page_alloc.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/config.h>
  17. #include <linux/stddef.h>
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cpuset.h>
  35. #include <linux/memory_hotplug.h>
  36. #include <linux/nodemask.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/mempolicy.h>
  39. #include <asm/tlbflush.h>
  40. #include "internal.h"
  41. /*
  42. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  43. * initializer cleaner
  44. */
  45. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  46. EXPORT_SYMBOL(node_online_map);
  47. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  48. EXPORT_SYMBOL(node_possible_map);
  49. struct pglist_data *pgdat_list __read_mostly;
  50. unsigned long totalram_pages __read_mostly;
  51. unsigned long totalhigh_pages __read_mostly;
  52. long nr_swap_pages;
  53. static void fastcall free_hot_cold_page(struct page *page, int cold);
  54. /*
  55. * results with 256, 32 in the lowmem_reserve sysctl:
  56. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  57. * 1G machine -> (16M dma, 784M normal, 224M high)
  58. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  59. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  60. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  61. *
  62. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  63. * don't need any ZONE_NORMAL reservation
  64. */
  65. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
  66. EXPORT_SYMBOL(totalram_pages);
  67. /*
  68. * Used by page_zone() to look up the address of the struct zone whose
  69. * id is encoded in the upper bits of page->flags
  70. */
  71. struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
  72. EXPORT_SYMBOL(zone_table);
  73. static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
  74. int min_free_kbytes = 1024;
  75. unsigned long __initdata nr_kernel_pages;
  76. unsigned long __initdata nr_all_pages;
  77. #ifdef CONFIG_DEBUG_VM
  78. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  79. {
  80. int ret = 0;
  81. unsigned seq;
  82. unsigned long pfn = page_to_pfn(page);
  83. do {
  84. seq = zone_span_seqbegin(zone);
  85. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  86. ret = 1;
  87. else if (pfn < zone->zone_start_pfn)
  88. ret = 1;
  89. } while (zone_span_seqretry(zone, seq));
  90. return ret;
  91. }
  92. static int page_is_consistent(struct zone *zone, struct page *page)
  93. {
  94. #ifdef CONFIG_HOLES_IN_ZONE
  95. if (!pfn_valid(page_to_pfn(page)))
  96. return 0;
  97. #endif
  98. if (zone != page_zone(page))
  99. return 0;
  100. return 1;
  101. }
  102. /*
  103. * Temporary debugging check for pages not lying within a given zone.
  104. */
  105. static int bad_range(struct zone *zone, struct page *page)
  106. {
  107. if (page_outside_zone_boundaries(zone, page))
  108. return 1;
  109. if (!page_is_consistent(zone, page))
  110. return 1;
  111. return 0;
  112. }
  113. #else
  114. static inline int bad_range(struct zone *zone, struct page *page)
  115. {
  116. return 0;
  117. }
  118. #endif
  119. static void bad_page(struct page *page)
  120. {
  121. printk(KERN_EMERG "Bad page state in process '%s'\n"
  122. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  123. "Trying to fix it up, but a reboot is needed\n"
  124. "Backtrace:\n",
  125. current->comm, page, (int)(2*sizeof(unsigned long)),
  126. (unsigned long)page->flags, page->mapping,
  127. page_mapcount(page), page_count(page));
  128. dump_stack();
  129. page->flags &= ~(1 << PG_lru |
  130. 1 << PG_private |
  131. 1 << PG_locked |
  132. 1 << PG_active |
  133. 1 << PG_dirty |
  134. 1 << PG_reclaim |
  135. 1 << PG_slab |
  136. 1 << PG_swapcache |
  137. 1 << PG_writeback );
  138. set_page_count(page, 0);
  139. reset_page_mapcount(page);
  140. page->mapping = NULL;
  141. add_taint(TAINT_BAD_PAGE);
  142. }
  143. /*
  144. * Higher-order pages are called "compound pages". They are structured thusly:
  145. *
  146. * The first PAGE_SIZE page is called the "head page".
  147. *
  148. * The remaining PAGE_SIZE pages are called "tail pages".
  149. *
  150. * All pages have PG_compound set. All pages have their ->private pointing at
  151. * the head page (even the head page has this).
  152. *
  153. * The first tail page's ->mapping, if non-zero, holds the address of the
  154. * compound page's put_page() function.
  155. *
  156. * The order of the allocation is stored in the first tail page's ->index
  157. * This is only for debug at present. This usage means that zero-order pages
  158. * may not be compound.
  159. */
  160. static void prep_compound_page(struct page *page, unsigned long order)
  161. {
  162. int i;
  163. int nr_pages = 1 << order;
  164. page[1].mapping = NULL;
  165. page[1].index = order;
  166. for (i = 0; i < nr_pages; i++) {
  167. struct page *p = page + i;
  168. SetPageCompound(p);
  169. set_page_private(p, (unsigned long)page);
  170. }
  171. }
  172. static void destroy_compound_page(struct page *page, unsigned long order)
  173. {
  174. int i;
  175. int nr_pages = 1 << order;
  176. if (unlikely(page[1].index != order))
  177. bad_page(page);
  178. for (i = 0; i < nr_pages; i++) {
  179. struct page *p = page + i;
  180. if (unlikely(!PageCompound(p) |
  181. (page_private(p) != (unsigned long)page)))
  182. bad_page(page);
  183. ClearPageCompound(p);
  184. }
  185. }
  186. /*
  187. * function for dealing with page's order in buddy system.
  188. * zone->lock is already acquired when we use these.
  189. * So, we don't need atomic page->flags operations here.
  190. */
  191. static inline unsigned long page_order(struct page *page) {
  192. return page_private(page);
  193. }
  194. static inline void set_page_order(struct page *page, int order) {
  195. set_page_private(page, order);
  196. __SetPagePrivate(page);
  197. }
  198. static inline void rmv_page_order(struct page *page)
  199. {
  200. __ClearPagePrivate(page);
  201. set_page_private(page, 0);
  202. }
  203. /*
  204. * Locate the struct page for both the matching buddy in our
  205. * pair (buddy1) and the combined O(n+1) page they form (page).
  206. *
  207. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  208. * the following equation:
  209. * B2 = B1 ^ (1 << O)
  210. * For example, if the starting buddy (buddy2) is #8 its order
  211. * 1 buddy is #10:
  212. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  213. *
  214. * 2) Any buddy B will have an order O+1 parent P which
  215. * satisfies the following equation:
  216. * P = B & ~(1 << O)
  217. *
  218. * Assumption: *_mem_map is contigious at least up to MAX_ORDER
  219. */
  220. static inline struct page *
  221. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  222. {
  223. unsigned long buddy_idx = page_idx ^ (1 << order);
  224. return page + (buddy_idx - page_idx);
  225. }
  226. static inline unsigned long
  227. __find_combined_index(unsigned long page_idx, unsigned int order)
  228. {
  229. return (page_idx & ~(1 << order));
  230. }
  231. /*
  232. * This function checks whether a page is free && is the buddy
  233. * we can do coalesce a page and its buddy if
  234. * (a) the buddy is not in a hole &&
  235. * (b) the buddy is free &&
  236. * (c) the buddy is on the buddy system &&
  237. * (d) a page and its buddy have the same order.
  238. * for recording page's order, we use page_private(page) and PG_private.
  239. *
  240. */
  241. static inline int page_is_buddy(struct page *page, int order)
  242. {
  243. #ifdef CONFIG_HOLES_IN_ZONE
  244. if (!pfn_valid(page_to_pfn(page)))
  245. return 0;
  246. #endif
  247. if (PagePrivate(page) &&
  248. (page_order(page) == order) &&
  249. page_count(page) == 0)
  250. return 1;
  251. return 0;
  252. }
  253. /*
  254. * Freeing function for a buddy system allocator.
  255. *
  256. * The concept of a buddy system is to maintain direct-mapped table
  257. * (containing bit values) for memory blocks of various "orders".
  258. * The bottom level table contains the map for the smallest allocatable
  259. * units of memory (here, pages), and each level above it describes
  260. * pairs of units from the levels below, hence, "buddies".
  261. * At a high level, all that happens here is marking the table entry
  262. * at the bottom level available, and propagating the changes upward
  263. * as necessary, plus some accounting needed to play nicely with other
  264. * parts of the VM system.
  265. * At each level, we keep a list of pages, which are heads of continuous
  266. * free pages of length of (1 << order) and marked with PG_Private.Page's
  267. * order is recorded in page_private(page) field.
  268. * So when we are allocating or freeing one, we can derive the state of the
  269. * other. That is, if we allocate a small block, and both were
  270. * free, the remainder of the region must be split into blocks.
  271. * If a block is freed, and its buddy is also free, then this
  272. * triggers coalescing into a block of larger size.
  273. *
  274. * -- wli
  275. */
  276. static inline void __free_pages_bulk (struct page *page,
  277. struct zone *zone, unsigned int order)
  278. {
  279. unsigned long page_idx;
  280. int order_size = 1 << order;
  281. if (unlikely(PageCompound(page)))
  282. destroy_compound_page(page, order);
  283. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  284. BUG_ON(page_idx & (order_size - 1));
  285. BUG_ON(bad_range(zone, page));
  286. zone->free_pages += order_size;
  287. while (order < MAX_ORDER-1) {
  288. unsigned long combined_idx;
  289. struct free_area *area;
  290. struct page *buddy;
  291. buddy = __page_find_buddy(page, page_idx, order);
  292. if (!page_is_buddy(buddy, order))
  293. break; /* Move the buddy up one level. */
  294. list_del(&buddy->lru);
  295. area = zone->free_area + order;
  296. area->nr_free--;
  297. rmv_page_order(buddy);
  298. combined_idx = __find_combined_index(page_idx, order);
  299. page = page + (combined_idx - page_idx);
  300. page_idx = combined_idx;
  301. order++;
  302. }
  303. set_page_order(page, order);
  304. list_add(&page->lru, &zone->free_area[order].free_list);
  305. zone->free_area[order].nr_free++;
  306. }
  307. static inline int free_pages_check(struct page *page)
  308. {
  309. if (unlikely(page_mapcount(page) |
  310. (page->mapping != NULL) |
  311. (page_count(page) != 0) |
  312. (page->flags & (
  313. 1 << PG_lru |
  314. 1 << PG_private |
  315. 1 << PG_locked |
  316. 1 << PG_active |
  317. 1 << PG_reclaim |
  318. 1 << PG_slab |
  319. 1 << PG_swapcache |
  320. 1 << PG_writeback |
  321. 1 << PG_reserved ))))
  322. bad_page(page);
  323. if (PageDirty(page))
  324. __ClearPageDirty(page);
  325. /*
  326. * For now, we report if PG_reserved was found set, but do not
  327. * clear it, and do not free the page. But we shall soon need
  328. * to do more, for when the ZERO_PAGE count wraps negative.
  329. */
  330. return PageReserved(page);
  331. }
  332. /*
  333. * Frees a list of pages.
  334. * Assumes all pages on list are in same zone, and of same order.
  335. * count is the number of pages to free.
  336. *
  337. * If the zone was previously in an "all pages pinned" state then look to
  338. * see if this freeing clears that state.
  339. *
  340. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  341. * pinned" detection logic.
  342. */
  343. static int
  344. free_pages_bulk(struct zone *zone, int count,
  345. struct list_head *list, unsigned int order)
  346. {
  347. struct page *page = NULL;
  348. int ret = 0;
  349. spin_lock(&zone->lock);
  350. zone->all_unreclaimable = 0;
  351. zone->pages_scanned = 0;
  352. while (!list_empty(list) && count--) {
  353. page = list_entry(list->prev, struct page, lru);
  354. /* have to delete it as __free_pages_bulk list manipulates */
  355. list_del(&page->lru);
  356. __free_pages_bulk(page, zone, order);
  357. ret++;
  358. }
  359. spin_unlock(&zone->lock);
  360. return ret;
  361. }
  362. void __free_pages_ok(struct page *page, unsigned int order)
  363. {
  364. unsigned long flags;
  365. LIST_HEAD(list);
  366. int i;
  367. int reserved = 0;
  368. arch_free_page(page, order);
  369. #ifndef CONFIG_MMU
  370. if (order > 0)
  371. for (i = 1 ; i < (1 << order) ; ++i)
  372. __put_page(page + i);
  373. #endif
  374. for (i = 0 ; i < (1 << order) ; ++i)
  375. reserved += free_pages_check(page + i);
  376. if (reserved)
  377. return;
  378. list_add(&page->lru, &list);
  379. kernel_map_pages(page, 1<<order, 0);
  380. local_irq_save(flags);
  381. __mod_page_state(pgfree, 1 << order);
  382. free_pages_bulk(page_zone(page), 1, &list, order);
  383. local_irq_restore(flags);
  384. }
  385. /*
  386. * permit the bootmem allocator to evade page validation on high-order frees
  387. */
  388. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  389. {
  390. if (order == 0) {
  391. __ClearPageReserved(page);
  392. set_page_count(page, 0);
  393. free_hot_cold_page(page, 0);
  394. } else {
  395. LIST_HEAD(list);
  396. int loop;
  397. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  398. struct page *p = &page[loop];
  399. if (loop + 16 < BITS_PER_LONG)
  400. prefetchw(p + 16);
  401. __ClearPageReserved(p);
  402. set_page_count(p, 0);
  403. }
  404. arch_free_page(page, order);
  405. mod_page_state(pgfree, 1 << order);
  406. list_add(&page->lru, &list);
  407. kernel_map_pages(page, 1 << order, 0);
  408. free_pages_bulk(page_zone(page), 1, &list, order);
  409. }
  410. }
  411. /*
  412. * The order of subdivision here is critical for the IO subsystem.
  413. * Please do not alter this order without good reasons and regression
  414. * testing. Specifically, as large blocks of memory are subdivided,
  415. * the order in which smaller blocks are delivered depends on the order
  416. * they're subdivided in this function. This is the primary factor
  417. * influencing the order in which pages are delivered to the IO
  418. * subsystem according to empirical testing, and this is also justified
  419. * by considering the behavior of a buddy system containing a single
  420. * large block of memory acted on by a series of small allocations.
  421. * This behavior is a critical factor in sglist merging's success.
  422. *
  423. * -- wli
  424. */
  425. static inline void expand(struct zone *zone, struct page *page,
  426. int low, int high, struct free_area *area)
  427. {
  428. unsigned long size = 1 << high;
  429. while (high > low) {
  430. area--;
  431. high--;
  432. size >>= 1;
  433. BUG_ON(bad_range(zone, &page[size]));
  434. list_add(&page[size].lru, &area->free_list);
  435. area->nr_free++;
  436. set_page_order(&page[size], high);
  437. }
  438. }
  439. /*
  440. * This page is about to be returned from the page allocator
  441. */
  442. static int prep_new_page(struct page *page, int order)
  443. {
  444. if (unlikely(page_mapcount(page) |
  445. (page->mapping != NULL) |
  446. (page_count(page) != 0) |
  447. (page->flags & (
  448. 1 << PG_lru |
  449. 1 << PG_private |
  450. 1 << PG_locked |
  451. 1 << PG_active |
  452. 1 << PG_dirty |
  453. 1 << PG_reclaim |
  454. 1 << PG_slab |
  455. 1 << PG_swapcache |
  456. 1 << PG_writeback |
  457. 1 << PG_reserved ))))
  458. bad_page(page);
  459. /*
  460. * For now, we report if PG_reserved was found set, but do not
  461. * clear it, and do not allocate the page: as a safety net.
  462. */
  463. if (PageReserved(page))
  464. return 1;
  465. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  466. 1 << PG_referenced | 1 << PG_arch_1 |
  467. 1 << PG_checked | 1 << PG_mappedtodisk);
  468. set_page_private(page, 0);
  469. set_page_refs(page, order);
  470. kernel_map_pages(page, 1 << order, 1);
  471. return 0;
  472. }
  473. /*
  474. * Do the hard work of removing an element from the buddy allocator.
  475. * Call me with the zone->lock already held.
  476. */
  477. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  478. {
  479. struct free_area * area;
  480. unsigned int current_order;
  481. struct page *page;
  482. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  483. area = zone->free_area + current_order;
  484. if (list_empty(&area->free_list))
  485. continue;
  486. page = list_entry(area->free_list.next, struct page, lru);
  487. list_del(&page->lru);
  488. rmv_page_order(page);
  489. area->nr_free--;
  490. zone->free_pages -= 1UL << order;
  491. expand(zone, page, order, current_order, area);
  492. return page;
  493. }
  494. return NULL;
  495. }
  496. /*
  497. * Obtain a specified number of elements from the buddy allocator, all under
  498. * a single hold of the lock, for efficiency. Add them to the supplied list.
  499. * Returns the number of new pages which were placed at *list.
  500. */
  501. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  502. unsigned long count, struct list_head *list)
  503. {
  504. int i;
  505. spin_lock(&zone->lock);
  506. for (i = 0; i < count; ++i) {
  507. struct page *page = __rmqueue(zone, order);
  508. if (unlikely(page == NULL))
  509. break;
  510. list_add_tail(&page->lru, list);
  511. }
  512. spin_unlock(&zone->lock);
  513. return i;
  514. }
  515. #ifdef CONFIG_NUMA
  516. /* Called from the slab reaper to drain remote pagesets */
  517. void drain_remote_pages(void)
  518. {
  519. struct zone *zone;
  520. int i;
  521. unsigned long flags;
  522. local_irq_save(flags);
  523. for_each_zone(zone) {
  524. struct per_cpu_pageset *pset;
  525. /* Do not drain local pagesets */
  526. if (zone->zone_pgdat->node_id == numa_node_id())
  527. continue;
  528. pset = zone->pageset[smp_processor_id()];
  529. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  530. struct per_cpu_pages *pcp;
  531. pcp = &pset->pcp[i];
  532. if (pcp->count)
  533. pcp->count -= free_pages_bulk(zone, pcp->count,
  534. &pcp->list, 0);
  535. }
  536. }
  537. local_irq_restore(flags);
  538. }
  539. #endif
  540. #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
  541. static void __drain_pages(unsigned int cpu)
  542. {
  543. unsigned long flags;
  544. struct zone *zone;
  545. int i;
  546. for_each_zone(zone) {
  547. struct per_cpu_pageset *pset;
  548. pset = zone_pcp(zone, cpu);
  549. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  550. struct per_cpu_pages *pcp;
  551. pcp = &pset->pcp[i];
  552. local_irq_save(flags);
  553. pcp->count -= free_pages_bulk(zone, pcp->count,
  554. &pcp->list, 0);
  555. local_irq_restore(flags);
  556. }
  557. }
  558. }
  559. #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
  560. #ifdef CONFIG_PM
  561. void mark_free_pages(struct zone *zone)
  562. {
  563. unsigned long zone_pfn, flags;
  564. int order;
  565. struct list_head *curr;
  566. if (!zone->spanned_pages)
  567. return;
  568. spin_lock_irqsave(&zone->lock, flags);
  569. for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
  570. ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
  571. for (order = MAX_ORDER - 1; order >= 0; --order)
  572. list_for_each(curr, &zone->free_area[order].free_list) {
  573. unsigned long start_pfn, i;
  574. start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
  575. for (i=0; i < (1<<order); i++)
  576. SetPageNosaveFree(pfn_to_page(start_pfn+i));
  577. }
  578. spin_unlock_irqrestore(&zone->lock, flags);
  579. }
  580. /*
  581. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  582. */
  583. void drain_local_pages(void)
  584. {
  585. unsigned long flags;
  586. local_irq_save(flags);
  587. __drain_pages(smp_processor_id());
  588. local_irq_restore(flags);
  589. }
  590. #endif /* CONFIG_PM */
  591. static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
  592. {
  593. #ifdef CONFIG_NUMA
  594. pg_data_t *pg = z->zone_pgdat;
  595. pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
  596. struct per_cpu_pageset *p;
  597. p = zone_pcp(z, cpu);
  598. if (pg == orig) {
  599. p->numa_hit++;
  600. } else {
  601. p->numa_miss++;
  602. zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
  603. }
  604. if (pg == NODE_DATA(numa_node_id()))
  605. p->local_node++;
  606. else
  607. p->other_node++;
  608. #endif
  609. }
  610. /*
  611. * Free a 0-order page
  612. */
  613. static void fastcall free_hot_cold_page(struct page *page, int cold)
  614. {
  615. struct zone *zone = page_zone(page);
  616. struct per_cpu_pages *pcp;
  617. unsigned long flags;
  618. arch_free_page(page, 0);
  619. if (PageAnon(page))
  620. page->mapping = NULL;
  621. if (free_pages_check(page))
  622. return;
  623. kernel_map_pages(page, 1, 0);
  624. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  625. local_irq_save(flags);
  626. __inc_page_state(pgfree);
  627. list_add(&page->lru, &pcp->list);
  628. pcp->count++;
  629. if (pcp->count >= pcp->high)
  630. pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  631. local_irq_restore(flags);
  632. put_cpu();
  633. }
  634. void fastcall free_hot_page(struct page *page)
  635. {
  636. free_hot_cold_page(page, 0);
  637. }
  638. void fastcall free_cold_page(struct page *page)
  639. {
  640. free_hot_cold_page(page, 1);
  641. }
  642. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  643. {
  644. int i;
  645. BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  646. for(i = 0; i < (1 << order); i++)
  647. clear_highpage(page + i);
  648. }
  649. /*
  650. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  651. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  652. * or two.
  653. */
  654. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  655. struct zone *zone, int order, gfp_t gfp_flags)
  656. {
  657. unsigned long flags;
  658. struct page *page;
  659. int cold = !!(gfp_flags & __GFP_COLD);
  660. int cpu;
  661. again:
  662. cpu = get_cpu();
  663. if (order == 0) {
  664. struct per_cpu_pages *pcp;
  665. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  666. local_irq_save(flags);
  667. if (!pcp->count) {
  668. pcp->count += rmqueue_bulk(zone, 0,
  669. pcp->batch, &pcp->list);
  670. if (unlikely(!pcp->count))
  671. goto failed;
  672. }
  673. page = list_entry(pcp->list.next, struct page, lru);
  674. list_del(&page->lru);
  675. pcp->count--;
  676. } else {
  677. spin_lock_irqsave(&zone->lock, flags);
  678. page = __rmqueue(zone, order);
  679. spin_unlock(&zone->lock);
  680. if (!page)
  681. goto failed;
  682. }
  683. __mod_page_state_zone(zone, pgalloc, 1 << order);
  684. zone_statistics(zonelist, zone, cpu);
  685. local_irq_restore(flags);
  686. put_cpu();
  687. BUG_ON(bad_range(zone, page));
  688. if (prep_new_page(page, order))
  689. goto again;
  690. if (gfp_flags & __GFP_ZERO)
  691. prep_zero_page(page, order, gfp_flags);
  692. if (order && (gfp_flags & __GFP_COMP))
  693. prep_compound_page(page, order);
  694. return page;
  695. failed:
  696. local_irq_restore(flags);
  697. put_cpu();
  698. return NULL;
  699. }
  700. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  701. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  702. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  703. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  704. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  705. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  706. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  707. /*
  708. * Return 1 if free pages are above 'mark'. This takes into account the order
  709. * of the allocation.
  710. */
  711. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  712. int classzone_idx, int alloc_flags)
  713. {
  714. /* free_pages my go negative - that's OK */
  715. long min = mark, free_pages = z->free_pages - (1 << order) + 1;
  716. int o;
  717. if (alloc_flags & ALLOC_HIGH)
  718. min -= min / 2;
  719. if (alloc_flags & ALLOC_HARDER)
  720. min -= min / 4;
  721. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  722. return 0;
  723. for (o = 0; o < order; o++) {
  724. /* At the next order, this order's pages become unavailable */
  725. free_pages -= z->free_area[o].nr_free << o;
  726. /* Require fewer higher order pages to be free */
  727. min >>= 1;
  728. if (free_pages <= min)
  729. return 0;
  730. }
  731. return 1;
  732. }
  733. /*
  734. * get_page_from_freeliest goes through the zonelist trying to allocate
  735. * a page.
  736. */
  737. static struct page *
  738. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  739. struct zonelist *zonelist, int alloc_flags)
  740. {
  741. struct zone **z = zonelist->zones;
  742. struct page *page = NULL;
  743. int classzone_idx = zone_idx(*z);
  744. /*
  745. * Go through the zonelist once, looking for a zone with enough free.
  746. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  747. */
  748. do {
  749. if ((alloc_flags & ALLOC_CPUSET) &&
  750. !cpuset_zone_allowed(*z, gfp_mask))
  751. continue;
  752. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  753. unsigned long mark;
  754. if (alloc_flags & ALLOC_WMARK_MIN)
  755. mark = (*z)->pages_min;
  756. else if (alloc_flags & ALLOC_WMARK_LOW)
  757. mark = (*z)->pages_low;
  758. else
  759. mark = (*z)->pages_high;
  760. if (!zone_watermark_ok(*z, order, mark,
  761. classzone_idx, alloc_flags))
  762. continue;
  763. }
  764. page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
  765. if (page) {
  766. break;
  767. }
  768. } while (*(++z) != NULL);
  769. return page;
  770. }
  771. /*
  772. * This is the 'heart' of the zoned buddy allocator.
  773. */
  774. struct page * fastcall
  775. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  776. struct zonelist *zonelist)
  777. {
  778. const gfp_t wait = gfp_mask & __GFP_WAIT;
  779. struct zone **z;
  780. struct page *page;
  781. struct reclaim_state reclaim_state;
  782. struct task_struct *p = current;
  783. int do_retry;
  784. int alloc_flags;
  785. int did_some_progress;
  786. might_sleep_if(wait);
  787. restart:
  788. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  789. if (unlikely(*z == NULL)) {
  790. /* Should this ever happen?? */
  791. return NULL;
  792. }
  793. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  794. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  795. if (page)
  796. goto got_pg;
  797. do {
  798. wakeup_kswapd(*z, order);
  799. } while (*(++z));
  800. /*
  801. * OK, we're below the kswapd watermark and have kicked background
  802. * reclaim. Now things get more complex, so set up alloc_flags according
  803. * to how we want to proceed.
  804. *
  805. * The caller may dip into page reserves a bit more if the caller
  806. * cannot run direct reclaim, or if the caller has realtime scheduling
  807. * policy.
  808. */
  809. alloc_flags = ALLOC_WMARK_MIN;
  810. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  811. alloc_flags |= ALLOC_HARDER;
  812. if (gfp_mask & __GFP_HIGH)
  813. alloc_flags |= ALLOC_HIGH;
  814. alloc_flags |= ALLOC_CPUSET;
  815. /*
  816. * Go through the zonelist again. Let __GFP_HIGH and allocations
  817. * coming from realtime tasks go deeper into reserves.
  818. *
  819. * This is the last chance, in general, before the goto nopage.
  820. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  821. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  822. */
  823. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  824. if (page)
  825. goto got_pg;
  826. /* This allocation should allow future memory freeing. */
  827. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  828. && !in_interrupt()) {
  829. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  830. nofail_alloc:
  831. /* go through the zonelist yet again, ignoring mins */
  832. page = get_page_from_freelist(gfp_mask, order,
  833. zonelist, ALLOC_NO_WATERMARKS);
  834. if (page)
  835. goto got_pg;
  836. if (gfp_mask & __GFP_NOFAIL) {
  837. blk_congestion_wait(WRITE, HZ/50);
  838. goto nofail_alloc;
  839. }
  840. }
  841. goto nopage;
  842. }
  843. /* Atomic allocations - we can't balance anything */
  844. if (!wait)
  845. goto nopage;
  846. rebalance:
  847. cond_resched();
  848. /* We now go into synchronous reclaim */
  849. p->flags |= PF_MEMALLOC;
  850. reclaim_state.reclaimed_slab = 0;
  851. p->reclaim_state = &reclaim_state;
  852. did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
  853. p->reclaim_state = NULL;
  854. p->flags &= ~PF_MEMALLOC;
  855. cond_resched();
  856. if (likely(did_some_progress)) {
  857. page = get_page_from_freelist(gfp_mask, order,
  858. zonelist, alloc_flags);
  859. if (page)
  860. goto got_pg;
  861. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  862. /*
  863. * Go through the zonelist yet one more time, keep
  864. * very high watermark here, this is only to catch
  865. * a parallel oom killing, we must fail if we're still
  866. * under heavy pressure.
  867. */
  868. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  869. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  870. if (page)
  871. goto got_pg;
  872. out_of_memory(gfp_mask, order);
  873. goto restart;
  874. }
  875. /*
  876. * Don't let big-order allocations loop unless the caller explicitly
  877. * requests that. Wait for some write requests to complete then retry.
  878. *
  879. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  880. * <= 3, but that may not be true in other implementations.
  881. */
  882. do_retry = 0;
  883. if (!(gfp_mask & __GFP_NORETRY)) {
  884. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  885. do_retry = 1;
  886. if (gfp_mask & __GFP_NOFAIL)
  887. do_retry = 1;
  888. }
  889. if (do_retry) {
  890. blk_congestion_wait(WRITE, HZ/50);
  891. goto rebalance;
  892. }
  893. nopage:
  894. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  895. printk(KERN_WARNING "%s: page allocation failure."
  896. " order:%d, mode:0x%x\n",
  897. p->comm, order, gfp_mask);
  898. dump_stack();
  899. show_mem();
  900. }
  901. got_pg:
  902. return page;
  903. }
  904. EXPORT_SYMBOL(__alloc_pages);
  905. /*
  906. * Common helper functions.
  907. */
  908. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  909. {
  910. struct page * page;
  911. page = alloc_pages(gfp_mask, order);
  912. if (!page)
  913. return 0;
  914. return (unsigned long) page_address(page);
  915. }
  916. EXPORT_SYMBOL(__get_free_pages);
  917. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  918. {
  919. struct page * page;
  920. /*
  921. * get_zeroed_page() returns a 32-bit address, which cannot represent
  922. * a highmem page
  923. */
  924. BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  925. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  926. if (page)
  927. return (unsigned long) page_address(page);
  928. return 0;
  929. }
  930. EXPORT_SYMBOL(get_zeroed_page);
  931. void __pagevec_free(struct pagevec *pvec)
  932. {
  933. int i = pagevec_count(pvec);
  934. while (--i >= 0)
  935. free_hot_cold_page(pvec->pages[i], pvec->cold);
  936. }
  937. fastcall void __free_pages(struct page *page, unsigned int order)
  938. {
  939. if (put_page_testzero(page)) {
  940. if (order == 0)
  941. free_hot_page(page);
  942. else
  943. __free_pages_ok(page, order);
  944. }
  945. }
  946. EXPORT_SYMBOL(__free_pages);
  947. fastcall void free_pages(unsigned long addr, unsigned int order)
  948. {
  949. if (addr != 0) {
  950. BUG_ON(!virt_addr_valid((void *)addr));
  951. __free_pages(virt_to_page((void *)addr), order);
  952. }
  953. }
  954. EXPORT_SYMBOL(free_pages);
  955. /*
  956. * Total amount of free (allocatable) RAM:
  957. */
  958. unsigned int nr_free_pages(void)
  959. {
  960. unsigned int sum = 0;
  961. struct zone *zone;
  962. for_each_zone(zone)
  963. sum += zone->free_pages;
  964. return sum;
  965. }
  966. EXPORT_SYMBOL(nr_free_pages);
  967. #ifdef CONFIG_NUMA
  968. unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
  969. {
  970. unsigned int i, sum = 0;
  971. for (i = 0; i < MAX_NR_ZONES; i++)
  972. sum += pgdat->node_zones[i].free_pages;
  973. return sum;
  974. }
  975. #endif
  976. static unsigned int nr_free_zone_pages(int offset)
  977. {
  978. /* Just pick one node, since fallback list is circular */
  979. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  980. unsigned int sum = 0;
  981. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  982. struct zone **zonep = zonelist->zones;
  983. struct zone *zone;
  984. for (zone = *zonep++; zone; zone = *zonep++) {
  985. unsigned long size = zone->present_pages;
  986. unsigned long high = zone->pages_high;
  987. if (size > high)
  988. sum += size - high;
  989. }
  990. return sum;
  991. }
  992. /*
  993. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  994. */
  995. unsigned int nr_free_buffer_pages(void)
  996. {
  997. return nr_free_zone_pages(gfp_zone(GFP_USER));
  998. }
  999. /*
  1000. * Amount of free RAM allocatable within all zones
  1001. */
  1002. unsigned int nr_free_pagecache_pages(void)
  1003. {
  1004. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
  1005. }
  1006. #ifdef CONFIG_HIGHMEM
  1007. unsigned int nr_free_highpages (void)
  1008. {
  1009. pg_data_t *pgdat;
  1010. unsigned int pages = 0;
  1011. for_each_pgdat(pgdat)
  1012. pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1013. return pages;
  1014. }
  1015. #endif
  1016. #ifdef CONFIG_NUMA
  1017. static void show_node(struct zone *zone)
  1018. {
  1019. printk("Node %d ", zone->zone_pgdat->node_id);
  1020. }
  1021. #else
  1022. #define show_node(zone) do { } while (0)
  1023. #endif
  1024. /*
  1025. * Accumulate the page_state information across all CPUs.
  1026. * The result is unavoidably approximate - it can change
  1027. * during and after execution of this function.
  1028. */
  1029. static DEFINE_PER_CPU(struct page_state, page_states) = {0};
  1030. atomic_t nr_pagecache = ATOMIC_INIT(0);
  1031. EXPORT_SYMBOL(nr_pagecache);
  1032. #ifdef CONFIG_SMP
  1033. DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
  1034. #endif
  1035. static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
  1036. {
  1037. int cpu = 0;
  1038. memset(ret, 0, sizeof(*ret));
  1039. cpu = first_cpu(*cpumask);
  1040. while (cpu < NR_CPUS) {
  1041. unsigned long *in, *out, off;
  1042. in = (unsigned long *)&per_cpu(page_states, cpu);
  1043. cpu = next_cpu(cpu, *cpumask);
  1044. if (cpu < NR_CPUS)
  1045. prefetch(&per_cpu(page_states, cpu));
  1046. out = (unsigned long *)ret;
  1047. for (off = 0; off < nr; off++)
  1048. *out++ += *in++;
  1049. }
  1050. }
  1051. void get_page_state_node(struct page_state *ret, int node)
  1052. {
  1053. int nr;
  1054. cpumask_t mask = node_to_cpumask(node);
  1055. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  1056. nr /= sizeof(unsigned long);
  1057. __get_page_state(ret, nr+1, &mask);
  1058. }
  1059. void get_page_state(struct page_state *ret)
  1060. {
  1061. int nr;
  1062. cpumask_t mask = CPU_MASK_ALL;
  1063. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  1064. nr /= sizeof(unsigned long);
  1065. __get_page_state(ret, nr + 1, &mask);
  1066. }
  1067. void get_full_page_state(struct page_state *ret)
  1068. {
  1069. cpumask_t mask = CPU_MASK_ALL;
  1070. __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
  1071. }
  1072. unsigned long read_page_state_offset(unsigned long offset)
  1073. {
  1074. unsigned long ret = 0;
  1075. int cpu;
  1076. for_each_cpu(cpu) {
  1077. unsigned long in;
  1078. in = (unsigned long)&per_cpu(page_states, cpu) + offset;
  1079. ret += *((unsigned long *)in);
  1080. }
  1081. return ret;
  1082. }
  1083. void __mod_page_state_offset(unsigned long offset, unsigned long delta)
  1084. {
  1085. void *ptr;
  1086. ptr = &__get_cpu_var(page_states);
  1087. *(unsigned long *)(ptr + offset) += delta;
  1088. }
  1089. EXPORT_SYMBOL(__mod_page_state_offset);
  1090. void mod_page_state_offset(unsigned long offset, unsigned long delta)
  1091. {
  1092. unsigned long flags;
  1093. void *ptr;
  1094. local_irq_save(flags);
  1095. ptr = &__get_cpu_var(page_states);
  1096. *(unsigned long *)(ptr + offset) += delta;
  1097. local_irq_restore(flags);
  1098. }
  1099. EXPORT_SYMBOL(mod_page_state_offset);
  1100. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  1101. unsigned long *free, struct pglist_data *pgdat)
  1102. {
  1103. struct zone *zones = pgdat->node_zones;
  1104. int i;
  1105. *active = 0;
  1106. *inactive = 0;
  1107. *free = 0;
  1108. for (i = 0; i < MAX_NR_ZONES; i++) {
  1109. *active += zones[i].nr_active;
  1110. *inactive += zones[i].nr_inactive;
  1111. *free += zones[i].free_pages;
  1112. }
  1113. }
  1114. void get_zone_counts(unsigned long *active,
  1115. unsigned long *inactive, unsigned long *free)
  1116. {
  1117. struct pglist_data *pgdat;
  1118. *active = 0;
  1119. *inactive = 0;
  1120. *free = 0;
  1121. for_each_pgdat(pgdat) {
  1122. unsigned long l, m, n;
  1123. __get_zone_counts(&l, &m, &n, pgdat);
  1124. *active += l;
  1125. *inactive += m;
  1126. *free += n;
  1127. }
  1128. }
  1129. void si_meminfo(struct sysinfo *val)
  1130. {
  1131. val->totalram = totalram_pages;
  1132. val->sharedram = 0;
  1133. val->freeram = nr_free_pages();
  1134. val->bufferram = nr_blockdev_pages();
  1135. #ifdef CONFIG_HIGHMEM
  1136. val->totalhigh = totalhigh_pages;
  1137. val->freehigh = nr_free_highpages();
  1138. #else
  1139. val->totalhigh = 0;
  1140. val->freehigh = 0;
  1141. #endif
  1142. val->mem_unit = PAGE_SIZE;
  1143. }
  1144. EXPORT_SYMBOL(si_meminfo);
  1145. #ifdef CONFIG_NUMA
  1146. void si_meminfo_node(struct sysinfo *val, int nid)
  1147. {
  1148. pg_data_t *pgdat = NODE_DATA(nid);
  1149. val->totalram = pgdat->node_present_pages;
  1150. val->freeram = nr_free_pages_pgdat(pgdat);
  1151. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1152. val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1153. val->mem_unit = PAGE_SIZE;
  1154. }
  1155. #endif
  1156. #define K(x) ((x) << (PAGE_SHIFT-10))
  1157. /*
  1158. * Show free area list (used inside shift_scroll-lock stuff)
  1159. * We also calculate the percentage fragmentation. We do this by counting the
  1160. * memory on each free list with the exception of the first item on the list.
  1161. */
  1162. void show_free_areas(void)
  1163. {
  1164. struct page_state ps;
  1165. int cpu, temperature;
  1166. unsigned long active;
  1167. unsigned long inactive;
  1168. unsigned long free;
  1169. struct zone *zone;
  1170. for_each_zone(zone) {
  1171. show_node(zone);
  1172. printk("%s per-cpu:", zone->name);
  1173. if (!populated_zone(zone)) {
  1174. printk(" empty\n");
  1175. continue;
  1176. } else
  1177. printk("\n");
  1178. for_each_online_cpu(cpu) {
  1179. struct per_cpu_pageset *pageset;
  1180. pageset = zone_pcp(zone, cpu);
  1181. for (temperature = 0; temperature < 2; temperature++)
  1182. printk("cpu %d %s: high %d, batch %d used:%d\n",
  1183. cpu,
  1184. temperature ? "cold" : "hot",
  1185. pageset->pcp[temperature].high,
  1186. pageset->pcp[temperature].batch,
  1187. pageset->pcp[temperature].count);
  1188. }
  1189. }
  1190. get_page_state(&ps);
  1191. get_zone_counts(&active, &inactive, &free);
  1192. printk("Free pages: %11ukB (%ukB HighMem)\n",
  1193. K(nr_free_pages()),
  1194. K(nr_free_highpages()));
  1195. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
  1196. "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
  1197. active,
  1198. inactive,
  1199. ps.nr_dirty,
  1200. ps.nr_writeback,
  1201. ps.nr_unstable,
  1202. nr_free_pages(),
  1203. ps.nr_slab,
  1204. ps.nr_mapped,
  1205. ps.nr_page_table_pages);
  1206. for_each_zone(zone) {
  1207. int i;
  1208. show_node(zone);
  1209. printk("%s"
  1210. " free:%lukB"
  1211. " min:%lukB"
  1212. " low:%lukB"
  1213. " high:%lukB"
  1214. " active:%lukB"
  1215. " inactive:%lukB"
  1216. " present:%lukB"
  1217. " pages_scanned:%lu"
  1218. " all_unreclaimable? %s"
  1219. "\n",
  1220. zone->name,
  1221. K(zone->free_pages),
  1222. K(zone->pages_min),
  1223. K(zone->pages_low),
  1224. K(zone->pages_high),
  1225. K(zone->nr_active),
  1226. K(zone->nr_inactive),
  1227. K(zone->present_pages),
  1228. zone->pages_scanned,
  1229. (zone->all_unreclaimable ? "yes" : "no")
  1230. );
  1231. printk("lowmem_reserve[]:");
  1232. for (i = 0; i < MAX_NR_ZONES; i++)
  1233. printk(" %lu", zone->lowmem_reserve[i]);
  1234. printk("\n");
  1235. }
  1236. for_each_zone(zone) {
  1237. unsigned long nr, flags, order, total = 0;
  1238. show_node(zone);
  1239. printk("%s: ", zone->name);
  1240. if (!populated_zone(zone)) {
  1241. printk("empty\n");
  1242. continue;
  1243. }
  1244. spin_lock_irqsave(&zone->lock, flags);
  1245. for (order = 0; order < MAX_ORDER; order++) {
  1246. nr = zone->free_area[order].nr_free;
  1247. total += nr << order;
  1248. printk("%lu*%lukB ", nr, K(1UL) << order);
  1249. }
  1250. spin_unlock_irqrestore(&zone->lock, flags);
  1251. printk("= %lukB\n", K(total));
  1252. }
  1253. show_swap_cache_info();
  1254. }
  1255. /*
  1256. * Builds allocation fallback zone lists.
  1257. *
  1258. * Add all populated zones of a node to the zonelist.
  1259. */
  1260. static int __init build_zonelists_node(pg_data_t *pgdat,
  1261. struct zonelist *zonelist, int nr_zones, int zone_type)
  1262. {
  1263. struct zone *zone;
  1264. BUG_ON(zone_type > ZONE_HIGHMEM);
  1265. do {
  1266. zone = pgdat->node_zones + zone_type;
  1267. if (populated_zone(zone)) {
  1268. #ifndef CONFIG_HIGHMEM
  1269. BUG_ON(zone_type > ZONE_NORMAL);
  1270. #endif
  1271. zonelist->zones[nr_zones++] = zone;
  1272. check_highest_zone(zone_type);
  1273. }
  1274. zone_type--;
  1275. } while (zone_type >= 0);
  1276. return nr_zones;
  1277. }
  1278. static inline int highest_zone(int zone_bits)
  1279. {
  1280. int res = ZONE_NORMAL;
  1281. if (zone_bits & (__force int)__GFP_HIGHMEM)
  1282. res = ZONE_HIGHMEM;
  1283. if (zone_bits & (__force int)__GFP_DMA32)
  1284. res = ZONE_DMA32;
  1285. if (zone_bits & (__force int)__GFP_DMA)
  1286. res = ZONE_DMA;
  1287. return res;
  1288. }
  1289. #ifdef CONFIG_NUMA
  1290. #define MAX_NODE_LOAD (num_online_nodes())
  1291. static int __initdata node_load[MAX_NUMNODES];
  1292. /**
  1293. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1294. * @node: node whose fallback list we're appending
  1295. * @used_node_mask: nodemask_t of already used nodes
  1296. *
  1297. * We use a number of factors to determine which is the next node that should
  1298. * appear on a given node's fallback list. The node should not have appeared
  1299. * already in @node's fallback list, and it should be the next closest node
  1300. * according to the distance array (which contains arbitrary distance values
  1301. * from each node to each node in the system), and should also prefer nodes
  1302. * with no CPUs, since presumably they'll have very little allocation pressure
  1303. * on them otherwise.
  1304. * It returns -1 if no node is found.
  1305. */
  1306. static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
  1307. {
  1308. int i, n, val;
  1309. int min_val = INT_MAX;
  1310. int best_node = -1;
  1311. for_each_online_node(i) {
  1312. cpumask_t tmp;
  1313. /* Start from local node */
  1314. n = (node+i) % num_online_nodes();
  1315. /* Don't want a node to appear more than once */
  1316. if (node_isset(n, *used_node_mask))
  1317. continue;
  1318. /* Use the local node if we haven't already */
  1319. if (!node_isset(node, *used_node_mask)) {
  1320. best_node = node;
  1321. break;
  1322. }
  1323. /* Use the distance array to find the distance */
  1324. val = node_distance(node, n);
  1325. /* Give preference to headless and unused nodes */
  1326. tmp = node_to_cpumask(n);
  1327. if (!cpus_empty(tmp))
  1328. val += PENALTY_FOR_NODE_WITH_CPUS;
  1329. /* Slight preference for less loaded node */
  1330. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1331. val += node_load[n];
  1332. if (val < min_val) {
  1333. min_val = val;
  1334. best_node = n;
  1335. }
  1336. }
  1337. if (best_node >= 0)
  1338. node_set(best_node, *used_node_mask);
  1339. return best_node;
  1340. }
  1341. static void __init build_zonelists(pg_data_t *pgdat)
  1342. {
  1343. int i, j, k, node, local_node;
  1344. int prev_node, load;
  1345. struct zonelist *zonelist;
  1346. nodemask_t used_mask;
  1347. /* initialize zonelists */
  1348. for (i = 0; i < GFP_ZONETYPES; i++) {
  1349. zonelist = pgdat->node_zonelists + i;
  1350. zonelist->zones[0] = NULL;
  1351. }
  1352. /* NUMA-aware ordering of nodes */
  1353. local_node = pgdat->node_id;
  1354. load = num_online_nodes();
  1355. prev_node = local_node;
  1356. nodes_clear(used_mask);
  1357. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1358. /*
  1359. * We don't want to pressure a particular node.
  1360. * So adding penalty to the first node in same
  1361. * distance group to make it round-robin.
  1362. */
  1363. if (node_distance(local_node, node) !=
  1364. node_distance(local_node, prev_node))
  1365. node_load[node] += load;
  1366. prev_node = node;
  1367. load--;
  1368. for (i = 0; i < GFP_ZONETYPES; i++) {
  1369. zonelist = pgdat->node_zonelists + i;
  1370. for (j = 0; zonelist->zones[j] != NULL; j++);
  1371. k = highest_zone(i);
  1372. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1373. zonelist->zones[j] = NULL;
  1374. }
  1375. }
  1376. }
  1377. #else /* CONFIG_NUMA */
  1378. static void __init build_zonelists(pg_data_t *pgdat)
  1379. {
  1380. int i, j, k, node, local_node;
  1381. local_node = pgdat->node_id;
  1382. for (i = 0; i < GFP_ZONETYPES; i++) {
  1383. struct zonelist *zonelist;
  1384. zonelist = pgdat->node_zonelists + i;
  1385. j = 0;
  1386. k = highest_zone(i);
  1387. j = build_zonelists_node(pgdat, zonelist, j, k);
  1388. /*
  1389. * Now we build the zonelist so that it contains the zones
  1390. * of all the other nodes.
  1391. * We don't want to pressure a particular node, so when
  1392. * building the zones for node N, we make sure that the
  1393. * zones coming right after the local ones are those from
  1394. * node N+1 (modulo N)
  1395. */
  1396. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1397. if (!node_online(node))
  1398. continue;
  1399. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1400. }
  1401. for (node = 0; node < local_node; node++) {
  1402. if (!node_online(node))
  1403. continue;
  1404. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1405. }
  1406. zonelist->zones[j] = NULL;
  1407. }
  1408. }
  1409. #endif /* CONFIG_NUMA */
  1410. void __init build_all_zonelists(void)
  1411. {
  1412. int i;
  1413. for_each_online_node(i)
  1414. build_zonelists(NODE_DATA(i));
  1415. printk("Built %i zonelists\n", num_online_nodes());
  1416. cpuset_init_current_mems_allowed();
  1417. }
  1418. /*
  1419. * Helper functions to size the waitqueue hash table.
  1420. * Essentially these want to choose hash table sizes sufficiently
  1421. * large so that collisions trying to wait on pages are rare.
  1422. * But in fact, the number of active page waitqueues on typical
  1423. * systems is ridiculously low, less than 200. So this is even
  1424. * conservative, even though it seems large.
  1425. *
  1426. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1427. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1428. */
  1429. #define PAGES_PER_WAITQUEUE 256
  1430. static inline unsigned long wait_table_size(unsigned long pages)
  1431. {
  1432. unsigned long size = 1;
  1433. pages /= PAGES_PER_WAITQUEUE;
  1434. while (size < pages)
  1435. size <<= 1;
  1436. /*
  1437. * Once we have dozens or even hundreds of threads sleeping
  1438. * on IO we've got bigger problems than wait queue collision.
  1439. * Limit the size of the wait table to a reasonable size.
  1440. */
  1441. size = min(size, 4096UL);
  1442. return max(size, 4UL);
  1443. }
  1444. /*
  1445. * This is an integer logarithm so that shifts can be used later
  1446. * to extract the more random high bits from the multiplicative
  1447. * hash function before the remainder is taken.
  1448. */
  1449. static inline unsigned long wait_table_bits(unsigned long size)
  1450. {
  1451. return ffz(~size);
  1452. }
  1453. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1454. static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
  1455. unsigned long *zones_size, unsigned long *zholes_size)
  1456. {
  1457. unsigned long realtotalpages, totalpages = 0;
  1458. int i;
  1459. for (i = 0; i < MAX_NR_ZONES; i++)
  1460. totalpages += zones_size[i];
  1461. pgdat->node_spanned_pages = totalpages;
  1462. realtotalpages = totalpages;
  1463. if (zholes_size)
  1464. for (i = 0; i < MAX_NR_ZONES; i++)
  1465. realtotalpages -= zholes_size[i];
  1466. pgdat->node_present_pages = realtotalpages;
  1467. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
  1468. }
  1469. /*
  1470. * Initially all pages are reserved - free ones are freed
  1471. * up by free_all_bootmem() once the early boot process is
  1472. * done. Non-atomic initialization, single-pass.
  1473. */
  1474. void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1475. unsigned long start_pfn)
  1476. {
  1477. struct page *page;
  1478. unsigned long end_pfn = start_pfn + size;
  1479. unsigned long pfn;
  1480. for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
  1481. if (!early_pfn_valid(pfn))
  1482. continue;
  1483. page = pfn_to_page(pfn);
  1484. set_page_links(page, zone, nid, pfn);
  1485. set_page_count(page, 1);
  1486. reset_page_mapcount(page);
  1487. SetPageReserved(page);
  1488. INIT_LIST_HEAD(&page->lru);
  1489. #ifdef WANT_PAGE_VIRTUAL
  1490. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1491. if (!is_highmem_idx(zone))
  1492. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1493. #endif
  1494. }
  1495. }
  1496. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1497. unsigned long size)
  1498. {
  1499. int order;
  1500. for (order = 0; order < MAX_ORDER ; order++) {
  1501. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1502. zone->free_area[order].nr_free = 0;
  1503. }
  1504. }
  1505. #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
  1506. void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
  1507. unsigned long size)
  1508. {
  1509. unsigned long snum = pfn_to_section_nr(pfn);
  1510. unsigned long end = pfn_to_section_nr(pfn + size);
  1511. if (FLAGS_HAS_NODE)
  1512. zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
  1513. else
  1514. for (; snum <= end; snum++)
  1515. zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
  1516. }
  1517. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1518. #define memmap_init(size, nid, zone, start_pfn) \
  1519. memmap_init_zone((size), (nid), (zone), (start_pfn))
  1520. #endif
  1521. static int __devinit zone_batchsize(struct zone *zone)
  1522. {
  1523. int batch;
  1524. /*
  1525. * The per-cpu-pages pools are set to around 1000th of the
  1526. * size of the zone. But no more than 1/2 of a meg.
  1527. *
  1528. * OK, so we don't know how big the cache is. So guess.
  1529. */
  1530. batch = zone->present_pages / 1024;
  1531. if (batch * PAGE_SIZE > 512 * 1024)
  1532. batch = (512 * 1024) / PAGE_SIZE;
  1533. batch /= 4; /* We effectively *= 4 below */
  1534. if (batch < 1)
  1535. batch = 1;
  1536. /*
  1537. * Clamp the batch to a 2^n - 1 value. Having a power
  1538. * of 2 value was found to be more likely to have
  1539. * suboptimal cache aliasing properties in some cases.
  1540. *
  1541. * For example if 2 tasks are alternately allocating
  1542. * batches of pages, one task can end up with a lot
  1543. * of pages of one half of the possible page colors
  1544. * and the other with pages of the other colors.
  1545. */
  1546. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1547. return batch;
  1548. }
  1549. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1550. {
  1551. struct per_cpu_pages *pcp;
  1552. memset(p, 0, sizeof(*p));
  1553. pcp = &p->pcp[0]; /* hot */
  1554. pcp->count = 0;
  1555. pcp->high = 6 * batch;
  1556. pcp->batch = max(1UL, 1 * batch);
  1557. INIT_LIST_HEAD(&pcp->list);
  1558. pcp = &p->pcp[1]; /* cold*/
  1559. pcp->count = 0;
  1560. pcp->high = 2 * batch;
  1561. pcp->batch = max(1UL, batch/2);
  1562. INIT_LIST_HEAD(&pcp->list);
  1563. }
  1564. #ifdef CONFIG_NUMA
  1565. /*
  1566. * Boot pageset table. One per cpu which is going to be used for all
  1567. * zones and all nodes. The parameters will be set in such a way
  1568. * that an item put on a list will immediately be handed over to
  1569. * the buddy list. This is safe since pageset manipulation is done
  1570. * with interrupts disabled.
  1571. *
  1572. * Some NUMA counter updates may also be caught by the boot pagesets.
  1573. *
  1574. * The boot_pagesets must be kept even after bootup is complete for
  1575. * unused processors and/or zones. They do play a role for bootstrapping
  1576. * hotplugged processors.
  1577. *
  1578. * zoneinfo_show() and maybe other functions do
  1579. * not check if the processor is online before following the pageset pointer.
  1580. * Other parts of the kernel may not check if the zone is available.
  1581. */
  1582. static struct per_cpu_pageset
  1583. boot_pageset[NR_CPUS];
  1584. /*
  1585. * Dynamically allocate memory for the
  1586. * per cpu pageset array in struct zone.
  1587. */
  1588. static int __devinit process_zones(int cpu)
  1589. {
  1590. struct zone *zone, *dzone;
  1591. for_each_zone(zone) {
  1592. zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
  1593. GFP_KERNEL, cpu_to_node(cpu));
  1594. if (!zone->pageset[cpu])
  1595. goto bad;
  1596. setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
  1597. }
  1598. return 0;
  1599. bad:
  1600. for_each_zone(dzone) {
  1601. if (dzone == zone)
  1602. break;
  1603. kfree(dzone->pageset[cpu]);
  1604. dzone->pageset[cpu] = NULL;
  1605. }
  1606. return -ENOMEM;
  1607. }
  1608. static inline void free_zone_pagesets(int cpu)
  1609. {
  1610. #ifdef CONFIG_NUMA
  1611. struct zone *zone;
  1612. for_each_zone(zone) {
  1613. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  1614. zone_pcp(zone, cpu) = NULL;
  1615. kfree(pset);
  1616. }
  1617. #endif
  1618. }
  1619. static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
  1620. unsigned long action,
  1621. void *hcpu)
  1622. {
  1623. int cpu = (long)hcpu;
  1624. int ret = NOTIFY_OK;
  1625. switch (action) {
  1626. case CPU_UP_PREPARE:
  1627. if (process_zones(cpu))
  1628. ret = NOTIFY_BAD;
  1629. break;
  1630. case CPU_UP_CANCELED:
  1631. case CPU_DEAD:
  1632. free_zone_pagesets(cpu);
  1633. break;
  1634. default:
  1635. break;
  1636. }
  1637. return ret;
  1638. }
  1639. static struct notifier_block pageset_notifier =
  1640. { &pageset_cpuup_callback, NULL, 0 };
  1641. void __init setup_per_cpu_pageset(void)
  1642. {
  1643. int err;
  1644. /* Initialize per_cpu_pageset for cpu 0.
  1645. * A cpuup callback will do this for every cpu
  1646. * as it comes online
  1647. */
  1648. err = process_zones(smp_processor_id());
  1649. BUG_ON(err);
  1650. register_cpu_notifier(&pageset_notifier);
  1651. }
  1652. #endif
  1653. static __devinit
  1654. void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  1655. {
  1656. int i;
  1657. struct pglist_data *pgdat = zone->zone_pgdat;
  1658. /*
  1659. * The per-page waitqueue mechanism uses hashed waitqueues
  1660. * per zone.
  1661. */
  1662. zone->wait_table_size = wait_table_size(zone_size_pages);
  1663. zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
  1664. zone->wait_table = (wait_queue_head_t *)
  1665. alloc_bootmem_node(pgdat, zone->wait_table_size
  1666. * sizeof(wait_queue_head_t));
  1667. for(i = 0; i < zone->wait_table_size; ++i)
  1668. init_waitqueue_head(zone->wait_table + i);
  1669. }
  1670. static __devinit void zone_pcp_init(struct zone *zone)
  1671. {
  1672. int cpu;
  1673. unsigned long batch = zone_batchsize(zone);
  1674. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1675. #ifdef CONFIG_NUMA
  1676. /* Early boot. Slab allocator not functional yet */
  1677. zone->pageset[cpu] = &boot_pageset[cpu];
  1678. setup_pageset(&boot_pageset[cpu],0);
  1679. #else
  1680. setup_pageset(zone_pcp(zone,cpu), batch);
  1681. #endif
  1682. }
  1683. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1684. zone->name, zone->present_pages, batch);
  1685. }
  1686. static __devinit void init_currently_empty_zone(struct zone *zone,
  1687. unsigned long zone_start_pfn, unsigned long size)
  1688. {
  1689. struct pglist_data *pgdat = zone->zone_pgdat;
  1690. zone_wait_table_init(zone, size);
  1691. pgdat->nr_zones = zone_idx(zone) + 1;
  1692. zone->zone_mem_map = pfn_to_page(zone_start_pfn);
  1693. zone->zone_start_pfn = zone_start_pfn;
  1694. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  1695. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1696. }
  1697. /*
  1698. * Set up the zone data structures:
  1699. * - mark all pages reserved
  1700. * - mark all memory queues empty
  1701. * - clear the memory bitmaps
  1702. */
  1703. static void __init free_area_init_core(struct pglist_data *pgdat,
  1704. unsigned long *zones_size, unsigned long *zholes_size)
  1705. {
  1706. unsigned long j;
  1707. int nid = pgdat->node_id;
  1708. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  1709. pgdat_resize_init(pgdat);
  1710. pgdat->nr_zones = 0;
  1711. init_waitqueue_head(&pgdat->kswapd_wait);
  1712. pgdat->kswapd_max_order = 0;
  1713. for (j = 0; j < MAX_NR_ZONES; j++) {
  1714. struct zone *zone = pgdat->node_zones + j;
  1715. unsigned long size, realsize;
  1716. realsize = size = zones_size[j];
  1717. if (zholes_size)
  1718. realsize -= zholes_size[j];
  1719. if (j < ZONE_HIGHMEM)
  1720. nr_kernel_pages += realsize;
  1721. nr_all_pages += realsize;
  1722. zone->spanned_pages = size;
  1723. zone->present_pages = realsize;
  1724. zone->name = zone_names[j];
  1725. spin_lock_init(&zone->lock);
  1726. spin_lock_init(&zone->lru_lock);
  1727. zone_seqlock_init(zone);
  1728. zone->zone_pgdat = pgdat;
  1729. zone->free_pages = 0;
  1730. zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
  1731. zone_pcp_init(zone);
  1732. INIT_LIST_HEAD(&zone->active_list);
  1733. INIT_LIST_HEAD(&zone->inactive_list);
  1734. zone->nr_scan_active = 0;
  1735. zone->nr_scan_inactive = 0;
  1736. zone->nr_active = 0;
  1737. zone->nr_inactive = 0;
  1738. atomic_set(&zone->reclaim_in_progress, 0);
  1739. if (!size)
  1740. continue;
  1741. zonetable_add(zone, nid, j, zone_start_pfn, size);
  1742. init_currently_empty_zone(zone, zone_start_pfn, size);
  1743. zone_start_pfn += size;
  1744. }
  1745. }
  1746. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  1747. {
  1748. /* Skip empty nodes */
  1749. if (!pgdat->node_spanned_pages)
  1750. return;
  1751. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  1752. /* ia64 gets its own node_mem_map, before this, without bootmem */
  1753. if (!pgdat->node_mem_map) {
  1754. unsigned long size;
  1755. struct page *map;
  1756. size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
  1757. map = alloc_remap(pgdat->node_id, size);
  1758. if (!map)
  1759. map = alloc_bootmem_node(pgdat, size);
  1760. pgdat->node_mem_map = map;
  1761. }
  1762. #ifdef CONFIG_FLATMEM
  1763. /*
  1764. * With no DISCONTIG, the global mem_map is just set as node 0's
  1765. */
  1766. if (pgdat == NODE_DATA(0))
  1767. mem_map = NODE_DATA(0)->node_mem_map;
  1768. #endif
  1769. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  1770. }
  1771. void __init free_area_init_node(int nid, struct pglist_data *pgdat,
  1772. unsigned long *zones_size, unsigned long node_start_pfn,
  1773. unsigned long *zholes_size)
  1774. {
  1775. pgdat->node_id = nid;
  1776. pgdat->node_start_pfn = node_start_pfn;
  1777. calculate_zone_totalpages(pgdat, zones_size, zholes_size);
  1778. alloc_node_mem_map(pgdat);
  1779. free_area_init_core(pgdat, zones_size, zholes_size);
  1780. }
  1781. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1782. static bootmem_data_t contig_bootmem_data;
  1783. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  1784. EXPORT_SYMBOL(contig_page_data);
  1785. #endif
  1786. void __init free_area_init(unsigned long *zones_size)
  1787. {
  1788. free_area_init_node(0, NODE_DATA(0), zones_size,
  1789. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  1790. }
  1791. #ifdef CONFIG_PROC_FS
  1792. #include <linux/seq_file.h>
  1793. static void *frag_start(struct seq_file *m, loff_t *pos)
  1794. {
  1795. pg_data_t *pgdat;
  1796. loff_t node = *pos;
  1797. for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
  1798. --node;
  1799. return pgdat;
  1800. }
  1801. static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
  1802. {
  1803. pg_data_t *pgdat = (pg_data_t *)arg;
  1804. (*pos)++;
  1805. return pgdat->pgdat_next;
  1806. }
  1807. static void frag_stop(struct seq_file *m, void *arg)
  1808. {
  1809. }
  1810. /*
  1811. * This walks the free areas for each zone.
  1812. */
  1813. static int frag_show(struct seq_file *m, void *arg)
  1814. {
  1815. pg_data_t *pgdat = (pg_data_t *)arg;
  1816. struct zone *zone;
  1817. struct zone *node_zones = pgdat->node_zones;
  1818. unsigned long flags;
  1819. int order;
  1820. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  1821. if (!populated_zone(zone))
  1822. continue;
  1823. spin_lock_irqsave(&zone->lock, flags);
  1824. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  1825. for (order = 0; order < MAX_ORDER; ++order)
  1826. seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
  1827. spin_unlock_irqrestore(&zone->lock, flags);
  1828. seq_putc(m, '\n');
  1829. }
  1830. return 0;
  1831. }
  1832. struct seq_operations fragmentation_op = {
  1833. .start = frag_start,
  1834. .next = frag_next,
  1835. .stop = frag_stop,
  1836. .show = frag_show,
  1837. };
  1838. /*
  1839. * Output information about zones in @pgdat.
  1840. */
  1841. static int zoneinfo_show(struct seq_file *m, void *arg)
  1842. {
  1843. pg_data_t *pgdat = arg;
  1844. struct zone *zone;
  1845. struct zone *node_zones = pgdat->node_zones;
  1846. unsigned long flags;
  1847. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
  1848. int i;
  1849. if (!populated_zone(zone))
  1850. continue;
  1851. spin_lock_irqsave(&zone->lock, flags);
  1852. seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
  1853. seq_printf(m,
  1854. "\n pages free %lu"
  1855. "\n min %lu"
  1856. "\n low %lu"
  1857. "\n high %lu"
  1858. "\n active %lu"
  1859. "\n inactive %lu"
  1860. "\n scanned %lu (a: %lu i: %lu)"
  1861. "\n spanned %lu"
  1862. "\n present %lu",
  1863. zone->free_pages,
  1864. zone->pages_min,
  1865. zone->pages_low,
  1866. zone->pages_high,
  1867. zone->nr_active,
  1868. zone->nr_inactive,
  1869. zone->pages_scanned,
  1870. zone->nr_scan_active, zone->nr_scan_inactive,
  1871. zone->spanned_pages,
  1872. zone->present_pages);
  1873. seq_printf(m,
  1874. "\n protection: (%lu",
  1875. zone->lowmem_reserve[0]);
  1876. for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
  1877. seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
  1878. seq_printf(m,
  1879. ")"
  1880. "\n pagesets");
  1881. for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
  1882. struct per_cpu_pageset *pageset;
  1883. int j;
  1884. pageset = zone_pcp(zone, i);
  1885. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1886. if (pageset->pcp[j].count)
  1887. break;
  1888. }
  1889. if (j == ARRAY_SIZE(pageset->pcp))
  1890. continue;
  1891. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1892. seq_printf(m,
  1893. "\n cpu: %i pcp: %i"
  1894. "\n count: %i"
  1895. "\n high: %i"
  1896. "\n batch: %i",
  1897. i, j,
  1898. pageset->pcp[j].count,
  1899. pageset->pcp[j].high,
  1900. pageset->pcp[j].batch);
  1901. }
  1902. #ifdef CONFIG_NUMA
  1903. seq_printf(m,
  1904. "\n numa_hit: %lu"
  1905. "\n numa_miss: %lu"
  1906. "\n numa_foreign: %lu"
  1907. "\n interleave_hit: %lu"
  1908. "\n local_node: %lu"
  1909. "\n other_node: %lu",
  1910. pageset->numa_hit,
  1911. pageset->numa_miss,
  1912. pageset->numa_foreign,
  1913. pageset->interleave_hit,
  1914. pageset->local_node,
  1915. pageset->other_node);
  1916. #endif
  1917. }
  1918. seq_printf(m,
  1919. "\n all_unreclaimable: %u"
  1920. "\n prev_priority: %i"
  1921. "\n temp_priority: %i"
  1922. "\n start_pfn: %lu",
  1923. zone->all_unreclaimable,
  1924. zone->prev_priority,
  1925. zone->temp_priority,
  1926. zone->zone_start_pfn);
  1927. spin_unlock_irqrestore(&zone->lock, flags);
  1928. seq_putc(m, '\n');
  1929. }
  1930. return 0;
  1931. }
  1932. struct seq_operations zoneinfo_op = {
  1933. .start = frag_start, /* iterate over all zones. The same as in
  1934. * fragmentation. */
  1935. .next = frag_next,
  1936. .stop = frag_stop,
  1937. .show = zoneinfo_show,
  1938. };
  1939. static char *vmstat_text[] = {
  1940. "nr_dirty",
  1941. "nr_writeback",
  1942. "nr_unstable",
  1943. "nr_page_table_pages",
  1944. "nr_mapped",
  1945. "nr_slab",
  1946. "pgpgin",
  1947. "pgpgout",
  1948. "pswpin",
  1949. "pswpout",
  1950. "pgalloc_high",
  1951. "pgalloc_normal",
  1952. "pgalloc_dma32",
  1953. "pgalloc_dma",
  1954. "pgfree",
  1955. "pgactivate",
  1956. "pgdeactivate",
  1957. "pgfault",
  1958. "pgmajfault",
  1959. "pgrefill_high",
  1960. "pgrefill_normal",
  1961. "pgrefill_dma32",
  1962. "pgrefill_dma",
  1963. "pgsteal_high",
  1964. "pgsteal_normal",
  1965. "pgsteal_dma32",
  1966. "pgsteal_dma",
  1967. "pgscan_kswapd_high",
  1968. "pgscan_kswapd_normal",
  1969. "pgscan_kswapd_dma32",
  1970. "pgscan_kswapd_dma",
  1971. "pgscan_direct_high",
  1972. "pgscan_direct_normal",
  1973. "pgscan_direct_dma32",
  1974. "pgscan_direct_dma",
  1975. "pginodesteal",
  1976. "slabs_scanned",
  1977. "kswapd_steal",
  1978. "kswapd_inodesteal",
  1979. "pageoutrun",
  1980. "allocstall",
  1981. "pgrotated",
  1982. "nr_bounce",
  1983. };
  1984. static void *vmstat_start(struct seq_file *m, loff_t *pos)
  1985. {
  1986. struct page_state *ps;
  1987. if (*pos >= ARRAY_SIZE(vmstat_text))
  1988. return NULL;
  1989. ps = kmalloc(sizeof(*ps), GFP_KERNEL);
  1990. m->private = ps;
  1991. if (!ps)
  1992. return ERR_PTR(-ENOMEM);
  1993. get_full_page_state(ps);
  1994. ps->pgpgin /= 2; /* sectors -> kbytes */
  1995. ps->pgpgout /= 2;
  1996. return (unsigned long *)ps + *pos;
  1997. }
  1998. static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
  1999. {
  2000. (*pos)++;
  2001. if (*pos >= ARRAY_SIZE(vmstat_text))
  2002. return NULL;
  2003. return (unsigned long *)m->private + *pos;
  2004. }
  2005. static int vmstat_show(struct seq_file *m, void *arg)
  2006. {
  2007. unsigned long *l = arg;
  2008. unsigned long off = l - (unsigned long *)m->private;
  2009. seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
  2010. return 0;
  2011. }
  2012. static void vmstat_stop(struct seq_file *m, void *arg)
  2013. {
  2014. kfree(m->private);
  2015. m->private = NULL;
  2016. }
  2017. struct seq_operations vmstat_op = {
  2018. .start = vmstat_start,
  2019. .next = vmstat_next,
  2020. .stop = vmstat_stop,
  2021. .show = vmstat_show,
  2022. };
  2023. #endif /* CONFIG_PROC_FS */
  2024. #ifdef CONFIG_HOTPLUG_CPU
  2025. static int page_alloc_cpu_notify(struct notifier_block *self,
  2026. unsigned long action, void *hcpu)
  2027. {
  2028. int cpu = (unsigned long)hcpu;
  2029. long *count;
  2030. unsigned long *src, *dest;
  2031. if (action == CPU_DEAD) {
  2032. int i;
  2033. /* Drain local pagecache count. */
  2034. count = &per_cpu(nr_pagecache_local, cpu);
  2035. atomic_add(*count, &nr_pagecache);
  2036. *count = 0;
  2037. local_irq_disable();
  2038. __drain_pages(cpu);
  2039. /* Add dead cpu's page_states to our own. */
  2040. dest = (unsigned long *)&__get_cpu_var(page_states);
  2041. src = (unsigned long *)&per_cpu(page_states, cpu);
  2042. for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
  2043. i++) {
  2044. dest[i] += src[i];
  2045. src[i] = 0;
  2046. }
  2047. local_irq_enable();
  2048. }
  2049. return NOTIFY_OK;
  2050. }
  2051. #endif /* CONFIG_HOTPLUG_CPU */
  2052. void __init page_alloc_init(void)
  2053. {
  2054. hotcpu_notifier(page_alloc_cpu_notify, 0);
  2055. }
  2056. /*
  2057. * setup_per_zone_lowmem_reserve - called whenever
  2058. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  2059. * has a correct pages reserved value, so an adequate number of
  2060. * pages are left in the zone after a successful __alloc_pages().
  2061. */
  2062. static void setup_per_zone_lowmem_reserve(void)
  2063. {
  2064. struct pglist_data *pgdat;
  2065. int j, idx;
  2066. for_each_pgdat(pgdat) {
  2067. for (j = 0; j < MAX_NR_ZONES; j++) {
  2068. struct zone *zone = pgdat->node_zones + j;
  2069. unsigned long present_pages = zone->present_pages;
  2070. zone->lowmem_reserve[j] = 0;
  2071. for (idx = j-1; idx >= 0; idx--) {
  2072. struct zone *lower_zone;
  2073. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  2074. sysctl_lowmem_reserve_ratio[idx] = 1;
  2075. lower_zone = pgdat->node_zones + idx;
  2076. lower_zone->lowmem_reserve[j] = present_pages /
  2077. sysctl_lowmem_reserve_ratio[idx];
  2078. present_pages += lower_zone->present_pages;
  2079. }
  2080. }
  2081. }
  2082. }
  2083. /*
  2084. * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
  2085. * that the pages_{min,low,high} values for each zone are set correctly
  2086. * with respect to min_free_kbytes.
  2087. */
  2088. void setup_per_zone_pages_min(void)
  2089. {
  2090. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  2091. unsigned long lowmem_pages = 0;
  2092. struct zone *zone;
  2093. unsigned long flags;
  2094. /* Calculate total number of !ZONE_HIGHMEM pages */
  2095. for_each_zone(zone) {
  2096. if (!is_highmem(zone))
  2097. lowmem_pages += zone->present_pages;
  2098. }
  2099. for_each_zone(zone) {
  2100. unsigned long tmp;
  2101. spin_lock_irqsave(&zone->lru_lock, flags);
  2102. tmp = (pages_min * zone->present_pages) / lowmem_pages;
  2103. if (is_highmem(zone)) {
  2104. /*
  2105. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  2106. * need highmem pages, so cap pages_min to a small
  2107. * value here.
  2108. *
  2109. * The (pages_high-pages_low) and (pages_low-pages_min)
  2110. * deltas controls asynch page reclaim, and so should
  2111. * not be capped for highmem.
  2112. */
  2113. int min_pages;
  2114. min_pages = zone->present_pages / 1024;
  2115. if (min_pages < SWAP_CLUSTER_MAX)
  2116. min_pages = SWAP_CLUSTER_MAX;
  2117. if (min_pages > 128)
  2118. min_pages = 128;
  2119. zone->pages_min = min_pages;
  2120. } else {
  2121. /*
  2122. * If it's a lowmem zone, reserve a number of pages
  2123. * proportionate to the zone's size.
  2124. */
  2125. zone->pages_min = tmp;
  2126. }
  2127. zone->pages_low = zone->pages_min + tmp / 4;
  2128. zone->pages_high = zone->pages_min + tmp / 2;
  2129. spin_unlock_irqrestore(&zone->lru_lock, flags);
  2130. }
  2131. }
  2132. /*
  2133. * Initialise min_free_kbytes.
  2134. *
  2135. * For small machines we want it small (128k min). For large machines
  2136. * we want it large (64MB max). But it is not linear, because network
  2137. * bandwidth does not increase linearly with machine size. We use
  2138. *
  2139. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  2140. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  2141. *
  2142. * which yields
  2143. *
  2144. * 16MB: 512k
  2145. * 32MB: 724k
  2146. * 64MB: 1024k
  2147. * 128MB: 1448k
  2148. * 256MB: 2048k
  2149. * 512MB: 2896k
  2150. * 1024MB: 4096k
  2151. * 2048MB: 5792k
  2152. * 4096MB: 8192k
  2153. * 8192MB: 11584k
  2154. * 16384MB: 16384k
  2155. */
  2156. static int __init init_per_zone_pages_min(void)
  2157. {
  2158. unsigned long lowmem_kbytes;
  2159. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  2160. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  2161. if (min_free_kbytes < 128)
  2162. min_free_kbytes = 128;
  2163. if (min_free_kbytes > 65536)
  2164. min_free_kbytes = 65536;
  2165. setup_per_zone_pages_min();
  2166. setup_per_zone_lowmem_reserve();
  2167. return 0;
  2168. }
  2169. module_init(init_per_zone_pages_min)
  2170. /*
  2171. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  2172. * that we can call two helper functions whenever min_free_kbytes
  2173. * changes.
  2174. */
  2175. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  2176. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2177. {
  2178. proc_dointvec(table, write, file, buffer, length, ppos);
  2179. setup_per_zone_pages_min();
  2180. return 0;
  2181. }
  2182. /*
  2183. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  2184. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  2185. * whenever sysctl_lowmem_reserve_ratio changes.
  2186. *
  2187. * The reserve ratio obviously has absolutely no relation with the
  2188. * pages_min watermarks. The lowmem reserve ratio can only make sense
  2189. * if in function of the boot time zone sizes.
  2190. */
  2191. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  2192. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2193. {
  2194. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2195. setup_per_zone_lowmem_reserve();
  2196. return 0;
  2197. }
  2198. __initdata int hashdist = HASHDIST_DEFAULT;
  2199. #ifdef CONFIG_NUMA
  2200. static int __init set_hashdist(char *str)
  2201. {
  2202. if (!str)
  2203. return 0;
  2204. hashdist = simple_strtoul(str, &str, 0);
  2205. return 1;
  2206. }
  2207. __setup("hashdist=", set_hashdist);
  2208. #endif
  2209. /*
  2210. * allocate a large system hash table from bootmem
  2211. * - it is assumed that the hash table must contain an exact power-of-2
  2212. * quantity of entries
  2213. * - limit is the number of hash buckets, not the total allocation size
  2214. */
  2215. void *__init alloc_large_system_hash(const char *tablename,
  2216. unsigned long bucketsize,
  2217. unsigned long numentries,
  2218. int scale,
  2219. int flags,
  2220. unsigned int *_hash_shift,
  2221. unsigned int *_hash_mask,
  2222. unsigned long limit)
  2223. {
  2224. unsigned long long max = limit;
  2225. unsigned long log2qty, size;
  2226. void *table = NULL;
  2227. /* allow the kernel cmdline to have a say */
  2228. if (!numentries) {
  2229. /* round applicable memory size up to nearest megabyte */
  2230. numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
  2231. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  2232. numentries >>= 20 - PAGE_SHIFT;
  2233. numentries <<= 20 - PAGE_SHIFT;
  2234. /* limit to 1 bucket per 2^scale bytes of low memory */
  2235. if (scale > PAGE_SHIFT)
  2236. numentries >>= (scale - PAGE_SHIFT);
  2237. else
  2238. numentries <<= (PAGE_SHIFT - scale);
  2239. }
  2240. /* rounded up to nearest power of 2 in size */
  2241. numentries = 1UL << (long_log2(numentries) + 1);
  2242. /* limit allocation size to 1/16 total memory by default */
  2243. if (max == 0) {
  2244. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2245. do_div(max, bucketsize);
  2246. }
  2247. if (numentries > max)
  2248. numentries = max;
  2249. log2qty = long_log2(numentries);
  2250. do {
  2251. size = bucketsize << log2qty;
  2252. if (flags & HASH_EARLY)
  2253. table = alloc_bootmem(size);
  2254. else if (hashdist)
  2255. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2256. else {
  2257. unsigned long order;
  2258. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2259. ;
  2260. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2261. }
  2262. } while (!table && size > PAGE_SIZE && --log2qty);
  2263. if (!table)
  2264. panic("Failed to allocate %s hash table\n", tablename);
  2265. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2266. tablename,
  2267. (1U << log2qty),
  2268. long_log2(size) - PAGE_SHIFT,
  2269. size);
  2270. if (_hash_shift)
  2271. *_hash_shift = log2qty;
  2272. if (_hash_mask)
  2273. *_hash_mask = (1 << log2qty) - 1;
  2274. return table;
  2275. }