv->ips.pwrctx) {
  3528. ironlake_teardown_rc6(dev);
  3529. return -ENOMEM;
  3530. }
  3531. return 0;
  3532. }
  3533. static void ironlake_enable_rc6(struct drm_device *dev)
  3534. {
  3535. struct drm_i915_private *dev_priv = dev->dev_private;
  3536. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  3537. bool was_interruptible;
  3538. int ret;
  3539. /* rc6 disabled by default due to repeated reports of hanging during
  3540. * boot and resume.
  3541. */
  3542. if (!intel_enable_rc6(dev))
  3543. return;
  3544. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3545. ret = ironlake_setup_rc6(dev);
  3546. if (ret)
  3547. return;
  3548. was_interruptible = dev_priv->mm.interruptible;
  3549. dev_priv->mm.interruptible = false;
  3550. /*
  3551. * GPU can automatically power down the render unit if given a page
  3552. * to save state.
  3553. */
  3554. ret = intel_ring_begin(ring, 6);
  3555. if (ret) {
  3556. ironlake_teardown_rc6(dev);
  3557. dev_priv->mm.interruptible = was_interruptible;
  3558. return;
  3559. }
  3560. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3561. intel_ring_emit(ring, MI_SET_CONTEXT);
  3562. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3563. MI_MM_SPACE_GTT |
  3564. MI_SAVE_EXT_STATE_EN |
  3565. MI_RESTORE_EXT_STATE_EN |
  3566. MI_RESTORE_INHIBIT);
  3567. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3568. intel_ring_emit(ring, MI_NOOP);
  3569. intel_ring_emit(ring, MI_FLUSH);
  3570. intel_ring_advance(ring);
  3571. /*
  3572. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3573. * does an implicit flush, combined with MI_FLUSH above, it should be
  3574. * safe to assume that renderctx is valid
  3575. */
  3576. ret = intel_ring_idle(ring);
  3577. dev_priv->mm.interruptible = was_interruptible;
  3578. if (ret) {
  3579. DRM_ERROR("failed to enable ironlake power savings\n");
  3580. ironlake_teardown_rc6(dev);
  3581. return;
  3582. }
  3583. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3584. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3585. intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
  3586. }
  3587. static unsigned long intel_pxfreq(u32 vidfreq)
  3588. {
  3589. unsigned long freq;
  3590. int div = (vidfreq & 0x3f0000) >> 16;
  3591. int post = (vidfreq & 0x3000) >> 12;
  3592. int pre = (vidfreq & 0x7);
  3593. if (!pre)
  3594. return 0;
  3595. freq = ((div * 133333) / ((1<<post) * pre));
  3596. return freq;
  3597. }
  3598. static const struct cparams {
  3599. u16 i;
  3600. u16 t;
  3601. u16 m;
  3602. u16 c;
  3603. } cparams[] = {
  3604. { 1, 1333, 301, 28664 },
  3605. { 1, 1066, 294, 24460 },
  3606. { 1, 800, 294, 25192 },
  3607. { 0, 1333, 276, 27605 },
  3608. { 0, 1066, 276, 27605 },
  3609. { 0, 800, 231, 23784 },
  3610. };
  3611. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3612. {
  3613. u64 total_count, diff, ret;
  3614. u32 count1, count2, count3, m = 0, c = 0;
  3615. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3616. int i;
  3617. assert_spin_locked(&mchdev_lock);
  3618. diff1 = now - dev_priv->ips.last_time1;
  3619. /* Prevent division-by-zero if we are asking too fast.
  3620. * Also, we don't get interesting results if we are polling
  3621. * faster than once in 10ms, so just return the saved value
  3622. * in such cases.
  3623. */
  3624. if (diff1 <= 10)
  3625. return dev_priv->ips.chipset_power;
  3626. count1 = I915_READ(DMIEC);
  3627. count2 = I915_READ(DDREC);
  3628. count3 = I915_READ(CSIEC);
  3629. total_count = count1 + count2 + count3;
  3630. /* FIXME: handle per-counter overflow */
  3631. if (total_count < dev_priv->ips.last_count1) {
  3632. diff = ~0UL - dev_priv->ips.last_count1;
  3633. diff += total_count;
  3634. } else {
  3635. diff = total_count - dev_priv->ips.last_count1;
  3636. }
  3637. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3638. if (cparams[i].i == dev_priv->ips.c_m &&
  3639. cparams[i].t == dev_priv->ips.r_t) {
  3640. m = cparams[i].m;
  3641. c = cparams[i].c;
  3642. break;
  3643. }
  3644. }
  3645. diff = div_u64(diff, diff1);
  3646. ret = ((m * diff) + c);
  3647. ret = div_u64(ret, 10);
  3648. dev_priv->ips.last_count1 = total_count;
  3649. dev_priv->ips.last_time1 = now;
  3650. dev_priv->ips.chipset_power = ret;
  3651. return ret;
  3652. }
  3653. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3654. {
  3655. unsigned long val;
  3656. if (dev_priv->info->gen != 5)
  3657. return 0;
  3658. spin_lock_irq(&mchdev_lock);
  3659. val = __i915_chipset_val(dev_priv);
  3660. spin_unlock_irq(&mchdev_lock);
  3661. return val;
  3662. }
  3663. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3664. {
  3665. unsigned long m, x, b;
  3666. u32 tsfs;
  3667. tsfs = I915_READ(TSFS);
  3668. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3669. x = I915_READ8(TR1);
  3670. b = tsfs & TSFS_INTR_MASK;
  3671. return ((m * x) / 127) - b;
  3672. }
  3673. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3674. {
  3675. static const struct v_table {
  3676. u16 vd; /* in .1 mil */
  3677. u16 vm; /* in .1 mil */
  3678. } v_table[] = {
  3679. { 0, 0, },
  3680. { 375, 0, },
  3681. { 500, 0, },
  3682. { 625, 0, },
  3683. { 750, 0, },
  3684. { 875, 0, },
  3685. { 1000, 0, },
  3686. { 1125, 0, },
  3687. { 4125, 3000, },
  3688. { 4125, 3000, },
  3689. { 4125, 3000, },
  3690. { 4125, 3000, },
  3691. { 4125, 3000, },
  3692. { 4125, 3000, },
  3693. { 4125, 3000, },
  3694. { 4125, 3000, },
  3695. { 4125, 3000, },
  3696. { 4125, 3000, },
  3697. { 4125, 3000, },
  3698. { 4125, 3000, },
  3699. { 4125, 3000, },
  3700. { 4125, 3000, },
  3701. { 4125, 3000, },
  3702. { 4125, 3000, },
  3703. { 4125, 3000, },
  3704. { 4125, 3000, },
  3705. { 4125, 3000, },
  3706. { 4125, 3000, },
  3707. { 4125, 3000, },
  3708. { 4125, 3000, },
  3709. { 4125, 3000, },
  3710. { 4125, 3000, },
  3711. { 4250, 3125, },
  3712. { 4375, 3250, },
  3713. { 4500, 3375, },
  3714. { 4625, 3500, },
  3715. { 4750, 3625, },
  3716. { 4875, 3750, },
  3717. { 5000, 3875, },
  3718. { 5125, 4000, },
  3719. { 5250, 4125, },
  3720. { 5375, 4250, },
  3721. { 5500, 4375, },
  3722. { 5625, 4500, },
  3723. { 5750, 4625, },
  3724. { 5875, 4750, },
  3725. { 6000, 4875, },
  3726. { 6125, 5000, },
  3727. { 6250, 5125, },
  3728. { 6375, 5250, },
  3729. { 6500, 5375, },
  3730. { 6625, 5500, },
  3731. { 6750, 5625, },
  3732. { 6875, 5750, },
  3733. { 7000, 5875, },
  3734. { 7125, 6000, },
  3735. { 7250, 6125, },
  3736. { 7375, 6250, },
  3737. { 7500, 6375, },
  3738. { 7625, 6500, },
  3739. { 7750, 6625, },
  3740. { 7875, 6750, },
  3741. { 8000, 6875, },
  3742. { 8125, 7000, },
  3743. { 8250, 7125, },
  3744. { 8375, 7250, },
  3745. { 8500, 7375, },
  3746. { 8625, 7500, },
  3747. { 8750, 7625, },
  3748. { 8875, 7750, },
  3749. { 9000, 7875, },
  3750. { 9125, 8000, },
  3751. { 9250, 8125, },
  3752. { 9375, 8250, },
  3753. { 9500, 8375, },
  3754. { 9625, 8500, },
  3755. { 9750, 8625, },
  3756. { 9875, 8750, },
  3757. { 10000, 8875, },
  3758. { 10125, 9000, },
  3759. { 10250, 9125, },
  3760. { 10375, 9250, },
  3761. { 10500, 9375, },
  3762. { 10625, 9500, },
  3763. { 10750, 9625, },
  3764. { 10875, 9750, },
  3765. { 11000, 9875, },
  3766. { 11125, 10000, },
  3767. { 11250, 10125, },
  3768. { 11375, 10250, },
  3769. { 11500, 10375, },
  3770. { 11625, 10500, },
  3771. { 11750, 10625, },
  3772. { 11875, 10750, },
  3773. { 12000, 10875, },
  3774. { 12125, 11000, },
  3775. { 12250, 11125, },
  3776. { 12375, 11250, },
  3777. { 12500, 11375, },
  3778. { 12625, 11500, },
  3779. { 12750, 11625, },
  3780. { 12875, 11750, },
  3781. { 13000, 11875, },
  3782. { 13125, 12000, },
  3783. { 13250, 12125, },
  3784. { 13375, 12250, },
  3785. { 13500, 12375, },
  3786. { 13625, 12500, },
  3787. { 13750, 12625, },
  3788. { 13875, 12750, },
  3789. { 14000, 12875, },
  3790. { 14125, 13000, },
  3791. { 14250, 13125, },
  3792. { 14375, 13250, },
  3793. { 14500, 13375, },
  3794. { 14625, 13500, },
  3795. { 14750, 13625, },
  3796. { 14875, 13750, },
  3797. { 15000, 13875, },
  3798. { 15125, 14000, },
  3799. { 15250, 14125, },
  3800. { 15375, 14250, },
  3801. { 15500, 14375, },
  3802. { 15625, 14500, },
  3803. { 15750, 14625, },
  3804. { 15875, 14750, },
  3805. { 16000, 14875, },
  3806. { 16125, 15000, },
  3807. };
  3808. if (dev_priv->info->is_mobile)
  3809. return v_table[pxvid].vm;
  3810. else
  3811. return v_table[pxvid].vd;
  3812. }
  3813. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3814. {
  3815. struct timespec now, diff1;
  3816. u64 diff;
  3817. unsigned long diffms;
  3818. u32 count;
  3819. assert_spin_locked(&mchdev_lock);
  3820. getrawmonotonic(&now);
  3821. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3822. /* Don't divide by 0 */
  3823. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3824. if (!diffms)
  3825. return;
  3826. count = I915_READ(GFXEC);
  3827. if (count < dev_priv->ips.last_count2) {
  3828. diff = ~0UL - dev_priv->ips.last_count2;
  3829. diff += count;
  3830. } else {
  3831. diff = count - dev_priv->ips.last_count2;
  3832. }
  3833. dev_priv->ips.last_count2 = count;
  3834. dev_priv->ips.last_time2 = now;
  3835. /* More magic constants... */
  3836. diff = diff * 1181;
  3837. diff = div_u64(diff, diffms * 10);
  3838. dev_priv->ips.gfx_power = diff;
  3839. }
  3840. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3841. {
  3842. if (dev_priv->info->gen != 5)
  3843. return;
  3844. spin_lock_irq(&mchdev_lock);
  3845. __i915_update_gfx_val(dev_priv);
  3846. spin_unlock_irq(&mchdev_lock);
  3847. }
  3848. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3849. {
  3850. unsigned long t, corr, state1, corr2, state2;
  3851. u32 pxvid, ext_v;
  3852. assert_spin_locked(&mchdev_lock);
  3853. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  3854. pxvid = (pxvid >> 24) & 0x7f;
  3855. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3856. state1 = ext_v;
  3857. t = i915_mch_val(dev_priv);
  3858. /* Revel in the empirically derived constants */
  3859. /* Correction factor in 1/100000 units */
  3860. if (t > 80)
  3861. corr = ((t * 2349) + 135940);
  3862. else if (t >= 50)
  3863. corr = ((t * 964) + 29317);
  3864. else /* < 50 */
  3865. corr = ((t * 301) + 1004);
  3866. corr = corr * ((150142 * state1) / 10000 - 78642);
  3867. corr /= 100000;
  3868. corr2 = (corr * dev_priv->ips.corr);
  3869. state2 = (corr2 * state1) / 10000;
  3870. state2 /= 100; /* convert to mW */
  3871. __i915_update_gfx_val(dev_priv);
  3872. return dev_priv->ips.gfx_power + state2;
  3873. }
  3874. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3875. {
  3876. unsigned long val;
  3877. if (dev_priv->info->gen != 5)
  3878. return 0;
  3879. spin_lock_irq(&mchdev_lock);
  3880. val = __i915_gfx_val(dev_priv);
  3881. spin_unlock_irq(&mchdev_lock);
  3882. return val;
  3883. }
  3884. /**
  3885. * i915_read_mch_val - return value for IPS use
  3886. *
  3887. * Calculate and return a value for the IPS driver to use when deciding whether
  3888. * we have thermal and power headroom to increase CPU or GPU power budget.
  3889. */
  3890. unsigned long i915_read_mch_val(void)
  3891. {
  3892. struct drm_i915_private *dev_priv;
  3893. unsigned long chipset_val, graphics_val, ret = 0;
  3894. spin_lock_irq(&mchdev_lock);
  3895. if (!i915_mch_dev)
  3896. goto out_unlock;
  3897. dev_priv = i915_mch_dev;
  3898. chipset_val = __i915_chipset_val(dev_priv);
  3899. graphics_val = __i915_gfx_val(dev_priv);
  3900. ret = chipset_val + graphics_val;
  3901. out_unlock:
  3902. spin_unlock_irq(&mchdev_lock);
  3903. return ret;
  3904. }
  3905. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3906. /**
  3907. * i915_gpu_raise - raise GPU frequency limit
  3908. *
  3909. * Raise the limit; IPS indicates we have thermal headroom.
  3910. */
  3911. bool i915_gpu_raise(void)
  3912. {
  3913. struct drm_i915_private *dev_priv;
  3914. bool ret = true;
  3915. spin_lock_irq(&mchdev_lock);
  3916. if (!i915_mch_dev) {
  3917. ret = false;
  3918. goto out_unlock;
  3919. }
  3920. dev_priv = i915_mch_dev;
  3921. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3922. dev_priv->ips.max_delay--;
  3923. out_unlock:
  3924. spin_unlock_irq(&mchdev_lock);
  3925. return ret;
  3926. }
  3927. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3928. /**
  3929. * i915_gpu_lower - lower GPU frequency limit
  3930. *
  3931. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3932. * frequency maximum.
  3933. */
  3934. bool i915_gpu_lower(void)
  3935. {
  3936. struct drm_i915_private *dev_priv;
  3937. bool ret = true;
  3938. spin_lock_irq(&mchdev_lock);
  3939. if (!i915_mch_dev) {
  3940. ret = false;
  3941. goto out_unlock;
  3942. }
  3943. dev_priv = i915_mch_dev;
  3944. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3945. dev_priv->ips.max_delay++;
  3946. out_unlock:
  3947. spin_unlock_irq(&mchdev_lock);
  3948. return ret;
  3949. }
  3950. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3951. /**
  3952. * i915_gpu_busy - indicate GPU business to IPS
  3953. *
  3954. * Tell the IPS driver whether or not the GPU is busy.
  3955. */
  3956. bool i915_gpu_busy(void)
  3957. {
  3958. struct drm_i915_private *dev_priv;
  3959. struct intel_ring_buffer *ring;
  3960. bool ret = false;
  3961. int i;
  3962. spin_lock_irq(&mchdev_lock);
  3963. if (!i915_mch_dev)
  3964. goto out_unlock;
  3965. dev_priv = i915_mch_dev;
  3966. for_each_ring(ring, dev_priv, i)
  3967. ret |= !list_empty(&ring->request_list);
  3968. out_unlock:
  3969. spin_unlock_irq(&mchdev_lock);
  3970. return ret;
  3971. }
  3972. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3973. /**
  3974. * i915_gpu_turbo_disable - disable graphics turbo
  3975. *
  3976. * Disable graphics turbo by resetting the max frequency and setting the
  3977. * current frequency to the default.
  3978. */
  3979. bool i915_gpu_turbo_disable(void)
  3980. {
  3981. struct drm_i915_private *dev_priv;
  3982. bool ret = true;
  3983. spin_lock_irq(&mchdev_lock);
  3984. if (!i915_mch_dev) {
  3985. ret = false;
  3986. goto out_unlock;
  3987. }
  3988. dev_priv = i915_mch_dev;
  3989. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3990. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3991. ret = false;
  3992. out_unlock:
  3993. spin_unlock_irq(&mchdev_lock);
  3994. return ret;
  3995. }
  3996. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3997. /**
  3998. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3999. * IPS got loaded first.
  4000. *
  4001. * This awkward dance is so that neither module has to depend on the
  4002. * other in order for IPS to do the appropriate communication of
  4003. * GPU turbo limits to i915.
  4004. */
  4005. static void
  4006. ips_ping_for_i915_load(void)
  4007. {
  4008. void (*link)(void);
  4009. link = symbol_get(ips_link_to_i915_driver);
  4010. if (link) {
  4011. link();
  4012. symbol_put(ips_link_to_i915_driver);
  4013. }
  4014. }
  4015. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4016. {
  4017. /* We only register the i915 ips part with intel-ips once everything is
  4018. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4019. spin_lock_irq(&mchdev_lock);
  4020. i915_mch_dev = dev_priv;
  4021. spin_unlock_irq(&mchdev_lock);
  4022. ips_ping_for_i915_load();
  4023. }
  4024. void intel_gpu_ips_teardown(void)
  4025. {
  4026. spin_lock_irq(&mchdev_lock);
  4027. i915_mch_dev = NULL;
  4028. spin_unlock_irq(&mchdev_lock);
  4029. }
  4030. static void intel_init_emon(struct drm_device *dev)
  4031. {
  4032. struct drm_i915_private *dev_priv = dev->dev_private;
  4033. u32 lcfuse;
  4034. u8 pxw[16];
  4035. int i;
  4036. /* Disable to program */
  4037. I915_WRITE(ECR, 0);
  4038. POSTING_READ(ECR);
  4039. /* Program energy weights for various events */
  4040. I915_WRITE(SDEW, 0x15040d00);
  4041. I915_WRITE(CSIEW0, 0x007f0000);
  4042. I915_WRITE(CSIEW1, 0x1e220004);
  4043. I915_WRITE(CSIEW2, 0x04000004);
  4044. for (i = 0; i < 5; i++)
  4045. I915_WRITE(PEW + (i * 4), 0);
  4046. for (i = 0; i < 3; i++)
  4047. I915_WRITE(DEW + (i * 4), 0);
  4048. /* Program P-state weights to account for frequency power adjustment */
  4049. for (i = 0; i < 16; i++) {
  4050. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4051. unsigned long freq = intel_pxfreq(pxvidfreq);
  4052. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4053. PXVFREQ_PX_SHIFT;
  4054. unsigned long val;
  4055. val = vid * vid;
  4056. val *= (freq / 1000);
  4057. val *= 255;
  4058. val /= (127*127*900);
  4059. if (val > 0xff)
  4060. DRM_ERROR("bad pxval: %ld\n", val);
  4061. pxw[i] = val;
  4062. }
  4063. /* Render standby states get 0 weight */
  4064. pxw[14] = 0;
  4065. pxw[15] = 0;
  4066. for (i = 0; i < 4; i++) {
  4067. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4068. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4069. I915_WRITE(PXW + (i * 4), val);
  4070. }
  4071. /* Adjust magic regs to magic values (more experimental results) */
  4072. I915_WRITE(OGW0, 0);
  4073. I915_WRITE(OGW1, 0);
  4074. I915_WRITE(EG0, 0x00007f00);
  4075. I915_WRITE(EG1, 0x0000000e);
  4076. I915_WRITE(EG2, 0x000e0000);
  4077. I915_WRITE(EG3, 0x68000300);
  4078. I915_WRITE(EG4, 0x42000000);
  4079. I915_WRITE(EG5, 0x00140031);
  4080. I915_WRITE(EG6, 0);
  4081. I915_WRITE(EG7, 0);
  4082. for (i = 0; i < 8; i++)
  4083. I915_WRITE(PXWL + (i * 4), 0);
  4084. /* Enable PMON + select events */
  4085. I915_WRITE(ECR, 0x80000019);
  4086. lcfuse = I915_READ(LCFUSE02);
  4087. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4088. }
  4089. void intel_disable_gt_powersave(struct drm_device *dev)
  4090. {
  4091. struct drm_i915_private *dev_priv = dev->dev_private;
  4092. /* Interrupts should be disabled already to avoid re-arming. */
  4093. WARN_ON(dev->irq_enabled);
  4094. if (IS_IRONLAKE_M(dev)) {
  4095. ironlake_disable_drps(dev);
  4096. ironlake_disable_rc6(dev);
  4097. } else if (INTEL_INFO(dev)->gen >= 6) {
  4098. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  4099. cancel_work_sync(&dev_priv->rps.work);
  4100. mutex_lock(&dev_priv->rps.hw_lock);
  4101. if (IS_VALLEYVIEW(dev))
  4102. valleyview_disable_rps(dev);
  4103. else
  4104. gen6_disable_rps(dev);
  4105. dev_priv->rps.enabled = false;
  4106. mutex_unlock(&dev_priv->rps.hw_lock);
  4107. }
  4108. }
  4109. static void intel_gen6_powersave_work(struct work_struct *work)
  4110. {
  4111. struct drm_i915_private *dev_priv =
  4112. container_of(work, struct drm_i915_private,
  4113. rps.delayed_resume_work.work);
  4114. struct drm_device *dev = dev_priv->dev;
  4115. mutex_lock(&dev_priv->rps.hw_lock);
  4116. if (IS_VALLEYVIEW(dev)) {
  4117. valleyview_enable_rps(dev);
  4118. } else {
  4119. gen6_enable_rps(dev);
  4120. gen6_update_ring_freq(dev);
  4121. }
  4122. dev_priv->rps.enabled = true;
  4123. mutex_unlock(&dev_priv->rps.hw_lock);
  4124. }
  4125. void intel_enable_gt_powersave(struct drm_device *dev)
  4126. {
  4127. struct drm_i915_private *dev_priv = dev->dev_private;
  4128. if (IS_IRONLAKE_M(dev)) {
  4129. ironlake_enable_drps(dev);
  4130. ironlake_enable_rc6(dev);
  4131. intel_init_emon(dev);
  4132. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  4133. /*
  4134. * PCU communication is slow and this doesn't need to be
  4135. * done at any specific time, so do this out of our fast path
  4136. * to make resume and init faster.
  4137. */
  4138. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4139. round_jiffies_up_relative(HZ));
  4140. }
  4141. }
  4142. static void ibx_init_clock_gating(struct drm_device *dev)
  4143. {
  4144. struct drm_i915_private *dev_priv = dev->dev_private;
  4145. /*
  4146. * On Ibex Peak and Cougar Point, we need to disable clock
  4147. * gating for the panel power sequencer or it will fail to
  4148. * start up when no ports are active.
  4149. */
  4150. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4151. }
  4152. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4153. {
  4154. struct drm_i915_private *dev_priv = dev->dev_private;
  4155. int pipe;
  4156. for_each_pipe(pipe) {
  4157. I915_WRITE(DSPCNTR(pipe),
  4158. I915_READ(DSPCNTR(pipe)) |
  4159. DISPPLANE_TRICKLE_FEED_DISABLE);
  4160. intel_flush_primary_plane(dev_priv, pipe);
  4161. }
  4162. }
  4163. static void ironlake_init_clock_gating(struct drm_device *dev)
  4164. {
  4165. struct drm_i915_private *dev_priv = dev->dev_private;
  4166. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4167. /*
  4168. * Required for FBC
  4169. * WaFbcDisableDpfcClockGating:ilk
  4170. */
  4171. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4172. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4173. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4174. I915_WRITE(PCH_3DCGDIS0,
  4175. MARIUNIT_CLOCK_GATE_DISABLE |
  4176. SVSMUNIT_CLOCK_GATE_DISABLE);
  4177. I915_WRITE(PCH_3DCGDIS1,
  4178. VFMUNIT_CLOCK_GATE_DISABLE);
  4179. /*
  4180. * According to the spec the following bits should be set in
  4181. * order to enable memory self-refresh
  4182. * The bit 22/21 of 0x42004
  4183. * The bit 5 of 0x42020
  4184. * The bit 15 of 0x45000
  4185. */
  4186. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4187. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4188. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4189. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4190. I915_WRITE(DISP_ARB_CTL,
  4191. (I915_READ(DISP_ARB_CTL) |
  4192. DISP_FBC_WM_DIS));
  4193. I915_WRITE(WM3_LP_ILK, 0);
  4194. I915_WRITE(WM2_LP_ILK, 0);
  4195. I915_WRITE(WM1_LP_ILK, 0);
  4196. /*
  4197. * Based on the document from hardware guys the following bits
  4198. * should be set unconditionally in order to enable FBC.
  4199. * The bit 22 of 0x42000
  4200. * The bit 22 of 0x42004
  4201. * The bit 7,8,9 of 0x42020.
  4202. */
  4203. if (IS_IRONLAKE_M(dev)) {
  4204. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4205. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4206. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4207. ILK_FBCQ_DIS);
  4208. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4209. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4210. ILK_DPARB_GATE);
  4211. }
  4212. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4213. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4214. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4215. ILK_ELPIN_409_SELECT);
  4216. I915_WRITE(_3D_CHICKEN2,
  4217. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4218. _3D_CHICKEN2_WM_READ_PIPELINED);
  4219. /* WaDisableRenderCachePipelinedFlush:ilk */
  4220. I915_WRITE(CACHE_MODE_0,
  4221. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4222. g4x_disable_trickle_feed(dev);
  4223. ibx_init_clock_gating(dev);
  4224. }
  4225. static void cpt_init_clock_gating(struct drm_device *dev)
  4226. {
  4227. struct drm_i915_private *dev_priv = dev->dev_private;
  4228. int pipe;
  4229. uint32_t val;
  4230. /*
  4231. * On Ibex Peak and Cougar Point, we need to disable clock
  4232. * gating for the panel power sequencer or it will fail to
  4233. * start up when no ports are active.
  4234. */
  4235. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4236. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4237. DPLS_EDP_PPS_FIX_DIS);
  4238. /* The below fixes the weird display corruption, a few pixels shifted
  4239. * downward, on (only) LVDS of some HP laptops with IVY.
  4240. */
  4241. for_each_pipe(pipe) {
  4242. val = I915_READ(TRANS_CHICKEN2(pipe));
  4243. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4244. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4245. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4246. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4247. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4248. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4249. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4250. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4251. }
  4252. /* WADP0ClockGatingDisable */
  4253. for_each_pipe(pipe) {
  4254. I915_WRITE(TRANS_CHICKEN1(pipe),
  4255. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4256. }
  4257. }
  4258. static void gen6_check_mch_setup(struct drm_device *dev)
  4259. {
  4260. struct drm_i915_private *dev_priv = dev->dev_private;
  4261. uint32_t tmp;
  4262. tmp = I915_READ(MCH_SSKPD);
  4263. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4264. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4265. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4266. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4267. }
  4268. }
  4269. static void gen6_init_clock_gating(struct drm_device *dev)
  4270. {
  4271. struct drm_i915_private *dev_priv = dev->dev_private;
  4272. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4273. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4274. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4275. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4276. ILK_ELPIN_409_SELECT);
  4277. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4278. I915_WRITE(_3D_CHICKEN,
  4279. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4280. /* WaSetupGtModeTdRowDispatch:snb */
  4281. if (IS_SNB_GT1(dev))
  4282. I915_WRITE(GEN6_GT_MODE,
  4283. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4284. I915_WRITE(WM3_LP_ILK, 0);
  4285. I915_WRITE(WM2_LP_ILK, 0);
  4286. I915_WRITE(WM1_LP_ILK, 0);
  4287. I915_WRITE(CACHE_MODE_0,
  4288. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4289. I915_WRITE(GEN6_UCGCTL1,
  4290. I915_READ(GEN6_UCGCTL1) |
  4291. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4292. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4293. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4294. * gating disable must be set. Failure to set it results in
  4295. * flickering pixels due to Z write ordering failures after
  4296. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4297. * Sanctuary and Tropics, and apparently anything else with
  4298. * alpha test or pixel discard.
  4299. *
  4300. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4301. * but we didn't debug actual testcases to find it out.
  4302. *
  4303. * Also apply WaDisableVDSUnitClockGating:snb and
  4304. * WaDisableRCPBUnitClockGating:snb.
  4305. */
  4306. I915_WRITE(GEN6_UCGCTL2,
  4307. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4308. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4309. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4310. /* Bspec says we need to always set all mask bits. */
  4311. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  4312. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  4313. /*
  4314. * According to the spec the following bits should be
  4315. * set in order to enable memory self-refresh and fbc:
  4316. * The bit21 and bit22 of 0x42000
  4317. * The bit21 and bit22 of 0x42004
  4318. * The bit5 and bit7 of 0x42020
  4319. * The bit14 of 0x70180
  4320. * The bit14 of 0x71180
  4321. *
  4322. * WaFbcAsynchFlipDisableFbcQueue:snb
  4323. */
  4324. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4325. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4326. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4327. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4328. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4329. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4330. I915_WRITE(ILK_DSPCLK_GATE_D,
  4331. I915_READ(ILK_DSPCLK_GATE_D) |
  4332. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4333. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4334. g4x_disable_trickle_feed(dev);
  4335. /* The default value should be 0x200 according to docs, but the two
  4336. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  4337. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  4338. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  4339. cpt_init_clock_gating(dev);
  4340. gen6_check_mch_setup(dev);
  4341. }
  4342. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4343. {
  4344. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4345. reg &= ~GEN7_FF_SCHED_MASK;
  4346. reg |= GEN7_FF_TS_SCHED_HW;
  4347. reg |= GEN7_FF_VS_SCHED_HW;
  4348. reg |= GEN7_FF_DS_SCHED_HW;
  4349. if (IS_HASWELL(dev_priv->dev))
  4350. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  4351. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4352. }
  4353. static void lpt_init_clock_gating(struct drm_device *dev)
  4354. {
  4355. struct drm_i915_private *dev_priv = dev->dev_private;
  4356. /*
  4357. * TODO: this bit should only be enabled when really needed, then
  4358. * disabled when not needed anymore in order to save power.
  4359. */
  4360. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4361. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4362. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4363. PCH_LP_PARTITION_LEVEL_DISABLE);
  4364. /* WADPOClockGatingDisable:hsw */
  4365. I915_WRITE(_TRANSA_CHICKEN1,
  4366. I915_READ(_TRANSA_CHICKEN1) |
  4367. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4368. }
  4369. static void lpt_suspend_hw(struct drm_device *dev)
  4370. {
  4371. struct drm_i915_private *dev_priv = dev->dev_private;
  4372. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4373. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4374. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4375. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4376. }
  4377. }
  4378. static void haswell_init_clock_gating(struct drm_device *dev)
  4379. {
  4380. struct drm_i915_private *dev_priv = dev->dev_private;
  4381. I915_WRITE(WM3_LP_ILK, 0);
  4382. I915_WRITE(WM2_LP_ILK, 0);
  4383. I915_WRITE(WM1_LP_ILK, 0);
  4384. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4385. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  4386. */
  4387. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4388. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  4389. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4390. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4391. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  4392. I915_WRITE(GEN7_L3CNTLREG1,
  4393. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4394. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4395. GEN7_WA_L3_CHICKEN_MODE);
  4396. /* This is required by WaCatErrorRejectionIssue:hsw */
  4397. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4398. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4399. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4400. /* WaVSRefCountFullforceMissDisable:hsw */
  4401. gen7_setup_fixed_func_scheduler(dev_priv);
  4402. /* WaDisable4x2SubspanOptimization:hsw */
  4403. I915_WRITE(CACHE_MODE_1,
  4404. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4405. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4406. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4407. /* WaRsPkgCStateDisplayPMReq:hsw */
  4408. I915_WRITE(CHICKEN_PAR1_1,
  4409. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4410. lpt_init_clock_gating(dev);
  4411. }
  4412. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4413. {
  4414. struct drm_i915_private *dev_priv = dev->dev_private;
  4415. uint32_t snpcr;
  4416. I915_WRITE(WM3_LP_ILK, 0);
  4417. I915_WRITE(WM2_LP_ILK, 0);
  4418. I915_WRITE(WM1_LP_ILK, 0);
  4419. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4420. /* WaDisableEarlyCull:ivb */
  4421. I915_WRITE(_3D_CHICKEN3,
  4422. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4423. /* WaDisableBackToBackFlipFix:ivb */
  4424. I915_WRITE(IVB_CHICKEN3,
  4425. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4426. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4427. /* WaDisablePSDDualDispatchEnable:ivb */
  4428. if (IS_IVB_GT1(dev))
  4429. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4430. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4431. else
  4432. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  4433. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4434. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4435. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4436. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4437. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4438. I915_WRITE(GEN7_L3CNTLREG1,
  4439. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4440. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4441. GEN7_WA_L3_CHICKEN_MODE);
  4442. if (IS_IVB_GT1(dev))
  4443. I915_WRITE(GEN7_ROW_CHICKEN2,
  4444. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4445. else
  4446. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4447. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4448. /* WaForceL3Serialization:ivb */
  4449. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4450. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4451. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4452. * gating disable must be set. Failure to set it results in
  4453. * flickering pixels due to Z write ordering failures after
  4454. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4455. * Sanctuary and Tropics, and apparently anything else with
  4456. * alpha test or pixel discard.
  4457. *
  4458. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4459. * but we didn't debug actual testcases to find it out.
  4460. *
  4461. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4462. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4463. */
  4464. I915_WRITE(GEN6_UCGCTL2,
  4465. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4466. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4467. /* This is required by WaCatErrorRejectionIssue:ivb */
  4468. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4469. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4470. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4471. g4x_disable_trickle_feed(dev);
  4472. /* WaVSRefCountFullforceMissDisable:ivb */
  4473. gen7_setup_fixed_func_scheduler(dev_priv);
  4474. /* WaDisable4x2SubspanOptimization:ivb */
  4475. I915_WRITE(CACHE_MODE_1,
  4476. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4477. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4478. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4479. snpcr |= GEN6_MBC_SNPCR_MED;
  4480. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4481. if (!HAS_PCH_NOP(dev))
  4482. cpt_init_clock_gating(dev);
  4483. gen6_check_mch_setup(dev);
  4484. }
  4485. static void valleyview_init_clock_gating(struct drm_device *dev)
  4486. {
  4487. struct drm_i915_private *dev_priv = dev->dev_private;
  4488. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4489. /* WaDisableEarlyCull:vlv */
  4490. I915_WRITE(_3D_CHICKEN3,
  4491. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4492. /* WaDisableBackToBackFlipFix:vlv */
  4493. I915_WRITE(IVB_CHICKEN3,
  4494. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4495. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4496. /* WaDisablePSDDualDispatchEnable:vlv */
  4497. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4498. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4499. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4500. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  4501. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4502. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4503. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  4504. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  4505. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  4506. /* WaForceL3Serialization:vlv */
  4507. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4508. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4509. /* WaDisableDopClockGating:vlv */
  4510. I915_WRITE(GEN7_ROW_CHICKEN2,
  4511. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4512. /* This is required by WaCatErrorRejectionIssue:vlv */
  4513. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4514. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4515. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4516. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4517. * gating disable must be set. Failure to set it results in
  4518. * flickering pixels due to Z write ordering failures after
  4519. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4520. * Sanctuary and Tropics, and apparently anything else with
  4521. * alpha test or pixel discard.
  4522. *
  4523. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4524. * but we didn't debug actual testcases to find it out.
  4525. *
  4526. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4527. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4528. *
  4529. * Also apply WaDisableVDSUnitClockGating:vlv and
  4530. * WaDisableRCPBUnitClockGating:vlv.
  4531. */
  4532. I915_WRITE(GEN6_UCGCTL2,
  4533. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4534. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  4535. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4536. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4537. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4538. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4539. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4540. I915_WRITE(CACHE_MODE_1,
  4541. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4542. /*
  4543. * WaDisableVLVClockGating_VBIIssue:vlv
  4544. * Disable clock gating on th GCFG unit to prevent a delay
  4545. * in the reporting of vblank events.
  4546. */
  4547. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  4548. /* Conservative clock gating settings for now */
  4549. I915_WRITE(0x9400, 0xffffffff);
  4550. I915_WRITE(0x9404, 0xffffffff);
  4551. I915_WRITE(0x9408, 0xffffffff);
  4552. I915_WRITE(0x940c, 0xffffffff);
  4553. I915_WRITE(0x9410, 0xffffffff);
  4554. I915_WRITE(0x9414, 0xffffffff);
  4555. I915_WRITE(0x9418, 0xffffffff);
  4556. }
  4557. static void g4x_init_clock_gating(struct drm_device *dev)
  4558. {
  4559. struct drm_i915_private *dev_priv = dev->dev_private;
  4560. uint32_t dspclk_gate;
  4561. I915_WRITE(RENCLK_GATE_D1, 0);
  4562. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4563. GS_UNIT_CLOCK_GATE_DISABLE |
  4564. CL_UNIT_CLOCK_GATE_DISABLE);
  4565. I915_WRITE(RAMCLK_GATE_D, 0);
  4566. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4567. OVRUNIT_CLOCK_GATE_DISABLE |
  4568. OVCUNIT_CLOCK_GATE_DISABLE;
  4569. if (IS_GM45(dev))
  4570. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4571. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4572. /* WaDisableRenderCachePipelinedFlush */
  4573. I915_WRITE(CACHE_MODE_0,
  4574. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4575. g4x_disable_trickle_feed(dev);
  4576. }
  4577. static void crestline_init_clock_gating(struct drm_device *dev)
  4578. {
  4579. struct drm_i915_private *dev_priv = dev->dev_private;
  4580. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4581. I915_WRITE(RENCLK_GATE_D2, 0);
  4582. I915_WRITE(DSPCLK_GATE_D, 0);
  4583. I915_WRITE(RAMCLK_GATE_D, 0);
  4584. I915_WRITE16(DEUC, 0);
  4585. I915_WRITE(MI_ARB_STATE,
  4586. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4587. }
  4588. static void broadwater_init_clock_gating(struct drm_device *dev)
  4589. {
  4590. struct drm_i915_private *dev_priv = dev->dev_private;
  4591. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4592. I965_RCC_CLOCK_GATE_DISABLE |
  4593. I965_RCPB_CLOCK_GATE_DISABLE |
  4594. I965_ISC_CLOCK_GATE_DISABLE |
  4595. I965_FBC_CLOCK_GATE_DISABLE);
  4596. I915_WRITE(RENCLK_GATE_D2, 0);
  4597. I915_WRITE(MI_ARB_STATE,
  4598. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4599. }
  4600. static void gen3_init_clock_gating(struct drm_device *dev)
  4601. {
  4602. struct drm_i915_private *dev_priv = dev->dev_private;
  4603. u32 dstate = I915_READ(D_STATE);
  4604. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4605. DSTATE_DOT_CLOCK_GATING;
  4606. I915_WRITE(D_STATE, dstate);
  4607. if (IS_PINEVIEW(dev))
  4608. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4609. /* IIR "flip pending" means done if this bit is set */
  4610. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4611. }
  4612. static void i85x_init_clock_gating(struct drm_device *dev)
  4613. {
  4614. struct drm_i915_private *dev_priv = dev->dev_private;
  4615. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4616. }
  4617. static void i830_init_clock_gating(struct drm_device *dev)
  4618. {
  4619. struct drm_i915_private *dev_priv = dev->dev_private;
  4620. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4621. }
  4622. void intel_init_clock_gating(struct drm_device *dev)
  4623. {
  4624. struct drm_i915_private *dev_priv = dev->dev_private;
  4625. dev_priv->display.init_clock_gating(dev);
  4626. }
  4627. void intel_suspend_hw(struct drm_device *dev)
  4628. {
  4629. if (HAS_PCH_LPT(dev))
  4630. lpt_suspend_hw(dev);
  4631. }
  4632. static bool is_always_on_power_domain(struct drm_device *dev,
  4633. enum intel_display_power_domain domain)
  4634. {
  4635. unsigned long always_on_domains;
  4636. BUG_ON(BIT(domain) & ~POWER_DOMAIN_MASK);
  4637. if (IS_HASWELL(dev)) {
  4638. always_on_domains = HSW_ALWAYS_ON_POWER_DOMAINS;
  4639. } else {
  4640. WARN_ON(1);
  4641. return true;
  4642. }
  4643. return BIT(domain) & always_on_domains;
  4644. }
  4645. /**
  4646. * We should only use the power well if we explicitly asked the hardware to
  4647. * enable it, so check if it's enabled and also check if we've requested it to
  4648. * be enabled.
  4649. */
  4650. bool intel_display_power_enabled(struct drm_device *dev,
  4651. enum intel_display_power_domain domain)
  4652. {
  4653. struct drm_i915_private *dev_priv = dev->dev_private;
  4654. if (!HAS_POWER_WELL(dev))
  4655. return true;
  4656. if (is_always_on_power_domain(dev, domain))
  4657. return true;
  4658. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4659. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4660. }
  4661. static void __intel_set_power_well(struct drm_device *dev, bool enable)
  4662. {
  4663. struct drm_i915_private *dev_priv = dev->dev_private;
  4664. bool is_enabled, enable_requested;
  4665. uint32_t tmp;
  4666. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4667. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4668. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4669. if (enable) {
  4670. if (!enable_requested)
  4671. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4672. HSW_PWR_WELL_ENABLE_REQUEST);
  4673. if (!is_enabled) {
  4674. DRM_DEBUG_KMS("Enabling power well\n");
  4675. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4676. HSW_PWR_WELL_STATE_ENABLED), 20))
  4677. DRM_ERROR("Timeout enabling power well\n");
  4678. }
  4679. } else {
  4680. if (enable_requested) {
  4681. unsigned long irqflags;
  4682. enum pipe p;
  4683. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4684. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4685. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4686. /*
  4687. * After this, the registers on the pipes that are part
  4688. * of the power well will become zero, so we have to
  4689. * adjust our counters according to that.
  4690. *
  4691. * FIXME: Should we do this in general in
  4692. * drm_vblank_post_modeset?
  4693. */
  4694. spin_lock_irqsave(&dev->vbl_lock, irqflags);
  4695. for_each_pipe(p)
  4696. if (p != PIPE_A)
  4697. dev->vblank[p].last = 0;
  4698. spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
  4699. }
  4700. }
  4701. }
  4702. static void __intel_power_well_get(struct i915_power_well *power_well)
  4703. {
  4704. if (!power_well->count++)
  4705. __intel_set_power_well(power_well->device, true);
  4706. }
  4707. static void __intel_power_well_put(struct i915_power_well *power_well)
  4708. {
  4709. WARN_ON(!power_well->count);
  4710. if (!--power_well->count)
  4711. __intel_set_power_well(power_well->device, false);
  4712. }
  4713. void intel_display_power_get(struct drm_device *dev,
  4714. enum intel_display_power_domain domain)
  4715. {
  4716. struct drm_i915_private *dev_priv = dev->dev_private;
  4717. struct i915_power_well *power_well = &dev_priv->power_well;
  4718. if (!HAS_POWER_WELL(dev))
  4719. return;
  4720. if (is_always_on_power_domain(dev, domain))
  4721. return;
  4722. mutex_lock(&power_well->lock);
  4723. __intel_power_well_get(power_well);
  4724. mutex_unlock(&power_well->lock);
  4725. }
  4726. void intel_display_power_put(struct drm_device *dev,
  4727. enum intel_display_power_domain domain)
  4728. {
  4729. struct drm_i915_private *dev_priv = dev->dev_private;
  4730. struct i915_power_well *power_well = &dev_priv->power_well;
  4731. if (!HAS_POWER_WELL(dev))
  4732. return;
  4733. if (is_always_on_power_domain(dev, domain))
  4734. return;
  4735. mutex_lock(&power_well->lock);
  4736. __intel_power_well_put(power_well);
  4737. mutex_unlock(&power_well->lock);
  4738. }
  4739. static struct i915_power_well *hsw_pwr;
  4740. /* Display audio driver power well request */
  4741. void i915_request_power_well(void)
  4742. {
  4743. if (WARN_ON(!hsw_pwr))
  4744. return;
  4745. mutex_lock(&hsw_pwr->lock);
  4746. __intel_power_well_get(hsw_pwr);
  4747. mutex_unlock(&hsw_pwr->lock);
  4748. }
  4749. EXPORT_SYMBOL_GPL(i915_request_power_well);
  4750. /* Display audio driver power well release */
  4751. void i915_release_power_well(void)
  4752. {
  4753. if (WARN_ON(!hsw_pwr))
  4754. return;
  4755. mutex_lock(&hsw_pwr->lock);
  4756. __intel_power_well_put(hsw_pwr);
  4757. mutex_unlock(&hsw_pwr->lock);
  4758. }
  4759. EXPORT_SYMBOL_GPL(i915_release_power_well);
  4760. int i915_init_power_well(struct drm_device *dev)
  4761. {
  4762. struct drm_i915_private *dev_priv = dev->dev_private;
  4763. hsw_pwr = &dev_priv->power_well;
  4764. hsw_pwr->device = dev;
  4765. mutex_init(&hsw_pwr->lock);
  4766. hsw_pwr->count = 0;
  4767. return 0;
  4768. }
  4769. void i915_remove_power_well(struct drm_device *dev)
  4770. {
  4771. hsw_pwr = NULL;
  4772. }
  4773. void intel_set_power_well(struct drm_device *dev, bool enable)
  4774. {
  4775. struct drm_i915_private *dev_priv = dev->dev_private;
  4776. struct i915_power_well *power_well = &dev_priv->power_well;
  4777. if (!HAS_POWER_WELL(dev))
  4778. return;
  4779. if (!i915_disable_power_well && !enable)
  4780. return;
  4781. mutex_lock(&power_well->lock);
  4782. /*
  4783. * This function will only ever contribute one
  4784. * to the power well reference count. i915_request
  4785. * is what tracks whether we have or have not
  4786. * added the one to the reference count.
  4787. */
  4788. if (power_well->i915_request == enable)
  4789. goto out;
  4790. power_well->i915_request = enable;
  4791. if (enable)
  4792. __intel_power_well_get(power_well);
  4793. else
  4794. __intel_power_well_put(power_well);
  4795. out:
  4796. mutex_unlock(&power_well->lock);
  4797. }
  4798. static void intel_resume_power_well(struct drm_device *dev)
  4799. {
  4800. struct drm_i915_private *dev_priv = dev->dev_private;
  4801. struct i915_power_well *power_well = &dev_priv->power_well;
  4802. if (!HAS_POWER_WELL(dev))
  4803. return;
  4804. mutex_lock(&power_well->lock);
  4805. __intel_set_power_well(dev, power_well->count > 0);
  4806. mutex_unlock(&power_well->lock);
  4807. }
  4808. /*
  4809. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4810. * when not needed anymore. We have 4 registers that can request the power well
  4811. * to be enabled, and it will only be disabled if none of the registers is
  4812. * requesting it to be enabled.
  4813. */
  4814. void intel_init_power_well(struct drm_device *dev)
  4815. {
  4816. struct drm_i915_private *dev_priv = dev->dev_private;
  4817. if (!HAS_POWER_WELL(dev))
  4818. return;
  4819. /* For now, we need the power well to be always enabled. */
  4820. intel_set_power_well(dev, true);
  4821. intel_resume_power_well(dev);
  4822. /* We're taking over the BIOS, so clear any requests made by it since
  4823. * the driver is in charge now. */
  4824. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4825. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4826. }
  4827. /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
  4828. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  4829. {
  4830. hsw_disable_package_c8(dev_priv);
  4831. }
  4832. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  4833. {
  4834. hsw_enable_package_c8(dev_priv);
  4835. }
  4836. /* Set up chip specific power management-related functions */
  4837. void intel_init_pm(struct drm_device *dev)
  4838. {
  4839. struct drm_i915_private *dev_priv = dev->dev_private;
  4840. if (I915_HAS_FBC(dev)) {
  4841. if (HAS_PCH_SPLIT(dev)) {
  4842. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4843. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4844. dev_priv->display.enable_fbc =
  4845. gen7_enable_fbc;
  4846. else
  4847. dev_priv->display.enable_fbc =
  4848. ironlake_enable_fbc;
  4849. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4850. } else if (IS_GM45(dev)) {
  4851. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4852. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4853. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4854. } else if (IS_CRESTLINE(dev)) {
  4855. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4856. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4857. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4858. }
  4859. /* 855GM needs testing */
  4860. }
  4861. /* For cxsr */
  4862. if (IS_PINEVIEW(dev))
  4863. i915_pineview_get_mem_freq(dev);
  4864. else if (IS_GEN5(dev))
  4865. i915_ironlake_get_mem_freq(dev);
  4866. /* For FIFO watermark updates */
  4867. if (HAS_PCH_SPLIT(dev)) {
  4868. intel_setup_wm_latency(dev);
  4869. if (IS_GEN5(dev)) {
  4870. if (dev_priv->wm.pri_latency[1] &&
  4871. dev_priv->wm.spr_latency[1] &&
  4872. dev_priv->wm.cur_latency[1])
  4873. dev_priv->display.update_wm = ironlake_update_wm;
  4874. else {
  4875. DRM_DEBUG_KMS("Failed to get proper latency. "
  4876. "Disable CxSR\n");
  4877. dev_priv->display.update_wm = NULL;
  4878. }
  4879. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  4880. } else if (IS_GEN6(dev)) {
  4881. if (dev_priv->wm.pri_latency[0] &&
  4882. dev_priv->wm.spr_latency[0] &&
  4883. dev_priv->wm.cur_latency[0]) {
  4884. dev_priv->display.update_wm = sandybridge_update_wm;
  4885. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4886. } else {
  4887. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4888. "Disable CxSR\n");
  4889. dev_priv->display.update_wm = NULL;
  4890. }
  4891. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  4892. } else if (IS_IVYBRIDGE(dev)) {
  4893. if (dev_priv->wm.pri_latency[0] &&
  4894. dev_priv->wm.spr_latency[0] &&
  4895. dev_priv->wm.cur_latency[0]) {
  4896. dev_priv->display.update_wm = ivybridge_update_wm;
  4897. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4898. } else {
  4899. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4900. "Disable CxSR\n");
  4901. dev_priv->display.update_wm = NULL;
  4902. }
  4903. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  4904. } else if (IS_HASWELL(dev)) {
  4905. if (dev_priv->wm.pri_latency[0] &&
  4906. dev_priv->wm.spr_latency[0] &&
  4907. dev_priv->wm.cur_latency[0]) {
  4908. dev_priv->display.update_wm = haswell_update_wm;
  4909. dev_priv->display.update_sprite_wm =
  4910. haswell_update_sprite_wm;
  4911. } else {
  4912. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4913. "Disable CxSR\n");
  4914. dev_priv->display.update_wm = NULL;
  4915. }
  4916. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  4917. } else
  4918. dev_priv->display.update_wm = NULL;
  4919. } else if (IS_VALLEYVIEW(dev)) {
  4920. dev_priv->display.update_wm = valleyview_update_wm;
  4921. dev_priv->display.init_clock_gating =
  4922. valleyview_init_clock_gating;
  4923. } else if (IS_PINEVIEW(dev)) {
  4924. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4925. dev_priv->is_ddr3,
  4926. dev_priv->fsb_freq,
  4927. dev_priv->mem_freq)) {
  4928. DRM_INFO("failed to find known CxSR latency "
  4929. "(found ddr%s fsb freq %d, mem freq %d), "
  4930. "disabling CxSR\n",
  4931. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  4932. dev_priv->fsb_freq, dev_priv->mem_freq);
  4933. /* Disable CxSR and never update its watermark again */
  4934. pineview_disable_cxsr(dev);
  4935. dev_priv->display.update_wm = NULL;
  4936. } else
  4937. dev_priv->display.update_wm = pineview_update_wm;
  4938. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4939. } else if (IS_G4X(dev)) {
  4940. dev_priv->display.update_wm = g4x_update_wm;
  4941. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  4942. } else if (IS_GEN4(dev)) {
  4943. dev_priv->display.update_wm = i965_update_wm;
  4944. if (IS_CRESTLINE(dev))
  4945. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  4946. else if (IS_BROADWATER(dev))
  4947. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  4948. } else if (IS_GEN3(dev)) {
  4949. dev_priv->display.update_wm = i9xx_update_wm;
  4950. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4951. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4952. } else if (IS_I865G(dev)) {
  4953. dev_priv->display.update_wm = i830_update_wm;
  4954. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4955. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4956. } else if (IS_I85X(dev)) {
  4957. dev_priv->display.update_wm = i9xx_update_wm;
  4958. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  4959. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4960. } else {
  4961. dev_priv->display.update_wm = i830_update_wm;
  4962. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  4963. if (IS_845G(dev))
  4964. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4965. else
  4966. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4967. }
  4968. }
  4969. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  4970. {
  4971. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4972. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4973. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  4974. return -EAGAIN;
  4975. }
  4976. I915_WRITE(GEN6_PCODE_DATA, *val);
  4977. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4978. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4979. 500)) {
  4980. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  4981. return -ETIMEDOUT;
  4982. }
  4983. *val = I915_READ(GEN6_PCODE_DATA);
  4984. I915_WRITE(GEN6_PCODE_DATA, 0);
  4985. return 0;
  4986. }
  4987. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  4988. {
  4989. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4990. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4991. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  4992. return -EAGAIN;
  4993. }
  4994. I915_WRITE(GEN6_PCODE_DATA, val);
  4995. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4996. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4997. 500)) {
  4998. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  4999. return -ETIMEDOUT;
  5000. }
  5001. I915_WRITE(GEN6_PCODE_DATA, 0);
  5002. return 0;
  5003. }
  5004. int vlv_gpu_freq(int ddr_freq, int val)
  5005. {
  5006. int mult, base;
  5007. switch (ddr_freq) {
  5008. case 800:
  5009. mult = 20;
  5010. base = 120;
  5011. break;
  5012. case 1066:
  5013. mult = 22;
  5014. base = 133;
  5015. break;
  5016. case 1333:
  5017. mult = 21;
  5018. base = 125;
  5019. break;
  5020. default:
  5021. return -1;
  5022. }
  5023. return ((val - 0xbd) * mult) + base;
  5024. }
  5025. int vlv_freq_opcode(int ddr_freq, int val)
  5026. {
  5027. int mult, base;
  5028. switch (ddr_freq) {
  5029. case 800:
  5030. mult = 20;
  5031. base = 120;
  5032. break;
  5033. case 1066:
  5034. mult = 22;
  5035. base = 133;
  5036. break;
  5037. case 1333:
  5038. mult = 21;
  5039. base = 125;
  5040. break;
  5041. default:
  5042. return -1;
  5043. }
  5044. val /= mult;
  5045. val -= base / mult;
  5046. val += 0xbd;
  5047. if (val > 0xea)
  5048. val = 0xea;
  5049. return val;
  5050. }
  5051. void intel_pm_init(struct drm_device *dev)
  5052. {
  5053. struct drm_i915_private *dev_priv = dev->dev_private;
  5054. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5055. intel_gen6_powersave_work);
  5056. }