mixer.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303
  1. /*
  2. * (Tentative) USB Audio Driver for ALSA
  3. *
  4. * Mixer control part
  5. *
  6. * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
  7. *
  8. * Many codes borrowed from audio.c by
  9. * Alan Cox (alan@lxorguk.ukuu.org.uk)
  10. * Thomas Sailer (sailer@ife.ee.ethz.ch)
  11. *
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or
  16. * (at your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. * GNU General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU General Public License
  24. * along with this program; if not, write to the Free Software
  25. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  26. *
  27. */
  28. /*
  29. * TODOs, for both the mixer and the streaming interfaces:
  30. *
  31. * - support for UAC2 effect units
  32. * - support for graphical equalizers
  33. * - RANGE and MEM set commands (UAC2)
  34. * - RANGE and MEM interrupt dispatchers (UAC2)
  35. * - audio channel clustering (UAC2)
  36. * - audio sample rate converter units (UAC2)
  37. * - proper handling of clock multipliers (UAC2)
  38. * - dispatch clock change notifications (UAC2)
  39. * - stop PCM streams which use a clock that became invalid
  40. * - stop PCM streams which use a clock selector that has changed
  41. * - parse available sample rates again when clock sources changed
  42. */
  43. #include <linux/bitops.h>
  44. #include <linux/init.h>
  45. #include <linux/list.h>
  46. #include <linux/slab.h>
  47. #include <linux/string.h>
  48. #include <linux/usb.h>
  49. #include <linux/usb/audio.h>
  50. #include <linux/usb/audio-v2.h>
  51. #include <sound/core.h>
  52. #include <sound/control.h>
  53. #include <sound/hwdep.h>
  54. #include <sound/info.h>
  55. #include <sound/tlv.h>
  56. #include "usbaudio.h"
  57. #include "mixer.h"
  58. #include "helper.h"
  59. #include "mixer_quirks.h"
  60. #include "power.h"
  61. #define MAX_ID_ELEMS 256
  62. struct usb_audio_term {
  63. int id;
  64. int type;
  65. int channels;
  66. unsigned int chconfig;
  67. int name;
  68. };
  69. struct usbmix_name_map;
  70. struct mixer_build {
  71. struct snd_usb_audio *chip;
  72. struct usb_mixer_interface *mixer;
  73. unsigned char *buffer;
  74. unsigned int buflen;
  75. DECLARE_BITMAP(unitbitmap, MAX_ID_ELEMS);
  76. struct usb_audio_term oterm;
  77. const struct usbmix_name_map *map;
  78. const struct usbmix_selector_map *selector_map;
  79. };
  80. /*E-mu 0202/0404/0204 eXtension Unit(XU) control*/
  81. enum {
  82. USB_XU_CLOCK_RATE = 0xe301,
  83. USB_XU_CLOCK_SOURCE = 0xe302,
  84. USB_XU_DIGITAL_IO_STATUS = 0xe303,
  85. USB_XU_DEVICE_OPTIONS = 0xe304,
  86. USB_XU_DIRECT_MONITORING = 0xe305,
  87. USB_XU_METERING = 0xe306
  88. };
  89. enum {
  90. USB_XU_CLOCK_SOURCE_SELECTOR = 0x02, /* clock source*/
  91. USB_XU_CLOCK_RATE_SELECTOR = 0x03, /* clock rate */
  92. USB_XU_DIGITAL_FORMAT_SELECTOR = 0x01, /* the spdif format */
  93. USB_XU_SOFT_LIMIT_SELECTOR = 0x03 /* soft limiter */
  94. };
  95. /*
  96. * manual mapping of mixer names
  97. * if the mixer topology is too complicated and the parsed names are
  98. * ambiguous, add the entries in usbmixer_maps.c.
  99. */
  100. #include "mixer_maps.c"
  101. static const struct usbmix_name_map *
  102. find_map(struct mixer_build *state, int unitid, int control)
  103. {
  104. const struct usbmix_name_map *p = state->map;
  105. if (!p)
  106. return NULL;
  107. for (p = state->map; p->id; p++) {
  108. if (p->id == unitid &&
  109. (!control || !p->control || control == p->control))
  110. return p;
  111. }
  112. return NULL;
  113. }
  114. /* get the mapped name if the unit matches */
  115. static int
  116. check_mapped_name(const struct usbmix_name_map *p, char *buf, int buflen)
  117. {
  118. if (!p || !p->name)
  119. return 0;
  120. buflen--;
  121. return strlcpy(buf, p->name, buflen);
  122. }
  123. /* check whether the control should be ignored */
  124. static inline int
  125. check_ignored_ctl(const struct usbmix_name_map *p)
  126. {
  127. if (!p || p->name || p->dB)
  128. return 0;
  129. return 1;
  130. }
  131. /* dB mapping */
  132. static inline void check_mapped_dB(const struct usbmix_name_map *p,
  133. struct usb_mixer_elem_info *cval)
  134. {
  135. if (p && p->dB) {
  136. cval->dBmin = p->dB->min;
  137. cval->dBmax = p->dB->max;
  138. cval->initialized = 1;
  139. }
  140. }
  141. /* get the mapped selector source name */
  142. static int check_mapped_selector_name(struct mixer_build *state, int unitid,
  143. int index, char *buf, int buflen)
  144. {
  145. const struct usbmix_selector_map *p;
  146. if (! state->selector_map)
  147. return 0;
  148. for (p = state->selector_map; p->id; p++) {
  149. if (p->id == unitid && index < p->count)
  150. return strlcpy(buf, p->names[index], buflen);
  151. }
  152. return 0;
  153. }
  154. /*
  155. * find an audio control unit with the given unit id
  156. */
  157. static void *find_audio_control_unit(struct mixer_build *state, unsigned char unit)
  158. {
  159. /* we just parse the header */
  160. struct uac_feature_unit_descriptor *hdr = NULL;
  161. while ((hdr = snd_usb_find_desc(state->buffer, state->buflen, hdr,
  162. USB_DT_CS_INTERFACE)) != NULL) {
  163. if (hdr->bLength >= 4 &&
  164. hdr->bDescriptorSubtype >= UAC_INPUT_TERMINAL &&
  165. hdr->bDescriptorSubtype <= UAC2_SAMPLE_RATE_CONVERTER &&
  166. hdr->bUnitID == unit)
  167. return hdr;
  168. }
  169. return NULL;
  170. }
  171. /*
  172. * copy a string with the given id
  173. */
  174. static int snd_usb_copy_string_desc(struct mixer_build *state, int index, char *buf, int maxlen)
  175. {
  176. int len = usb_string(state->chip->dev, index, buf, maxlen - 1);
  177. buf[len] = 0;
  178. return len;
  179. }
  180. /*
  181. * convert from the byte/word on usb descriptor to the zero-based integer
  182. */
  183. static int convert_signed_value(struct usb_mixer_elem_info *cval, int val)
  184. {
  185. switch (cval->val_type) {
  186. case USB_MIXER_BOOLEAN:
  187. return !!val;
  188. case USB_MIXER_INV_BOOLEAN:
  189. return !val;
  190. case USB_MIXER_U8:
  191. val &= 0xff;
  192. break;
  193. case USB_MIXER_S8:
  194. val &= 0xff;
  195. if (val >= 0x80)
  196. val -= 0x100;
  197. break;
  198. case USB_MIXER_U16:
  199. val &= 0xffff;
  200. break;
  201. case USB_MIXER_S16:
  202. val &= 0xffff;
  203. if (val >= 0x8000)
  204. val -= 0x10000;
  205. break;
  206. }
  207. return val;
  208. }
  209. /*
  210. * convert from the zero-based int to the byte/word for usb descriptor
  211. */
  212. static int convert_bytes_value(struct usb_mixer_elem_info *cval, int val)
  213. {
  214. switch (cval->val_type) {
  215. case USB_MIXER_BOOLEAN:
  216. return !!val;
  217. case USB_MIXER_INV_BOOLEAN:
  218. return !val;
  219. case USB_MIXER_S8:
  220. case USB_MIXER_U8:
  221. return val & 0xff;
  222. case USB_MIXER_S16:
  223. case USB_MIXER_U16:
  224. return val & 0xffff;
  225. }
  226. return 0; /* not reached */
  227. }
  228. static int get_relative_value(struct usb_mixer_elem_info *cval, int val)
  229. {
  230. if (! cval->res)
  231. cval->res = 1;
  232. if (val < cval->min)
  233. return 0;
  234. else if (val >= cval->max)
  235. return (cval->max - cval->min + cval->res - 1) / cval->res;
  236. else
  237. return (val - cval->min) / cval->res;
  238. }
  239. static int get_abs_value(struct usb_mixer_elem_info *cval, int val)
  240. {
  241. if (val < 0)
  242. return cval->min;
  243. if (! cval->res)
  244. cval->res = 1;
  245. val *= cval->res;
  246. val += cval->min;
  247. if (val > cval->max)
  248. return cval->max;
  249. return val;
  250. }
  251. /*
  252. * retrieve a mixer value
  253. */
  254. static int get_ctl_value_v1(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
  255. {
  256. struct snd_usb_audio *chip = cval->mixer->chip;
  257. unsigned char buf[2];
  258. int val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
  259. int timeout = 10;
  260. int err;
  261. err = snd_usb_autoresume(cval->mixer->chip);
  262. if (err < 0)
  263. return -EIO;
  264. while (timeout-- > 0) {
  265. if (snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), request,
  266. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  267. validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
  268. buf, val_len) >= val_len) {
  269. *value_ret = convert_signed_value(cval, snd_usb_combine_bytes(buf, val_len));
  270. snd_usb_autosuspend(cval->mixer->chip);
  271. return 0;
  272. }
  273. }
  274. snd_usb_autosuspend(cval->mixer->chip);
  275. snd_printdd(KERN_ERR "cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
  276. request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type);
  277. return -EINVAL;
  278. }
  279. static int get_ctl_value_v2(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
  280. {
  281. struct snd_usb_audio *chip = cval->mixer->chip;
  282. unsigned char buf[2 + 3*sizeof(__u16)]; /* enough space for one range */
  283. unsigned char *val;
  284. int ret, size;
  285. __u8 bRequest;
  286. if (request == UAC_GET_CUR) {
  287. bRequest = UAC2_CS_CUR;
  288. size = sizeof(__u16);
  289. } else {
  290. bRequest = UAC2_CS_RANGE;
  291. size = sizeof(buf);
  292. }
  293. memset(buf, 0, sizeof(buf));
  294. ret = snd_usb_autoresume(chip) ? -EIO : 0;
  295. if (ret)
  296. goto error;
  297. ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), bRequest,
  298. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  299. validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
  300. buf, size);
  301. snd_usb_autosuspend(chip);
  302. if (ret < 0) {
  303. error:
  304. snd_printk(KERN_ERR "cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
  305. request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type);
  306. return ret;
  307. }
  308. /* FIXME: how should we handle multiple triplets here? */
  309. switch (request) {
  310. case UAC_GET_CUR:
  311. val = buf;
  312. break;
  313. case UAC_GET_MIN:
  314. val = buf + sizeof(__u16);
  315. break;
  316. case UAC_GET_MAX:
  317. val = buf + sizeof(__u16) * 2;
  318. break;
  319. case UAC_GET_RES:
  320. val = buf + sizeof(__u16) * 3;
  321. break;
  322. default:
  323. return -EINVAL;
  324. }
  325. *value_ret = convert_signed_value(cval, snd_usb_combine_bytes(val, sizeof(__u16)));
  326. return 0;
  327. }
  328. static int get_ctl_value(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
  329. {
  330. return (cval->mixer->protocol == UAC_VERSION_1) ?
  331. get_ctl_value_v1(cval, request, validx, value_ret) :
  332. get_ctl_value_v2(cval, request, validx, value_ret);
  333. }
  334. static int get_cur_ctl_value(struct usb_mixer_elem_info *cval, int validx, int *value)
  335. {
  336. return get_ctl_value(cval, UAC_GET_CUR, validx, value);
  337. }
  338. /* channel = 0: master, 1 = first channel */
  339. static inline int get_cur_mix_raw(struct usb_mixer_elem_info *cval,
  340. int channel, int *value)
  341. {
  342. return get_ctl_value(cval, UAC_GET_CUR, (cval->control << 8) | channel, value);
  343. }
  344. static int get_cur_mix_value(struct usb_mixer_elem_info *cval,
  345. int channel, int index, int *value)
  346. {
  347. int err;
  348. if (cval->cached & (1 << channel)) {
  349. *value = cval->cache_val[index];
  350. return 0;
  351. }
  352. err = get_cur_mix_raw(cval, channel, value);
  353. if (err < 0) {
  354. if (!cval->mixer->ignore_ctl_error)
  355. snd_printd(KERN_ERR "cannot get current value for control %d ch %d: err = %d\n",
  356. cval->control, channel, err);
  357. return err;
  358. }
  359. cval->cached |= 1 << channel;
  360. cval->cache_val[index] = *value;
  361. return 0;
  362. }
  363. /*
  364. * set a mixer value
  365. */
  366. int snd_usb_mixer_set_ctl_value(struct usb_mixer_elem_info *cval,
  367. int request, int validx, int value_set)
  368. {
  369. struct snd_usb_audio *chip = cval->mixer->chip;
  370. unsigned char buf[2];
  371. int val_len, err, timeout = 10;
  372. if (cval->mixer->protocol == UAC_VERSION_1) {
  373. val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
  374. } else { /* UAC_VERSION_2 */
  375. /* audio class v2 controls are always 2 bytes in size */
  376. val_len = sizeof(__u16);
  377. /* FIXME */
  378. if (request != UAC_SET_CUR) {
  379. snd_printdd(KERN_WARNING "RANGE setting not yet supported\n");
  380. return -EINVAL;
  381. }
  382. request = UAC2_CS_CUR;
  383. }
  384. value_set = convert_bytes_value(cval, value_set);
  385. buf[0] = value_set & 0xff;
  386. buf[1] = (value_set >> 8) & 0xff;
  387. err = snd_usb_autoresume(chip);
  388. if (err < 0)
  389. return -EIO;
  390. while (timeout-- > 0)
  391. if (snd_usb_ctl_msg(chip->dev,
  392. usb_sndctrlpipe(chip->dev, 0), request,
  393. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  394. validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
  395. buf, val_len) >= 0) {
  396. snd_usb_autosuspend(chip);
  397. return 0;
  398. }
  399. snd_usb_autosuspend(chip);
  400. snd_printdd(KERN_ERR "cannot set ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d, data = %#x/%#x\n",
  401. request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type, buf[0], buf[1]);
  402. return -EINVAL;
  403. }
  404. static int set_cur_ctl_value(struct usb_mixer_elem_info *cval, int validx, int value)
  405. {
  406. return snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, validx, value);
  407. }
  408. static int set_cur_mix_value(struct usb_mixer_elem_info *cval, int channel,
  409. int index, int value)
  410. {
  411. int err;
  412. unsigned int read_only = (channel == 0) ?
  413. cval->master_readonly :
  414. cval->ch_readonly & (1 << (channel - 1));
  415. if (read_only) {
  416. snd_printdd(KERN_INFO "%s(): channel %d of control %d is read_only\n",
  417. __func__, channel, cval->control);
  418. return 0;
  419. }
  420. err = snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, (cval->control << 8) | channel,
  421. value);
  422. if (err < 0)
  423. return err;
  424. cval->cached |= 1 << channel;
  425. cval->cache_val[index] = value;
  426. return 0;
  427. }
  428. /*
  429. * TLV callback for mixer volume controls
  430. */
  431. int snd_usb_mixer_vol_tlv(struct snd_kcontrol *kcontrol, int op_flag,
  432. unsigned int size, unsigned int __user *_tlv)
  433. {
  434. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  435. DECLARE_TLV_DB_MINMAX(scale, 0, 0);
  436. if (size < sizeof(scale))
  437. return -ENOMEM;
  438. scale[2] = cval->dBmin;
  439. scale[3] = cval->dBmax;
  440. if (copy_to_user(_tlv, scale, sizeof(scale)))
  441. return -EFAULT;
  442. return 0;
  443. }
  444. /*
  445. * parser routines begin here...
  446. */
  447. static int parse_audio_unit(struct mixer_build *state, int unitid);
  448. /*
  449. * check if the input/output channel routing is enabled on the given bitmap.
  450. * used for mixer unit parser
  451. */
  452. static int check_matrix_bitmap(unsigned char *bmap, int ich, int och, int num_outs)
  453. {
  454. int idx = ich * num_outs + och;
  455. return bmap[idx >> 3] & (0x80 >> (idx & 7));
  456. }
  457. /*
  458. * add an alsa control element
  459. * search and increment the index until an empty slot is found.
  460. *
  461. * if failed, give up and free the control instance.
  462. */
  463. int snd_usb_mixer_add_control(struct usb_mixer_interface *mixer,
  464. struct snd_kcontrol *kctl)
  465. {
  466. struct usb_mixer_elem_info *cval = kctl->private_data;
  467. int err;
  468. while (snd_ctl_find_id(mixer->chip->card, &kctl->id))
  469. kctl->id.index++;
  470. if ((err = snd_ctl_add(mixer->chip->card, kctl)) < 0) {
  471. snd_printd(KERN_ERR "cannot add control (err = %d)\n", err);
  472. return err;
  473. }
  474. cval->elem_id = &kctl->id;
  475. cval->next_id_elem = mixer->id_elems[cval->id];
  476. mixer->id_elems[cval->id] = cval;
  477. return 0;
  478. }
  479. /*
  480. * get a terminal name string
  481. */
  482. static struct iterm_name_combo {
  483. int type;
  484. char *name;
  485. } iterm_names[] = {
  486. { 0x0300, "Output" },
  487. { 0x0301, "Speaker" },
  488. { 0x0302, "Headphone" },
  489. { 0x0303, "HMD Audio" },
  490. { 0x0304, "Desktop Speaker" },
  491. { 0x0305, "Room Speaker" },
  492. { 0x0306, "Com Speaker" },
  493. { 0x0307, "LFE" },
  494. { 0x0600, "External In" },
  495. { 0x0601, "Analog In" },
  496. { 0x0602, "Digital In" },
  497. { 0x0603, "Line" },
  498. { 0x0604, "Legacy In" },
  499. { 0x0605, "IEC958 In" },
  500. { 0x0606, "1394 DA Stream" },
  501. { 0x0607, "1394 DV Stream" },
  502. { 0x0700, "Embedded" },
  503. { 0x0701, "Noise Source" },
  504. { 0x0702, "Equalization Noise" },
  505. { 0x0703, "CD" },
  506. { 0x0704, "DAT" },
  507. { 0x0705, "DCC" },
  508. { 0x0706, "MiniDisk" },
  509. { 0x0707, "Analog Tape" },
  510. { 0x0708, "Phonograph" },
  511. { 0x0709, "VCR Audio" },
  512. { 0x070a, "Video Disk Audio" },
  513. { 0x070b, "DVD Audio" },
  514. { 0x070c, "TV Tuner Audio" },
  515. { 0x070d, "Satellite Rec Audio" },
  516. { 0x070e, "Cable Tuner Audio" },
  517. { 0x070f, "DSS Audio" },
  518. { 0x0710, "Radio Receiver" },
  519. { 0x0711, "Radio Transmitter" },
  520. { 0x0712, "Multi-Track Recorder" },
  521. { 0x0713, "Synthesizer" },
  522. { 0 },
  523. };
  524. static int get_term_name(struct mixer_build *state, struct usb_audio_term *iterm,
  525. unsigned char *name, int maxlen, int term_only)
  526. {
  527. struct iterm_name_combo *names;
  528. if (iterm->name)
  529. return snd_usb_copy_string_desc(state, iterm->name, name, maxlen);
  530. /* virtual type - not a real terminal */
  531. if (iterm->type >> 16) {
  532. if (term_only)
  533. return 0;
  534. switch (iterm->type >> 16) {
  535. case UAC_SELECTOR_UNIT:
  536. strcpy(name, "Selector"); return 8;
  537. case UAC1_PROCESSING_UNIT:
  538. strcpy(name, "Process Unit"); return 12;
  539. case UAC1_EXTENSION_UNIT:
  540. strcpy(name, "Ext Unit"); return 8;
  541. case UAC_MIXER_UNIT:
  542. strcpy(name, "Mixer"); return 5;
  543. default:
  544. return sprintf(name, "Unit %d", iterm->id);
  545. }
  546. }
  547. switch (iterm->type & 0xff00) {
  548. case 0x0100:
  549. strcpy(name, "PCM"); return 3;
  550. case 0x0200:
  551. strcpy(name, "Mic"); return 3;
  552. case 0x0400:
  553. strcpy(name, "Headset"); return 7;
  554. case 0x0500:
  555. strcpy(name, "Phone"); return 5;
  556. }
  557. for (names = iterm_names; names->type; names++)
  558. if (names->type == iterm->type) {
  559. strcpy(name, names->name);
  560. return strlen(names->name);
  561. }
  562. return 0;
  563. }
  564. /*
  565. * parse the source unit recursively until it reaches to a terminal
  566. * or a branched unit.
  567. */
  568. static int check_input_term(struct mixer_build *state, int id, struct usb_audio_term *term)
  569. {
  570. int err;
  571. void *p1;
  572. memset(term, 0, sizeof(*term));
  573. while ((p1 = find_audio_control_unit(state, id)) != NULL) {
  574. unsigned char *hdr = p1;
  575. term->id = id;
  576. switch (hdr[2]) {
  577. case UAC_INPUT_TERMINAL:
  578. if (state->mixer->protocol == UAC_VERSION_1) {
  579. struct uac_input_terminal_descriptor *d = p1;
  580. term->type = le16_to_cpu(d->wTerminalType);
  581. term->channels = d->bNrChannels;
  582. term->chconfig = le16_to_cpu(d->wChannelConfig);
  583. term->name = d->iTerminal;
  584. } else { /* UAC_VERSION_2 */
  585. struct uac2_input_terminal_descriptor *d = p1;
  586. term->type = le16_to_cpu(d->wTerminalType);
  587. term->channels = d->bNrChannels;
  588. term->chconfig = le32_to_cpu(d->bmChannelConfig);
  589. term->name = d->iTerminal;
  590. /* call recursively to get the clock selectors */
  591. err = check_input_term(state, d->bCSourceID, term);
  592. if (err < 0)
  593. return err;
  594. }
  595. return 0;
  596. case UAC_FEATURE_UNIT: {
  597. /* the header is the same for v1 and v2 */
  598. struct uac_feature_unit_descriptor *d = p1;
  599. id = d->bSourceID;
  600. break; /* continue to parse */
  601. }
  602. case UAC_MIXER_UNIT: {
  603. struct uac_mixer_unit_descriptor *d = p1;
  604. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  605. term->channels = uac_mixer_unit_bNrChannels(d);
  606. term->chconfig = uac_mixer_unit_wChannelConfig(d, state->mixer->protocol);
  607. term->name = uac_mixer_unit_iMixer(d);
  608. return 0;
  609. }
  610. case UAC_SELECTOR_UNIT:
  611. case UAC2_CLOCK_SELECTOR: {
  612. struct uac_selector_unit_descriptor *d = p1;
  613. /* call recursively to retrieve the channel info */
  614. if (check_input_term(state, d->baSourceID[0], term) < 0)
  615. return -ENODEV;
  616. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  617. term->id = id;
  618. term->name = uac_selector_unit_iSelector(d);
  619. return 0;
  620. }
  621. case UAC1_PROCESSING_UNIT:
  622. case UAC1_EXTENSION_UNIT: {
  623. struct uac_processing_unit_descriptor *d = p1;
  624. if (d->bNrInPins) {
  625. id = d->baSourceID[0];
  626. break; /* continue to parse */
  627. }
  628. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  629. term->channels = uac_processing_unit_bNrChannels(d);
  630. term->chconfig = uac_processing_unit_wChannelConfig(d, state->mixer->protocol);
  631. term->name = uac_processing_unit_iProcessing(d, state->mixer->protocol);
  632. return 0;
  633. }
  634. case UAC2_CLOCK_SOURCE: {
  635. struct uac_clock_source_descriptor *d = p1;
  636. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  637. term->id = id;
  638. term->name = d->iClockSource;
  639. return 0;
  640. }
  641. default:
  642. return -ENODEV;
  643. }
  644. }
  645. return -ENODEV;
  646. }
  647. /*
  648. * Feature Unit
  649. */
  650. /* feature unit control information */
  651. struct usb_feature_control_info {
  652. const char *name;
  653. unsigned int type; /* control type (mute, volume, etc.) */
  654. };
  655. static struct usb_feature_control_info audio_feature_info[] = {
  656. { "Mute", USB_MIXER_INV_BOOLEAN },
  657. { "Volume", USB_MIXER_S16 },
  658. { "Tone Control - Bass", USB_MIXER_S8 },
  659. { "Tone Control - Mid", USB_MIXER_S8 },
  660. { "Tone Control - Treble", USB_MIXER_S8 },
  661. { "Graphic Equalizer", USB_MIXER_S8 }, /* FIXME: not implemeted yet */
  662. { "Auto Gain Control", USB_MIXER_BOOLEAN },
  663. { "Delay Control", USB_MIXER_U16 },
  664. { "Bass Boost", USB_MIXER_BOOLEAN },
  665. { "Loudness", USB_MIXER_BOOLEAN },
  666. /* UAC2 specific */
  667. { "Input Gain Control", USB_MIXER_U16 },
  668. { "Input Gain Pad Control", USB_MIXER_BOOLEAN },
  669. { "Phase Inverter Control", USB_MIXER_BOOLEAN },
  670. };
  671. /* private_free callback */
  672. static void usb_mixer_elem_free(struct snd_kcontrol *kctl)
  673. {
  674. kfree(kctl->private_data);
  675. kctl->private_data = NULL;
  676. }
  677. /*
  678. * interface to ALSA control for feature/mixer units
  679. */
  680. /* volume control quirks */
  681. static void volume_control_quirks(struct usb_mixer_elem_info *cval,
  682. struct snd_kcontrol *kctl)
  683. {
  684. switch (cval->mixer->chip->usb_id) {
  685. case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */
  686. case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */
  687. if (strcmp(kctl->id.name, "Effect Duration") == 0) {
  688. snd_printk(KERN_INFO
  689. "usb-audio: set quirk for FTU Effect Duration\n");
  690. cval->min = 0x0000;
  691. cval->max = 0x7f00;
  692. cval->res = 0x0100;
  693. break;
  694. }
  695. if (strcmp(kctl->id.name, "Effect Volume") == 0 ||
  696. strcmp(kctl->id.name, "Effect Feedback Volume") == 0) {
  697. snd_printk(KERN_INFO
  698. "usb-audio: set quirks for FTU Effect Feedback/Volume\n");
  699. cval->min = 0x00;
  700. cval->max = 0x7f;
  701. break;
  702. }
  703. break;
  704. case USB_ID(0x0471, 0x0101):
  705. case USB_ID(0x0471, 0x0104):
  706. case USB_ID(0x0471, 0x0105):
  707. case USB_ID(0x0672, 0x1041):
  708. /* quirk for UDA1321/N101.
  709. * note that detection between firmware 2.1.1.7 (N101)
  710. * and later 2.1.1.21 is not very clear from datasheets.
  711. * I hope that the min value is -15360 for newer firmware --jk
  712. */
  713. if (!strcmp(kctl->id.name, "PCM Playback Volume") &&
  714. cval->min == -15616) {
  715. snd_printk(KERN_INFO
  716. "set volume quirk for UDA1321/N101 chip\n");
  717. cval->max = -256;
  718. }
  719. break;
  720. case USB_ID(0x046d, 0x09a4):
  721. if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
  722. snd_printk(KERN_INFO
  723. "set volume quirk for QuickCam E3500\n");
  724. cval->min = 6080;
  725. cval->max = 8768;
  726. cval->res = 192;
  727. }
  728. break;
  729. case USB_ID(0x046d, 0x0808):
  730. case USB_ID(0x046d, 0x0809):
  731. case USB_ID(0x046d, 0x081d): /* HD Webcam c510 */
  732. case USB_ID(0x046d, 0x0991):
  733. /* Most audio usb devices lie about volume resolution.
  734. * Most Logitech webcams have res = 384.
  735. * Proboly there is some logitech magic behind this number --fishor
  736. */
  737. if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
  738. snd_printk(KERN_INFO
  739. "set resolution quirk: cval->res = 384\n");
  740. cval->res = 384;
  741. }
  742. break;
  743. }
  744. }
  745. /*
  746. * retrieve the minimum and maximum values for the specified control
  747. */
  748. static int get_min_max_with_quirks(struct usb_mixer_elem_info *cval,
  749. int default_min, struct snd_kcontrol *kctl)
  750. {
  751. /* for failsafe */
  752. cval->min = default_min;
  753. cval->max = cval->min + 1;
  754. cval->res = 1;
  755. cval->dBmin = cval->dBmax = 0;
  756. if (cval->val_type == USB_MIXER_BOOLEAN ||
  757. cval->val_type == USB_MIXER_INV_BOOLEAN) {
  758. cval->initialized = 1;
  759. } else {
  760. int minchn = 0;
  761. if (cval->cmask) {
  762. int i;
  763. for (i = 0; i < MAX_CHANNELS; i++)
  764. if (cval->cmask & (1 << i)) {
  765. minchn = i + 1;
  766. break;
  767. }
  768. }
  769. if (get_ctl_value(cval, UAC_GET_MAX, (cval->control << 8) | minchn, &cval->max) < 0 ||
  770. get_ctl_value(cval, UAC_GET_MIN, (cval->control << 8) | minchn, &cval->min) < 0) {
  771. snd_printd(KERN_ERR "%d:%d: cannot get min/max values for control %d (id %d)\n",
  772. cval->id, snd_usb_ctrl_intf(cval->mixer->chip), cval->control, cval->id);
  773. return -EINVAL;
  774. }
  775. if (get_ctl_value(cval, UAC_GET_RES, (cval->control << 8) | minchn, &cval->res) < 0) {
  776. cval->res = 1;
  777. } else {
  778. int last_valid_res = cval->res;
  779. while (cval->res > 1) {
  780. if (snd_usb_mixer_set_ctl_value(cval, UAC_SET_RES,
  781. (cval->control << 8) | minchn, cval->res / 2) < 0)
  782. break;
  783. cval->res /= 2;
  784. }
  785. if (get_ctl_value(cval, UAC_GET_RES, (cval->control << 8) | minchn, &cval->res) < 0)
  786. cval->res = last_valid_res;
  787. }
  788. if (cval->res == 0)
  789. cval->res = 1;
  790. /* Additional checks for the proper resolution
  791. *
  792. * Some devices report smaller resolutions than actually
  793. * reacting. They don't return errors but simply clip
  794. * to the lower aligned value.
  795. */
  796. if (cval->min + cval->res < cval->max) {
  797. int last_valid_res = cval->res;
  798. int saved, test, check;
  799. get_cur_mix_raw(cval, minchn, &saved);
  800. for (;;) {
  801. test = saved;
  802. if (test < cval->max)
  803. test += cval->res;
  804. else
  805. test -= cval->res;
  806. if (test < cval->min || test > cval->max ||
  807. set_cur_mix_value(cval, minchn, 0, test) ||
  808. get_cur_mix_raw(cval, minchn, &check)) {
  809. cval->res = last_valid_res;
  810. break;
  811. }
  812. if (test == check)
  813. break;
  814. cval->res *= 2;
  815. }
  816. set_cur_mix_value(cval, minchn, 0, saved);
  817. }
  818. cval->initialized = 1;
  819. }
  820. if (kctl)
  821. volume_control_quirks(cval, kctl);
  822. /* USB descriptions contain the dB scale in 1/256 dB unit
  823. * while ALSA TLV contains in 1/100 dB unit
  824. */
  825. cval->dBmin = (convert_signed_value(cval, cval->min) * 100) / 256;
  826. cval->dBmax = (convert_signed_value(cval, cval->max) * 100) / 256;
  827. if (cval->dBmin > cval->dBmax) {
  828. /* something is wrong; assume it's either from/to 0dB */
  829. if (cval->dBmin < 0)
  830. cval->dBmax = 0;
  831. else if (cval->dBmin > 0)
  832. cval->dBmin = 0;
  833. if (cval->dBmin > cval->dBmax) {
  834. /* totally crap, return an error */
  835. return -EINVAL;
  836. }
  837. }
  838. return 0;
  839. }
  840. #define get_min_max(cval, def) get_min_max_with_quirks(cval, def, NULL)
  841. /* get a feature/mixer unit info */
  842. static int mixer_ctl_feature_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  843. {
  844. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  845. if (cval->val_type == USB_MIXER_BOOLEAN ||
  846. cval->val_type == USB_MIXER_INV_BOOLEAN)
  847. uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
  848. else
  849. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  850. uinfo->count = cval->channels;
  851. if (cval->val_type == USB_MIXER_BOOLEAN ||
  852. cval->val_type == USB_MIXER_INV_BOOLEAN) {
  853. uinfo->value.integer.min = 0;
  854. uinfo->value.integer.max = 1;
  855. } else {
  856. if (!cval->initialized) {
  857. get_min_max_with_quirks(cval, 0, kcontrol);
  858. if (cval->initialized && cval->dBmin >= cval->dBmax) {
  859. kcontrol->vd[0].access &=
  860. ~(SNDRV_CTL_ELEM_ACCESS_TLV_READ |
  861. SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK);
  862. snd_ctl_notify(cval->mixer->chip->card,
  863. SNDRV_CTL_EVENT_MASK_INFO,
  864. &kcontrol->id);
  865. }
  866. }
  867. uinfo->value.integer.min = 0;
  868. uinfo->value.integer.max =
  869. (cval->max - cval->min + cval->res - 1) / cval->res;
  870. }
  871. return 0;
  872. }
  873. /* get the current value from feature/mixer unit */
  874. static int mixer_ctl_feature_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  875. {
  876. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  877. int c, cnt, val, err;
  878. ucontrol->value.integer.value[0] = cval->min;
  879. if (cval->cmask) {
  880. cnt = 0;
  881. for (c = 0; c < MAX_CHANNELS; c++) {
  882. if (!(cval->cmask & (1 << c)))
  883. continue;
  884. err = get_cur_mix_value(cval, c + 1, cnt, &val);
  885. if (err < 0)
  886. return cval->mixer->ignore_ctl_error ? 0 : err;
  887. val = get_relative_value(cval, val);
  888. ucontrol->value.integer.value[cnt] = val;
  889. cnt++;
  890. }
  891. return 0;
  892. } else {
  893. /* master channel */
  894. err = get_cur_mix_value(cval, 0, 0, &val);
  895. if (err < 0)
  896. return cval->mixer->ignore_ctl_error ? 0 : err;
  897. val = get_relative_value(cval, val);
  898. ucontrol->value.integer.value[0] = val;
  899. }
  900. return 0;
  901. }
  902. /* put the current value to feature/mixer unit */
  903. static int mixer_ctl_feature_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  904. {
  905. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  906. int c, cnt, val, oval, err;
  907. int changed = 0;
  908. if (cval->cmask) {
  909. cnt = 0;
  910. for (c = 0; c < MAX_CHANNELS; c++) {
  911. if (!(cval->cmask & (1 << c)))
  912. continue;
  913. err = get_cur_mix_value(cval, c + 1, cnt, &oval);
  914. if (err < 0)
  915. return cval->mixer->ignore_ctl_error ? 0 : err;
  916. val = ucontrol->value.integer.value[cnt];
  917. val = get_abs_value(cval, val);
  918. if (oval != val) {
  919. set_cur_mix_value(cval, c + 1, cnt, val);
  920. changed = 1;
  921. }
  922. cnt++;
  923. }
  924. } else {
  925. /* master channel */
  926. err = get_cur_mix_value(cval, 0, 0, &oval);
  927. if (err < 0)
  928. return cval->mixer->ignore_ctl_error ? 0 : err;
  929. val = ucontrol->value.integer.value[0];
  930. val = get_abs_value(cval, val);
  931. if (val != oval) {
  932. set_cur_mix_value(cval, 0, 0, val);
  933. changed = 1;
  934. }
  935. }
  936. return changed;
  937. }
  938. static struct snd_kcontrol_new usb_feature_unit_ctl = {
  939. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  940. .name = "", /* will be filled later manually */
  941. .info = mixer_ctl_feature_info,
  942. .get = mixer_ctl_feature_get,
  943. .put = mixer_ctl_feature_put,
  944. };
  945. /* the read-only variant */
  946. static struct snd_kcontrol_new usb_feature_unit_ctl_ro = {
  947. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  948. .name = "", /* will be filled later manually */
  949. .info = mixer_ctl_feature_info,
  950. .get = mixer_ctl_feature_get,
  951. .put = NULL,
  952. };
  953. /* This symbol is exported in order to allow the mixer quirks to
  954. * hook up to the standard feature unit control mechanism */
  955. struct snd_kcontrol_new *snd_usb_feature_unit_ctl = &usb_feature_unit_ctl;
  956. /*
  957. * build a feature control
  958. */
  959. static size_t append_ctl_name(struct snd_kcontrol *kctl, const char *str)
  960. {
  961. return strlcat(kctl->id.name, str, sizeof(kctl->id.name));
  962. }
  963. static void build_feature_ctl(struct mixer_build *state, void *raw_desc,
  964. unsigned int ctl_mask, int control,
  965. struct usb_audio_term *iterm, int unitid,
  966. int readonly_mask)
  967. {
  968. struct uac_feature_unit_descriptor *desc = raw_desc;
  969. unsigned int len = 0;
  970. int mapped_name = 0;
  971. int nameid = uac_feature_unit_iFeature(desc);
  972. struct snd_kcontrol *kctl;
  973. struct usb_mixer_elem_info *cval;
  974. const struct usbmix_name_map *map;
  975. unsigned int range;
  976. control++; /* change from zero-based to 1-based value */
  977. if (control == UAC_FU_GRAPHIC_EQUALIZER) {
  978. /* FIXME: not supported yet */
  979. return;
  980. }
  981. map = find_map(state, unitid, control);
  982. if (check_ignored_ctl(map))
  983. return;
  984. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  985. if (! cval) {
  986. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  987. return;
  988. }
  989. cval->mixer = state->mixer;
  990. cval->id = unitid;
  991. cval->control = control;
  992. cval->cmask = ctl_mask;
  993. cval->val_type = audio_feature_info[control-1].type;
  994. if (ctl_mask == 0) {
  995. cval->channels = 1; /* master channel */
  996. cval->master_readonly = readonly_mask;
  997. } else {
  998. int i, c = 0;
  999. for (i = 0; i < 16; i++)
  1000. if (ctl_mask & (1 << i))
  1001. c++;
  1002. cval->channels = c;
  1003. cval->ch_readonly = readonly_mask;
  1004. }
  1005. /* if all channels in the mask are marked read-only, make the control
  1006. * read-only. set_cur_mix_value() will check the mask again and won't
  1007. * issue write commands to read-only channels. */
  1008. if (cval->channels == readonly_mask)
  1009. kctl = snd_ctl_new1(&usb_feature_unit_ctl_ro, cval);
  1010. else
  1011. kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
  1012. if (! kctl) {
  1013. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1014. kfree(cval);
  1015. return;
  1016. }
  1017. kctl->private_free = usb_mixer_elem_free;
  1018. len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
  1019. mapped_name = len != 0;
  1020. if (! len && nameid)
  1021. len = snd_usb_copy_string_desc(state, nameid,
  1022. kctl->id.name, sizeof(kctl->id.name));
  1023. switch (control) {
  1024. case UAC_FU_MUTE:
  1025. case UAC_FU_VOLUME:
  1026. /* determine the control name. the rule is:
  1027. * - if a name id is given in descriptor, use it.
  1028. * - if the connected input can be determined, then use the name
  1029. * of terminal type.
  1030. * - if the connected output can be determined, use it.
  1031. * - otherwise, anonymous name.
  1032. */
  1033. if (! len) {
  1034. len = get_term_name(state, iterm, kctl->id.name, sizeof(kctl->id.name), 1);
  1035. if (! len)
  1036. len = get_term_name(state, &state->oterm, kctl->id.name, sizeof(kctl->id.name), 1);
  1037. if (! len)
  1038. len = snprintf(kctl->id.name, sizeof(kctl->id.name),
  1039. "Feature %d", unitid);
  1040. }
  1041. /* determine the stream direction:
  1042. * if the connected output is USB stream, then it's likely a
  1043. * capture stream. otherwise it should be playback (hopefully :)
  1044. */
  1045. if (! mapped_name && ! (state->oterm.type >> 16)) {
  1046. if ((state->oterm.type & 0xff00) == 0x0100) {
  1047. len = append_ctl_name(kctl, " Capture");
  1048. } else {
  1049. len = append_ctl_name(kctl, " Playback");
  1050. }
  1051. }
  1052. append_ctl_name(kctl, control == UAC_FU_MUTE ?
  1053. " Switch" : " Volume");
  1054. break;
  1055. default:
  1056. if (! len)
  1057. strlcpy(kctl->id.name, audio_feature_info[control-1].name,
  1058. sizeof(kctl->id.name));
  1059. break;
  1060. }
  1061. /* get min/max values */
  1062. get_min_max_with_quirks(cval, 0, kctl);
  1063. if (control == UAC_FU_VOLUME) {
  1064. check_mapped_dB(map, cval);
  1065. if (cval->dBmin < cval->dBmax || !cval->initialized) {
  1066. kctl->tlv.c = snd_usb_mixer_vol_tlv;
  1067. kctl->vd[0].access |=
  1068. SNDRV_CTL_ELEM_ACCESS_TLV_READ |
  1069. SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
  1070. }
  1071. }
  1072. range = (cval->max - cval->min) / cval->res;
  1073. /* Are there devices with volume range more than 255? I use a bit more
  1074. * to be sure. 384 is a resolution magic number found on Logitech
  1075. * devices. It will definitively catch all buggy Logitech devices.
  1076. */
  1077. if (range > 384) {
  1078. snd_printk(KERN_WARNING "usb_audio: Warning! Unlikely big "
  1079. "volume range (=%u), cval->res is probably wrong.",
  1080. range);
  1081. snd_printk(KERN_WARNING "usb_audio: [%d] FU [%s] ch = %d, "
  1082. "val = %d/%d/%d", cval->id,
  1083. kctl->id.name, cval->channels,
  1084. cval->min, cval->max, cval->res);
  1085. }
  1086. snd_printdd(KERN_INFO "[%d] FU [%s] ch = %d, val = %d/%d/%d\n",
  1087. cval->id, kctl->id.name, cval->channels, cval->min, cval->max, cval->res);
  1088. snd_usb_mixer_add_control(state->mixer, kctl);
  1089. }
  1090. /*
  1091. * parse a feature unit
  1092. *
  1093. * most of controls are defined here.
  1094. */
  1095. static int parse_audio_feature_unit(struct mixer_build *state, int unitid, void *_ftr)
  1096. {
  1097. int channels, i, j;
  1098. struct usb_audio_term iterm;
  1099. unsigned int master_bits, first_ch_bits;
  1100. int err, csize;
  1101. struct uac_feature_unit_descriptor *hdr = _ftr;
  1102. __u8 *bmaControls;
  1103. if (state->mixer->protocol == UAC_VERSION_1) {
  1104. csize = hdr->bControlSize;
  1105. if (!csize) {
  1106. snd_printdd(KERN_ERR "usbaudio: unit %u: "
  1107. "invalid bControlSize == 0\n", unitid);
  1108. return -EINVAL;
  1109. }
  1110. channels = (hdr->bLength - 7) / csize - 1;
  1111. bmaControls = hdr->bmaControls;
  1112. } else {
  1113. struct uac2_feature_unit_descriptor *ftr = _ftr;
  1114. csize = 4;
  1115. channels = (hdr->bLength - 6) / 4 - 1;
  1116. bmaControls = ftr->bmaControls;
  1117. }
  1118. if (hdr->bLength < 7 || !csize || hdr->bLength < 7 + csize) {
  1119. snd_printk(KERN_ERR "usbaudio: unit %u: invalid UAC_FEATURE_UNIT descriptor\n", unitid);
  1120. return -EINVAL;
  1121. }
  1122. /* parse the source unit */
  1123. if ((err = parse_audio_unit(state, hdr->bSourceID)) < 0)
  1124. return err;
  1125. /* determine the input source type and name */
  1126. if (check_input_term(state, hdr->bSourceID, &iterm) < 0)
  1127. return -EINVAL;
  1128. master_bits = snd_usb_combine_bytes(bmaControls, csize);
  1129. /* master configuration quirks */
  1130. switch (state->chip->usb_id) {
  1131. case USB_ID(0x08bb, 0x2702):
  1132. snd_printk(KERN_INFO
  1133. "usbmixer: master volume quirk for PCM2702 chip\n");
  1134. /* disable non-functional volume control */
  1135. master_bits &= ~UAC_CONTROL_BIT(UAC_FU_VOLUME);
  1136. break;
  1137. }
  1138. if (channels > 0)
  1139. first_ch_bits = snd_usb_combine_bytes(bmaControls + csize, csize);
  1140. else
  1141. first_ch_bits = 0;
  1142. if (state->mixer->protocol == UAC_VERSION_1) {
  1143. /* check all control types */
  1144. for (i = 0; i < 10; i++) {
  1145. unsigned int ch_bits = 0;
  1146. for (j = 0; j < channels; j++) {
  1147. unsigned int mask = snd_usb_combine_bytes(bmaControls + csize * (j+1), csize);
  1148. if (mask & (1 << i))
  1149. ch_bits |= (1 << j);
  1150. }
  1151. /* audio class v1 controls are never read-only */
  1152. if (ch_bits & 1) /* the first channel must be set (for ease of programming) */
  1153. build_feature_ctl(state, _ftr, ch_bits, i, &iterm, unitid, 0);
  1154. if (master_bits & (1 << i))
  1155. build_feature_ctl(state, _ftr, 0, i, &iterm, unitid, 0);
  1156. }
  1157. } else { /* UAC_VERSION_2 */
  1158. for (i = 0; i < ARRAY_SIZE(audio_feature_info); i++) {
  1159. unsigned int ch_bits = 0;
  1160. unsigned int ch_read_only = 0;
  1161. for (j = 0; j < channels; j++) {
  1162. unsigned int mask = snd_usb_combine_bytes(bmaControls + csize * (j+1), csize);
  1163. if (uac2_control_is_readable(mask, i)) {
  1164. ch_bits |= (1 << j);
  1165. if (!uac2_control_is_writeable(mask, i))
  1166. ch_read_only |= (1 << j);
  1167. }
  1168. }
  1169. /* NOTE: build_feature_ctl() will mark the control read-only if all channels
  1170. * are marked read-only in the descriptors. Otherwise, the control will be
  1171. * reported as writeable, but the driver will not actually issue a write
  1172. * command for read-only channels */
  1173. if (ch_bits & 1) /* the first channel must be set (for ease of programming) */
  1174. build_feature_ctl(state, _ftr, ch_bits, i, &iterm, unitid, ch_read_only);
  1175. if (uac2_control_is_readable(master_bits, i))
  1176. build_feature_ctl(state, _ftr, 0, i, &iterm, unitid,
  1177. !uac2_control_is_writeable(master_bits, i));
  1178. }
  1179. }
  1180. return 0;
  1181. }
  1182. /*
  1183. * Mixer Unit
  1184. */
  1185. /*
  1186. * build a mixer unit control
  1187. *
  1188. * the callbacks are identical with feature unit.
  1189. * input channel number (zero based) is given in control field instead.
  1190. */
  1191. static void build_mixer_unit_ctl(struct mixer_build *state,
  1192. struct uac_mixer_unit_descriptor *desc,
  1193. int in_pin, int in_ch, int unitid,
  1194. struct usb_audio_term *iterm)
  1195. {
  1196. struct usb_mixer_elem_info *cval;
  1197. unsigned int num_outs = uac_mixer_unit_bNrChannels(desc);
  1198. unsigned int i, len;
  1199. struct snd_kcontrol *kctl;
  1200. const struct usbmix_name_map *map;
  1201. map = find_map(state, unitid, 0);
  1202. if (check_ignored_ctl(map))
  1203. return;
  1204. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  1205. if (! cval)
  1206. return;
  1207. cval->mixer = state->mixer;
  1208. cval->id = unitid;
  1209. cval->control = in_ch + 1; /* based on 1 */
  1210. cval->val_type = USB_MIXER_S16;
  1211. for (i = 0; i < num_outs; i++) {
  1212. if (check_matrix_bitmap(uac_mixer_unit_bmControls(desc, state->mixer->protocol), in_ch, i, num_outs)) {
  1213. cval->cmask |= (1 << i);
  1214. cval->channels++;
  1215. }
  1216. }
  1217. /* get min/max values */
  1218. get_min_max(cval, 0);
  1219. kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
  1220. if (! kctl) {
  1221. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1222. kfree(cval);
  1223. return;
  1224. }
  1225. kctl->private_free = usb_mixer_elem_free;
  1226. len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
  1227. if (! len)
  1228. len = get_term_name(state, iterm, kctl->id.name, sizeof(kctl->id.name), 0);
  1229. if (! len)
  1230. len = sprintf(kctl->id.name, "Mixer Source %d", in_ch + 1);
  1231. append_ctl_name(kctl, " Volume");
  1232. snd_printdd(KERN_INFO "[%d] MU [%s] ch = %d, val = %d/%d\n",
  1233. cval->id, kctl->id.name, cval->channels, cval->min, cval->max);
  1234. snd_usb_mixer_add_control(state->mixer, kctl);
  1235. }
  1236. /*
  1237. * parse a mixer unit
  1238. */
  1239. static int parse_audio_mixer_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1240. {
  1241. struct uac_mixer_unit_descriptor *desc = raw_desc;
  1242. struct usb_audio_term iterm;
  1243. int input_pins, num_ins, num_outs;
  1244. int pin, ich, err;
  1245. if (desc->bLength < 11 || ! (input_pins = desc->bNrInPins) || ! (num_outs = uac_mixer_unit_bNrChannels(desc))) {
  1246. snd_printk(KERN_ERR "invalid MIXER UNIT descriptor %d\n", unitid);
  1247. return -EINVAL;
  1248. }
  1249. /* no bmControls field (e.g. Maya44) -> ignore */
  1250. if (desc->bLength <= 10 + input_pins) {
  1251. snd_printdd(KERN_INFO "MU %d has no bmControls field\n", unitid);
  1252. return 0;
  1253. }
  1254. num_ins = 0;
  1255. ich = 0;
  1256. for (pin = 0; pin < input_pins; pin++) {
  1257. err = parse_audio_unit(state, desc->baSourceID[pin]);
  1258. if (err < 0)
  1259. continue;
  1260. err = check_input_term(state, desc->baSourceID[pin], &iterm);
  1261. if (err < 0)
  1262. return err;
  1263. num_ins += iterm.channels;
  1264. for (; ich < num_ins; ++ich) {
  1265. int och, ich_has_controls = 0;
  1266. for (och = 0; och < num_outs; ++och) {
  1267. if (check_matrix_bitmap(uac_mixer_unit_bmControls(desc, state->mixer->protocol),
  1268. ich, och, num_outs)) {
  1269. ich_has_controls = 1;
  1270. break;
  1271. }
  1272. }
  1273. if (ich_has_controls)
  1274. build_mixer_unit_ctl(state, desc, pin, ich,
  1275. unitid, &iterm);
  1276. }
  1277. }
  1278. return 0;
  1279. }
  1280. /*
  1281. * Processing Unit / Extension Unit
  1282. */
  1283. /* get callback for processing/extension unit */
  1284. static int mixer_ctl_procunit_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1285. {
  1286. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1287. int err, val;
  1288. err = get_cur_ctl_value(cval, cval->control << 8, &val);
  1289. if (err < 0 && cval->mixer->ignore_ctl_error) {
  1290. ucontrol->value.integer.value[0] = cval->min;
  1291. return 0;
  1292. }
  1293. if (err < 0)
  1294. return err;
  1295. val = get_relative_value(cval, val);
  1296. ucontrol->value.integer.value[0] = val;
  1297. return 0;
  1298. }
  1299. /* put callback for processing/extension unit */
  1300. static int mixer_ctl_procunit_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1301. {
  1302. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1303. int val, oval, err;
  1304. err = get_cur_ctl_value(cval, cval->control << 8, &oval);
  1305. if (err < 0) {
  1306. if (cval->mixer->ignore_ctl_error)
  1307. return 0;
  1308. return err;
  1309. }
  1310. val = ucontrol->value.integer.value[0];
  1311. val = get_abs_value(cval, val);
  1312. if (val != oval) {
  1313. set_cur_ctl_value(cval, cval->control << 8, val);
  1314. return 1;
  1315. }
  1316. return 0;
  1317. }
  1318. /* alsa control interface for processing/extension unit */
  1319. static struct snd_kcontrol_new mixer_procunit_ctl = {
  1320. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1321. .name = "", /* will be filled later */
  1322. .info = mixer_ctl_feature_info,
  1323. .get = mixer_ctl_procunit_get,
  1324. .put = mixer_ctl_procunit_put,
  1325. };
  1326. /*
  1327. * predefined data for processing units
  1328. */
  1329. struct procunit_value_info {
  1330. int control;
  1331. char *suffix;
  1332. int val_type;
  1333. int min_value;
  1334. };
  1335. struct procunit_info {
  1336. int type;
  1337. char *name;
  1338. struct procunit_value_info *values;
  1339. };
  1340. static struct procunit_value_info updown_proc_info[] = {
  1341. { UAC_UD_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1342. { UAC_UD_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
  1343. { 0 }
  1344. };
  1345. static struct procunit_value_info prologic_proc_info[] = {
  1346. { UAC_DP_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1347. { UAC_DP_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
  1348. { 0 }
  1349. };
  1350. static struct procunit_value_info threed_enh_proc_info[] = {
  1351. { UAC_3D_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1352. { UAC_3D_SPACE, "Spaciousness", USB_MIXER_U8 },
  1353. { 0 }
  1354. };
  1355. static struct procunit_value_info reverb_proc_info[] = {
  1356. { UAC_REVERB_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1357. { UAC_REVERB_LEVEL, "Level", USB_MIXER_U8 },
  1358. { UAC_REVERB_TIME, "Time", USB_MIXER_U16 },
  1359. { UAC_REVERB_FEEDBACK, "Feedback", USB_MIXER_U8 },
  1360. { 0 }
  1361. };
  1362. static struct procunit_value_info chorus_proc_info[] = {
  1363. { UAC_CHORUS_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1364. { UAC_CHORUS_LEVEL, "Level", USB_MIXER_U8 },
  1365. { UAC_CHORUS_RATE, "Rate", USB_MIXER_U16 },
  1366. { UAC_CHORUS_DEPTH, "Depth", USB_MIXER_U16 },
  1367. { 0 }
  1368. };
  1369. static struct procunit_value_info dcr_proc_info[] = {
  1370. { UAC_DCR_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1371. { UAC_DCR_RATE, "Ratio", USB_MIXER_U16 },
  1372. { UAC_DCR_MAXAMPL, "Max Amp", USB_MIXER_S16 },
  1373. { UAC_DCR_THRESHOLD, "Threshold", USB_MIXER_S16 },
  1374. { UAC_DCR_ATTACK_TIME, "Attack Time", USB_MIXER_U16 },
  1375. { UAC_DCR_RELEASE_TIME, "Release Time", USB_MIXER_U16 },
  1376. { 0 }
  1377. };
  1378. static struct procunit_info procunits[] = {
  1379. { UAC_PROCESS_UP_DOWNMIX, "Up Down", updown_proc_info },
  1380. { UAC_PROCESS_DOLBY_PROLOGIC, "Dolby Prologic", prologic_proc_info },
  1381. { UAC_PROCESS_STEREO_EXTENDER, "3D Stereo Extender", threed_enh_proc_info },
  1382. { UAC_PROCESS_REVERB, "Reverb", reverb_proc_info },
  1383. { UAC_PROCESS_CHORUS, "Chorus", chorus_proc_info },
  1384. { UAC_PROCESS_DYN_RANGE_COMP, "DCR", dcr_proc_info },
  1385. { 0 },
  1386. };
  1387. /*
  1388. * predefined data for extension units
  1389. */
  1390. static struct procunit_value_info clock_rate_xu_info[] = {
  1391. { USB_XU_CLOCK_RATE_SELECTOR, "Selector", USB_MIXER_U8, 0 },
  1392. { 0 }
  1393. };
  1394. static struct procunit_value_info clock_source_xu_info[] = {
  1395. { USB_XU_CLOCK_SOURCE_SELECTOR, "External", USB_MIXER_BOOLEAN },
  1396. { 0 }
  1397. };
  1398. static struct procunit_value_info spdif_format_xu_info[] = {
  1399. { USB_XU_DIGITAL_FORMAT_SELECTOR, "SPDIF/AC3", USB_MIXER_BOOLEAN },
  1400. { 0 }
  1401. };
  1402. static struct procunit_value_info soft_limit_xu_info[] = {
  1403. { USB_XU_SOFT_LIMIT_SELECTOR, " ", USB_MIXER_BOOLEAN },
  1404. { 0 }
  1405. };
  1406. static struct procunit_info extunits[] = {
  1407. { USB_XU_CLOCK_RATE, "Clock rate", clock_rate_xu_info },
  1408. { USB_XU_CLOCK_SOURCE, "DigitalIn CLK source", clock_source_xu_info },
  1409. { USB_XU_DIGITAL_IO_STATUS, "DigitalOut format:", spdif_format_xu_info },
  1410. { USB_XU_DEVICE_OPTIONS, "AnalogueIn Soft Limit", soft_limit_xu_info },
  1411. { 0 }
  1412. };
  1413. /*
  1414. * build a processing/extension unit
  1415. */
  1416. static int build_audio_procunit(struct mixer_build *state, int unitid, void *raw_desc, struct procunit_info *list, char *name)
  1417. {
  1418. struct uac_processing_unit_descriptor *desc = raw_desc;
  1419. int num_ins = desc->bNrInPins;
  1420. struct usb_mixer_elem_info *cval;
  1421. struct snd_kcontrol *kctl;
  1422. int i, err, nameid, type, len;
  1423. struct procunit_info *info;
  1424. struct procunit_value_info *valinfo;
  1425. const struct usbmix_name_map *map;
  1426. static struct procunit_value_info default_value_info[] = {
  1427. { 0x01, "Switch", USB_MIXER_BOOLEAN },
  1428. { 0 }
  1429. };
  1430. static struct procunit_info default_info = {
  1431. 0, NULL, default_value_info
  1432. };
  1433. if (desc->bLength < 13 || desc->bLength < 13 + num_ins ||
  1434. desc->bLength < num_ins + uac_processing_unit_bControlSize(desc, state->mixer->protocol)) {
  1435. snd_printk(KERN_ERR "invalid %s descriptor (id %d)\n", name, unitid);
  1436. return -EINVAL;
  1437. }
  1438. for (i = 0; i < num_ins; i++) {
  1439. if ((err = parse_audio_unit(state, desc->baSourceID[i])) < 0)
  1440. return err;
  1441. }
  1442. type = le16_to_cpu(desc->wProcessType);
  1443. for (info = list; info && info->type; info++)
  1444. if (info->type == type)
  1445. break;
  1446. if (! info || ! info->type)
  1447. info = &default_info;
  1448. for (valinfo = info->values; valinfo->control; valinfo++) {
  1449. __u8 *controls = uac_processing_unit_bmControls(desc, state->mixer->protocol);
  1450. if (! (controls[valinfo->control / 8] & (1 << ((valinfo->control % 8) - 1))))
  1451. continue;
  1452. map = find_map(state, unitid, valinfo->control);
  1453. if (check_ignored_ctl(map))
  1454. continue;
  1455. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  1456. if (! cval) {
  1457. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1458. return -ENOMEM;
  1459. }
  1460. cval->mixer = state->mixer;
  1461. cval->id = unitid;
  1462. cval->control = valinfo->control;
  1463. cval->val_type = valinfo->val_type;
  1464. cval->channels = 1;
  1465. /* get min/max values */
  1466. if (type == UAC_PROCESS_UP_DOWNMIX && cval->control == UAC_UD_MODE_SELECT) {
  1467. __u8 *control_spec = uac_processing_unit_specific(desc, state->mixer->protocol);
  1468. /* FIXME: hard-coded */
  1469. cval->min = 1;
  1470. cval->max = control_spec[0];
  1471. cval->res = 1;
  1472. cval->initialized = 1;
  1473. } else {
  1474. if (type == USB_XU_CLOCK_RATE) {
  1475. /* E-Mu USB 0404/0202/TrackerPre/0204
  1476. * samplerate control quirk
  1477. */
  1478. cval->min = 0;
  1479. cval->max = 5;
  1480. cval->res = 1;
  1481. cval->initialized = 1;
  1482. } else
  1483. get_min_max(cval, valinfo->min_value);
  1484. }
  1485. kctl = snd_ctl_new1(&mixer_procunit_ctl, cval);
  1486. if (! kctl) {
  1487. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1488. kfree(cval);
  1489. return -ENOMEM;
  1490. }
  1491. kctl->private_free = usb_mixer_elem_free;
  1492. if (check_mapped_name(map, kctl->id.name,
  1493. sizeof(kctl->id.name)))
  1494. /* nothing */ ;
  1495. else if (info->name)
  1496. strlcpy(kctl->id.name, info->name, sizeof(kctl->id.name));
  1497. else {
  1498. nameid = uac_processing_unit_iProcessing(desc, state->mixer->protocol);
  1499. len = 0;
  1500. if (nameid)
  1501. len = snd_usb_copy_string_desc(state, nameid, kctl->id.name, sizeof(kctl->id.name));
  1502. if (! len)
  1503. strlcpy(kctl->id.name, name, sizeof(kctl->id.name));
  1504. }
  1505. append_ctl_name(kctl, " ");
  1506. append_ctl_name(kctl, valinfo->suffix);
  1507. snd_printdd(KERN_INFO "[%d] PU [%s] ch = %d, val = %d/%d\n",
  1508. cval->id, kctl->id.name, cval->channels, cval->min, cval->max);
  1509. if ((err = snd_usb_mixer_add_control(state->mixer, kctl)) < 0)
  1510. return err;
  1511. }
  1512. return 0;
  1513. }
  1514. static int parse_audio_processing_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1515. {
  1516. return build_audio_procunit(state, unitid, raw_desc, procunits, "Processing Unit");
  1517. }
  1518. static int parse_audio_extension_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1519. {
  1520. /* Note that we parse extension units with processing unit descriptors.
  1521. * That's ok as the layout is the same */
  1522. return build_audio_procunit(state, unitid, raw_desc, extunits, "Extension Unit");
  1523. }
  1524. /*
  1525. * Selector Unit
  1526. */
  1527. /* info callback for selector unit
  1528. * use an enumerator type for routing
  1529. */
  1530. static int mixer_ctl_selector_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  1531. {
  1532. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1533. const char **itemlist = (const char **)kcontrol->private_value;
  1534. if (snd_BUG_ON(!itemlist))
  1535. return -EINVAL;
  1536. return snd_ctl_enum_info(uinfo, 1, cval->max, itemlist);
  1537. }
  1538. /* get callback for selector unit */
  1539. static int mixer_ctl_selector_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1540. {
  1541. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1542. int val, err;
  1543. err = get_cur_ctl_value(cval, cval->control << 8, &val);
  1544. if (err < 0) {
  1545. if (cval->mixer->ignore_ctl_error) {
  1546. ucontrol->value.enumerated.item[0] = 0;
  1547. return 0;
  1548. }
  1549. return err;
  1550. }
  1551. val = get_relative_value(cval, val);
  1552. ucontrol->value.enumerated.item[0] = val;
  1553. return 0;
  1554. }
  1555. /* put callback for selector unit */
  1556. static int mixer_ctl_selector_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1557. {
  1558. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1559. int val, oval, err;
  1560. err = get_cur_ctl_value(cval, cval->control << 8, &oval);
  1561. if (err < 0) {
  1562. if (cval->mixer->ignore_ctl_error)
  1563. return 0;
  1564. return err;
  1565. }
  1566. val = ucontrol->value.enumerated.item[0];
  1567. val = get_abs_value(cval, val);
  1568. if (val != oval) {
  1569. set_cur_ctl_value(cval, cval->control << 8, val);
  1570. return 1;
  1571. }
  1572. return 0;
  1573. }
  1574. /* alsa control interface for selector unit */
  1575. static struct snd_kcontrol_new mixer_selectunit_ctl = {
  1576. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1577. .name = "", /* will be filled later */
  1578. .info = mixer_ctl_selector_info,
  1579. .get = mixer_ctl_selector_get,
  1580. .put = mixer_ctl_selector_put,
  1581. };
  1582. /* private free callback.
  1583. * free both private_data and private_value
  1584. */
  1585. static void usb_mixer_selector_elem_free(struct snd_kcontrol *kctl)
  1586. {
  1587. int i, num_ins = 0;
  1588. if (kctl->private_data) {
  1589. struct usb_mixer_elem_info *cval = kctl->private_data;
  1590. num_ins = cval->max;
  1591. kfree(cval);
  1592. kctl->private_data = NULL;
  1593. }
  1594. if (kctl->private_value) {
  1595. char **itemlist = (char **)kctl->private_value;
  1596. for (i = 0; i < num_ins; i++)
  1597. kfree(itemlist[i]);
  1598. kfree(itemlist);
  1599. kctl->private_value = 0;
  1600. }
  1601. }
  1602. /*
  1603. * parse a selector unit
  1604. */
  1605. static int parse_audio_selector_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1606. {
  1607. struct uac_selector_unit_descriptor *desc = raw_desc;
  1608. unsigned int i, nameid, len;
  1609. int err;
  1610. struct usb_mixer_elem_info *cval;
  1611. struct snd_kcontrol *kctl;
  1612. const struct usbmix_name_map *map;
  1613. char **namelist;
  1614. if (!desc->bNrInPins || desc->bLength < 5 + desc->bNrInPins) {
  1615. snd_printk(KERN_ERR "invalid SELECTOR UNIT descriptor %d\n", unitid);
  1616. return -EINVAL;
  1617. }
  1618. for (i = 0; i < desc->bNrInPins; i++) {
  1619. if ((err = parse_audio_unit(state, desc->baSourceID[i])) < 0)
  1620. return err;
  1621. }
  1622. if (desc->bNrInPins == 1) /* only one ? nonsense! */
  1623. return 0;
  1624. map = find_map(state, unitid, 0);
  1625. if (check_ignored_ctl(map))
  1626. return 0;
  1627. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  1628. if (! cval) {
  1629. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1630. return -ENOMEM;
  1631. }
  1632. cval->mixer = state->mixer;
  1633. cval->id = unitid;
  1634. cval->val_type = USB_MIXER_U8;
  1635. cval->channels = 1;
  1636. cval->min = 1;
  1637. cval->max = desc->bNrInPins;
  1638. cval->res = 1;
  1639. cval->initialized = 1;
  1640. if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR)
  1641. cval->control = UAC2_CX_CLOCK_SELECTOR;
  1642. else
  1643. cval->control = 0;
  1644. namelist = kmalloc(sizeof(char *) * desc->bNrInPins, GFP_KERNEL);
  1645. if (! namelist) {
  1646. snd_printk(KERN_ERR "cannot malloc\n");
  1647. kfree(cval);
  1648. return -ENOMEM;
  1649. }
  1650. #define MAX_ITEM_NAME_LEN 64
  1651. for (i = 0; i < desc->bNrInPins; i++) {
  1652. struct usb_audio_term iterm;
  1653. len = 0;
  1654. namelist[i] = kmalloc(MAX_ITEM_NAME_LEN, GFP_KERNEL);
  1655. if (! namelist[i]) {
  1656. snd_printk(KERN_ERR "cannot malloc\n");
  1657. while (i--)
  1658. kfree(namelist[i]);
  1659. kfree(namelist);
  1660. kfree(cval);
  1661. return -ENOMEM;
  1662. }
  1663. len = check_mapped_selector_name(state, unitid, i, namelist[i],
  1664. MAX_ITEM_NAME_LEN);
  1665. if (! len && check_input_term(state, desc->baSourceID[i], &iterm) >= 0)
  1666. len = get_term_name(state, &iterm, namelist[i], MAX_ITEM_NAME_LEN, 0);
  1667. if (! len)
  1668. sprintf(namelist[i], "Input %d", i);
  1669. }
  1670. kctl = snd_ctl_new1(&mixer_selectunit_ctl, cval);
  1671. if (! kctl) {
  1672. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1673. kfree(namelist);
  1674. kfree(cval);
  1675. return -ENOMEM;
  1676. }
  1677. kctl->private_value = (unsigned long)namelist;
  1678. kctl->private_free = usb_mixer_selector_elem_free;
  1679. nameid = uac_selector_unit_iSelector(desc);
  1680. len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
  1681. if (len)
  1682. ;
  1683. else if (nameid)
  1684. snd_usb_copy_string_desc(state, nameid, kctl->id.name, sizeof(kctl->id.name));
  1685. else {
  1686. len = get_term_name(state, &state->oterm,
  1687. kctl->id.name, sizeof(kctl->id.name), 0);
  1688. if (! len)
  1689. strlcpy(kctl->id.name, "USB", sizeof(kctl->id.name));
  1690. if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR)
  1691. append_ctl_name(kctl, " Clock Source");
  1692. else if ((state->oterm.type & 0xff00) == 0x0100)
  1693. append_ctl_name(kctl, " Capture Source");
  1694. else
  1695. append_ctl_name(kctl, " Playback Source");
  1696. }
  1697. snd_printdd(KERN_INFO "[%d] SU [%s] items = %d\n",
  1698. cval->id, kctl->id.name, desc->bNrInPins);
  1699. if ((err = snd_usb_mixer_add_control(state->mixer, kctl)) < 0)
  1700. return err;
  1701. return 0;
  1702. }
  1703. /*
  1704. * parse an audio unit recursively
  1705. */
  1706. static int parse_audio_unit(struct mixer_build *state, int unitid)
  1707. {
  1708. unsigned char *p1;
  1709. if (test_and_set_bit(unitid, state->unitbitmap))
  1710. return 0; /* the unit already visited */
  1711. p1 = find_audio_control_unit(state, unitid);
  1712. if (!p1) {
  1713. snd_printk(KERN_ERR "usbaudio: unit %d not found!\n", unitid);
  1714. return -EINVAL;
  1715. }
  1716. switch (p1[2]) {
  1717. case UAC_INPUT_TERMINAL:
  1718. case UAC2_CLOCK_SOURCE:
  1719. return 0; /* NOP */
  1720. case UAC_MIXER_UNIT:
  1721. return parse_audio_mixer_unit(state, unitid, p1);
  1722. case UAC_SELECTOR_UNIT:
  1723. case UAC2_CLOCK_SELECTOR:
  1724. return parse_audio_selector_unit(state, unitid, p1);
  1725. case UAC_FEATURE_UNIT:
  1726. return parse_audio_feature_unit(state, unitid, p1);
  1727. case UAC1_PROCESSING_UNIT:
  1728. /* UAC2_EFFECT_UNIT has the same value */
  1729. if (state->mixer->protocol == UAC_VERSION_1)
  1730. return parse_audio_processing_unit(state, unitid, p1);
  1731. else
  1732. return 0; /* FIXME - effect units not implemented yet */
  1733. case UAC1_EXTENSION_UNIT:
  1734. /* UAC2_PROCESSING_UNIT_V2 has the same value */
  1735. if (state->mixer->protocol == UAC_VERSION_1)
  1736. return parse_audio_extension_unit(state, unitid, p1);
  1737. else /* UAC_VERSION_2 */
  1738. return parse_audio_processing_unit(state, unitid, p1);
  1739. default:
  1740. snd_printk(KERN_ERR "usbaudio: unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
  1741. return -EINVAL;
  1742. }
  1743. }
  1744. static void snd_usb_mixer_free(struct usb_mixer_interface *mixer)
  1745. {
  1746. kfree(mixer->id_elems);
  1747. if (mixer->urb) {
  1748. kfree(mixer->urb->transfer_buffer);
  1749. usb_free_urb(mixer->urb);
  1750. }
  1751. usb_free_urb(mixer->rc_urb);
  1752. kfree(mixer->rc_setup_packet);
  1753. kfree(mixer);
  1754. }
  1755. static int snd_usb_mixer_dev_free(struct snd_device *device)
  1756. {
  1757. struct usb_mixer_interface *mixer = device->device_data;
  1758. snd_usb_mixer_free(mixer);
  1759. return 0;
  1760. }
  1761. /*
  1762. * create mixer controls
  1763. *
  1764. * walk through all UAC_OUTPUT_TERMINAL descriptors to search for mixers
  1765. */
  1766. static int snd_usb_mixer_controls(struct usb_mixer_interface *mixer)
  1767. {
  1768. struct mixer_build state;
  1769. int err;
  1770. const struct usbmix_ctl_map *map;
  1771. void *p;
  1772. memset(&state, 0, sizeof(state));
  1773. state.chip = mixer->chip;
  1774. state.mixer = mixer;
  1775. state.buffer = mixer->hostif->extra;
  1776. state.buflen = mixer->hostif->extralen;
  1777. /* check the mapping table */
  1778. for (map = usbmix_ctl_maps; map->id; map++) {
  1779. if (map->id == state.chip->usb_id) {
  1780. state.map = map->map;
  1781. state.selector_map = map->selector_map;
  1782. mixer->ignore_ctl_error = map->ignore_ctl_error;
  1783. break;
  1784. }
  1785. }
  1786. p = NULL;
  1787. while ((p = snd_usb_find_csint_desc(mixer->hostif->extra, mixer->hostif->extralen,
  1788. p, UAC_OUTPUT_TERMINAL)) != NULL) {
  1789. if (mixer->protocol == UAC_VERSION_1) {
  1790. struct uac1_output_terminal_descriptor *desc = p;
  1791. if (desc->bLength < sizeof(*desc))
  1792. continue; /* invalid descriptor? */
  1793. set_bit(desc->bTerminalID, state.unitbitmap); /* mark terminal ID as visited */
  1794. state.oterm.id = desc->bTerminalID;
  1795. state.oterm.type = le16_to_cpu(desc->wTerminalType);
  1796. state.oterm.name = desc->iTerminal;
  1797. err = parse_audio_unit(&state, desc->bSourceID);
  1798. if (err < 0)
  1799. return err;
  1800. } else { /* UAC_VERSION_2 */
  1801. struct uac2_output_terminal_descriptor *desc = p;
  1802. if (desc->bLength < sizeof(*desc))
  1803. continue; /* invalid descriptor? */
  1804. set_bit(desc->bTerminalID, state.unitbitmap); /* mark terminal ID as visited */
  1805. state.oterm.id = desc->bTerminalID;
  1806. state.oterm.type = le16_to_cpu(desc->wTerminalType);
  1807. state.oterm.name = desc->iTerminal;
  1808. err = parse_audio_unit(&state, desc->bSourceID);
  1809. if (err < 0)
  1810. return err;
  1811. /* for UAC2, use the same approach to also add the clock selectors */
  1812. err = parse_audio_unit(&state, desc->bCSourceID);
  1813. if (err < 0)
  1814. return err;
  1815. }
  1816. }
  1817. return 0;
  1818. }
  1819. void snd_usb_mixer_notify_id(struct usb_mixer_interface *mixer, int unitid)
  1820. {
  1821. struct usb_mixer_elem_info *info;
  1822. for (info = mixer->id_elems[unitid]; info; info = info->next_id_elem)
  1823. snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  1824. info->elem_id);
  1825. }
  1826. static void snd_usb_mixer_dump_cval(struct snd_info_buffer *buffer,
  1827. int unitid,
  1828. struct usb_mixer_elem_info *cval)
  1829. {
  1830. static char *val_types[] = {"BOOLEAN", "INV_BOOLEAN",
  1831. "S8", "U8", "S16", "U16"};
  1832. snd_iprintf(buffer, " Unit: %i\n", unitid);
  1833. if (cval->elem_id)
  1834. snd_iprintf(buffer, " Control: name=\"%s\", index=%i\n",
  1835. cval->elem_id->name, cval->elem_id->index);
  1836. snd_iprintf(buffer, " Info: id=%i, control=%i, cmask=0x%x, "
  1837. "channels=%i, type=\"%s\"\n", cval->id,
  1838. cval->control, cval->cmask, cval->channels,
  1839. val_types[cval->val_type]);
  1840. snd_iprintf(buffer, " Volume: min=%i, max=%i, dBmin=%i, dBmax=%i\n",
  1841. cval->min, cval->max, cval->dBmin, cval->dBmax);
  1842. }
  1843. static void snd_usb_mixer_proc_read(struct snd_info_entry *entry,
  1844. struct snd_info_buffer *buffer)
  1845. {
  1846. struct snd_usb_audio *chip = entry->private_data;
  1847. struct usb_mixer_interface *mixer;
  1848. struct usb_mixer_elem_info *cval;
  1849. int unitid;
  1850. list_for_each_entry(mixer, &chip->mixer_list, list) {
  1851. snd_iprintf(buffer,
  1852. "USB Mixer: usb_id=0x%08x, ctrlif=%i, ctlerr=%i\n",
  1853. chip->usb_id, snd_usb_ctrl_intf(chip),
  1854. mixer->ignore_ctl_error);
  1855. snd_iprintf(buffer, "Card: %s\n", chip->card->longname);
  1856. for (unitid = 0; unitid < MAX_ID_ELEMS; unitid++) {
  1857. for (cval = mixer->id_elems[unitid]; cval;
  1858. cval = cval->next_id_elem)
  1859. snd_usb_mixer_dump_cval(buffer, unitid, cval);
  1860. }
  1861. }
  1862. }
  1863. static void snd_usb_mixer_interrupt_v2(struct usb_mixer_interface *mixer,
  1864. int attribute, int value, int index)
  1865. {
  1866. struct usb_mixer_elem_info *info;
  1867. __u8 unitid = (index >> 8) & 0xff;
  1868. __u8 control = (value >> 8) & 0xff;
  1869. __u8 channel = value & 0xff;
  1870. if (channel >= MAX_CHANNELS) {
  1871. snd_printk(KERN_DEBUG "%s(): bogus channel number %d\n",
  1872. __func__, channel);
  1873. return;
  1874. }
  1875. for (info = mixer->id_elems[unitid]; info; info = info->next_id_elem) {
  1876. if (info->control != control)
  1877. continue;
  1878. switch (attribute) {
  1879. case UAC2_CS_CUR:
  1880. /* invalidate cache, so the value is read from the device */
  1881. if (channel)
  1882. info->cached &= ~(1 << channel);
  1883. else /* master channel */
  1884. info->cached = 0;
  1885. snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  1886. info->elem_id);
  1887. break;
  1888. case UAC2_CS_RANGE:
  1889. /* TODO */
  1890. break;
  1891. case UAC2_CS_MEM:
  1892. /* TODO */
  1893. break;
  1894. default:
  1895. snd_printk(KERN_DEBUG "unknown attribute %d in interrupt\n",
  1896. attribute);
  1897. break;
  1898. } /* switch */
  1899. }
  1900. }
  1901. static void snd_usb_mixer_interrupt(struct urb *urb)
  1902. {
  1903. struct usb_mixer_interface *mixer = urb->context;
  1904. int len = urb->actual_length;
  1905. int ustatus = urb->status;
  1906. if (ustatus != 0)
  1907. goto requeue;
  1908. if (mixer->protocol == UAC_VERSION_1) {
  1909. struct uac1_status_word *status;
  1910. for (status = urb->transfer_buffer;
  1911. len >= sizeof(*status);
  1912. len -= sizeof(*status), status++) {
  1913. snd_printd(KERN_DEBUG "status interrupt: %02x %02x\n",
  1914. status->bStatusType,
  1915. status->bOriginator);
  1916. /* ignore any notifications not from the control interface */
  1917. if ((status->bStatusType & UAC1_STATUS_TYPE_ORIG_MASK) !=
  1918. UAC1_STATUS_TYPE_ORIG_AUDIO_CONTROL_IF)
  1919. continue;
  1920. if (status->bStatusType & UAC1_STATUS_TYPE_MEM_CHANGED)
  1921. snd_usb_mixer_rc_memory_change(mixer, status->bOriginator);
  1922. else
  1923. snd_usb_mixer_notify_id(mixer, status->bOriginator);
  1924. }
  1925. } else { /* UAC_VERSION_2 */
  1926. struct uac2_interrupt_data_msg *msg;
  1927. for (msg = urb->transfer_buffer;
  1928. len >= sizeof(*msg);
  1929. len -= sizeof(*msg), msg++) {
  1930. /* drop vendor specific and endpoint requests */
  1931. if ((msg->bInfo & UAC2_INTERRUPT_DATA_MSG_VENDOR) ||
  1932. (msg->bInfo & UAC2_INTERRUPT_DATA_MSG_EP))
  1933. continue;
  1934. snd_usb_mixer_interrupt_v2(mixer, msg->bAttribute,
  1935. le16_to_cpu(msg->wValue),
  1936. le16_to_cpu(msg->wIndex));
  1937. }
  1938. }
  1939. requeue:
  1940. if (ustatus != -ENOENT && ustatus != -ECONNRESET && ustatus != -ESHUTDOWN) {
  1941. urb->dev = mixer->chip->dev;
  1942. usb_submit_urb(urb, GFP_ATOMIC);
  1943. }
  1944. }
  1945. /* stop any bus activity of a mixer */
  1946. void snd_usb_mixer_inactivate(struct usb_mixer_interface *mixer)
  1947. {
  1948. usb_kill_urb(mixer->urb);
  1949. usb_kill_urb(mixer->rc_urb);
  1950. }
  1951. int snd_usb_mixer_activate(struct usb_mixer_interface *mixer)
  1952. {
  1953. int err;
  1954. if (mixer->urb) {
  1955. err = usb_submit_urb(mixer->urb, GFP_NOIO);
  1956. if (err < 0)
  1957. return err;
  1958. }
  1959. return 0;
  1960. }
  1961. /* create the handler for the optional status interrupt endpoint */
  1962. static int snd_usb_mixer_status_create(struct usb_mixer_interface *mixer)
  1963. {
  1964. struct usb_endpoint_descriptor *ep;
  1965. void *transfer_buffer;
  1966. int buffer_length;
  1967. unsigned int epnum;
  1968. /* we need one interrupt input endpoint */
  1969. if (get_iface_desc(mixer->hostif)->bNumEndpoints < 1)
  1970. return 0;
  1971. ep = get_endpoint(mixer->hostif, 0);
  1972. if (!usb_endpoint_dir_in(ep) || !usb_endpoint_xfer_int(ep))
  1973. return 0;
  1974. epnum = usb_endpoint_num(ep);
  1975. buffer_length = le16_to_cpu(ep->wMaxPacketSize);
  1976. transfer_buffer = kmalloc(buffer_length, GFP_KERNEL);
  1977. if (!transfer_buffer)
  1978. return -ENOMEM;
  1979. mixer->urb = usb_alloc_urb(0, GFP_KERNEL);
  1980. if (!mixer->urb) {
  1981. kfree(transfer_buffer);
  1982. return -ENOMEM;
  1983. }
  1984. usb_fill_int_urb(mixer->urb, mixer->chip->dev,
  1985. usb_rcvintpipe(mixer->chip->dev, epnum),
  1986. transfer_buffer, buffer_length,
  1987. snd_usb_mixer_interrupt, mixer, ep->bInterval);
  1988. usb_submit_urb(mixer->urb, GFP_KERNEL);
  1989. return 0;
  1990. }
  1991. int snd_usb_create_mixer(struct snd_usb_audio *chip, int ctrlif,
  1992. int ignore_error)
  1993. {
  1994. static struct snd_device_ops dev_ops = {
  1995. .dev_free = snd_usb_mixer_dev_free
  1996. };
  1997. struct usb_mixer_interface *mixer;
  1998. struct snd_info_entry *entry;
  1999. int err;
  2000. strcpy(chip->card->mixername, "USB Mixer");
  2001. mixer = kzalloc(sizeof(*mixer), GFP_KERNEL);
  2002. if (!mixer)
  2003. return -ENOMEM;
  2004. mixer->chip = chip;
  2005. mixer->ignore_ctl_error = ignore_error;
  2006. mixer->id_elems = kcalloc(MAX_ID_ELEMS, sizeof(*mixer->id_elems),
  2007. GFP_KERNEL);
  2008. if (!mixer->id_elems) {
  2009. kfree(mixer);
  2010. return -ENOMEM;
  2011. }
  2012. mixer->hostif = &usb_ifnum_to_if(chip->dev, ctrlif)->altsetting[0];
  2013. switch (get_iface_desc(mixer->hostif)->bInterfaceProtocol) {
  2014. case UAC_VERSION_1:
  2015. default:
  2016. mixer->protocol = UAC_VERSION_1;
  2017. break;
  2018. case UAC_VERSION_2:
  2019. mixer->protocol = UAC_VERSION_2;
  2020. break;
  2021. }
  2022. if ((err = snd_usb_mixer_controls(mixer)) < 0 ||
  2023. (err = snd_usb_mixer_status_create(mixer)) < 0)
  2024. goto _error;
  2025. snd_usb_mixer_apply_create_quirk(mixer);
  2026. err = snd_device_new(chip->card, SNDRV_DEV_LOWLEVEL, mixer, &dev_ops);
  2027. if (err < 0)
  2028. goto _error;
  2029. if (list_empty(&chip->mixer_list) &&
  2030. !snd_card_proc_new(chip->card, "usbmixer", &entry))
  2031. snd_info_set_text_ops(entry, chip, snd_usb_mixer_proc_read);
  2032. list_add(&mixer->list, &chip->mixer_list);
  2033. return 0;
  2034. _error:
  2035. snd_usb_mixer_free(mixer);
  2036. return err;
  2037. }
  2038. void snd_usb_mixer_disconnect(struct list_head *p)
  2039. {
  2040. struct usb_mixer_interface *mixer;
  2041. mixer = list_entry(p, struct usb_mixer_interface, list);
  2042. usb_kill_urb(mixer->urb);
  2043. usb_kill_urb(mixer->rc_urb);
  2044. }