security.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. #include <linux/integrity.h>
  19. #include <linux/ima.h>
  20. #include <linux/evm.h>
  21. #include <linux/fsnotify.h>
  22. #include <linux/mman.h>
  23. #include <linux/mount.h>
  24. #include <linux/personality.h>
  25. #include <linux/backing-dev.h>
  26. #include <net/flow.h>
  27. #define MAX_LSM_EVM_XATTR 2
  28. /* Boot-time LSM user choice */
  29. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  30. CONFIG_DEFAULT_SECURITY;
  31. static struct security_operations *security_ops;
  32. static struct security_operations default_security_ops = {
  33. .name = "default",
  34. };
  35. static inline int __init verify(struct security_operations *ops)
  36. {
  37. /* verify the security_operations structure exists */
  38. if (!ops)
  39. return -EINVAL;
  40. security_fixup_ops(ops);
  41. return 0;
  42. }
  43. static void __init do_security_initcalls(void)
  44. {
  45. initcall_t *call;
  46. call = __security_initcall_start;
  47. while (call < __security_initcall_end) {
  48. (*call) ();
  49. call++;
  50. }
  51. }
  52. /**
  53. * security_init - initializes the security framework
  54. *
  55. * This should be called early in the kernel initialization sequence.
  56. */
  57. int __init security_init(void)
  58. {
  59. printk(KERN_INFO "Security Framework initialized\n");
  60. security_fixup_ops(&default_security_ops);
  61. security_ops = &default_security_ops;
  62. do_security_initcalls();
  63. return 0;
  64. }
  65. void reset_security_ops(void)
  66. {
  67. security_ops = &default_security_ops;
  68. }
  69. /* Save user chosen LSM */
  70. static int __init choose_lsm(char *str)
  71. {
  72. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  73. return 1;
  74. }
  75. __setup("security=", choose_lsm);
  76. /**
  77. * security_module_enable - Load given security module on boot ?
  78. * @ops: a pointer to the struct security_operations that is to be checked.
  79. *
  80. * Each LSM must pass this method before registering its own operations
  81. * to avoid security registration races. This method may also be used
  82. * to check if your LSM is currently loaded during kernel initialization.
  83. *
  84. * Return true if:
  85. * -The passed LSM is the one chosen by user at boot time,
  86. * -or the passed LSM is configured as the default and the user did not
  87. * choose an alternate LSM at boot time.
  88. * Otherwise, return false.
  89. */
  90. int __init security_module_enable(struct security_operations *ops)
  91. {
  92. return !strcmp(ops->name, chosen_lsm);
  93. }
  94. /**
  95. * register_security - registers a security framework with the kernel
  96. * @ops: a pointer to the struct security_options that is to be registered
  97. *
  98. * This function allows a security module to register itself with the
  99. * kernel security subsystem. Some rudimentary checking is done on the @ops
  100. * value passed to this function. You'll need to check first if your LSM
  101. * is allowed to register its @ops by calling security_module_enable(@ops).
  102. *
  103. * If there is already a security module registered with the kernel,
  104. * an error will be returned. Otherwise %0 is returned on success.
  105. */
  106. int __init register_security(struct security_operations *ops)
  107. {
  108. if (verify(ops)) {
  109. printk(KERN_DEBUG "%s could not verify "
  110. "security_operations structure.\n", __func__);
  111. return -EINVAL;
  112. }
  113. if (security_ops != &default_security_ops)
  114. return -EAGAIN;
  115. security_ops = ops;
  116. return 0;
  117. }
  118. /* Security operations */
  119. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  120. {
  121. return security_ops->ptrace_access_check(child, mode);
  122. }
  123. int security_ptrace_traceme(struct task_struct *parent)
  124. {
  125. return security_ops->ptrace_traceme(parent);
  126. }
  127. int security_capget(struct task_struct *target,
  128. kernel_cap_t *effective,
  129. kernel_cap_t *inheritable,
  130. kernel_cap_t *permitted)
  131. {
  132. return security_ops->capget(target, effective, inheritable, permitted);
  133. }
  134. int security_capset(struct cred *new, const struct cred *old,
  135. const kernel_cap_t *effective,
  136. const kernel_cap_t *inheritable,
  137. const kernel_cap_t *permitted)
  138. {
  139. return security_ops->capset(new, old,
  140. effective, inheritable, permitted);
  141. }
  142. int security_capable(const struct cred *cred, struct user_namespace *ns,
  143. int cap)
  144. {
  145. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  146. }
  147. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  148. int cap)
  149. {
  150. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  151. }
  152. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  153. {
  154. return security_ops->quotactl(cmds, type, id, sb);
  155. }
  156. int security_quota_on(struct dentry *dentry)
  157. {
  158. return security_ops->quota_on(dentry);
  159. }
  160. int security_syslog(int type)
  161. {
  162. return security_ops->syslog(type);
  163. }
  164. int security_settime(const struct timespec *ts, const struct timezone *tz)
  165. {
  166. return security_ops->settime(ts, tz);
  167. }
  168. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  169. {
  170. return security_ops->vm_enough_memory(mm, pages);
  171. }
  172. int security_bprm_set_creds(struct linux_binprm *bprm)
  173. {
  174. return security_ops->bprm_set_creds(bprm);
  175. }
  176. int security_bprm_check(struct linux_binprm *bprm)
  177. {
  178. int ret;
  179. ret = security_ops->bprm_check_security(bprm);
  180. if (ret)
  181. return ret;
  182. return ima_bprm_check(bprm);
  183. }
  184. void security_bprm_committing_creds(struct linux_binprm *bprm)
  185. {
  186. security_ops->bprm_committing_creds(bprm);
  187. }
  188. void security_bprm_committed_creds(struct linux_binprm *bprm)
  189. {
  190. security_ops->bprm_committed_creds(bprm);
  191. }
  192. int security_bprm_secureexec(struct linux_binprm *bprm)
  193. {
  194. return security_ops->bprm_secureexec(bprm);
  195. }
  196. int security_sb_alloc(struct super_block *sb)
  197. {
  198. return security_ops->sb_alloc_security(sb);
  199. }
  200. void security_sb_free(struct super_block *sb)
  201. {
  202. security_ops->sb_free_security(sb);
  203. }
  204. int security_sb_copy_data(char *orig, char *copy)
  205. {
  206. return security_ops->sb_copy_data(orig, copy);
  207. }
  208. EXPORT_SYMBOL(security_sb_copy_data);
  209. int security_sb_remount(struct super_block *sb, void *data)
  210. {
  211. return security_ops->sb_remount(sb, data);
  212. }
  213. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  214. {
  215. return security_ops->sb_kern_mount(sb, flags, data);
  216. }
  217. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  218. {
  219. return security_ops->sb_show_options(m, sb);
  220. }
  221. int security_sb_statfs(struct dentry *dentry)
  222. {
  223. return security_ops->sb_statfs(dentry);
  224. }
  225. int security_sb_mount(char *dev_name, struct path *path,
  226. char *type, unsigned long flags, void *data)
  227. {
  228. return security_ops->sb_mount(dev_name, path, type, flags, data);
  229. }
  230. int security_sb_umount(struct vfsmount *mnt, int flags)
  231. {
  232. return security_ops->sb_umount(mnt, flags);
  233. }
  234. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  235. {
  236. return security_ops->sb_pivotroot(old_path, new_path);
  237. }
  238. int security_sb_set_mnt_opts(struct super_block *sb,
  239. struct security_mnt_opts *opts)
  240. {
  241. return security_ops->sb_set_mnt_opts(sb, opts);
  242. }
  243. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  244. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  245. struct super_block *newsb)
  246. {
  247. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  248. }
  249. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  250. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  251. {
  252. return security_ops->sb_parse_opts_str(options, opts);
  253. }
  254. EXPORT_SYMBOL(security_sb_parse_opts_str);
  255. int security_inode_alloc(struct inode *inode)
  256. {
  257. inode->i_security = NULL;
  258. return security_ops->inode_alloc_security(inode);
  259. }
  260. void security_inode_free(struct inode *inode)
  261. {
  262. integrity_inode_free(inode);
  263. security_ops->inode_free_security(inode);
  264. }
  265. int security_inode_init_security(struct inode *inode, struct inode *dir,
  266. const struct qstr *qstr,
  267. const initxattrs initxattrs, void *fs_data)
  268. {
  269. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  270. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  271. int ret;
  272. if (unlikely(IS_PRIVATE(inode)))
  273. return 0;
  274. memset(new_xattrs, 0, sizeof new_xattrs);
  275. if (!initxattrs)
  276. return security_ops->inode_init_security(inode, dir, qstr,
  277. NULL, NULL, NULL);
  278. lsm_xattr = new_xattrs;
  279. ret = security_ops->inode_init_security(inode, dir, qstr,
  280. &lsm_xattr->name,
  281. &lsm_xattr->value,
  282. &lsm_xattr->value_len);
  283. if (ret)
  284. goto out;
  285. evm_xattr = lsm_xattr + 1;
  286. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  287. if (ret)
  288. goto out;
  289. ret = initxattrs(inode, new_xattrs, fs_data);
  290. out:
  291. for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
  292. kfree(xattr->name);
  293. kfree(xattr->value);
  294. }
  295. return (ret == -EOPNOTSUPP) ? 0 : ret;
  296. }
  297. EXPORT_SYMBOL(security_inode_init_security);
  298. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  299. const struct qstr *qstr, char **name,
  300. void **value, size_t *len)
  301. {
  302. if (unlikely(IS_PRIVATE(inode)))
  303. return -EOPNOTSUPP;
  304. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  305. len);
  306. }
  307. EXPORT_SYMBOL(security_old_inode_init_security);
  308. #ifdef CONFIG_SECURITY_PATH
  309. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  310. unsigned int dev)
  311. {
  312. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  313. return 0;
  314. return security_ops->path_mknod(dir, dentry, mode, dev);
  315. }
  316. EXPORT_SYMBOL(security_path_mknod);
  317. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  318. {
  319. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  320. return 0;
  321. return security_ops->path_mkdir(dir, dentry, mode);
  322. }
  323. EXPORT_SYMBOL(security_path_mkdir);
  324. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  325. {
  326. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  327. return 0;
  328. return security_ops->path_rmdir(dir, dentry);
  329. }
  330. int security_path_unlink(struct path *dir, struct dentry *dentry)
  331. {
  332. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  333. return 0;
  334. return security_ops->path_unlink(dir, dentry);
  335. }
  336. EXPORT_SYMBOL(security_path_unlink);
  337. int security_path_symlink(struct path *dir, struct dentry *dentry,
  338. const char *old_name)
  339. {
  340. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  341. return 0;
  342. return security_ops->path_symlink(dir, dentry, old_name);
  343. }
  344. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  345. struct dentry *new_dentry)
  346. {
  347. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  348. return 0;
  349. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  350. }
  351. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  352. struct path *new_dir, struct dentry *new_dentry)
  353. {
  354. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  355. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  356. return 0;
  357. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  358. new_dentry);
  359. }
  360. EXPORT_SYMBOL(security_path_rename);
  361. int security_path_truncate(struct path *path)
  362. {
  363. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  364. return 0;
  365. return security_ops->path_truncate(path);
  366. }
  367. int security_path_chmod(struct path *path, umode_t mode)
  368. {
  369. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  370. return 0;
  371. return security_ops->path_chmod(path, mode);
  372. }
  373. int security_path_chown(struct path *path, uid_t uid, gid_t gid)
  374. {
  375. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  376. return 0;
  377. return security_ops->path_chown(path, uid, gid);
  378. }
  379. int security_path_chroot(struct path *path)
  380. {
  381. return security_ops->path_chroot(path);
  382. }
  383. #endif
  384. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  385. {
  386. if (unlikely(IS_PRIVATE(dir)))
  387. return 0;
  388. return security_ops->inode_create(dir, dentry, mode);
  389. }
  390. EXPORT_SYMBOL_GPL(security_inode_create);
  391. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  392. struct dentry *new_dentry)
  393. {
  394. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  395. return 0;
  396. return security_ops->inode_link(old_dentry, dir, new_dentry);
  397. }
  398. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  399. {
  400. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  401. return 0;
  402. return security_ops->inode_unlink(dir, dentry);
  403. }
  404. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  405. const char *old_name)
  406. {
  407. if (unlikely(IS_PRIVATE(dir)))
  408. return 0;
  409. return security_ops->inode_symlink(dir, dentry, old_name);
  410. }
  411. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  412. {
  413. if (unlikely(IS_PRIVATE(dir)))
  414. return 0;
  415. return security_ops->inode_mkdir(dir, dentry, mode);
  416. }
  417. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  418. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  419. {
  420. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  421. return 0;
  422. return security_ops->inode_rmdir(dir, dentry);
  423. }
  424. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  425. {
  426. if (unlikely(IS_PRIVATE(dir)))
  427. return 0;
  428. return security_ops->inode_mknod(dir, dentry, mode, dev);
  429. }
  430. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  431. struct inode *new_dir, struct dentry *new_dentry)
  432. {
  433. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  434. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  435. return 0;
  436. return security_ops->inode_rename(old_dir, old_dentry,
  437. new_dir, new_dentry);
  438. }
  439. int security_inode_readlink(struct dentry *dentry)
  440. {
  441. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  442. return 0;
  443. return security_ops->inode_readlink(dentry);
  444. }
  445. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  446. {
  447. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  448. return 0;
  449. return security_ops->inode_follow_link(dentry, nd);
  450. }
  451. int security_inode_permission(struct inode *inode, int mask)
  452. {
  453. if (unlikely(IS_PRIVATE(inode)))
  454. return 0;
  455. return security_ops->inode_permission(inode, mask);
  456. }
  457. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  458. {
  459. int ret;
  460. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  461. return 0;
  462. ret = security_ops->inode_setattr(dentry, attr);
  463. if (ret)
  464. return ret;
  465. return evm_inode_setattr(dentry, attr);
  466. }
  467. EXPORT_SYMBOL_GPL(security_inode_setattr);
  468. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  469. {
  470. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  471. return 0;
  472. return security_ops->inode_getattr(mnt, dentry);
  473. }
  474. int security_inode_setxattr(struct dentry *dentry, const char *name,
  475. const void *value, size_t size, int flags)
  476. {
  477. int ret;
  478. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  479. return 0;
  480. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  481. if (ret)
  482. return ret;
  483. return evm_inode_setxattr(dentry, name, value, size);
  484. }
  485. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  486. const void *value, size_t size, int flags)
  487. {
  488. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  489. return;
  490. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  491. evm_inode_post_setxattr(dentry, name, value, size);
  492. }
  493. int security_inode_getxattr(struct dentry *dentry, const char *name)
  494. {
  495. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  496. return 0;
  497. return security_ops->inode_getxattr(dentry, name);
  498. }
  499. int security_inode_listxattr(struct dentry *dentry)
  500. {
  501. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  502. return 0;
  503. return security_ops->inode_listxattr(dentry);
  504. }
  505. int security_inode_removexattr(struct dentry *dentry, const char *name)
  506. {
  507. int ret;
  508. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  509. return 0;
  510. ret = security_ops->inode_removexattr(dentry, name);
  511. if (ret)
  512. return ret;
  513. return evm_inode_removexattr(dentry, name);
  514. }
  515. int security_inode_need_killpriv(struct dentry *dentry)
  516. {
  517. return security_ops->inode_need_killpriv(dentry);
  518. }
  519. int security_inode_killpriv(struct dentry *dentry)
  520. {
  521. return security_ops->inode_killpriv(dentry);
  522. }
  523. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  524. {
  525. if (unlikely(IS_PRIVATE(inode)))
  526. return -EOPNOTSUPP;
  527. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  528. }
  529. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  530. {
  531. if (unlikely(IS_PRIVATE(inode)))
  532. return -EOPNOTSUPP;
  533. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  534. }
  535. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  536. {
  537. if (unlikely(IS_PRIVATE(inode)))
  538. return 0;
  539. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  540. }
  541. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  542. {
  543. security_ops->inode_getsecid(inode, secid);
  544. }
  545. int security_file_permission(struct file *file, int mask)
  546. {
  547. int ret;
  548. ret = security_ops->file_permission(file, mask);
  549. if (ret)
  550. return ret;
  551. return fsnotify_perm(file, mask);
  552. }
  553. int security_file_alloc(struct file *file)
  554. {
  555. return security_ops->file_alloc_security(file);
  556. }
  557. void security_file_free(struct file *file)
  558. {
  559. security_ops->file_free_security(file);
  560. }
  561. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  562. {
  563. return security_ops->file_ioctl(file, cmd, arg);
  564. }
  565. static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
  566. {
  567. /*
  568. * Does we have PROT_READ and does the application expect
  569. * it to imply PROT_EXEC? If not, nothing to talk about...
  570. */
  571. if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
  572. return prot;
  573. if (!(current->personality & READ_IMPLIES_EXEC))
  574. return prot;
  575. /*
  576. * if that's an anonymous mapping, let it.
  577. */
  578. if (!file)
  579. return prot | PROT_EXEC;
  580. /*
  581. * ditto if it's not on noexec mount, except that on !MMU we need
  582. * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
  583. */
  584. if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
  585. #ifndef CONFIG_MMU
  586. unsigned long caps = 0;
  587. struct address_space *mapping = file->f_mapping;
  588. if (mapping && mapping->backing_dev_info)
  589. caps = mapping->backing_dev_info->capabilities;
  590. if (!(caps & BDI_CAP_EXEC_MAP))
  591. return prot;
  592. #endif
  593. return prot | PROT_EXEC;
  594. }
  595. /* anything on noexec mount won't get PROT_EXEC */
  596. return prot;
  597. }
  598. int security_mmap_file(struct file *file, unsigned long prot,
  599. unsigned long flags)
  600. {
  601. int ret;
  602. ret = security_ops->mmap_file(file, prot,
  603. mmap_prot(file, prot), flags);
  604. if (ret)
  605. return ret;
  606. return ima_file_mmap(file, prot);
  607. }
  608. int security_mmap_addr(unsigned long addr)
  609. {
  610. return security_ops->mmap_addr(addr);
  611. }
  612. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  613. unsigned long prot)
  614. {
  615. return security_ops->file_mprotect(vma, reqprot, prot);
  616. }
  617. int security_file_lock(struct file *file, unsigned int cmd)
  618. {
  619. return security_ops->file_lock(file, cmd);
  620. }
  621. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  622. {
  623. return security_ops->file_fcntl(file, cmd, arg);
  624. }
  625. int security_file_set_fowner(struct file *file)
  626. {
  627. return security_ops->file_set_fowner(file);
  628. }
  629. int security_file_send_sigiotask(struct task_struct *tsk,
  630. struct fown_struct *fown, int sig)
  631. {
  632. return security_ops->file_send_sigiotask(tsk, fown, sig);
  633. }
  634. int security_file_receive(struct file *file)
  635. {
  636. return security_ops->file_receive(file);
  637. }
  638. int security_file_open(struct file *file, const struct cred *cred)
  639. {
  640. int ret;
  641. ret = security_ops->file_open(file, cred);
  642. if (ret)
  643. return ret;
  644. return fsnotify_perm(file, MAY_OPEN);
  645. }
  646. int security_task_create(unsigned long clone_flags)
  647. {
  648. return security_ops->task_create(clone_flags);
  649. }
  650. void security_task_free(struct task_struct *task)
  651. {
  652. security_ops->task_free(task);
  653. }
  654. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  655. {
  656. return security_ops->cred_alloc_blank(cred, gfp);
  657. }
  658. void security_cred_free(struct cred *cred)
  659. {
  660. security_ops->cred_free(cred);
  661. }
  662. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  663. {
  664. return security_ops->cred_prepare(new, old, gfp);
  665. }
  666. void security_transfer_creds(struct cred *new, const struct cred *old)
  667. {
  668. security_ops->cred_transfer(new, old);
  669. }
  670. int security_kernel_act_as(struct cred *new, u32 secid)
  671. {
  672. return security_ops->kernel_act_as(new, secid);
  673. }
  674. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  675. {
  676. return security_ops->kernel_create_files_as(new, inode);
  677. }
  678. int security_kernel_module_request(char *kmod_name)
  679. {
  680. return security_ops->kernel_module_request(kmod_name);
  681. }
  682. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  683. int flags)
  684. {
  685. return security_ops->task_fix_setuid(new, old, flags);
  686. }
  687. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  688. {
  689. return security_ops->task_setpgid(p, pgid);
  690. }
  691. int security_task_getpgid(struct task_struct *p)
  692. {
  693. return security_ops->task_getpgid(p);
  694. }
  695. int security_task_getsid(struct task_struct *p)
  696. {
  697. return security_ops->task_getsid(p);
  698. }
  699. void security_task_getsecid(struct task_struct *p, u32 *secid)
  700. {
  701. security_ops->task_getsecid(p, secid);
  702. }
  703. EXPORT_SYMBOL(security_task_getsecid);
  704. int security_task_setnice(struct task_struct *p, int nice)
  705. {
  706. return security_ops->task_setnice(p, nice);
  707. }
  708. int security_task_setioprio(struct task_struct *p, int ioprio)
  709. {
  710. return security_ops->task_setioprio(p, ioprio);
  711. }
  712. int security_task_getioprio(struct task_struct *p)
  713. {
  714. return security_ops->task_getioprio(p);
  715. }
  716. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  717. struct rlimit *new_rlim)
  718. {
  719. return security_ops->task_setrlimit(p, resource, new_rlim);
  720. }
  721. int security_task_setscheduler(struct task_struct *p)
  722. {
  723. return security_ops->task_setscheduler(p);
  724. }
  725. int security_task_getscheduler(struct task_struct *p)
  726. {
  727. return security_ops->task_getscheduler(p);
  728. }
  729. int security_task_movememory(struct task_struct *p)
  730. {
  731. return security_ops->task_movememory(p);
  732. }
  733. int security_task_kill(struct task_struct *p, struct siginfo *info,
  734. int sig, u32 secid)
  735. {
  736. return security_ops->task_kill(p, info, sig, secid);
  737. }
  738. int security_task_wait(struct task_struct *p)
  739. {
  740. return security_ops->task_wait(p);
  741. }
  742. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  743. unsigned long arg4, unsigned long arg5)
  744. {
  745. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  746. }
  747. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  748. {
  749. security_ops->task_to_inode(p, inode);
  750. }
  751. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  752. {
  753. return security_ops->ipc_permission(ipcp, flag);
  754. }
  755. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  756. {
  757. security_ops->ipc_getsecid(ipcp, secid);
  758. }
  759. int security_msg_msg_alloc(struct msg_msg *msg)
  760. {
  761. return security_ops->msg_msg_alloc_security(msg);
  762. }
  763. void security_msg_msg_free(struct msg_msg *msg)
  764. {
  765. security_ops->msg_msg_free_security(msg);
  766. }
  767. int security_msg_queue_alloc(struct msg_queue *msq)
  768. {
  769. return security_ops->msg_queue_alloc_security(msq);
  770. }
  771. void security_msg_queue_free(struct msg_queue *msq)
  772. {
  773. security_ops->msg_queue_free_security(msq);
  774. }
  775. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  776. {
  777. return security_ops->msg_queue_associate(msq, msqflg);
  778. }
  779. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  780. {
  781. return security_ops->msg_queue_msgctl(msq, cmd);
  782. }
  783. int security_msg_queue_msgsnd(struct msg_queue *msq,
  784. struct msg_msg *msg, int msqflg)
  785. {
  786. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  787. }
  788. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  789. struct task_struct *target, long type, int mode)
  790. {
  791. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  792. }
  793. int security_shm_alloc(struct shmid_kernel *shp)
  794. {
  795. return security_ops->shm_alloc_security(shp);
  796. }
  797. void security_shm_free(struct shmid_kernel *shp)
  798. {
  799. security_ops->shm_free_security(shp);
  800. }
  801. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  802. {
  803. return security_ops->shm_associate(shp, shmflg);
  804. }
  805. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  806. {
  807. return security_ops->shm_shmctl(shp, cmd);
  808. }
  809. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  810. {
  811. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  812. }
  813. int security_sem_alloc(struct sem_array *sma)
  814. {
  815. return security_ops->sem_alloc_security(sma);
  816. }
  817. void security_sem_free(struct sem_array *sma)
  818. {
  819. security_ops->sem_free_security(sma);
  820. }
  821. int security_sem_associate(struct sem_array *sma, int semflg)
  822. {
  823. return security_ops->sem_associate(sma, semflg);
  824. }
  825. int security_sem_semctl(struct sem_array *sma, int cmd)
  826. {
  827. return security_ops->sem_semctl(sma, cmd);
  828. }
  829. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  830. unsigned nsops, int alter)
  831. {
  832. return security_ops->sem_semop(sma, sops, nsops, alter);
  833. }
  834. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  835. {
  836. if (unlikely(inode && IS_PRIVATE(inode)))
  837. return;
  838. security_ops->d_instantiate(dentry, inode);
  839. }
  840. EXPORT_SYMBOL(security_d_instantiate);
  841. int security_getprocattr(struct task_struct *p, char *name, char **value)
  842. {
  843. return security_ops->getprocattr(p, name, value);
  844. }
  845. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  846. {
  847. return security_ops->setprocattr(p, name, value, size);
  848. }
  849. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  850. {
  851. return security_ops->netlink_send(sk, skb);
  852. }
  853. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  854. {
  855. return security_ops->secid_to_secctx(secid, secdata, seclen);
  856. }
  857. EXPORT_SYMBOL(security_secid_to_secctx);
  858. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  859. {
  860. return security_ops->secctx_to_secid(secdata, seclen, secid);
  861. }
  862. EXPORT_SYMBOL(security_secctx_to_secid);
  863. void security_release_secctx(char *secdata, u32 seclen)
  864. {
  865. security_ops->release_secctx(secdata, seclen);
  866. }
  867. EXPORT_SYMBOL(security_release_secctx);
  868. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  869. {
  870. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  871. }
  872. EXPORT_SYMBOL(security_inode_notifysecctx);
  873. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  874. {
  875. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  876. }
  877. EXPORT_SYMBOL(security_inode_setsecctx);
  878. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  879. {
  880. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  881. }
  882. EXPORT_SYMBOL(security_inode_getsecctx);
  883. #ifdef CONFIG_SECURITY_NETWORK
  884. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  885. {
  886. return security_ops->unix_stream_connect(sock, other, newsk);
  887. }
  888. EXPORT_SYMBOL(security_unix_stream_connect);
  889. int security_unix_may_send(struct socket *sock, struct socket *other)
  890. {
  891. return security_ops->unix_may_send(sock, other);
  892. }
  893. EXPORT_SYMBOL(security_unix_may_send);
  894. int security_socket_create(int family, int type, int protocol, int kern)
  895. {
  896. return security_ops->socket_create(family, type, protocol, kern);
  897. }
  898. int security_socket_post_create(struct socket *sock, int family,
  899. int type, int protocol, int kern)
  900. {
  901. return security_ops->socket_post_create(sock, family, type,
  902. protocol, kern);
  903. }
  904. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  905. {
  906. return security_ops->socket_bind(sock, address, addrlen);
  907. }
  908. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  909. {
  910. return security_ops->socket_connect(sock, address, addrlen);
  911. }
  912. int security_socket_listen(struct socket *sock, int backlog)
  913. {
  914. return security_ops->socket_listen(sock, backlog);
  915. }
  916. int security_socket_accept(struct socket *sock, struct socket *newsock)
  917. {
  918. return security_ops->socket_accept(sock, newsock);
  919. }
  920. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  921. {
  922. return security_ops->socket_sendmsg(sock, msg, size);
  923. }
  924. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  925. int size, int flags)
  926. {
  927. return security_ops->socket_recvmsg(sock, msg, size, flags);
  928. }
  929. int security_socket_getsockname(struct socket *sock)
  930. {
  931. return security_ops->socket_getsockname(sock);
  932. }
  933. int security_socket_getpeername(struct socket *sock)
  934. {
  935. return security_ops->socket_getpeername(sock);
  936. }
  937. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  938. {
  939. return security_ops->socket_getsockopt(sock, level, optname);
  940. }
  941. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  942. {
  943. return security_ops->socket_setsockopt(sock, level, optname);
  944. }
  945. int security_socket_shutdown(struct socket *sock, int how)
  946. {
  947. return security_ops->socket_shutdown(sock, how);
  948. }
  949. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  950. {
  951. return security_ops->socket_sock_rcv_skb(sk, skb);
  952. }
  953. EXPORT_SYMBOL(security_sock_rcv_skb);
  954. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  955. int __user *optlen, unsigned len)
  956. {
  957. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  958. }
  959. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  960. {
  961. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  962. }
  963. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  964. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  965. {
  966. return security_ops->sk_alloc_security(sk, family, priority);
  967. }
  968. void security_sk_free(struct sock *sk)
  969. {
  970. security_ops->sk_free_security(sk);
  971. }
  972. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  973. {
  974. security_ops->sk_clone_security(sk, newsk);
  975. }
  976. EXPORT_SYMBOL(security_sk_clone);
  977. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  978. {
  979. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  980. }
  981. EXPORT_SYMBOL(security_sk_classify_flow);
  982. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  983. {
  984. security_ops->req_classify_flow(req, fl);
  985. }
  986. EXPORT_SYMBOL(security_req_classify_flow);
  987. void security_sock_graft(struct sock *sk, struct socket *parent)
  988. {
  989. security_ops->sock_graft(sk, parent);
  990. }
  991. EXPORT_SYMBOL(security_sock_graft);
  992. int security_inet_conn_request(struct sock *sk,
  993. struct sk_buff *skb, struct request_sock *req)
  994. {
  995. return security_ops->inet_conn_request(sk, skb, req);
  996. }
  997. EXPORT_SYMBOL(security_inet_conn_request);
  998. void security_inet_csk_clone(struct sock *newsk,
  999. const struct request_sock *req)
  1000. {
  1001. security_ops->inet_csk_clone(newsk, req);
  1002. }
  1003. void security_inet_conn_established(struct sock *sk,
  1004. struct sk_buff *skb)
  1005. {
  1006. security_ops->inet_conn_established(sk, skb);
  1007. }
  1008. int security_secmark_relabel_packet(u32 secid)
  1009. {
  1010. return security_ops->secmark_relabel_packet(secid);
  1011. }
  1012. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1013. void security_secmark_refcount_inc(void)
  1014. {
  1015. security_ops->secmark_refcount_inc();
  1016. }
  1017. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1018. void security_secmark_refcount_dec(void)
  1019. {
  1020. security_ops->secmark_refcount_dec();
  1021. }
  1022. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1023. int security_tun_dev_create(void)
  1024. {
  1025. return security_ops->tun_dev_create();
  1026. }
  1027. EXPORT_SYMBOL(security_tun_dev_create);
  1028. void security_tun_dev_post_create(struct sock *sk)
  1029. {
  1030. return security_ops->tun_dev_post_create(sk);
  1031. }
  1032. EXPORT_SYMBOL(security_tun_dev_post_create);
  1033. int security_tun_dev_attach(struct sock *sk)
  1034. {
  1035. return security_ops->tun_dev_attach(sk);
  1036. }
  1037. EXPORT_SYMBOL(security_tun_dev_attach);
  1038. #endif /* CONFIG_SECURITY_NETWORK */
  1039. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1040. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  1041. {
  1042. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  1043. }
  1044. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1045. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1046. struct xfrm_sec_ctx **new_ctxp)
  1047. {
  1048. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1049. }
  1050. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1051. {
  1052. security_ops->xfrm_policy_free_security(ctx);
  1053. }
  1054. EXPORT_SYMBOL(security_xfrm_policy_free);
  1055. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1056. {
  1057. return security_ops->xfrm_policy_delete_security(ctx);
  1058. }
  1059. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  1060. {
  1061. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  1062. }
  1063. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1064. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1065. struct xfrm_sec_ctx *polsec, u32 secid)
  1066. {
  1067. if (!polsec)
  1068. return 0;
  1069. /*
  1070. * We want the context to be taken from secid which is usually
  1071. * from the sock.
  1072. */
  1073. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  1074. }
  1075. int security_xfrm_state_delete(struct xfrm_state *x)
  1076. {
  1077. return security_ops->xfrm_state_delete_security(x);
  1078. }
  1079. EXPORT_SYMBOL(security_xfrm_state_delete);
  1080. void security_xfrm_state_free(struct xfrm_state *x)
  1081. {
  1082. security_ops->xfrm_state_free_security(x);
  1083. }
  1084. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1085. {
  1086. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1087. }
  1088. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1089. struct xfrm_policy *xp,
  1090. const struct flowi *fl)
  1091. {
  1092. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1093. }
  1094. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1095. {
  1096. return security_ops->xfrm_decode_session(skb, secid, 1);
  1097. }
  1098. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1099. {
  1100. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1101. BUG_ON(rc);
  1102. }
  1103. EXPORT_SYMBOL(security_skb_classify_flow);
  1104. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1105. #ifdef CONFIG_KEYS
  1106. int security_key_alloc(struct key *key, const struct cred *cred,
  1107. unsigned long flags)
  1108. {
  1109. return security_ops->key_alloc(key, cred, flags);
  1110. }
  1111. void security_key_free(struct key *key)
  1112. {
  1113. security_ops->key_free(key);
  1114. }
  1115. int security_key_permission(key_ref_t key_ref,
  1116. const struct cred *cred, key_perm_t perm)
  1117. {
  1118. return security_ops->key_permission(key_ref, cred, perm);
  1119. }
  1120. int security_key_getsecurity(struct key *key, char **_buffer)
  1121. {
  1122. return security_ops->key_getsecurity(key, _buffer);
  1123. }
  1124. #endif /* CONFIG_KEYS */
  1125. #ifdef CONFIG_AUDIT
  1126. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1127. {
  1128. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1129. }
  1130. int security_audit_rule_known(struct audit_krule *krule)
  1131. {
  1132. return security_ops->audit_rule_known(krule);
  1133. }
  1134. void security_audit_rule_free(void *lsmrule)
  1135. {
  1136. security_ops->audit_rule_free(lsmrule);
  1137. }
  1138. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1139. struct audit_context *actx)
  1140. {
  1141. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1142. }
  1143. #endif /* CONFIG_AUDIT */