sock.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/types.h>
  95. #include <linux/socket.h>
  96. #include <linux/in.h>
  97. #include <linux/kernel.h>
  98. #include <linux/module.h>
  99. #include <linux/proc_fs.h>
  100. #include <linux/seq_file.h>
  101. #include <linux/sched.h>
  102. #include <linux/timer.h>
  103. #include <linux/string.h>
  104. #include <linux/sockios.h>
  105. #include <linux/net.h>
  106. #include <linux/mm.h>
  107. #include <linux/slab.h>
  108. #include <linux/interrupt.h>
  109. #include <linux/poll.h>
  110. #include <linux/tcp.h>
  111. #include <linux/init.h>
  112. #include <linux/highmem.h>
  113. #include <linux/user_namespace.h>
  114. #include <linux/static_key.h>
  115. #include <linux/memcontrol.h>
  116. #include <linux/prefetch.h>
  117. #include <asm/uaccess.h>
  118. #include <linux/netdevice.h>
  119. #include <net/protocol.h>
  120. #include <linux/skbuff.h>
  121. #include <net/net_namespace.h>
  122. #include <net/request_sock.h>
  123. #include <net/sock.h>
  124. #include <linux/net_tstamp.h>
  125. #include <net/xfrm.h>
  126. #include <linux/ipsec.h>
  127. #include <net/cls_cgroup.h>
  128. #include <net/netprio_cgroup.h>
  129. #include <linux/filter.h>
  130. #include <trace/events/sock.h>
  131. #ifdef CONFIG_INET
  132. #include <net/tcp.h>
  133. #endif
  134. static DEFINE_MUTEX(proto_list_mutex);
  135. static LIST_HEAD(proto_list);
  136. #ifdef CONFIG_MEMCG_KMEM
  137. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  138. {
  139. struct proto *proto;
  140. int ret = 0;
  141. mutex_lock(&proto_list_mutex);
  142. list_for_each_entry(proto, &proto_list, node) {
  143. if (proto->init_cgroup) {
  144. ret = proto->init_cgroup(memcg, ss);
  145. if (ret)
  146. goto out;
  147. }
  148. }
  149. mutex_unlock(&proto_list_mutex);
  150. return ret;
  151. out:
  152. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  153. if (proto->destroy_cgroup)
  154. proto->destroy_cgroup(memcg);
  155. mutex_unlock(&proto_list_mutex);
  156. return ret;
  157. }
  158. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  159. {
  160. struct proto *proto;
  161. mutex_lock(&proto_list_mutex);
  162. list_for_each_entry_reverse(proto, &proto_list, node)
  163. if (proto->destroy_cgroup)
  164. proto->destroy_cgroup(memcg);
  165. mutex_unlock(&proto_list_mutex);
  166. }
  167. #endif
  168. /*
  169. * Each address family might have different locking rules, so we have
  170. * one slock key per address family:
  171. */
  172. static struct lock_class_key af_family_keys[AF_MAX];
  173. static struct lock_class_key af_family_slock_keys[AF_MAX];
  174. struct static_key memcg_socket_limit_enabled;
  175. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  176. /*
  177. * Make lock validator output more readable. (we pre-construct these
  178. * strings build-time, so that runtime initialization of socket
  179. * locks is fast):
  180. */
  181. static const char *const af_family_key_strings[AF_MAX+1] = {
  182. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  183. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  184. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  185. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  186. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  187. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  188. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  189. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  190. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  191. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  192. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  193. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  194. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  195. "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
  196. };
  197. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  198. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  199. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  200. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  201. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  202. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  203. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  204. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  205. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  206. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  207. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  208. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  209. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  210. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  211. "slock-AF_NFC" , "slock-AF_MAX"
  212. };
  213. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  214. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  215. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  216. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  217. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  218. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  219. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  220. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  221. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  222. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  223. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  224. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  225. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  226. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  227. "clock-AF_NFC" , "clock-AF_MAX"
  228. };
  229. /*
  230. * sk_callback_lock locking rules are per-address-family,
  231. * so split the lock classes by using a per-AF key:
  232. */
  233. static struct lock_class_key af_callback_keys[AF_MAX];
  234. /* Take into consideration the size of the struct sk_buff overhead in the
  235. * determination of these values, since that is non-constant across
  236. * platforms. This makes socket queueing behavior and performance
  237. * not depend upon such differences.
  238. */
  239. #define _SK_MEM_PACKETS 256
  240. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  241. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  242. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  243. /* Run time adjustable parameters. */
  244. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  245. EXPORT_SYMBOL(sysctl_wmem_max);
  246. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  247. EXPORT_SYMBOL(sysctl_rmem_max);
  248. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  249. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  250. /* Maximal space eaten by iovec or ancillary data plus some space */
  251. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  252. EXPORT_SYMBOL(sysctl_optmem_max);
  253. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  254. EXPORT_SYMBOL_GPL(memalloc_socks);
  255. /**
  256. * sk_set_memalloc - sets %SOCK_MEMALLOC
  257. * @sk: socket to set it on
  258. *
  259. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  260. * It's the responsibility of the admin to adjust min_free_kbytes
  261. * to meet the requirements
  262. */
  263. void sk_set_memalloc(struct sock *sk)
  264. {
  265. sock_set_flag(sk, SOCK_MEMALLOC);
  266. sk->sk_allocation |= __GFP_MEMALLOC;
  267. static_key_slow_inc(&memalloc_socks);
  268. }
  269. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  270. void sk_clear_memalloc(struct sock *sk)
  271. {
  272. sock_reset_flag(sk, SOCK_MEMALLOC);
  273. sk->sk_allocation &= ~__GFP_MEMALLOC;
  274. static_key_slow_dec(&memalloc_socks);
  275. /*
  276. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  277. * progress of swapping. However, if SOCK_MEMALLOC is cleared while
  278. * it has rmem allocations there is a risk that the user of the
  279. * socket cannot make forward progress due to exceeding the rmem
  280. * limits. By rights, sk_clear_memalloc() should only be called
  281. * on sockets being torn down but warn and reset the accounting if
  282. * that assumption breaks.
  283. */
  284. if (WARN_ON(sk->sk_forward_alloc))
  285. sk_mem_reclaim(sk);
  286. }
  287. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  288. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  289. {
  290. int ret;
  291. unsigned long pflags = current->flags;
  292. /* these should have been dropped before queueing */
  293. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  294. current->flags |= PF_MEMALLOC;
  295. ret = sk->sk_backlog_rcv(sk, skb);
  296. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  297. return ret;
  298. }
  299. EXPORT_SYMBOL(__sk_backlog_rcv);
  300. #if defined(CONFIG_CGROUPS)
  301. #if !defined(CONFIG_NET_CLS_CGROUP)
  302. int net_cls_subsys_id = -1;
  303. EXPORT_SYMBOL_GPL(net_cls_subsys_id);
  304. #endif
  305. #if !defined(CONFIG_NETPRIO_CGROUP)
  306. int net_prio_subsys_id = -1;
  307. EXPORT_SYMBOL_GPL(net_prio_subsys_id);
  308. #endif
  309. #endif
  310. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  311. {
  312. struct timeval tv;
  313. if (optlen < sizeof(tv))
  314. return -EINVAL;
  315. if (copy_from_user(&tv, optval, sizeof(tv)))
  316. return -EFAULT;
  317. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  318. return -EDOM;
  319. if (tv.tv_sec < 0) {
  320. static int warned __read_mostly;
  321. *timeo_p = 0;
  322. if (warned < 10 && net_ratelimit()) {
  323. warned++;
  324. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  325. __func__, current->comm, task_pid_nr(current));
  326. }
  327. return 0;
  328. }
  329. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  330. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  331. return 0;
  332. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  333. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  334. return 0;
  335. }
  336. static void sock_warn_obsolete_bsdism(const char *name)
  337. {
  338. static int warned;
  339. static char warncomm[TASK_COMM_LEN];
  340. if (strcmp(warncomm, current->comm) && warned < 5) {
  341. strcpy(warncomm, current->comm);
  342. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  343. warncomm, name);
  344. warned++;
  345. }
  346. }
  347. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  348. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  349. {
  350. if (sk->sk_flags & flags) {
  351. sk->sk_flags &= ~flags;
  352. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  353. net_disable_timestamp();
  354. }
  355. }
  356. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  357. {
  358. int err;
  359. int skb_len;
  360. unsigned long flags;
  361. struct sk_buff_head *list = &sk->sk_receive_queue;
  362. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  363. atomic_inc(&sk->sk_drops);
  364. trace_sock_rcvqueue_full(sk, skb);
  365. return -ENOMEM;
  366. }
  367. err = sk_filter(sk, skb);
  368. if (err)
  369. return err;
  370. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  371. atomic_inc(&sk->sk_drops);
  372. return -ENOBUFS;
  373. }
  374. skb->dev = NULL;
  375. skb_set_owner_r(skb, sk);
  376. /* Cache the SKB length before we tack it onto the receive
  377. * queue. Once it is added it no longer belongs to us and
  378. * may be freed by other threads of control pulling packets
  379. * from the queue.
  380. */
  381. skb_len = skb->len;
  382. /* we escape from rcu protected region, make sure we dont leak
  383. * a norefcounted dst
  384. */
  385. skb_dst_force(skb);
  386. spin_lock_irqsave(&list->lock, flags);
  387. skb->dropcount = atomic_read(&sk->sk_drops);
  388. __skb_queue_tail(list, skb);
  389. spin_unlock_irqrestore(&list->lock, flags);
  390. if (!sock_flag(sk, SOCK_DEAD))
  391. sk->sk_data_ready(sk, skb_len);
  392. return 0;
  393. }
  394. EXPORT_SYMBOL(sock_queue_rcv_skb);
  395. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  396. {
  397. int rc = NET_RX_SUCCESS;
  398. if (sk_filter(sk, skb))
  399. goto discard_and_relse;
  400. skb->dev = NULL;
  401. if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
  402. atomic_inc(&sk->sk_drops);
  403. goto discard_and_relse;
  404. }
  405. if (nested)
  406. bh_lock_sock_nested(sk);
  407. else
  408. bh_lock_sock(sk);
  409. if (!sock_owned_by_user(sk)) {
  410. /*
  411. * trylock + unlock semantics:
  412. */
  413. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  414. rc = sk_backlog_rcv(sk, skb);
  415. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  416. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  417. bh_unlock_sock(sk);
  418. atomic_inc(&sk->sk_drops);
  419. goto discard_and_relse;
  420. }
  421. bh_unlock_sock(sk);
  422. out:
  423. sock_put(sk);
  424. return rc;
  425. discard_and_relse:
  426. kfree_skb(skb);
  427. goto out;
  428. }
  429. EXPORT_SYMBOL(sk_receive_skb);
  430. void sk_reset_txq(struct sock *sk)
  431. {
  432. sk_tx_queue_clear(sk);
  433. }
  434. EXPORT_SYMBOL(sk_reset_txq);
  435. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  436. {
  437. struct dst_entry *dst = __sk_dst_get(sk);
  438. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  439. sk_tx_queue_clear(sk);
  440. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  441. dst_release(dst);
  442. return NULL;
  443. }
  444. return dst;
  445. }
  446. EXPORT_SYMBOL(__sk_dst_check);
  447. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  448. {
  449. struct dst_entry *dst = sk_dst_get(sk);
  450. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  451. sk_dst_reset(sk);
  452. dst_release(dst);
  453. return NULL;
  454. }
  455. return dst;
  456. }
  457. EXPORT_SYMBOL(sk_dst_check);
  458. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  459. {
  460. int ret = -ENOPROTOOPT;
  461. #ifdef CONFIG_NETDEVICES
  462. struct net *net = sock_net(sk);
  463. char devname[IFNAMSIZ];
  464. int index;
  465. /* Sorry... */
  466. ret = -EPERM;
  467. if (!capable(CAP_NET_RAW))
  468. goto out;
  469. ret = -EINVAL;
  470. if (optlen < 0)
  471. goto out;
  472. /* Bind this socket to a particular device like "eth0",
  473. * as specified in the passed interface name. If the
  474. * name is "" or the option length is zero the socket
  475. * is not bound.
  476. */
  477. if (optlen > IFNAMSIZ - 1)
  478. optlen = IFNAMSIZ - 1;
  479. memset(devname, 0, sizeof(devname));
  480. ret = -EFAULT;
  481. if (copy_from_user(devname, optval, optlen))
  482. goto out;
  483. index = 0;
  484. if (devname[0] != '\0') {
  485. struct net_device *dev;
  486. rcu_read_lock();
  487. dev = dev_get_by_name_rcu(net, devname);
  488. if (dev)
  489. index = dev->ifindex;
  490. rcu_read_unlock();
  491. ret = -ENODEV;
  492. if (!dev)
  493. goto out;
  494. }
  495. lock_sock(sk);
  496. sk->sk_bound_dev_if = index;
  497. sk_dst_reset(sk);
  498. release_sock(sk);
  499. ret = 0;
  500. out:
  501. #endif
  502. return ret;
  503. }
  504. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  505. {
  506. if (valbool)
  507. sock_set_flag(sk, bit);
  508. else
  509. sock_reset_flag(sk, bit);
  510. }
  511. /*
  512. * This is meant for all protocols to use and covers goings on
  513. * at the socket level. Everything here is generic.
  514. */
  515. int sock_setsockopt(struct socket *sock, int level, int optname,
  516. char __user *optval, unsigned int optlen)
  517. {
  518. struct sock *sk = sock->sk;
  519. int val;
  520. int valbool;
  521. struct linger ling;
  522. int ret = 0;
  523. /*
  524. * Options without arguments
  525. */
  526. if (optname == SO_BINDTODEVICE)
  527. return sock_bindtodevice(sk, optval, optlen);
  528. if (optlen < sizeof(int))
  529. return -EINVAL;
  530. if (get_user(val, (int __user *)optval))
  531. return -EFAULT;
  532. valbool = val ? 1 : 0;
  533. lock_sock(sk);
  534. switch (optname) {
  535. case SO_DEBUG:
  536. if (val && !capable(CAP_NET_ADMIN))
  537. ret = -EACCES;
  538. else
  539. sock_valbool_flag(sk, SOCK_DBG, valbool);
  540. break;
  541. case SO_REUSEADDR:
  542. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  543. break;
  544. case SO_TYPE:
  545. case SO_PROTOCOL:
  546. case SO_DOMAIN:
  547. case SO_ERROR:
  548. ret = -ENOPROTOOPT;
  549. break;
  550. case SO_DONTROUTE:
  551. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  552. break;
  553. case SO_BROADCAST:
  554. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  555. break;
  556. case SO_SNDBUF:
  557. /* Don't error on this BSD doesn't and if you think
  558. * about it this is right. Otherwise apps have to
  559. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  560. * are treated in BSD as hints
  561. */
  562. val = min_t(u32, val, sysctl_wmem_max);
  563. set_sndbuf:
  564. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  565. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  566. /* Wake up sending tasks if we upped the value. */
  567. sk->sk_write_space(sk);
  568. break;
  569. case SO_SNDBUFFORCE:
  570. if (!capable(CAP_NET_ADMIN)) {
  571. ret = -EPERM;
  572. break;
  573. }
  574. goto set_sndbuf;
  575. case SO_RCVBUF:
  576. /* Don't error on this BSD doesn't and if you think
  577. * about it this is right. Otherwise apps have to
  578. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  579. * are treated in BSD as hints
  580. */
  581. val = min_t(u32, val, sysctl_rmem_max);
  582. set_rcvbuf:
  583. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  584. /*
  585. * We double it on the way in to account for
  586. * "struct sk_buff" etc. overhead. Applications
  587. * assume that the SO_RCVBUF setting they make will
  588. * allow that much actual data to be received on that
  589. * socket.
  590. *
  591. * Applications are unaware that "struct sk_buff" and
  592. * other overheads allocate from the receive buffer
  593. * during socket buffer allocation.
  594. *
  595. * And after considering the possible alternatives,
  596. * returning the value we actually used in getsockopt
  597. * is the most desirable behavior.
  598. */
  599. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  600. break;
  601. case SO_RCVBUFFORCE:
  602. if (!capable(CAP_NET_ADMIN)) {
  603. ret = -EPERM;
  604. break;
  605. }
  606. goto set_rcvbuf;
  607. case SO_KEEPALIVE:
  608. #ifdef CONFIG_INET
  609. if (sk->sk_protocol == IPPROTO_TCP)
  610. tcp_set_keepalive(sk, valbool);
  611. #endif
  612. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  613. break;
  614. case SO_OOBINLINE:
  615. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  616. break;
  617. case SO_NO_CHECK:
  618. sk->sk_no_check = valbool;
  619. break;
  620. case SO_PRIORITY:
  621. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  622. sk->sk_priority = val;
  623. else
  624. ret = -EPERM;
  625. break;
  626. case SO_LINGER:
  627. if (optlen < sizeof(ling)) {
  628. ret = -EINVAL; /* 1003.1g */
  629. break;
  630. }
  631. if (copy_from_user(&ling, optval, sizeof(ling))) {
  632. ret = -EFAULT;
  633. break;
  634. }
  635. if (!ling.l_onoff)
  636. sock_reset_flag(sk, SOCK_LINGER);
  637. else {
  638. #if (BITS_PER_LONG == 32)
  639. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  640. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  641. else
  642. #endif
  643. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  644. sock_set_flag(sk, SOCK_LINGER);
  645. }
  646. break;
  647. case SO_BSDCOMPAT:
  648. sock_warn_obsolete_bsdism("setsockopt");
  649. break;
  650. case SO_PASSCRED:
  651. if (valbool)
  652. set_bit(SOCK_PASSCRED, &sock->flags);
  653. else
  654. clear_bit(SOCK_PASSCRED, &sock->flags);
  655. break;
  656. case SO_TIMESTAMP:
  657. case SO_TIMESTAMPNS:
  658. if (valbool) {
  659. if (optname == SO_TIMESTAMP)
  660. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  661. else
  662. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  663. sock_set_flag(sk, SOCK_RCVTSTAMP);
  664. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  665. } else {
  666. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  667. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  668. }
  669. break;
  670. case SO_TIMESTAMPING:
  671. if (val & ~SOF_TIMESTAMPING_MASK) {
  672. ret = -EINVAL;
  673. break;
  674. }
  675. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  676. val & SOF_TIMESTAMPING_TX_HARDWARE);
  677. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  678. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  679. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  680. val & SOF_TIMESTAMPING_RX_HARDWARE);
  681. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  682. sock_enable_timestamp(sk,
  683. SOCK_TIMESTAMPING_RX_SOFTWARE);
  684. else
  685. sock_disable_timestamp(sk,
  686. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  687. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  688. val & SOF_TIMESTAMPING_SOFTWARE);
  689. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  690. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  691. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  692. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  693. break;
  694. case SO_RCVLOWAT:
  695. if (val < 0)
  696. val = INT_MAX;
  697. sk->sk_rcvlowat = val ? : 1;
  698. break;
  699. case SO_RCVTIMEO:
  700. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  701. break;
  702. case SO_SNDTIMEO:
  703. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  704. break;
  705. case SO_ATTACH_FILTER:
  706. ret = -EINVAL;
  707. if (optlen == sizeof(struct sock_fprog)) {
  708. struct sock_fprog fprog;
  709. ret = -EFAULT;
  710. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  711. break;
  712. ret = sk_attach_filter(&fprog, sk);
  713. }
  714. break;
  715. case SO_DETACH_FILTER:
  716. ret = sk_detach_filter(sk);
  717. break;
  718. case SO_PASSSEC:
  719. if (valbool)
  720. set_bit(SOCK_PASSSEC, &sock->flags);
  721. else
  722. clear_bit(SOCK_PASSSEC, &sock->flags);
  723. break;
  724. case SO_MARK:
  725. if (!capable(CAP_NET_ADMIN))
  726. ret = -EPERM;
  727. else
  728. sk->sk_mark = val;
  729. break;
  730. /* We implement the SO_SNDLOWAT etc to
  731. not be settable (1003.1g 5.3) */
  732. case SO_RXQ_OVFL:
  733. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  734. break;
  735. case SO_WIFI_STATUS:
  736. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  737. break;
  738. case SO_PEEK_OFF:
  739. if (sock->ops->set_peek_off)
  740. sock->ops->set_peek_off(sk, val);
  741. else
  742. ret = -EOPNOTSUPP;
  743. break;
  744. case SO_NOFCS:
  745. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  746. break;
  747. default:
  748. ret = -ENOPROTOOPT;
  749. break;
  750. }
  751. release_sock(sk);
  752. return ret;
  753. }
  754. EXPORT_SYMBOL(sock_setsockopt);
  755. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  756. struct ucred *ucred)
  757. {
  758. ucred->pid = pid_vnr(pid);
  759. ucred->uid = ucred->gid = -1;
  760. if (cred) {
  761. struct user_namespace *current_ns = current_user_ns();
  762. ucred->uid = from_kuid(current_ns, cred->euid);
  763. ucred->gid = from_kgid(current_ns, cred->egid);
  764. }
  765. }
  766. EXPORT_SYMBOL_GPL(cred_to_ucred);
  767. int sock_getsockopt(struct socket *sock, int level, int optname,
  768. char __user *optval, int __user *optlen)
  769. {
  770. struct sock *sk = sock->sk;
  771. union {
  772. int val;
  773. struct linger ling;
  774. struct timeval tm;
  775. } v;
  776. int lv = sizeof(int);
  777. int len;
  778. if (get_user(len, optlen))
  779. return -EFAULT;
  780. if (len < 0)
  781. return -EINVAL;
  782. memset(&v, 0, sizeof(v));
  783. switch (optname) {
  784. case SO_DEBUG:
  785. v.val = sock_flag(sk, SOCK_DBG);
  786. break;
  787. case SO_DONTROUTE:
  788. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  789. break;
  790. case SO_BROADCAST:
  791. v.val = sock_flag(sk, SOCK_BROADCAST);
  792. break;
  793. case SO_SNDBUF:
  794. v.val = sk->sk_sndbuf;
  795. break;
  796. case SO_RCVBUF:
  797. v.val = sk->sk_rcvbuf;
  798. break;
  799. case SO_REUSEADDR:
  800. v.val = sk->sk_reuse;
  801. break;
  802. case SO_KEEPALIVE:
  803. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  804. break;
  805. case SO_TYPE:
  806. v.val = sk->sk_type;
  807. break;
  808. case SO_PROTOCOL:
  809. v.val = sk->sk_protocol;
  810. break;
  811. case SO_DOMAIN:
  812. v.val = sk->sk_family;
  813. break;
  814. case SO_ERROR:
  815. v.val = -sock_error(sk);
  816. if (v.val == 0)
  817. v.val = xchg(&sk->sk_err_soft, 0);
  818. break;
  819. case SO_OOBINLINE:
  820. v.val = sock_flag(sk, SOCK_URGINLINE);
  821. break;
  822. case SO_NO_CHECK:
  823. v.val = sk->sk_no_check;
  824. break;
  825. case SO_PRIORITY:
  826. v.val = sk->sk_priority;
  827. break;
  828. case SO_LINGER:
  829. lv = sizeof(v.ling);
  830. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  831. v.ling.l_linger = sk->sk_lingertime / HZ;
  832. break;
  833. case SO_BSDCOMPAT:
  834. sock_warn_obsolete_bsdism("getsockopt");
  835. break;
  836. case SO_TIMESTAMP:
  837. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  838. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  839. break;
  840. case SO_TIMESTAMPNS:
  841. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  842. break;
  843. case SO_TIMESTAMPING:
  844. v.val = 0;
  845. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  846. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  847. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  848. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  849. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  850. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  851. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  852. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  853. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  854. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  855. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  856. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  857. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  858. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  859. break;
  860. case SO_RCVTIMEO:
  861. lv = sizeof(struct timeval);
  862. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  863. v.tm.tv_sec = 0;
  864. v.tm.tv_usec = 0;
  865. } else {
  866. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  867. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  868. }
  869. break;
  870. case SO_SNDTIMEO:
  871. lv = sizeof(struct timeval);
  872. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  873. v.tm.tv_sec = 0;
  874. v.tm.tv_usec = 0;
  875. } else {
  876. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  877. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  878. }
  879. break;
  880. case SO_RCVLOWAT:
  881. v.val = sk->sk_rcvlowat;
  882. break;
  883. case SO_SNDLOWAT:
  884. v.val = 1;
  885. break;
  886. case SO_PASSCRED:
  887. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  888. break;
  889. case SO_PEERCRED:
  890. {
  891. struct ucred peercred;
  892. if (len > sizeof(peercred))
  893. len = sizeof(peercred);
  894. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  895. if (copy_to_user(optval, &peercred, len))
  896. return -EFAULT;
  897. goto lenout;
  898. }
  899. case SO_PEERNAME:
  900. {
  901. char address[128];
  902. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  903. return -ENOTCONN;
  904. if (lv < len)
  905. return -EINVAL;
  906. if (copy_to_user(optval, address, len))
  907. return -EFAULT;
  908. goto lenout;
  909. }
  910. /* Dubious BSD thing... Probably nobody even uses it, but
  911. * the UNIX standard wants it for whatever reason... -DaveM
  912. */
  913. case SO_ACCEPTCONN:
  914. v.val = sk->sk_state == TCP_LISTEN;
  915. break;
  916. case SO_PASSSEC:
  917. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  918. break;
  919. case SO_PEERSEC:
  920. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  921. case SO_MARK:
  922. v.val = sk->sk_mark;
  923. break;
  924. case SO_RXQ_OVFL:
  925. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  926. break;
  927. case SO_WIFI_STATUS:
  928. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  929. break;
  930. case SO_PEEK_OFF:
  931. if (!sock->ops->set_peek_off)
  932. return -EOPNOTSUPP;
  933. v.val = sk->sk_peek_off;
  934. break;
  935. case SO_NOFCS:
  936. v.val = sock_flag(sk, SOCK_NOFCS);
  937. break;
  938. default:
  939. return -ENOPROTOOPT;
  940. }
  941. if (len > lv)
  942. len = lv;
  943. if (copy_to_user(optval, &v, len))
  944. return -EFAULT;
  945. lenout:
  946. if (put_user(len, optlen))
  947. return -EFAULT;
  948. return 0;
  949. }
  950. /*
  951. * Initialize an sk_lock.
  952. *
  953. * (We also register the sk_lock with the lock validator.)
  954. */
  955. static inline void sock_lock_init(struct sock *sk)
  956. {
  957. sock_lock_init_class_and_name(sk,
  958. af_family_slock_key_strings[sk->sk_family],
  959. af_family_slock_keys + sk->sk_family,
  960. af_family_key_strings[sk->sk_family],
  961. af_family_keys + sk->sk_family);
  962. }
  963. /*
  964. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  965. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  966. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  967. */
  968. static void sock_copy(struct sock *nsk, const struct sock *osk)
  969. {
  970. #ifdef CONFIG_SECURITY_NETWORK
  971. void *sptr = nsk->sk_security;
  972. #endif
  973. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  974. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  975. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  976. #ifdef CONFIG_SECURITY_NETWORK
  977. nsk->sk_security = sptr;
  978. security_sk_clone(osk, nsk);
  979. #endif
  980. }
  981. /*
  982. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  983. * un-modified. Special care is taken when initializing object to zero.
  984. */
  985. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  986. {
  987. if (offsetof(struct sock, sk_node.next) != 0)
  988. memset(sk, 0, offsetof(struct sock, sk_node.next));
  989. memset(&sk->sk_node.pprev, 0,
  990. size - offsetof(struct sock, sk_node.pprev));
  991. }
  992. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  993. {
  994. unsigned long nulls1, nulls2;
  995. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  996. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  997. if (nulls1 > nulls2)
  998. swap(nulls1, nulls2);
  999. if (nulls1 != 0)
  1000. memset((char *)sk, 0, nulls1);
  1001. memset((char *)sk + nulls1 + sizeof(void *), 0,
  1002. nulls2 - nulls1 - sizeof(void *));
  1003. memset((char *)sk + nulls2 + sizeof(void *), 0,
  1004. size - nulls2 - sizeof(void *));
  1005. }
  1006. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  1007. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1008. int family)
  1009. {
  1010. struct sock *sk;
  1011. struct kmem_cache *slab;
  1012. slab = prot->slab;
  1013. if (slab != NULL) {
  1014. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1015. if (!sk)
  1016. return sk;
  1017. if (priority & __GFP_ZERO) {
  1018. if (prot->clear_sk)
  1019. prot->clear_sk(sk, prot->obj_size);
  1020. else
  1021. sk_prot_clear_nulls(sk, prot->obj_size);
  1022. }
  1023. } else
  1024. sk = kmalloc(prot->obj_size, priority);
  1025. if (sk != NULL) {
  1026. kmemcheck_annotate_bitfield(sk, flags);
  1027. if (security_sk_alloc(sk, family, priority))
  1028. goto out_free;
  1029. if (!try_module_get(prot->owner))
  1030. goto out_free_sec;
  1031. sk_tx_queue_clear(sk);
  1032. }
  1033. return sk;
  1034. out_free_sec:
  1035. security_sk_free(sk);
  1036. out_free:
  1037. if (slab != NULL)
  1038. kmem_cache_free(slab, sk);
  1039. else
  1040. kfree(sk);
  1041. return NULL;
  1042. }
  1043. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1044. {
  1045. struct kmem_cache *slab;
  1046. struct module *owner;
  1047. owner = prot->owner;
  1048. slab = prot->slab;
  1049. security_sk_free(sk);
  1050. if (slab != NULL)
  1051. kmem_cache_free(slab, sk);
  1052. else
  1053. kfree(sk);
  1054. module_put(owner);
  1055. }
  1056. #ifdef CONFIG_CGROUPS
  1057. void sock_update_classid(struct sock *sk)
  1058. {
  1059. u32 classid;
  1060. rcu_read_lock(); /* doing current task, which cannot vanish. */
  1061. classid = task_cls_classid(current);
  1062. rcu_read_unlock();
  1063. if (classid && classid != sk->sk_classid)
  1064. sk->sk_classid = classid;
  1065. }
  1066. EXPORT_SYMBOL(sock_update_classid);
  1067. void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
  1068. {
  1069. if (in_interrupt())
  1070. return;
  1071. sk->sk_cgrp_prioidx = task_netprioidx(task);
  1072. }
  1073. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1074. #endif
  1075. /**
  1076. * sk_alloc - All socket objects are allocated here
  1077. * @net: the applicable net namespace
  1078. * @family: protocol family
  1079. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1080. * @prot: struct proto associated with this new sock instance
  1081. */
  1082. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1083. struct proto *prot)
  1084. {
  1085. struct sock *sk;
  1086. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1087. if (sk) {
  1088. sk->sk_family = family;
  1089. /*
  1090. * See comment in struct sock definition to understand
  1091. * why we need sk_prot_creator -acme
  1092. */
  1093. sk->sk_prot = sk->sk_prot_creator = prot;
  1094. sock_lock_init(sk);
  1095. sock_net_set(sk, get_net(net));
  1096. atomic_set(&sk->sk_wmem_alloc, 1);
  1097. sock_update_classid(sk);
  1098. sock_update_netprioidx(sk, current);
  1099. }
  1100. return sk;
  1101. }
  1102. EXPORT_SYMBOL(sk_alloc);
  1103. static void __sk_free(struct sock *sk)
  1104. {
  1105. struct sk_filter *filter;
  1106. if (sk->sk_destruct)
  1107. sk->sk_destruct(sk);
  1108. filter = rcu_dereference_check(sk->sk_filter,
  1109. atomic_read(&sk->sk_wmem_alloc) == 0);
  1110. if (filter) {
  1111. sk_filter_uncharge(sk, filter);
  1112. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1113. }
  1114. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1115. if (atomic_read(&sk->sk_omem_alloc))
  1116. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1117. __func__, atomic_read(&sk->sk_omem_alloc));
  1118. if (sk->sk_peer_cred)
  1119. put_cred(sk->sk_peer_cred);
  1120. put_pid(sk->sk_peer_pid);
  1121. put_net(sock_net(sk));
  1122. sk_prot_free(sk->sk_prot_creator, sk);
  1123. }
  1124. void sk_free(struct sock *sk)
  1125. {
  1126. /*
  1127. * We subtract one from sk_wmem_alloc and can know if
  1128. * some packets are still in some tx queue.
  1129. * If not null, sock_wfree() will call __sk_free(sk) later
  1130. */
  1131. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1132. __sk_free(sk);
  1133. }
  1134. EXPORT_SYMBOL(sk_free);
  1135. /*
  1136. * Last sock_put should drop reference to sk->sk_net. It has already
  1137. * been dropped in sk_change_net. Taking reference to stopping namespace
  1138. * is not an option.
  1139. * Take reference to a socket to remove it from hash _alive_ and after that
  1140. * destroy it in the context of init_net.
  1141. */
  1142. void sk_release_kernel(struct sock *sk)
  1143. {
  1144. if (sk == NULL || sk->sk_socket == NULL)
  1145. return;
  1146. sock_hold(sk);
  1147. sock_release(sk->sk_socket);
  1148. release_net(sock_net(sk));
  1149. sock_net_set(sk, get_net(&init_net));
  1150. sock_put(sk);
  1151. }
  1152. EXPORT_SYMBOL(sk_release_kernel);
  1153. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1154. {
  1155. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1156. sock_update_memcg(newsk);
  1157. }
  1158. /**
  1159. * sk_clone_lock - clone a socket, and lock its clone
  1160. * @sk: the socket to clone
  1161. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1162. *
  1163. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1164. */
  1165. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1166. {
  1167. struct sock *newsk;
  1168. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1169. if (newsk != NULL) {
  1170. struct sk_filter *filter;
  1171. sock_copy(newsk, sk);
  1172. /* SANITY */
  1173. get_net(sock_net(newsk));
  1174. sk_node_init(&newsk->sk_node);
  1175. sock_lock_init(newsk);
  1176. bh_lock_sock(newsk);
  1177. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1178. newsk->sk_backlog.len = 0;
  1179. atomic_set(&newsk->sk_rmem_alloc, 0);
  1180. /*
  1181. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1182. */
  1183. atomic_set(&newsk->sk_wmem_alloc, 1);
  1184. atomic_set(&newsk->sk_omem_alloc, 0);
  1185. skb_queue_head_init(&newsk->sk_receive_queue);
  1186. skb_queue_head_init(&newsk->sk_write_queue);
  1187. #ifdef CONFIG_NET_DMA
  1188. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1189. #endif
  1190. spin_lock_init(&newsk->sk_dst_lock);
  1191. rwlock_init(&newsk->sk_callback_lock);
  1192. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1193. af_callback_keys + newsk->sk_family,
  1194. af_family_clock_key_strings[newsk->sk_family]);
  1195. newsk->sk_dst_cache = NULL;
  1196. newsk->sk_wmem_queued = 0;
  1197. newsk->sk_forward_alloc = 0;
  1198. newsk->sk_send_head = NULL;
  1199. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1200. sock_reset_flag(newsk, SOCK_DONE);
  1201. skb_queue_head_init(&newsk->sk_error_queue);
  1202. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1203. if (filter != NULL)
  1204. sk_filter_charge(newsk, filter);
  1205. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1206. /* It is still raw copy of parent, so invalidate
  1207. * destructor and make plain sk_free() */
  1208. newsk->sk_destruct = NULL;
  1209. bh_unlock_sock(newsk);
  1210. sk_free(newsk);
  1211. newsk = NULL;
  1212. goto out;
  1213. }
  1214. newsk->sk_err = 0;
  1215. newsk->sk_priority = 0;
  1216. /*
  1217. * Before updating sk_refcnt, we must commit prior changes to memory
  1218. * (Documentation/RCU/rculist_nulls.txt for details)
  1219. */
  1220. smp_wmb();
  1221. atomic_set(&newsk->sk_refcnt, 2);
  1222. /*
  1223. * Increment the counter in the same struct proto as the master
  1224. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1225. * is the same as sk->sk_prot->socks, as this field was copied
  1226. * with memcpy).
  1227. *
  1228. * This _changes_ the previous behaviour, where
  1229. * tcp_create_openreq_child always was incrementing the
  1230. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1231. * to be taken into account in all callers. -acme
  1232. */
  1233. sk_refcnt_debug_inc(newsk);
  1234. sk_set_socket(newsk, NULL);
  1235. newsk->sk_wq = NULL;
  1236. sk_update_clone(sk, newsk);
  1237. if (newsk->sk_prot->sockets_allocated)
  1238. sk_sockets_allocated_inc(newsk);
  1239. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1240. net_enable_timestamp();
  1241. }
  1242. out:
  1243. return newsk;
  1244. }
  1245. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1246. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1247. {
  1248. __sk_dst_set(sk, dst);
  1249. sk->sk_route_caps = dst->dev->features;
  1250. if (sk->sk_route_caps & NETIF_F_GSO)
  1251. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1252. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1253. if (sk_can_gso(sk)) {
  1254. if (dst->header_len) {
  1255. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1256. } else {
  1257. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1258. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1259. }
  1260. }
  1261. }
  1262. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1263. void __init sk_init(void)
  1264. {
  1265. if (totalram_pages <= 4096) {
  1266. sysctl_wmem_max = 32767;
  1267. sysctl_rmem_max = 32767;
  1268. sysctl_wmem_default = 32767;
  1269. sysctl_rmem_default = 32767;
  1270. } else if (totalram_pages >= 131072) {
  1271. sysctl_wmem_max = 131071;
  1272. sysctl_rmem_max = 131071;
  1273. }
  1274. }
  1275. /*
  1276. * Simple resource managers for sockets.
  1277. */
  1278. /*
  1279. * Write buffer destructor automatically called from kfree_skb.
  1280. */
  1281. void sock_wfree(struct sk_buff *skb)
  1282. {
  1283. struct sock *sk = skb->sk;
  1284. unsigned int len = skb->truesize;
  1285. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1286. /*
  1287. * Keep a reference on sk_wmem_alloc, this will be released
  1288. * after sk_write_space() call
  1289. */
  1290. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1291. sk->sk_write_space(sk);
  1292. len = 1;
  1293. }
  1294. /*
  1295. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1296. * could not do because of in-flight packets
  1297. */
  1298. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1299. __sk_free(sk);
  1300. }
  1301. EXPORT_SYMBOL(sock_wfree);
  1302. /*
  1303. * Read buffer destructor automatically called from kfree_skb.
  1304. */
  1305. void sock_rfree(struct sk_buff *skb)
  1306. {
  1307. struct sock *sk = skb->sk;
  1308. unsigned int len = skb->truesize;
  1309. atomic_sub(len, &sk->sk_rmem_alloc);
  1310. sk_mem_uncharge(sk, len);
  1311. }
  1312. EXPORT_SYMBOL(sock_rfree);
  1313. void sock_edemux(struct sk_buff *skb)
  1314. {
  1315. sock_put(skb->sk);
  1316. }
  1317. EXPORT_SYMBOL(sock_edemux);
  1318. int sock_i_uid(struct sock *sk)
  1319. {
  1320. int uid;
  1321. read_lock_bh(&sk->sk_callback_lock);
  1322. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
  1323. read_unlock_bh(&sk->sk_callback_lock);
  1324. return uid;
  1325. }
  1326. EXPORT_SYMBOL(sock_i_uid);
  1327. unsigned long sock_i_ino(struct sock *sk)
  1328. {
  1329. unsigned long ino;
  1330. read_lock_bh(&sk->sk_callback_lock);
  1331. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1332. read_unlock_bh(&sk->sk_callback_lock);
  1333. return ino;
  1334. }
  1335. EXPORT_SYMBOL(sock_i_ino);
  1336. /*
  1337. * Allocate a skb from the socket's send buffer.
  1338. */
  1339. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1340. gfp_t priority)
  1341. {
  1342. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1343. struct sk_buff *skb = alloc_skb(size, priority);
  1344. if (skb) {
  1345. skb_set_owner_w(skb, sk);
  1346. return skb;
  1347. }
  1348. }
  1349. return NULL;
  1350. }
  1351. EXPORT_SYMBOL(sock_wmalloc);
  1352. /*
  1353. * Allocate a skb from the socket's receive buffer.
  1354. */
  1355. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1356. gfp_t priority)
  1357. {
  1358. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1359. struct sk_buff *skb = alloc_skb(size, priority);
  1360. if (skb) {
  1361. skb_set_owner_r(skb, sk);
  1362. return skb;
  1363. }
  1364. }
  1365. return NULL;
  1366. }
  1367. /*
  1368. * Allocate a memory block from the socket's option memory buffer.
  1369. */
  1370. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1371. {
  1372. if ((unsigned int)size <= sysctl_optmem_max &&
  1373. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1374. void *mem;
  1375. /* First do the add, to avoid the race if kmalloc
  1376. * might sleep.
  1377. */
  1378. atomic_add(size, &sk->sk_omem_alloc);
  1379. mem = kmalloc(size, priority);
  1380. if (mem)
  1381. return mem;
  1382. atomic_sub(size, &sk->sk_omem_alloc);
  1383. }
  1384. return NULL;
  1385. }
  1386. EXPORT_SYMBOL(sock_kmalloc);
  1387. /*
  1388. * Free an option memory block.
  1389. */
  1390. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1391. {
  1392. kfree(mem);
  1393. atomic_sub(size, &sk->sk_omem_alloc);
  1394. }
  1395. EXPORT_SYMBOL(sock_kfree_s);
  1396. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1397. I think, these locks should be removed for datagram sockets.
  1398. */
  1399. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1400. {
  1401. DEFINE_WAIT(wait);
  1402. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1403. for (;;) {
  1404. if (!timeo)
  1405. break;
  1406. if (signal_pending(current))
  1407. break;
  1408. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1409. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1410. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1411. break;
  1412. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1413. break;
  1414. if (sk->sk_err)
  1415. break;
  1416. timeo = schedule_timeout(timeo);
  1417. }
  1418. finish_wait(sk_sleep(sk), &wait);
  1419. return timeo;
  1420. }
  1421. /*
  1422. * Generic send/receive buffer handlers
  1423. */
  1424. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1425. unsigned long data_len, int noblock,
  1426. int *errcode)
  1427. {
  1428. struct sk_buff *skb;
  1429. gfp_t gfp_mask;
  1430. long timeo;
  1431. int err;
  1432. int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1433. err = -EMSGSIZE;
  1434. if (npages > MAX_SKB_FRAGS)
  1435. goto failure;
  1436. gfp_mask = sk->sk_allocation;
  1437. if (gfp_mask & __GFP_WAIT)
  1438. gfp_mask |= __GFP_REPEAT;
  1439. timeo = sock_sndtimeo(sk, noblock);
  1440. while (1) {
  1441. err = sock_error(sk);
  1442. if (err != 0)
  1443. goto failure;
  1444. err = -EPIPE;
  1445. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1446. goto failure;
  1447. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1448. skb = alloc_skb(header_len, gfp_mask);
  1449. if (skb) {
  1450. int i;
  1451. /* No pages, we're done... */
  1452. if (!data_len)
  1453. break;
  1454. skb->truesize += data_len;
  1455. skb_shinfo(skb)->nr_frags = npages;
  1456. for (i = 0; i < npages; i++) {
  1457. struct page *page;
  1458. page = alloc_pages(sk->sk_allocation, 0);
  1459. if (!page) {
  1460. err = -ENOBUFS;
  1461. skb_shinfo(skb)->nr_frags = i;
  1462. kfree_skb(skb);
  1463. goto failure;
  1464. }
  1465. __skb_fill_page_desc(skb, i,
  1466. page, 0,
  1467. (data_len >= PAGE_SIZE ?
  1468. PAGE_SIZE :
  1469. data_len));
  1470. data_len -= PAGE_SIZE;
  1471. }
  1472. /* Full success... */
  1473. break;
  1474. }
  1475. err = -ENOBUFS;
  1476. goto failure;
  1477. }
  1478. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1479. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1480. err = -EAGAIN;
  1481. if (!timeo)
  1482. goto failure;
  1483. if (signal_pending(current))
  1484. goto interrupted;
  1485. timeo = sock_wait_for_wmem(sk, timeo);
  1486. }
  1487. skb_set_owner_w(skb, sk);
  1488. return skb;
  1489. interrupted:
  1490. err = sock_intr_errno(timeo);
  1491. failure:
  1492. *errcode = err;
  1493. return NULL;
  1494. }
  1495. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1496. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1497. int noblock, int *errcode)
  1498. {
  1499. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1500. }
  1501. EXPORT_SYMBOL(sock_alloc_send_skb);
  1502. static void __lock_sock(struct sock *sk)
  1503. __releases(&sk->sk_lock.slock)
  1504. __acquires(&sk->sk_lock.slock)
  1505. {
  1506. DEFINE_WAIT(wait);
  1507. for (;;) {
  1508. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1509. TASK_UNINTERRUPTIBLE);
  1510. spin_unlock_bh(&sk->sk_lock.slock);
  1511. schedule();
  1512. spin_lock_bh(&sk->sk_lock.slock);
  1513. if (!sock_owned_by_user(sk))
  1514. break;
  1515. }
  1516. finish_wait(&sk->sk_lock.wq, &wait);
  1517. }
  1518. static void __release_sock(struct sock *sk)
  1519. __releases(&sk->sk_lock.slock)
  1520. __acquires(&sk->sk_lock.slock)
  1521. {
  1522. struct sk_buff *skb = sk->sk_backlog.head;
  1523. do {
  1524. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1525. bh_unlock_sock(sk);
  1526. do {
  1527. struct sk_buff *next = skb->next;
  1528. prefetch(next);
  1529. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1530. skb->next = NULL;
  1531. sk_backlog_rcv(sk, skb);
  1532. /*
  1533. * We are in process context here with softirqs
  1534. * disabled, use cond_resched_softirq() to preempt.
  1535. * This is safe to do because we've taken the backlog
  1536. * queue private:
  1537. */
  1538. cond_resched_softirq();
  1539. skb = next;
  1540. } while (skb != NULL);
  1541. bh_lock_sock(sk);
  1542. } while ((skb = sk->sk_backlog.head) != NULL);
  1543. /*
  1544. * Doing the zeroing here guarantee we can not loop forever
  1545. * while a wild producer attempts to flood us.
  1546. */
  1547. sk->sk_backlog.len = 0;
  1548. }
  1549. /**
  1550. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1551. * @sk: sock to wait on
  1552. * @timeo: for how long
  1553. *
  1554. * Now socket state including sk->sk_err is changed only under lock,
  1555. * hence we may omit checks after joining wait queue.
  1556. * We check receive queue before schedule() only as optimization;
  1557. * it is very likely that release_sock() added new data.
  1558. */
  1559. int sk_wait_data(struct sock *sk, long *timeo)
  1560. {
  1561. int rc;
  1562. DEFINE_WAIT(wait);
  1563. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1564. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1565. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1566. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1567. finish_wait(sk_sleep(sk), &wait);
  1568. return rc;
  1569. }
  1570. EXPORT_SYMBOL(sk_wait_data);
  1571. /**
  1572. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1573. * @sk: socket
  1574. * @size: memory size to allocate
  1575. * @kind: allocation type
  1576. *
  1577. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1578. * rmem allocation. This function assumes that protocols which have
  1579. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1580. */
  1581. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1582. {
  1583. struct proto *prot = sk->sk_prot;
  1584. int amt = sk_mem_pages(size);
  1585. long allocated;
  1586. int parent_status = UNDER_LIMIT;
  1587. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1588. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1589. /* Under limit. */
  1590. if (parent_status == UNDER_LIMIT &&
  1591. allocated <= sk_prot_mem_limits(sk, 0)) {
  1592. sk_leave_memory_pressure(sk);
  1593. return 1;
  1594. }
  1595. /* Under pressure. (we or our parents) */
  1596. if ((parent_status > SOFT_LIMIT) ||
  1597. allocated > sk_prot_mem_limits(sk, 1))
  1598. sk_enter_memory_pressure(sk);
  1599. /* Over hard limit (we or our parents) */
  1600. if ((parent_status == OVER_LIMIT) ||
  1601. (allocated > sk_prot_mem_limits(sk, 2)))
  1602. goto suppress_allocation;
  1603. /* guarantee minimum buffer size under pressure */
  1604. if (kind == SK_MEM_RECV) {
  1605. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1606. return 1;
  1607. } else { /* SK_MEM_SEND */
  1608. if (sk->sk_type == SOCK_STREAM) {
  1609. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1610. return 1;
  1611. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1612. prot->sysctl_wmem[0])
  1613. return 1;
  1614. }
  1615. if (sk_has_memory_pressure(sk)) {
  1616. int alloc;
  1617. if (!sk_under_memory_pressure(sk))
  1618. return 1;
  1619. alloc = sk_sockets_allocated_read_positive(sk);
  1620. if (sk_prot_mem_limits(sk, 2) > alloc *
  1621. sk_mem_pages(sk->sk_wmem_queued +
  1622. atomic_read(&sk->sk_rmem_alloc) +
  1623. sk->sk_forward_alloc))
  1624. return 1;
  1625. }
  1626. suppress_allocation:
  1627. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1628. sk_stream_moderate_sndbuf(sk);
  1629. /* Fail only if socket is _under_ its sndbuf.
  1630. * In this case we cannot block, so that we have to fail.
  1631. */
  1632. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1633. return 1;
  1634. }
  1635. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1636. /* Alas. Undo changes. */
  1637. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1638. sk_memory_allocated_sub(sk, amt);
  1639. return 0;
  1640. }
  1641. EXPORT_SYMBOL(__sk_mem_schedule);
  1642. /**
  1643. * __sk_reclaim - reclaim memory_allocated
  1644. * @sk: socket
  1645. */
  1646. void __sk_mem_reclaim(struct sock *sk)
  1647. {
  1648. sk_memory_allocated_sub(sk,
  1649. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1650. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1651. if (sk_under_memory_pressure(sk) &&
  1652. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1653. sk_leave_memory_pressure(sk);
  1654. }
  1655. EXPORT_SYMBOL(__sk_mem_reclaim);
  1656. /*
  1657. * Set of default routines for initialising struct proto_ops when
  1658. * the protocol does not support a particular function. In certain
  1659. * cases where it makes no sense for a protocol to have a "do nothing"
  1660. * function, some default processing is provided.
  1661. */
  1662. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1663. {
  1664. return -EOPNOTSUPP;
  1665. }
  1666. EXPORT_SYMBOL(sock_no_bind);
  1667. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1668. int len, int flags)
  1669. {
  1670. return -EOPNOTSUPP;
  1671. }
  1672. EXPORT_SYMBOL(sock_no_connect);
  1673. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1674. {
  1675. return -EOPNOTSUPP;
  1676. }
  1677. EXPORT_SYMBOL(sock_no_socketpair);
  1678. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1679. {
  1680. return -EOPNOTSUPP;
  1681. }
  1682. EXPORT_SYMBOL(sock_no_accept);
  1683. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1684. int *len, int peer)
  1685. {
  1686. return -EOPNOTSUPP;
  1687. }
  1688. EXPORT_SYMBOL(sock_no_getname);
  1689. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1690. {
  1691. return 0;
  1692. }
  1693. EXPORT_SYMBOL(sock_no_poll);
  1694. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1695. {
  1696. return -EOPNOTSUPP;
  1697. }
  1698. EXPORT_SYMBOL(sock_no_ioctl);
  1699. int sock_no_listen(struct socket *sock, int backlog)
  1700. {
  1701. return -EOPNOTSUPP;
  1702. }
  1703. EXPORT_SYMBOL(sock_no_listen);
  1704. int sock_no_shutdown(struct socket *sock, int how)
  1705. {
  1706. return -EOPNOTSUPP;
  1707. }
  1708. EXPORT_SYMBOL(sock_no_shutdown);
  1709. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1710. char __user *optval, unsigned int optlen)
  1711. {
  1712. return -EOPNOTSUPP;
  1713. }
  1714. EXPORT_SYMBOL(sock_no_setsockopt);
  1715. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1716. char __user *optval, int __user *optlen)
  1717. {
  1718. return -EOPNOTSUPP;
  1719. }
  1720. EXPORT_SYMBOL(sock_no_getsockopt);
  1721. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1722. size_t len)
  1723. {
  1724. return -EOPNOTSUPP;
  1725. }
  1726. EXPORT_SYMBOL(sock_no_sendmsg);
  1727. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1728. size_t len, int flags)
  1729. {
  1730. return -EOPNOTSUPP;
  1731. }
  1732. EXPORT_SYMBOL(sock_no_recvmsg);
  1733. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1734. {
  1735. /* Mirror missing mmap method error code */
  1736. return -ENODEV;
  1737. }
  1738. EXPORT_SYMBOL(sock_no_mmap);
  1739. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1740. {
  1741. ssize_t res;
  1742. struct msghdr msg = {.msg_flags = flags};
  1743. struct kvec iov;
  1744. char *kaddr = kmap(page);
  1745. iov.iov_base = kaddr + offset;
  1746. iov.iov_len = size;
  1747. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1748. kunmap(page);
  1749. return res;
  1750. }
  1751. EXPORT_SYMBOL(sock_no_sendpage);
  1752. /*
  1753. * Default Socket Callbacks
  1754. */
  1755. static void sock_def_wakeup(struct sock *sk)
  1756. {
  1757. struct socket_wq *wq;
  1758. rcu_read_lock();
  1759. wq = rcu_dereference(sk->sk_wq);
  1760. if (wq_has_sleeper(wq))
  1761. wake_up_interruptible_all(&wq->wait);
  1762. rcu_read_unlock();
  1763. }
  1764. static void sock_def_error_report(struct sock *sk)
  1765. {
  1766. struct socket_wq *wq;
  1767. rcu_read_lock();
  1768. wq = rcu_dereference(sk->sk_wq);
  1769. if (wq_has_sleeper(wq))
  1770. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1771. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1772. rcu_read_unlock();
  1773. }
  1774. static void sock_def_readable(struct sock *sk, int len)
  1775. {
  1776. struct socket_wq *wq;
  1777. rcu_read_lock();
  1778. wq = rcu_dereference(sk->sk_wq);
  1779. if (wq_has_sleeper(wq))
  1780. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1781. POLLRDNORM | POLLRDBAND);
  1782. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1783. rcu_read_unlock();
  1784. }
  1785. static void sock_def_write_space(struct sock *sk)
  1786. {
  1787. struct socket_wq *wq;
  1788. rcu_read_lock();
  1789. /* Do not wake up a writer until he can make "significant"
  1790. * progress. --DaveM
  1791. */
  1792. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1793. wq = rcu_dereference(sk->sk_wq);
  1794. if (wq_has_sleeper(wq))
  1795. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1796. POLLWRNORM | POLLWRBAND);
  1797. /* Should agree with poll, otherwise some programs break */
  1798. if (sock_writeable(sk))
  1799. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1800. }
  1801. rcu_read_unlock();
  1802. }
  1803. static void sock_def_destruct(struct sock *sk)
  1804. {
  1805. kfree(sk->sk_protinfo);
  1806. }
  1807. void sk_send_sigurg(struct sock *sk)
  1808. {
  1809. if (sk->sk_socket && sk->sk_socket->file)
  1810. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1811. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1812. }
  1813. EXPORT_SYMBOL(sk_send_sigurg);
  1814. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1815. unsigned long expires)
  1816. {
  1817. if (!mod_timer(timer, expires))
  1818. sock_hold(sk);
  1819. }
  1820. EXPORT_SYMBOL(sk_reset_timer);
  1821. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1822. {
  1823. if (timer_pending(timer) && del_timer(timer))
  1824. __sock_put(sk);
  1825. }
  1826. EXPORT_SYMBOL(sk_stop_timer);
  1827. void sock_init_data(struct socket *sock, struct sock *sk)
  1828. {
  1829. skb_queue_head_init(&sk->sk_receive_queue);
  1830. skb_queue_head_init(&sk->sk_write_queue);
  1831. skb_queue_head_init(&sk->sk_error_queue);
  1832. #ifdef CONFIG_NET_DMA
  1833. skb_queue_head_init(&sk->sk_async_wait_queue);
  1834. #endif
  1835. sk->sk_send_head = NULL;
  1836. init_timer(&sk->sk_timer);
  1837. sk->sk_allocation = GFP_KERNEL;
  1838. sk->sk_rcvbuf = sysctl_rmem_default;
  1839. sk->sk_sndbuf = sysctl_wmem_default;
  1840. sk->sk_state = TCP_CLOSE;
  1841. sk_set_socket(sk, sock);
  1842. sock_set_flag(sk, SOCK_ZAPPED);
  1843. if (sock) {
  1844. sk->sk_type = sock->type;
  1845. sk->sk_wq = sock->wq;
  1846. sock->sk = sk;
  1847. } else
  1848. sk->sk_wq = NULL;
  1849. spin_lock_init(&sk->sk_dst_lock);
  1850. rwlock_init(&sk->sk_callback_lock);
  1851. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1852. af_callback_keys + sk->sk_family,
  1853. af_family_clock_key_strings[sk->sk_family]);
  1854. sk->sk_state_change = sock_def_wakeup;
  1855. sk->sk_data_ready = sock_def_readable;
  1856. sk->sk_write_space = sock_def_write_space;
  1857. sk->sk_error_report = sock_def_error_report;
  1858. sk->sk_destruct = sock_def_destruct;
  1859. sk->sk_sndmsg_page = NULL;
  1860. sk->sk_sndmsg_off = 0;
  1861. sk->sk_peek_off = -1;
  1862. sk->sk_peer_pid = NULL;
  1863. sk->sk_peer_cred = NULL;
  1864. sk->sk_write_pending = 0;
  1865. sk->sk_rcvlowat = 1;
  1866. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1867. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1868. sk->sk_stamp = ktime_set(-1L, 0);
  1869. /*
  1870. * Before updating sk_refcnt, we must commit prior changes to memory
  1871. * (Documentation/RCU/rculist_nulls.txt for details)
  1872. */
  1873. smp_wmb();
  1874. atomic_set(&sk->sk_refcnt, 1);
  1875. atomic_set(&sk->sk_drops, 0);
  1876. }
  1877. EXPORT_SYMBOL(sock_init_data);
  1878. void lock_sock_nested(struct sock *sk, int subclass)
  1879. {
  1880. might_sleep();
  1881. spin_lock_bh(&sk->sk_lock.slock);
  1882. if (sk->sk_lock.owned)
  1883. __lock_sock(sk);
  1884. sk->sk_lock.owned = 1;
  1885. spin_unlock(&sk->sk_lock.slock);
  1886. /*
  1887. * The sk_lock has mutex_lock() semantics here:
  1888. */
  1889. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1890. local_bh_enable();
  1891. }
  1892. EXPORT_SYMBOL(lock_sock_nested);
  1893. void release_sock(struct sock *sk)
  1894. {
  1895. /*
  1896. * The sk_lock has mutex_unlock() semantics:
  1897. */
  1898. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1899. spin_lock_bh(&sk->sk_lock.slock);
  1900. if (sk->sk_backlog.tail)
  1901. __release_sock(sk);
  1902. if (sk->sk_prot->release_cb)
  1903. sk->sk_prot->release_cb(sk);
  1904. sk->sk_lock.owned = 0;
  1905. if (waitqueue_active(&sk->sk_lock.wq))
  1906. wake_up(&sk->sk_lock.wq);
  1907. spin_unlock_bh(&sk->sk_lock.slock);
  1908. }
  1909. EXPORT_SYMBOL(release_sock);
  1910. /**
  1911. * lock_sock_fast - fast version of lock_sock
  1912. * @sk: socket
  1913. *
  1914. * This version should be used for very small section, where process wont block
  1915. * return false if fast path is taken
  1916. * sk_lock.slock locked, owned = 0, BH disabled
  1917. * return true if slow path is taken
  1918. * sk_lock.slock unlocked, owned = 1, BH enabled
  1919. */
  1920. bool lock_sock_fast(struct sock *sk)
  1921. {
  1922. might_sleep();
  1923. spin_lock_bh(&sk->sk_lock.slock);
  1924. if (!sk->sk_lock.owned)
  1925. /*
  1926. * Note : We must disable BH
  1927. */
  1928. return false;
  1929. __lock_sock(sk);
  1930. sk->sk_lock.owned = 1;
  1931. spin_unlock(&sk->sk_lock.slock);
  1932. /*
  1933. * The sk_lock has mutex_lock() semantics here:
  1934. */
  1935. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  1936. local_bh_enable();
  1937. return true;
  1938. }
  1939. EXPORT_SYMBOL(lock_sock_fast);
  1940. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  1941. {
  1942. struct timeval tv;
  1943. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1944. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1945. tv = ktime_to_timeval(sk->sk_stamp);
  1946. if (tv.tv_sec == -1)
  1947. return -ENOENT;
  1948. if (tv.tv_sec == 0) {
  1949. sk->sk_stamp = ktime_get_real();
  1950. tv = ktime_to_timeval(sk->sk_stamp);
  1951. }
  1952. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  1953. }
  1954. EXPORT_SYMBOL(sock_get_timestamp);
  1955. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  1956. {
  1957. struct timespec ts;
  1958. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1959. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1960. ts = ktime_to_timespec(sk->sk_stamp);
  1961. if (ts.tv_sec == -1)
  1962. return -ENOENT;
  1963. if (ts.tv_sec == 0) {
  1964. sk->sk_stamp = ktime_get_real();
  1965. ts = ktime_to_timespec(sk->sk_stamp);
  1966. }
  1967. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  1968. }
  1969. EXPORT_SYMBOL(sock_get_timestampns);
  1970. void sock_enable_timestamp(struct sock *sk, int flag)
  1971. {
  1972. if (!sock_flag(sk, flag)) {
  1973. unsigned long previous_flags = sk->sk_flags;
  1974. sock_set_flag(sk, flag);
  1975. /*
  1976. * we just set one of the two flags which require net
  1977. * time stamping, but time stamping might have been on
  1978. * already because of the other one
  1979. */
  1980. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  1981. net_enable_timestamp();
  1982. }
  1983. }
  1984. /*
  1985. * Get a socket option on an socket.
  1986. *
  1987. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  1988. * asynchronous errors should be reported by getsockopt. We assume
  1989. * this means if you specify SO_ERROR (otherwise whats the point of it).
  1990. */
  1991. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  1992. char __user *optval, int __user *optlen)
  1993. {
  1994. struct sock *sk = sock->sk;
  1995. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1996. }
  1997. EXPORT_SYMBOL(sock_common_getsockopt);
  1998. #ifdef CONFIG_COMPAT
  1999. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2000. char __user *optval, int __user *optlen)
  2001. {
  2002. struct sock *sk = sock->sk;
  2003. if (sk->sk_prot->compat_getsockopt != NULL)
  2004. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2005. optval, optlen);
  2006. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2007. }
  2008. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2009. #endif
  2010. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  2011. struct msghdr *msg, size_t size, int flags)
  2012. {
  2013. struct sock *sk = sock->sk;
  2014. int addr_len = 0;
  2015. int err;
  2016. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  2017. flags & ~MSG_DONTWAIT, &addr_len);
  2018. if (err >= 0)
  2019. msg->msg_namelen = addr_len;
  2020. return err;
  2021. }
  2022. EXPORT_SYMBOL(sock_common_recvmsg);
  2023. /*
  2024. * Set socket options on an inet socket.
  2025. */
  2026. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2027. char __user *optval, unsigned int optlen)
  2028. {
  2029. struct sock *sk = sock->sk;
  2030. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2031. }
  2032. EXPORT_SYMBOL(sock_common_setsockopt);
  2033. #ifdef CONFIG_COMPAT
  2034. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2035. char __user *optval, unsigned int optlen)
  2036. {
  2037. struct sock *sk = sock->sk;
  2038. if (sk->sk_prot->compat_setsockopt != NULL)
  2039. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2040. optval, optlen);
  2041. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2042. }
  2043. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2044. #endif
  2045. void sk_common_release(struct sock *sk)
  2046. {
  2047. if (sk->sk_prot->destroy)
  2048. sk->sk_prot->destroy(sk);
  2049. /*
  2050. * Observation: when sock_common_release is called, processes have
  2051. * no access to socket. But net still has.
  2052. * Step one, detach it from networking:
  2053. *
  2054. * A. Remove from hash tables.
  2055. */
  2056. sk->sk_prot->unhash(sk);
  2057. /*
  2058. * In this point socket cannot receive new packets, but it is possible
  2059. * that some packets are in flight because some CPU runs receiver and
  2060. * did hash table lookup before we unhashed socket. They will achieve
  2061. * receive queue and will be purged by socket destructor.
  2062. *
  2063. * Also we still have packets pending on receive queue and probably,
  2064. * our own packets waiting in device queues. sock_destroy will drain
  2065. * receive queue, but transmitted packets will delay socket destruction
  2066. * until the last reference will be released.
  2067. */
  2068. sock_orphan(sk);
  2069. xfrm_sk_free_policy(sk);
  2070. sk_refcnt_debug_release(sk);
  2071. sock_put(sk);
  2072. }
  2073. EXPORT_SYMBOL(sk_common_release);
  2074. #ifdef CONFIG_PROC_FS
  2075. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2076. struct prot_inuse {
  2077. int val[PROTO_INUSE_NR];
  2078. };
  2079. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2080. #ifdef CONFIG_NET_NS
  2081. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2082. {
  2083. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2084. }
  2085. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2086. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2087. {
  2088. int cpu, idx = prot->inuse_idx;
  2089. int res = 0;
  2090. for_each_possible_cpu(cpu)
  2091. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2092. return res >= 0 ? res : 0;
  2093. }
  2094. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2095. static int __net_init sock_inuse_init_net(struct net *net)
  2096. {
  2097. net->core.inuse = alloc_percpu(struct prot_inuse);
  2098. return net->core.inuse ? 0 : -ENOMEM;
  2099. }
  2100. static void __net_exit sock_inuse_exit_net(struct net *net)
  2101. {
  2102. free_percpu(net->core.inuse);
  2103. }
  2104. static struct pernet_operations net_inuse_ops = {
  2105. .init = sock_inuse_init_net,
  2106. .exit = sock_inuse_exit_net,
  2107. };
  2108. static __init int net_inuse_init(void)
  2109. {
  2110. if (register_pernet_subsys(&net_inuse_ops))
  2111. panic("Cannot initialize net inuse counters");
  2112. return 0;
  2113. }
  2114. core_initcall(net_inuse_init);
  2115. #else
  2116. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2117. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2118. {
  2119. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2120. }
  2121. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2122. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2123. {
  2124. int cpu, idx = prot->inuse_idx;
  2125. int res = 0;
  2126. for_each_possible_cpu(cpu)
  2127. res += per_cpu(prot_inuse, cpu).val[idx];
  2128. return res >= 0 ? res : 0;
  2129. }
  2130. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2131. #endif
  2132. static void assign_proto_idx(struct proto *prot)
  2133. {
  2134. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2135. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2136. pr_err("PROTO_INUSE_NR exhausted\n");
  2137. return;
  2138. }
  2139. set_bit(prot->inuse_idx, proto_inuse_idx);
  2140. }
  2141. static void release_proto_idx(struct proto *prot)
  2142. {
  2143. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2144. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2145. }
  2146. #else
  2147. static inline void assign_proto_idx(struct proto *prot)
  2148. {
  2149. }
  2150. static inline void release_proto_idx(struct proto *prot)
  2151. {
  2152. }
  2153. #endif
  2154. int proto_register(struct proto *prot, int alloc_slab)
  2155. {
  2156. if (alloc_slab) {
  2157. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2158. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2159. NULL);
  2160. if (prot->slab == NULL) {
  2161. pr_crit("%s: Can't create sock SLAB cache!\n",
  2162. prot->name);
  2163. goto out;
  2164. }
  2165. if (prot->rsk_prot != NULL) {
  2166. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2167. if (prot->rsk_prot->slab_name == NULL)
  2168. goto out_free_sock_slab;
  2169. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2170. prot->rsk_prot->obj_size, 0,
  2171. SLAB_HWCACHE_ALIGN, NULL);
  2172. if (prot->rsk_prot->slab == NULL) {
  2173. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2174. prot->name);
  2175. goto out_free_request_sock_slab_name;
  2176. }
  2177. }
  2178. if (prot->twsk_prot != NULL) {
  2179. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2180. if (prot->twsk_prot->twsk_slab_name == NULL)
  2181. goto out_free_request_sock_slab;
  2182. prot->twsk_prot->twsk_slab =
  2183. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2184. prot->twsk_prot->twsk_obj_size,
  2185. 0,
  2186. SLAB_HWCACHE_ALIGN |
  2187. prot->slab_flags,
  2188. NULL);
  2189. if (prot->twsk_prot->twsk_slab == NULL)
  2190. goto out_free_timewait_sock_slab_name;
  2191. }
  2192. }
  2193. mutex_lock(&proto_list_mutex);
  2194. list_add(&prot->node, &proto_list);
  2195. assign_proto_idx(prot);
  2196. mutex_unlock(&proto_list_mutex);
  2197. return 0;
  2198. out_free_timewait_sock_slab_name:
  2199. kfree(prot->twsk_prot->twsk_slab_name);
  2200. out_free_request_sock_slab:
  2201. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2202. kmem_cache_destroy(prot->rsk_prot->slab);
  2203. prot->rsk_prot->slab = NULL;
  2204. }
  2205. out_free_request_sock_slab_name:
  2206. if (prot->rsk_prot)
  2207. kfree(prot->rsk_prot->slab_name);
  2208. out_free_sock_slab:
  2209. kmem_cache_destroy(prot->slab);
  2210. prot->slab = NULL;
  2211. out:
  2212. return -ENOBUFS;
  2213. }
  2214. EXPORT_SYMBOL(proto_register);
  2215. void proto_unregister(struct proto *prot)
  2216. {
  2217. mutex_lock(&proto_list_mutex);
  2218. release_proto_idx(prot);
  2219. list_del(&prot->node);
  2220. mutex_unlock(&proto_list_mutex);
  2221. if (prot->slab != NULL) {
  2222. kmem_cache_destroy(prot->slab);
  2223. prot->slab = NULL;
  2224. }
  2225. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2226. kmem_cache_destroy(prot->rsk_prot->slab);
  2227. kfree(prot->rsk_prot->slab_name);
  2228. prot->rsk_prot->slab = NULL;
  2229. }
  2230. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2231. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2232. kfree(prot->twsk_prot->twsk_slab_name);
  2233. prot->twsk_prot->twsk_slab = NULL;
  2234. }
  2235. }
  2236. EXPORT_SYMBOL(proto_unregister);
  2237. #ifdef CONFIG_PROC_FS
  2238. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2239. __acquires(proto_list_mutex)
  2240. {
  2241. mutex_lock(&proto_list_mutex);
  2242. return seq_list_start_head(&proto_list, *pos);
  2243. }
  2244. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2245. {
  2246. return seq_list_next(v, &proto_list, pos);
  2247. }
  2248. static void proto_seq_stop(struct seq_file *seq, void *v)
  2249. __releases(proto_list_mutex)
  2250. {
  2251. mutex_unlock(&proto_list_mutex);
  2252. }
  2253. static char proto_method_implemented(const void *method)
  2254. {
  2255. return method == NULL ? 'n' : 'y';
  2256. }
  2257. static long sock_prot_memory_allocated(struct proto *proto)
  2258. {
  2259. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2260. }
  2261. static char *sock_prot_memory_pressure(struct proto *proto)
  2262. {
  2263. return proto->memory_pressure != NULL ?
  2264. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2265. }
  2266. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2267. {
  2268. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2269. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2270. proto->name,
  2271. proto->obj_size,
  2272. sock_prot_inuse_get(seq_file_net(seq), proto),
  2273. sock_prot_memory_allocated(proto),
  2274. sock_prot_memory_pressure(proto),
  2275. proto->max_header,
  2276. proto->slab == NULL ? "no" : "yes",
  2277. module_name(proto->owner),
  2278. proto_method_implemented(proto->close),
  2279. proto_method_implemented(proto->connect),
  2280. proto_method_implemented(proto->disconnect),
  2281. proto_method_implemented(proto->accept),
  2282. proto_method_implemented(proto->ioctl),
  2283. proto_method_implemented(proto->init),
  2284. proto_method_implemented(proto->destroy),
  2285. proto_method_implemented(proto->shutdown),
  2286. proto_method_implemented(proto->setsockopt),
  2287. proto_method_implemented(proto->getsockopt),
  2288. proto_method_implemented(proto->sendmsg),
  2289. proto_method_implemented(proto->recvmsg),
  2290. proto_method_implemented(proto->sendpage),
  2291. proto_method_implemented(proto->bind),
  2292. proto_method_implemented(proto->backlog_rcv),
  2293. proto_method_implemented(proto->hash),
  2294. proto_method_implemented(proto->unhash),
  2295. proto_method_implemented(proto->get_port),
  2296. proto_method_implemented(proto->enter_memory_pressure));
  2297. }
  2298. static int proto_seq_show(struct seq_file *seq, void *v)
  2299. {
  2300. if (v == &proto_list)
  2301. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2302. "protocol",
  2303. "size",
  2304. "sockets",
  2305. "memory",
  2306. "press",
  2307. "maxhdr",
  2308. "slab",
  2309. "module",
  2310. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2311. else
  2312. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2313. return 0;
  2314. }
  2315. static const struct seq_operations proto_seq_ops = {
  2316. .start = proto_seq_start,
  2317. .next = proto_seq_next,
  2318. .stop = proto_seq_stop,
  2319. .show = proto_seq_show,
  2320. };
  2321. static int proto_seq_open(struct inode *inode, struct file *file)
  2322. {
  2323. return seq_open_net(inode, file, &proto_seq_ops,
  2324. sizeof(struct seq_net_private));
  2325. }
  2326. static const struct file_operations proto_seq_fops = {
  2327. .owner = THIS_MODULE,
  2328. .open = proto_seq_open,
  2329. .read = seq_read,
  2330. .llseek = seq_lseek,
  2331. .release = seq_release_net,
  2332. };
  2333. static __net_init int proto_init_net(struct net *net)
  2334. {
  2335. if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
  2336. return -ENOMEM;
  2337. return 0;
  2338. }
  2339. static __net_exit void proto_exit_net(struct net *net)
  2340. {
  2341. proc_net_remove(net, "protocols");
  2342. }
  2343. static __net_initdata struct pernet_operations proto_net_ops = {
  2344. .init = proto_init_net,
  2345. .exit = proto_exit_net,
  2346. };
  2347. static int __init proto_init(void)
  2348. {
  2349. return register_pernet_subsys(&proto_net_ops);
  2350. }
  2351. subsys_initcall(proto_init);
  2352. #endif /* PROC_FS */