slub.c 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <trace/events/kmem.h>
  34. #include "internal.h"
  35. /*
  36. * Lock order:
  37. * 1. slab_mutex (Global Mutex)
  38. * 2. node->list_lock
  39. * 3. slab_lock(page) (Only on some arches and for debugging)
  40. *
  41. * slab_mutex
  42. *
  43. * The role of the slab_mutex is to protect the list of all the slabs
  44. * and to synchronize major metadata changes to slab cache structures.
  45. *
  46. * The slab_lock is only used for debugging and on arches that do not
  47. * have the ability to do a cmpxchg_double. It only protects the second
  48. * double word in the page struct. Meaning
  49. * A. page->freelist -> List of object free in a page
  50. * B. page->counters -> Counters of objects
  51. * C. page->frozen -> frozen state
  52. *
  53. * If a slab is frozen then it is exempt from list management. It is not
  54. * on any list. The processor that froze the slab is the one who can
  55. * perform list operations on the page. Other processors may put objects
  56. * onto the freelist but the processor that froze the slab is the only
  57. * one that can retrieve the objects from the page's freelist.
  58. *
  59. * The list_lock protects the partial and full list on each node and
  60. * the partial slab counter. If taken then no new slabs may be added or
  61. * removed from the lists nor make the number of partial slabs be modified.
  62. * (Note that the total number of slabs is an atomic value that may be
  63. * modified without taking the list lock).
  64. *
  65. * The list_lock is a centralized lock and thus we avoid taking it as
  66. * much as possible. As long as SLUB does not have to handle partial
  67. * slabs, operations can continue without any centralized lock. F.e.
  68. * allocating a long series of objects that fill up slabs does not require
  69. * the list lock.
  70. * Interrupts are disabled during allocation and deallocation in order to
  71. * make the slab allocator safe to use in the context of an irq. In addition
  72. * interrupts are disabled to ensure that the processor does not change
  73. * while handling per_cpu slabs, due to kernel preemption.
  74. *
  75. * SLUB assigns one slab for allocation to each processor.
  76. * Allocations only occur from these slabs called cpu slabs.
  77. *
  78. * Slabs with free elements are kept on a partial list and during regular
  79. * operations no list for full slabs is used. If an object in a full slab is
  80. * freed then the slab will show up again on the partial lists.
  81. * We track full slabs for debugging purposes though because otherwise we
  82. * cannot scan all objects.
  83. *
  84. * Slabs are freed when they become empty. Teardown and setup is
  85. * minimal so we rely on the page allocators per cpu caches for
  86. * fast frees and allocs.
  87. *
  88. * Overloading of page flags that are otherwise used for LRU management.
  89. *
  90. * PageActive The slab is frozen and exempt from list processing.
  91. * This means that the slab is dedicated to a purpose
  92. * such as satisfying allocations for a specific
  93. * processor. Objects may be freed in the slab while
  94. * it is frozen but slab_free will then skip the usual
  95. * list operations. It is up to the processor holding
  96. * the slab to integrate the slab into the slab lists
  97. * when the slab is no longer needed.
  98. *
  99. * One use of this flag is to mark slabs that are
  100. * used for allocations. Then such a slab becomes a cpu
  101. * slab. The cpu slab may be equipped with an additional
  102. * freelist that allows lockless access to
  103. * free objects in addition to the regular freelist
  104. * that requires the slab lock.
  105. *
  106. * PageError Slab requires special handling due to debug
  107. * options set. This moves slab handling out of
  108. * the fast path and disables lockless freelists.
  109. */
  110. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  111. SLAB_TRACE | SLAB_DEBUG_FREE)
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. /*
  121. * Issues still to be resolved:
  122. *
  123. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  124. *
  125. * - Variable sizing of the per node arrays
  126. */
  127. /* Enable to test recovery from slab corruption on boot */
  128. #undef SLUB_RESILIENCY_TEST
  129. /* Enable to log cmpxchg failures */
  130. #undef SLUB_DEBUG_CMPXCHG
  131. /*
  132. * Mininum number of partial slabs. These will be left on the partial
  133. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  134. */
  135. #define MIN_PARTIAL 5
  136. /*
  137. * Maximum number of desirable partial slabs.
  138. * The existence of more partial slabs makes kmem_cache_shrink
  139. * sort the partial list by the number of objects in the.
  140. */
  141. #define MAX_PARTIAL 10
  142. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  143. SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Debugging flags that require metadata to be stored in the slab. These get
  146. * disabled when slub_debug=O is used and a cache's min order increases with
  147. * metadata.
  148. */
  149. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  150. /*
  151. * Set of flags that will prevent slab merging
  152. */
  153. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  154. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  155. SLAB_FAILSLAB)
  156. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  157. SLAB_CACHE_DMA | SLAB_NOTRACK)
  158. #define OO_SHIFT 16
  159. #define OO_MASK ((1 << OO_SHIFT) - 1)
  160. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  161. /* Internal SLUB flags */
  162. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  163. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  164. static int kmem_size = sizeof(struct kmem_cache);
  165. #ifdef CONFIG_SMP
  166. static struct notifier_block slab_notifier;
  167. #endif
  168. /*
  169. * Tracking user of a slab.
  170. */
  171. #define TRACK_ADDRS_COUNT 16
  172. struct track {
  173. unsigned long addr; /* Called from address */
  174. #ifdef CONFIG_STACKTRACE
  175. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  176. #endif
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SYSFS
  183. static int sysfs_slab_add(struct kmem_cache *);
  184. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  185. static void sysfs_slab_remove(struct kmem_cache *);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void sysfs_slab_remove(struct kmem_cache *s)
  191. {
  192. kfree(s->name);
  193. kfree(s);
  194. }
  195. #endif
  196. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  197. {
  198. #ifdef CONFIG_SLUB_STATS
  199. __this_cpu_inc(s->cpu_slab->stat[si]);
  200. #endif
  201. }
  202. /********************************************************************
  203. * Core slab cache functions
  204. *******************************************************************/
  205. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  206. {
  207. return s->node[node];
  208. }
  209. /* Verify that a pointer has an address that is valid within a slab page */
  210. static inline int check_valid_pointer(struct kmem_cache *s,
  211. struct page *page, const void *object)
  212. {
  213. void *base;
  214. if (!object)
  215. return 1;
  216. base = page_address(page);
  217. if (object < base || object >= base + page->objects * s->size ||
  218. (object - base) % s->size) {
  219. return 0;
  220. }
  221. return 1;
  222. }
  223. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  224. {
  225. return *(void **)(object + s->offset);
  226. }
  227. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  228. {
  229. prefetch(object + s->offset);
  230. }
  231. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  232. {
  233. void *p;
  234. #ifdef CONFIG_DEBUG_PAGEALLOC
  235. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  236. #else
  237. p = get_freepointer(s, object);
  238. #endif
  239. return p;
  240. }
  241. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  242. {
  243. *(void **)(object + s->offset) = fp;
  244. }
  245. /* Loop over all objects in a slab */
  246. #define for_each_object(__p, __s, __addr, __objects) \
  247. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  248. __p += (__s)->size)
  249. /* Determine object index from a given position */
  250. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  251. {
  252. return (p - addr) / s->size;
  253. }
  254. static inline size_t slab_ksize(const struct kmem_cache *s)
  255. {
  256. #ifdef CONFIG_SLUB_DEBUG
  257. /*
  258. * Debugging requires use of the padding between object
  259. * and whatever may come after it.
  260. */
  261. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  262. return s->object_size;
  263. #endif
  264. /*
  265. * If we have the need to store the freelist pointer
  266. * back there or track user information then we can
  267. * only use the space before that information.
  268. */
  269. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  270. return s->inuse;
  271. /*
  272. * Else we can use all the padding etc for the allocation
  273. */
  274. return s->size;
  275. }
  276. static inline int order_objects(int order, unsigned long size, int reserved)
  277. {
  278. return ((PAGE_SIZE << order) - reserved) / size;
  279. }
  280. static inline struct kmem_cache_order_objects oo_make(int order,
  281. unsigned long size, int reserved)
  282. {
  283. struct kmem_cache_order_objects x = {
  284. (order << OO_SHIFT) + order_objects(order, size, reserved)
  285. };
  286. return x;
  287. }
  288. static inline int oo_order(struct kmem_cache_order_objects x)
  289. {
  290. return x.x >> OO_SHIFT;
  291. }
  292. static inline int oo_objects(struct kmem_cache_order_objects x)
  293. {
  294. return x.x & OO_MASK;
  295. }
  296. /*
  297. * Per slab locking using the pagelock
  298. */
  299. static __always_inline void slab_lock(struct page *page)
  300. {
  301. bit_spin_lock(PG_locked, &page->flags);
  302. }
  303. static __always_inline void slab_unlock(struct page *page)
  304. {
  305. __bit_spin_unlock(PG_locked, &page->flags);
  306. }
  307. /* Interrupts must be disabled (for the fallback code to work right) */
  308. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  309. void *freelist_old, unsigned long counters_old,
  310. void *freelist_new, unsigned long counters_new,
  311. const char *n)
  312. {
  313. VM_BUG_ON(!irqs_disabled());
  314. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  315. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  316. if (s->flags & __CMPXCHG_DOUBLE) {
  317. if (cmpxchg_double(&page->freelist, &page->counters,
  318. freelist_old, counters_old,
  319. freelist_new, counters_new))
  320. return 1;
  321. } else
  322. #endif
  323. {
  324. slab_lock(page);
  325. if (page->freelist == freelist_old && page->counters == counters_old) {
  326. page->freelist = freelist_new;
  327. page->counters = counters_new;
  328. slab_unlock(page);
  329. return 1;
  330. }
  331. slab_unlock(page);
  332. }
  333. cpu_relax();
  334. stat(s, CMPXCHG_DOUBLE_FAIL);
  335. #ifdef SLUB_DEBUG_CMPXCHG
  336. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  337. #endif
  338. return 0;
  339. }
  340. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  341. void *freelist_old, unsigned long counters_old,
  342. void *freelist_new, unsigned long counters_new,
  343. const char *n)
  344. {
  345. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  346. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  347. if (s->flags & __CMPXCHG_DOUBLE) {
  348. if (cmpxchg_double(&page->freelist, &page->counters,
  349. freelist_old, counters_old,
  350. freelist_new, counters_new))
  351. return 1;
  352. } else
  353. #endif
  354. {
  355. unsigned long flags;
  356. local_irq_save(flags);
  357. slab_lock(page);
  358. if (page->freelist == freelist_old && page->counters == counters_old) {
  359. page->freelist = freelist_new;
  360. page->counters = counters_new;
  361. slab_unlock(page);
  362. local_irq_restore(flags);
  363. return 1;
  364. }
  365. slab_unlock(page);
  366. local_irq_restore(flags);
  367. }
  368. cpu_relax();
  369. stat(s, CMPXCHG_DOUBLE_FAIL);
  370. #ifdef SLUB_DEBUG_CMPXCHG
  371. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  372. #endif
  373. return 0;
  374. }
  375. #ifdef CONFIG_SLUB_DEBUG
  376. /*
  377. * Determine a map of object in use on a page.
  378. *
  379. * Node listlock must be held to guarantee that the page does
  380. * not vanish from under us.
  381. */
  382. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  383. {
  384. void *p;
  385. void *addr = page_address(page);
  386. for (p = page->freelist; p; p = get_freepointer(s, p))
  387. set_bit(slab_index(p, s, addr), map);
  388. }
  389. /*
  390. * Debug settings:
  391. */
  392. #ifdef CONFIG_SLUB_DEBUG_ON
  393. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  394. #else
  395. static int slub_debug;
  396. #endif
  397. static char *slub_debug_slabs;
  398. static int disable_higher_order_debug;
  399. /*
  400. * Object debugging
  401. */
  402. static void print_section(char *text, u8 *addr, unsigned int length)
  403. {
  404. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  405. length, 1);
  406. }
  407. static struct track *get_track(struct kmem_cache *s, void *object,
  408. enum track_item alloc)
  409. {
  410. struct track *p;
  411. if (s->offset)
  412. p = object + s->offset + sizeof(void *);
  413. else
  414. p = object + s->inuse;
  415. return p + alloc;
  416. }
  417. static void set_track(struct kmem_cache *s, void *object,
  418. enum track_item alloc, unsigned long addr)
  419. {
  420. struct track *p = get_track(s, object, alloc);
  421. if (addr) {
  422. #ifdef CONFIG_STACKTRACE
  423. struct stack_trace trace;
  424. int i;
  425. trace.nr_entries = 0;
  426. trace.max_entries = TRACK_ADDRS_COUNT;
  427. trace.entries = p->addrs;
  428. trace.skip = 3;
  429. save_stack_trace(&trace);
  430. /* See rant in lockdep.c */
  431. if (trace.nr_entries != 0 &&
  432. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  433. trace.nr_entries--;
  434. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  435. p->addrs[i] = 0;
  436. #endif
  437. p->addr = addr;
  438. p->cpu = smp_processor_id();
  439. p->pid = current->pid;
  440. p->when = jiffies;
  441. } else
  442. memset(p, 0, sizeof(struct track));
  443. }
  444. static void init_tracking(struct kmem_cache *s, void *object)
  445. {
  446. if (!(s->flags & SLAB_STORE_USER))
  447. return;
  448. set_track(s, object, TRACK_FREE, 0UL);
  449. set_track(s, object, TRACK_ALLOC, 0UL);
  450. }
  451. static void print_track(const char *s, struct track *t)
  452. {
  453. if (!t->addr)
  454. return;
  455. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  456. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  457. #ifdef CONFIG_STACKTRACE
  458. {
  459. int i;
  460. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  461. if (t->addrs[i])
  462. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  463. else
  464. break;
  465. }
  466. #endif
  467. }
  468. static void print_tracking(struct kmem_cache *s, void *object)
  469. {
  470. if (!(s->flags & SLAB_STORE_USER))
  471. return;
  472. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  473. print_track("Freed", get_track(s, object, TRACK_FREE));
  474. }
  475. static void print_page_info(struct page *page)
  476. {
  477. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  478. page, page->objects, page->inuse, page->freelist, page->flags);
  479. }
  480. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  481. {
  482. va_list args;
  483. char buf[100];
  484. va_start(args, fmt);
  485. vsnprintf(buf, sizeof(buf), fmt, args);
  486. va_end(args);
  487. printk(KERN_ERR "========================================"
  488. "=====================================\n");
  489. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  490. printk(KERN_ERR "----------------------------------------"
  491. "-------------------------------------\n\n");
  492. }
  493. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  494. {
  495. va_list args;
  496. char buf[100];
  497. va_start(args, fmt);
  498. vsnprintf(buf, sizeof(buf), fmt, args);
  499. va_end(args);
  500. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  501. }
  502. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  503. {
  504. unsigned int off; /* Offset of last byte */
  505. u8 *addr = page_address(page);
  506. print_tracking(s, p);
  507. print_page_info(page);
  508. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  509. p, p - addr, get_freepointer(s, p));
  510. if (p > addr + 16)
  511. print_section("Bytes b4 ", p - 16, 16);
  512. print_section("Object ", p, min_t(unsigned long, s->object_size,
  513. PAGE_SIZE));
  514. if (s->flags & SLAB_RED_ZONE)
  515. print_section("Redzone ", p + s->object_size,
  516. s->inuse - s->object_size);
  517. if (s->offset)
  518. off = s->offset + sizeof(void *);
  519. else
  520. off = s->inuse;
  521. if (s->flags & SLAB_STORE_USER)
  522. off += 2 * sizeof(struct track);
  523. if (off != s->size)
  524. /* Beginning of the filler is the free pointer */
  525. print_section("Padding ", p + off, s->size - off);
  526. dump_stack();
  527. }
  528. static void object_err(struct kmem_cache *s, struct page *page,
  529. u8 *object, char *reason)
  530. {
  531. slab_bug(s, "%s", reason);
  532. print_trailer(s, page, object);
  533. }
  534. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  535. {
  536. va_list args;
  537. char buf[100];
  538. va_start(args, fmt);
  539. vsnprintf(buf, sizeof(buf), fmt, args);
  540. va_end(args);
  541. slab_bug(s, "%s", buf);
  542. print_page_info(page);
  543. dump_stack();
  544. }
  545. static void init_object(struct kmem_cache *s, void *object, u8 val)
  546. {
  547. u8 *p = object;
  548. if (s->flags & __OBJECT_POISON) {
  549. memset(p, POISON_FREE, s->object_size - 1);
  550. p[s->object_size - 1] = POISON_END;
  551. }
  552. if (s->flags & SLAB_RED_ZONE)
  553. memset(p + s->object_size, val, s->inuse - s->object_size);
  554. }
  555. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  556. void *from, void *to)
  557. {
  558. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  559. memset(from, data, to - from);
  560. }
  561. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  562. u8 *object, char *what,
  563. u8 *start, unsigned int value, unsigned int bytes)
  564. {
  565. u8 *fault;
  566. u8 *end;
  567. fault = memchr_inv(start, value, bytes);
  568. if (!fault)
  569. return 1;
  570. end = start + bytes;
  571. while (end > fault && end[-1] == value)
  572. end--;
  573. slab_bug(s, "%s overwritten", what);
  574. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  575. fault, end - 1, fault[0], value);
  576. print_trailer(s, page, object);
  577. restore_bytes(s, what, value, fault, end);
  578. return 0;
  579. }
  580. /*
  581. * Object layout:
  582. *
  583. * object address
  584. * Bytes of the object to be managed.
  585. * If the freepointer may overlay the object then the free
  586. * pointer is the first word of the object.
  587. *
  588. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  589. * 0xa5 (POISON_END)
  590. *
  591. * object + s->object_size
  592. * Padding to reach word boundary. This is also used for Redzoning.
  593. * Padding is extended by another word if Redzoning is enabled and
  594. * object_size == inuse.
  595. *
  596. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  597. * 0xcc (RED_ACTIVE) for objects in use.
  598. *
  599. * object + s->inuse
  600. * Meta data starts here.
  601. *
  602. * A. Free pointer (if we cannot overwrite object on free)
  603. * B. Tracking data for SLAB_STORE_USER
  604. * C. Padding to reach required alignment boundary or at mininum
  605. * one word if debugging is on to be able to detect writes
  606. * before the word boundary.
  607. *
  608. * Padding is done using 0x5a (POISON_INUSE)
  609. *
  610. * object + s->size
  611. * Nothing is used beyond s->size.
  612. *
  613. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  614. * ignored. And therefore no slab options that rely on these boundaries
  615. * may be used with merged slabcaches.
  616. */
  617. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  618. {
  619. unsigned long off = s->inuse; /* The end of info */
  620. if (s->offset)
  621. /* Freepointer is placed after the object. */
  622. off += sizeof(void *);
  623. if (s->flags & SLAB_STORE_USER)
  624. /* We also have user information there */
  625. off += 2 * sizeof(struct track);
  626. if (s->size == off)
  627. return 1;
  628. return check_bytes_and_report(s, page, p, "Object padding",
  629. p + off, POISON_INUSE, s->size - off);
  630. }
  631. /* Check the pad bytes at the end of a slab page */
  632. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  633. {
  634. u8 *start;
  635. u8 *fault;
  636. u8 *end;
  637. int length;
  638. int remainder;
  639. if (!(s->flags & SLAB_POISON))
  640. return 1;
  641. start = page_address(page);
  642. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  643. end = start + length;
  644. remainder = length % s->size;
  645. if (!remainder)
  646. return 1;
  647. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  648. if (!fault)
  649. return 1;
  650. while (end > fault && end[-1] == POISON_INUSE)
  651. end--;
  652. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  653. print_section("Padding ", end - remainder, remainder);
  654. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  655. return 0;
  656. }
  657. static int check_object(struct kmem_cache *s, struct page *page,
  658. void *object, u8 val)
  659. {
  660. u8 *p = object;
  661. u8 *endobject = object + s->object_size;
  662. if (s->flags & SLAB_RED_ZONE) {
  663. if (!check_bytes_and_report(s, page, object, "Redzone",
  664. endobject, val, s->inuse - s->object_size))
  665. return 0;
  666. } else {
  667. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  668. check_bytes_and_report(s, page, p, "Alignment padding",
  669. endobject, POISON_INUSE, s->inuse - s->object_size);
  670. }
  671. }
  672. if (s->flags & SLAB_POISON) {
  673. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  674. (!check_bytes_and_report(s, page, p, "Poison", p,
  675. POISON_FREE, s->object_size - 1) ||
  676. !check_bytes_and_report(s, page, p, "Poison",
  677. p + s->object_size - 1, POISON_END, 1)))
  678. return 0;
  679. /*
  680. * check_pad_bytes cleans up on its own.
  681. */
  682. check_pad_bytes(s, page, p);
  683. }
  684. if (!s->offset && val == SLUB_RED_ACTIVE)
  685. /*
  686. * Object and freepointer overlap. Cannot check
  687. * freepointer while object is allocated.
  688. */
  689. return 1;
  690. /* Check free pointer validity */
  691. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  692. object_err(s, page, p, "Freepointer corrupt");
  693. /*
  694. * No choice but to zap it and thus lose the remainder
  695. * of the free objects in this slab. May cause
  696. * another error because the object count is now wrong.
  697. */
  698. set_freepointer(s, p, NULL);
  699. return 0;
  700. }
  701. return 1;
  702. }
  703. static int check_slab(struct kmem_cache *s, struct page *page)
  704. {
  705. int maxobj;
  706. VM_BUG_ON(!irqs_disabled());
  707. if (!PageSlab(page)) {
  708. slab_err(s, page, "Not a valid slab page");
  709. return 0;
  710. }
  711. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  712. if (page->objects > maxobj) {
  713. slab_err(s, page, "objects %u > max %u",
  714. s->name, page->objects, maxobj);
  715. return 0;
  716. }
  717. if (page->inuse > page->objects) {
  718. slab_err(s, page, "inuse %u > max %u",
  719. s->name, page->inuse, page->objects);
  720. return 0;
  721. }
  722. /* Slab_pad_check fixes things up after itself */
  723. slab_pad_check(s, page);
  724. return 1;
  725. }
  726. /*
  727. * Determine if a certain object on a page is on the freelist. Must hold the
  728. * slab lock to guarantee that the chains are in a consistent state.
  729. */
  730. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  731. {
  732. int nr = 0;
  733. void *fp;
  734. void *object = NULL;
  735. unsigned long max_objects;
  736. fp = page->freelist;
  737. while (fp && nr <= page->objects) {
  738. if (fp == search)
  739. return 1;
  740. if (!check_valid_pointer(s, page, fp)) {
  741. if (object) {
  742. object_err(s, page, object,
  743. "Freechain corrupt");
  744. set_freepointer(s, object, NULL);
  745. break;
  746. } else {
  747. slab_err(s, page, "Freepointer corrupt");
  748. page->freelist = NULL;
  749. page->inuse = page->objects;
  750. slab_fix(s, "Freelist cleared");
  751. return 0;
  752. }
  753. break;
  754. }
  755. object = fp;
  756. fp = get_freepointer(s, object);
  757. nr++;
  758. }
  759. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  760. if (max_objects > MAX_OBJS_PER_PAGE)
  761. max_objects = MAX_OBJS_PER_PAGE;
  762. if (page->objects != max_objects) {
  763. slab_err(s, page, "Wrong number of objects. Found %d but "
  764. "should be %d", page->objects, max_objects);
  765. page->objects = max_objects;
  766. slab_fix(s, "Number of objects adjusted.");
  767. }
  768. if (page->inuse != page->objects - nr) {
  769. slab_err(s, page, "Wrong object count. Counter is %d but "
  770. "counted were %d", page->inuse, page->objects - nr);
  771. page->inuse = page->objects - nr;
  772. slab_fix(s, "Object count adjusted.");
  773. }
  774. return search == NULL;
  775. }
  776. static void trace(struct kmem_cache *s, struct page *page, void *object,
  777. int alloc)
  778. {
  779. if (s->flags & SLAB_TRACE) {
  780. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  781. s->name,
  782. alloc ? "alloc" : "free",
  783. object, page->inuse,
  784. page->freelist);
  785. if (!alloc)
  786. print_section("Object ", (void *)object, s->object_size);
  787. dump_stack();
  788. }
  789. }
  790. /*
  791. * Hooks for other subsystems that check memory allocations. In a typical
  792. * production configuration these hooks all should produce no code at all.
  793. */
  794. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  795. {
  796. flags &= gfp_allowed_mask;
  797. lockdep_trace_alloc(flags);
  798. might_sleep_if(flags & __GFP_WAIT);
  799. return should_failslab(s->object_size, flags, s->flags);
  800. }
  801. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  802. {
  803. flags &= gfp_allowed_mask;
  804. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  805. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  806. }
  807. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  808. {
  809. kmemleak_free_recursive(x, s->flags);
  810. /*
  811. * Trouble is that we may no longer disable interupts in the fast path
  812. * So in order to make the debug calls that expect irqs to be
  813. * disabled we need to disable interrupts temporarily.
  814. */
  815. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  816. {
  817. unsigned long flags;
  818. local_irq_save(flags);
  819. kmemcheck_slab_free(s, x, s->object_size);
  820. debug_check_no_locks_freed(x, s->object_size);
  821. local_irq_restore(flags);
  822. }
  823. #endif
  824. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  825. debug_check_no_obj_freed(x, s->object_size);
  826. }
  827. /*
  828. * Tracking of fully allocated slabs for debugging purposes.
  829. *
  830. * list_lock must be held.
  831. */
  832. static void add_full(struct kmem_cache *s,
  833. struct kmem_cache_node *n, struct page *page)
  834. {
  835. if (!(s->flags & SLAB_STORE_USER))
  836. return;
  837. list_add(&page->lru, &n->full);
  838. }
  839. /*
  840. * list_lock must be held.
  841. */
  842. static void remove_full(struct kmem_cache *s, struct page *page)
  843. {
  844. if (!(s->flags & SLAB_STORE_USER))
  845. return;
  846. list_del(&page->lru);
  847. }
  848. /* Tracking of the number of slabs for debugging purposes */
  849. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  850. {
  851. struct kmem_cache_node *n = get_node(s, node);
  852. return atomic_long_read(&n->nr_slabs);
  853. }
  854. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  855. {
  856. return atomic_long_read(&n->nr_slabs);
  857. }
  858. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  859. {
  860. struct kmem_cache_node *n = get_node(s, node);
  861. /*
  862. * May be called early in order to allocate a slab for the
  863. * kmem_cache_node structure. Solve the chicken-egg
  864. * dilemma by deferring the increment of the count during
  865. * bootstrap (see early_kmem_cache_node_alloc).
  866. */
  867. if (n) {
  868. atomic_long_inc(&n->nr_slabs);
  869. atomic_long_add(objects, &n->total_objects);
  870. }
  871. }
  872. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  873. {
  874. struct kmem_cache_node *n = get_node(s, node);
  875. atomic_long_dec(&n->nr_slabs);
  876. atomic_long_sub(objects, &n->total_objects);
  877. }
  878. /* Object debug checks for alloc/free paths */
  879. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  880. void *object)
  881. {
  882. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  883. return;
  884. init_object(s, object, SLUB_RED_INACTIVE);
  885. init_tracking(s, object);
  886. }
  887. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  888. void *object, unsigned long addr)
  889. {
  890. if (!check_slab(s, page))
  891. goto bad;
  892. if (!check_valid_pointer(s, page, object)) {
  893. object_err(s, page, object, "Freelist Pointer check fails");
  894. goto bad;
  895. }
  896. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  897. goto bad;
  898. /* Success perform special debug activities for allocs */
  899. if (s->flags & SLAB_STORE_USER)
  900. set_track(s, object, TRACK_ALLOC, addr);
  901. trace(s, page, object, 1);
  902. init_object(s, object, SLUB_RED_ACTIVE);
  903. return 1;
  904. bad:
  905. if (PageSlab(page)) {
  906. /*
  907. * If this is a slab page then lets do the best we can
  908. * to avoid issues in the future. Marking all objects
  909. * as used avoids touching the remaining objects.
  910. */
  911. slab_fix(s, "Marking all objects used");
  912. page->inuse = page->objects;
  913. page->freelist = NULL;
  914. }
  915. return 0;
  916. }
  917. static noinline int free_debug_processing(struct kmem_cache *s,
  918. struct page *page, void *object, unsigned long addr)
  919. {
  920. unsigned long flags;
  921. int rc = 0;
  922. local_irq_save(flags);
  923. slab_lock(page);
  924. if (!check_slab(s, page))
  925. goto fail;
  926. if (!check_valid_pointer(s, page, object)) {
  927. slab_err(s, page, "Invalid object pointer 0x%p", object);
  928. goto fail;
  929. }
  930. if (on_freelist(s, page, object)) {
  931. object_err(s, page, object, "Object already free");
  932. goto fail;
  933. }
  934. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  935. goto out;
  936. if (unlikely(s != page->slab)) {
  937. if (!PageSlab(page)) {
  938. slab_err(s, page, "Attempt to free object(0x%p) "
  939. "outside of slab", object);
  940. } else if (!page->slab) {
  941. printk(KERN_ERR
  942. "SLUB <none>: no slab for object 0x%p.\n",
  943. object);
  944. dump_stack();
  945. } else
  946. object_err(s, page, object,
  947. "page slab pointer corrupt.");
  948. goto fail;
  949. }
  950. if (s->flags & SLAB_STORE_USER)
  951. set_track(s, object, TRACK_FREE, addr);
  952. trace(s, page, object, 0);
  953. init_object(s, object, SLUB_RED_INACTIVE);
  954. rc = 1;
  955. out:
  956. slab_unlock(page);
  957. local_irq_restore(flags);
  958. return rc;
  959. fail:
  960. slab_fix(s, "Object at 0x%p not freed", object);
  961. goto out;
  962. }
  963. static int __init setup_slub_debug(char *str)
  964. {
  965. slub_debug = DEBUG_DEFAULT_FLAGS;
  966. if (*str++ != '=' || !*str)
  967. /*
  968. * No options specified. Switch on full debugging.
  969. */
  970. goto out;
  971. if (*str == ',')
  972. /*
  973. * No options but restriction on slabs. This means full
  974. * debugging for slabs matching a pattern.
  975. */
  976. goto check_slabs;
  977. if (tolower(*str) == 'o') {
  978. /*
  979. * Avoid enabling debugging on caches if its minimum order
  980. * would increase as a result.
  981. */
  982. disable_higher_order_debug = 1;
  983. goto out;
  984. }
  985. slub_debug = 0;
  986. if (*str == '-')
  987. /*
  988. * Switch off all debugging measures.
  989. */
  990. goto out;
  991. /*
  992. * Determine which debug features should be switched on
  993. */
  994. for (; *str && *str != ','; str++) {
  995. switch (tolower(*str)) {
  996. case 'f':
  997. slub_debug |= SLAB_DEBUG_FREE;
  998. break;
  999. case 'z':
  1000. slub_debug |= SLAB_RED_ZONE;
  1001. break;
  1002. case 'p':
  1003. slub_debug |= SLAB_POISON;
  1004. break;
  1005. case 'u':
  1006. slub_debug |= SLAB_STORE_USER;
  1007. break;
  1008. case 't':
  1009. slub_debug |= SLAB_TRACE;
  1010. break;
  1011. case 'a':
  1012. slub_debug |= SLAB_FAILSLAB;
  1013. break;
  1014. default:
  1015. printk(KERN_ERR "slub_debug option '%c' "
  1016. "unknown. skipped\n", *str);
  1017. }
  1018. }
  1019. check_slabs:
  1020. if (*str == ',')
  1021. slub_debug_slabs = str + 1;
  1022. out:
  1023. return 1;
  1024. }
  1025. __setup("slub_debug", setup_slub_debug);
  1026. static unsigned long kmem_cache_flags(unsigned long object_size,
  1027. unsigned long flags, const char *name,
  1028. void (*ctor)(void *))
  1029. {
  1030. /*
  1031. * Enable debugging if selected on the kernel commandline.
  1032. */
  1033. if (slub_debug && (!slub_debug_slabs ||
  1034. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1035. flags |= slub_debug;
  1036. return flags;
  1037. }
  1038. #else
  1039. static inline void setup_object_debug(struct kmem_cache *s,
  1040. struct page *page, void *object) {}
  1041. static inline int alloc_debug_processing(struct kmem_cache *s,
  1042. struct page *page, void *object, unsigned long addr) { return 0; }
  1043. static inline int free_debug_processing(struct kmem_cache *s,
  1044. struct page *page, void *object, unsigned long addr) { return 0; }
  1045. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1046. { return 1; }
  1047. static inline int check_object(struct kmem_cache *s, struct page *page,
  1048. void *object, u8 val) { return 1; }
  1049. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1050. struct page *page) {}
  1051. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1052. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1053. unsigned long flags, const char *name,
  1054. void (*ctor)(void *))
  1055. {
  1056. return flags;
  1057. }
  1058. #define slub_debug 0
  1059. #define disable_higher_order_debug 0
  1060. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1061. { return 0; }
  1062. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1063. { return 0; }
  1064. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1065. int objects) {}
  1066. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1067. int objects) {}
  1068. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1069. { return 0; }
  1070. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1071. void *object) {}
  1072. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1073. #endif /* CONFIG_SLUB_DEBUG */
  1074. /*
  1075. * Slab allocation and freeing
  1076. */
  1077. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1078. struct kmem_cache_order_objects oo)
  1079. {
  1080. int order = oo_order(oo);
  1081. flags |= __GFP_NOTRACK;
  1082. if (node == NUMA_NO_NODE)
  1083. return alloc_pages(flags, order);
  1084. else
  1085. return alloc_pages_exact_node(node, flags, order);
  1086. }
  1087. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1088. {
  1089. struct page *page;
  1090. struct kmem_cache_order_objects oo = s->oo;
  1091. gfp_t alloc_gfp;
  1092. flags &= gfp_allowed_mask;
  1093. if (flags & __GFP_WAIT)
  1094. local_irq_enable();
  1095. flags |= s->allocflags;
  1096. /*
  1097. * Let the initial higher-order allocation fail under memory pressure
  1098. * so we fall-back to the minimum order allocation.
  1099. */
  1100. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1101. page = alloc_slab_page(alloc_gfp, node, oo);
  1102. if (unlikely(!page)) {
  1103. oo = s->min;
  1104. /*
  1105. * Allocation may have failed due to fragmentation.
  1106. * Try a lower order alloc if possible
  1107. */
  1108. page = alloc_slab_page(flags, node, oo);
  1109. if (page)
  1110. stat(s, ORDER_FALLBACK);
  1111. }
  1112. if (kmemcheck_enabled && page
  1113. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1114. int pages = 1 << oo_order(oo);
  1115. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1116. /*
  1117. * Objects from caches that have a constructor don't get
  1118. * cleared when they're allocated, so we need to do it here.
  1119. */
  1120. if (s->ctor)
  1121. kmemcheck_mark_uninitialized_pages(page, pages);
  1122. else
  1123. kmemcheck_mark_unallocated_pages(page, pages);
  1124. }
  1125. if (flags & __GFP_WAIT)
  1126. local_irq_disable();
  1127. if (!page)
  1128. return NULL;
  1129. page->objects = oo_objects(oo);
  1130. mod_zone_page_state(page_zone(page),
  1131. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1132. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1133. 1 << oo_order(oo));
  1134. return page;
  1135. }
  1136. static void setup_object(struct kmem_cache *s, struct page *page,
  1137. void *object)
  1138. {
  1139. setup_object_debug(s, page, object);
  1140. if (unlikely(s->ctor))
  1141. s->ctor(object);
  1142. }
  1143. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1144. {
  1145. struct page *page;
  1146. void *start;
  1147. void *last;
  1148. void *p;
  1149. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1150. page = allocate_slab(s,
  1151. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1152. if (!page)
  1153. goto out;
  1154. inc_slabs_node(s, page_to_nid(page), page->objects);
  1155. page->slab = s;
  1156. __SetPageSlab(page);
  1157. if (page->pfmemalloc)
  1158. SetPageSlabPfmemalloc(page);
  1159. start = page_address(page);
  1160. if (unlikely(s->flags & SLAB_POISON))
  1161. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1162. last = start;
  1163. for_each_object(p, s, start, page->objects) {
  1164. setup_object(s, page, last);
  1165. set_freepointer(s, last, p);
  1166. last = p;
  1167. }
  1168. setup_object(s, page, last);
  1169. set_freepointer(s, last, NULL);
  1170. page->freelist = start;
  1171. page->inuse = page->objects;
  1172. page->frozen = 1;
  1173. out:
  1174. return page;
  1175. }
  1176. static void __free_slab(struct kmem_cache *s, struct page *page)
  1177. {
  1178. int order = compound_order(page);
  1179. int pages = 1 << order;
  1180. if (kmem_cache_debug(s)) {
  1181. void *p;
  1182. slab_pad_check(s, page);
  1183. for_each_object(p, s, page_address(page),
  1184. page->objects)
  1185. check_object(s, page, p, SLUB_RED_INACTIVE);
  1186. }
  1187. kmemcheck_free_shadow(page, compound_order(page));
  1188. mod_zone_page_state(page_zone(page),
  1189. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1190. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1191. -pages);
  1192. __ClearPageSlabPfmemalloc(page);
  1193. __ClearPageSlab(page);
  1194. reset_page_mapcount(page);
  1195. if (current->reclaim_state)
  1196. current->reclaim_state->reclaimed_slab += pages;
  1197. __free_pages(page, order);
  1198. }
  1199. #define need_reserve_slab_rcu \
  1200. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1201. static void rcu_free_slab(struct rcu_head *h)
  1202. {
  1203. struct page *page;
  1204. if (need_reserve_slab_rcu)
  1205. page = virt_to_head_page(h);
  1206. else
  1207. page = container_of((struct list_head *)h, struct page, lru);
  1208. __free_slab(page->slab, page);
  1209. }
  1210. static void free_slab(struct kmem_cache *s, struct page *page)
  1211. {
  1212. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1213. struct rcu_head *head;
  1214. if (need_reserve_slab_rcu) {
  1215. int order = compound_order(page);
  1216. int offset = (PAGE_SIZE << order) - s->reserved;
  1217. VM_BUG_ON(s->reserved != sizeof(*head));
  1218. head = page_address(page) + offset;
  1219. } else {
  1220. /*
  1221. * RCU free overloads the RCU head over the LRU
  1222. */
  1223. head = (void *)&page->lru;
  1224. }
  1225. call_rcu(head, rcu_free_slab);
  1226. } else
  1227. __free_slab(s, page);
  1228. }
  1229. static void discard_slab(struct kmem_cache *s, struct page *page)
  1230. {
  1231. dec_slabs_node(s, page_to_nid(page), page->objects);
  1232. free_slab(s, page);
  1233. }
  1234. /*
  1235. * Management of partially allocated slabs.
  1236. *
  1237. * list_lock must be held.
  1238. */
  1239. static inline void add_partial(struct kmem_cache_node *n,
  1240. struct page *page, int tail)
  1241. {
  1242. n->nr_partial++;
  1243. if (tail == DEACTIVATE_TO_TAIL)
  1244. list_add_tail(&page->lru, &n->partial);
  1245. else
  1246. list_add(&page->lru, &n->partial);
  1247. }
  1248. /*
  1249. * list_lock must be held.
  1250. */
  1251. static inline void remove_partial(struct kmem_cache_node *n,
  1252. struct page *page)
  1253. {
  1254. list_del(&page->lru);
  1255. n->nr_partial--;
  1256. }
  1257. /*
  1258. * Remove slab from the partial list, freeze it and
  1259. * return the pointer to the freelist.
  1260. *
  1261. * Returns a list of objects or NULL if it fails.
  1262. *
  1263. * Must hold list_lock since we modify the partial list.
  1264. */
  1265. static inline void *acquire_slab(struct kmem_cache *s,
  1266. struct kmem_cache_node *n, struct page *page,
  1267. int mode)
  1268. {
  1269. void *freelist;
  1270. unsigned long counters;
  1271. struct page new;
  1272. /*
  1273. * Zap the freelist and set the frozen bit.
  1274. * The old freelist is the list of objects for the
  1275. * per cpu allocation list.
  1276. */
  1277. freelist = page->freelist;
  1278. counters = page->counters;
  1279. new.counters = counters;
  1280. if (mode) {
  1281. new.inuse = page->objects;
  1282. new.freelist = NULL;
  1283. } else {
  1284. new.freelist = freelist;
  1285. }
  1286. VM_BUG_ON(new.frozen);
  1287. new.frozen = 1;
  1288. if (!__cmpxchg_double_slab(s, page,
  1289. freelist, counters,
  1290. new.freelist, new.counters,
  1291. "acquire_slab"))
  1292. return NULL;
  1293. remove_partial(n, page);
  1294. WARN_ON(!freelist);
  1295. return freelist;
  1296. }
  1297. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1298. /*
  1299. * Try to allocate a partial slab from a specific node.
  1300. */
  1301. static void *get_partial_node(struct kmem_cache *s,
  1302. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1303. {
  1304. struct page *page, *page2;
  1305. void *object = NULL;
  1306. /*
  1307. * Racy check. If we mistakenly see no partial slabs then we
  1308. * just allocate an empty slab. If we mistakenly try to get a
  1309. * partial slab and there is none available then get_partials()
  1310. * will return NULL.
  1311. */
  1312. if (!n || !n->nr_partial)
  1313. return NULL;
  1314. spin_lock(&n->list_lock);
  1315. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1316. void *t = acquire_slab(s, n, page, object == NULL);
  1317. int available;
  1318. if (!t)
  1319. break;
  1320. if (!object) {
  1321. c->page = page;
  1322. stat(s, ALLOC_FROM_PARTIAL);
  1323. object = t;
  1324. available = page->objects - page->inuse;
  1325. } else {
  1326. available = put_cpu_partial(s, page, 0);
  1327. stat(s, CPU_PARTIAL_NODE);
  1328. }
  1329. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1330. break;
  1331. }
  1332. spin_unlock(&n->list_lock);
  1333. return object;
  1334. }
  1335. /*
  1336. * Get a page from somewhere. Search in increasing NUMA distances.
  1337. */
  1338. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1339. struct kmem_cache_cpu *c)
  1340. {
  1341. #ifdef CONFIG_NUMA
  1342. struct zonelist *zonelist;
  1343. struct zoneref *z;
  1344. struct zone *zone;
  1345. enum zone_type high_zoneidx = gfp_zone(flags);
  1346. void *object;
  1347. unsigned int cpuset_mems_cookie;
  1348. /*
  1349. * The defrag ratio allows a configuration of the tradeoffs between
  1350. * inter node defragmentation and node local allocations. A lower
  1351. * defrag_ratio increases the tendency to do local allocations
  1352. * instead of attempting to obtain partial slabs from other nodes.
  1353. *
  1354. * If the defrag_ratio is set to 0 then kmalloc() always
  1355. * returns node local objects. If the ratio is higher then kmalloc()
  1356. * may return off node objects because partial slabs are obtained
  1357. * from other nodes and filled up.
  1358. *
  1359. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1360. * defrag_ratio = 1000) then every (well almost) allocation will
  1361. * first attempt to defrag slab caches on other nodes. This means
  1362. * scanning over all nodes to look for partial slabs which may be
  1363. * expensive if we do it every time we are trying to find a slab
  1364. * with available objects.
  1365. */
  1366. if (!s->remote_node_defrag_ratio ||
  1367. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1368. return NULL;
  1369. do {
  1370. cpuset_mems_cookie = get_mems_allowed();
  1371. zonelist = node_zonelist(slab_node(), flags);
  1372. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1373. struct kmem_cache_node *n;
  1374. n = get_node(s, zone_to_nid(zone));
  1375. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1376. n->nr_partial > s->min_partial) {
  1377. object = get_partial_node(s, n, c);
  1378. if (object) {
  1379. /*
  1380. * Return the object even if
  1381. * put_mems_allowed indicated that
  1382. * the cpuset mems_allowed was
  1383. * updated in parallel. It's a
  1384. * harmless race between the alloc
  1385. * and the cpuset update.
  1386. */
  1387. put_mems_allowed(cpuset_mems_cookie);
  1388. return object;
  1389. }
  1390. }
  1391. }
  1392. } while (!put_mems_allowed(cpuset_mems_cookie));
  1393. #endif
  1394. return NULL;
  1395. }
  1396. /*
  1397. * Get a partial page, lock it and return it.
  1398. */
  1399. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1400. struct kmem_cache_cpu *c)
  1401. {
  1402. void *object;
  1403. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1404. object = get_partial_node(s, get_node(s, searchnode), c);
  1405. if (object || node != NUMA_NO_NODE)
  1406. return object;
  1407. return get_any_partial(s, flags, c);
  1408. }
  1409. #ifdef CONFIG_PREEMPT
  1410. /*
  1411. * Calculate the next globally unique transaction for disambiguiation
  1412. * during cmpxchg. The transactions start with the cpu number and are then
  1413. * incremented by CONFIG_NR_CPUS.
  1414. */
  1415. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1416. #else
  1417. /*
  1418. * No preemption supported therefore also no need to check for
  1419. * different cpus.
  1420. */
  1421. #define TID_STEP 1
  1422. #endif
  1423. static inline unsigned long next_tid(unsigned long tid)
  1424. {
  1425. return tid + TID_STEP;
  1426. }
  1427. static inline unsigned int tid_to_cpu(unsigned long tid)
  1428. {
  1429. return tid % TID_STEP;
  1430. }
  1431. static inline unsigned long tid_to_event(unsigned long tid)
  1432. {
  1433. return tid / TID_STEP;
  1434. }
  1435. static inline unsigned int init_tid(int cpu)
  1436. {
  1437. return cpu;
  1438. }
  1439. static inline void note_cmpxchg_failure(const char *n,
  1440. const struct kmem_cache *s, unsigned long tid)
  1441. {
  1442. #ifdef SLUB_DEBUG_CMPXCHG
  1443. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1444. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1445. #ifdef CONFIG_PREEMPT
  1446. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1447. printk("due to cpu change %d -> %d\n",
  1448. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1449. else
  1450. #endif
  1451. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1452. printk("due to cpu running other code. Event %ld->%ld\n",
  1453. tid_to_event(tid), tid_to_event(actual_tid));
  1454. else
  1455. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1456. actual_tid, tid, next_tid(tid));
  1457. #endif
  1458. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1459. }
  1460. void init_kmem_cache_cpus(struct kmem_cache *s)
  1461. {
  1462. int cpu;
  1463. for_each_possible_cpu(cpu)
  1464. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1465. }
  1466. /*
  1467. * Remove the cpu slab
  1468. */
  1469. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1470. {
  1471. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1472. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1473. int lock = 0;
  1474. enum slab_modes l = M_NONE, m = M_NONE;
  1475. void *nextfree;
  1476. int tail = DEACTIVATE_TO_HEAD;
  1477. struct page new;
  1478. struct page old;
  1479. if (page->freelist) {
  1480. stat(s, DEACTIVATE_REMOTE_FREES);
  1481. tail = DEACTIVATE_TO_TAIL;
  1482. }
  1483. /*
  1484. * Stage one: Free all available per cpu objects back
  1485. * to the page freelist while it is still frozen. Leave the
  1486. * last one.
  1487. *
  1488. * There is no need to take the list->lock because the page
  1489. * is still frozen.
  1490. */
  1491. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1492. void *prior;
  1493. unsigned long counters;
  1494. do {
  1495. prior = page->freelist;
  1496. counters = page->counters;
  1497. set_freepointer(s, freelist, prior);
  1498. new.counters = counters;
  1499. new.inuse--;
  1500. VM_BUG_ON(!new.frozen);
  1501. } while (!__cmpxchg_double_slab(s, page,
  1502. prior, counters,
  1503. freelist, new.counters,
  1504. "drain percpu freelist"));
  1505. freelist = nextfree;
  1506. }
  1507. /*
  1508. * Stage two: Ensure that the page is unfrozen while the
  1509. * list presence reflects the actual number of objects
  1510. * during unfreeze.
  1511. *
  1512. * We setup the list membership and then perform a cmpxchg
  1513. * with the count. If there is a mismatch then the page
  1514. * is not unfrozen but the page is on the wrong list.
  1515. *
  1516. * Then we restart the process which may have to remove
  1517. * the page from the list that we just put it on again
  1518. * because the number of objects in the slab may have
  1519. * changed.
  1520. */
  1521. redo:
  1522. old.freelist = page->freelist;
  1523. old.counters = page->counters;
  1524. VM_BUG_ON(!old.frozen);
  1525. /* Determine target state of the slab */
  1526. new.counters = old.counters;
  1527. if (freelist) {
  1528. new.inuse--;
  1529. set_freepointer(s, freelist, old.freelist);
  1530. new.freelist = freelist;
  1531. } else
  1532. new.freelist = old.freelist;
  1533. new.frozen = 0;
  1534. if (!new.inuse && n->nr_partial > s->min_partial)
  1535. m = M_FREE;
  1536. else if (new.freelist) {
  1537. m = M_PARTIAL;
  1538. if (!lock) {
  1539. lock = 1;
  1540. /*
  1541. * Taking the spinlock removes the possiblity
  1542. * that acquire_slab() will see a slab page that
  1543. * is frozen
  1544. */
  1545. spin_lock(&n->list_lock);
  1546. }
  1547. } else {
  1548. m = M_FULL;
  1549. if (kmem_cache_debug(s) && !lock) {
  1550. lock = 1;
  1551. /*
  1552. * This also ensures that the scanning of full
  1553. * slabs from diagnostic functions will not see
  1554. * any frozen slabs.
  1555. */
  1556. spin_lock(&n->list_lock);
  1557. }
  1558. }
  1559. if (l != m) {
  1560. if (l == M_PARTIAL)
  1561. remove_partial(n, page);
  1562. else if (l == M_FULL)
  1563. remove_full(s, page);
  1564. if (m == M_PARTIAL) {
  1565. add_partial(n, page, tail);
  1566. stat(s, tail);
  1567. } else if (m == M_FULL) {
  1568. stat(s, DEACTIVATE_FULL);
  1569. add_full(s, n, page);
  1570. }
  1571. }
  1572. l = m;
  1573. if (!__cmpxchg_double_slab(s, page,
  1574. old.freelist, old.counters,
  1575. new.freelist, new.counters,
  1576. "unfreezing slab"))
  1577. goto redo;
  1578. if (lock)
  1579. spin_unlock(&n->list_lock);
  1580. if (m == M_FREE) {
  1581. stat(s, DEACTIVATE_EMPTY);
  1582. discard_slab(s, page);
  1583. stat(s, FREE_SLAB);
  1584. }
  1585. }
  1586. /*
  1587. * Unfreeze all the cpu partial slabs.
  1588. *
  1589. * This function must be called with interrupt disabled.
  1590. */
  1591. static void unfreeze_partials(struct kmem_cache *s)
  1592. {
  1593. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1594. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1595. struct page *page, *discard_page = NULL;
  1596. while ((page = c->partial)) {
  1597. struct page new;
  1598. struct page old;
  1599. c->partial = page->next;
  1600. n2 = get_node(s, page_to_nid(page));
  1601. if (n != n2) {
  1602. if (n)
  1603. spin_unlock(&n->list_lock);
  1604. n = n2;
  1605. spin_lock(&n->list_lock);
  1606. }
  1607. do {
  1608. old.freelist = page->freelist;
  1609. old.counters = page->counters;
  1610. VM_BUG_ON(!old.frozen);
  1611. new.counters = old.counters;
  1612. new.freelist = old.freelist;
  1613. new.frozen = 0;
  1614. } while (!__cmpxchg_double_slab(s, page,
  1615. old.freelist, old.counters,
  1616. new.freelist, new.counters,
  1617. "unfreezing slab"));
  1618. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1619. page->next = discard_page;
  1620. discard_page = page;
  1621. } else {
  1622. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1623. stat(s, FREE_ADD_PARTIAL);
  1624. }
  1625. }
  1626. if (n)
  1627. spin_unlock(&n->list_lock);
  1628. while (discard_page) {
  1629. page = discard_page;
  1630. discard_page = discard_page->next;
  1631. stat(s, DEACTIVATE_EMPTY);
  1632. discard_slab(s, page);
  1633. stat(s, FREE_SLAB);
  1634. }
  1635. }
  1636. /*
  1637. * Put a page that was just frozen (in __slab_free) into a partial page
  1638. * slot if available. This is done without interrupts disabled and without
  1639. * preemption disabled. The cmpxchg is racy and may put the partial page
  1640. * onto a random cpus partial slot.
  1641. *
  1642. * If we did not find a slot then simply move all the partials to the
  1643. * per node partial list.
  1644. */
  1645. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1646. {
  1647. struct page *oldpage;
  1648. int pages;
  1649. int pobjects;
  1650. do {
  1651. pages = 0;
  1652. pobjects = 0;
  1653. oldpage = this_cpu_read(s->cpu_slab->partial);
  1654. if (oldpage) {
  1655. pobjects = oldpage->pobjects;
  1656. pages = oldpage->pages;
  1657. if (drain && pobjects > s->cpu_partial) {
  1658. unsigned long flags;
  1659. /*
  1660. * partial array is full. Move the existing
  1661. * set to the per node partial list.
  1662. */
  1663. local_irq_save(flags);
  1664. unfreeze_partials(s);
  1665. local_irq_restore(flags);
  1666. pobjects = 0;
  1667. pages = 0;
  1668. stat(s, CPU_PARTIAL_DRAIN);
  1669. }
  1670. }
  1671. pages++;
  1672. pobjects += page->objects - page->inuse;
  1673. page->pages = pages;
  1674. page->pobjects = pobjects;
  1675. page->next = oldpage;
  1676. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1677. return pobjects;
  1678. }
  1679. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1680. {
  1681. stat(s, CPUSLAB_FLUSH);
  1682. deactivate_slab(s, c->page, c->freelist);
  1683. c->tid = next_tid(c->tid);
  1684. c->page = NULL;
  1685. c->freelist = NULL;
  1686. }
  1687. /*
  1688. * Flush cpu slab.
  1689. *
  1690. * Called from IPI handler with interrupts disabled.
  1691. */
  1692. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1693. {
  1694. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1695. if (likely(c)) {
  1696. if (c->page)
  1697. flush_slab(s, c);
  1698. unfreeze_partials(s);
  1699. }
  1700. }
  1701. static void flush_cpu_slab(void *d)
  1702. {
  1703. struct kmem_cache *s = d;
  1704. __flush_cpu_slab(s, smp_processor_id());
  1705. }
  1706. static bool has_cpu_slab(int cpu, void *info)
  1707. {
  1708. struct kmem_cache *s = info;
  1709. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1710. return c->page || c->partial;
  1711. }
  1712. static void flush_all(struct kmem_cache *s)
  1713. {
  1714. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1715. }
  1716. /*
  1717. * Check if the objects in a per cpu structure fit numa
  1718. * locality expectations.
  1719. */
  1720. static inline int node_match(struct page *page, int node)
  1721. {
  1722. #ifdef CONFIG_NUMA
  1723. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1724. return 0;
  1725. #endif
  1726. return 1;
  1727. }
  1728. static int count_free(struct page *page)
  1729. {
  1730. return page->objects - page->inuse;
  1731. }
  1732. static unsigned long count_partial(struct kmem_cache_node *n,
  1733. int (*get_count)(struct page *))
  1734. {
  1735. unsigned long flags;
  1736. unsigned long x = 0;
  1737. struct page *page;
  1738. spin_lock_irqsave(&n->list_lock, flags);
  1739. list_for_each_entry(page, &n->partial, lru)
  1740. x += get_count(page);
  1741. spin_unlock_irqrestore(&n->list_lock, flags);
  1742. return x;
  1743. }
  1744. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1745. {
  1746. #ifdef CONFIG_SLUB_DEBUG
  1747. return atomic_long_read(&n->total_objects);
  1748. #else
  1749. return 0;
  1750. #endif
  1751. }
  1752. static noinline void
  1753. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1754. {
  1755. int node;
  1756. printk(KERN_WARNING
  1757. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1758. nid, gfpflags);
  1759. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1760. "default order: %d, min order: %d\n", s->name, s->object_size,
  1761. s->size, oo_order(s->oo), oo_order(s->min));
  1762. if (oo_order(s->min) > get_order(s->object_size))
  1763. printk(KERN_WARNING " %s debugging increased min order, use "
  1764. "slub_debug=O to disable.\n", s->name);
  1765. for_each_online_node(node) {
  1766. struct kmem_cache_node *n = get_node(s, node);
  1767. unsigned long nr_slabs;
  1768. unsigned long nr_objs;
  1769. unsigned long nr_free;
  1770. if (!n)
  1771. continue;
  1772. nr_free = count_partial(n, count_free);
  1773. nr_slabs = node_nr_slabs(n);
  1774. nr_objs = node_nr_objs(n);
  1775. printk(KERN_WARNING
  1776. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1777. node, nr_slabs, nr_objs, nr_free);
  1778. }
  1779. }
  1780. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1781. int node, struct kmem_cache_cpu **pc)
  1782. {
  1783. void *freelist;
  1784. struct kmem_cache_cpu *c = *pc;
  1785. struct page *page;
  1786. freelist = get_partial(s, flags, node, c);
  1787. if (freelist)
  1788. return freelist;
  1789. page = new_slab(s, flags, node);
  1790. if (page) {
  1791. c = __this_cpu_ptr(s->cpu_slab);
  1792. if (c->page)
  1793. flush_slab(s, c);
  1794. /*
  1795. * No other reference to the page yet so we can
  1796. * muck around with it freely without cmpxchg
  1797. */
  1798. freelist = page->freelist;
  1799. page->freelist = NULL;
  1800. stat(s, ALLOC_SLAB);
  1801. c->page = page;
  1802. *pc = c;
  1803. } else
  1804. freelist = NULL;
  1805. return freelist;
  1806. }
  1807. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1808. {
  1809. if (unlikely(PageSlabPfmemalloc(page)))
  1810. return gfp_pfmemalloc_allowed(gfpflags);
  1811. return true;
  1812. }
  1813. /*
  1814. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1815. * or deactivate the page.
  1816. *
  1817. * The page is still frozen if the return value is not NULL.
  1818. *
  1819. * If this function returns NULL then the page has been unfrozen.
  1820. *
  1821. * This function must be called with interrupt disabled.
  1822. */
  1823. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1824. {
  1825. struct page new;
  1826. unsigned long counters;
  1827. void *freelist;
  1828. do {
  1829. freelist = page->freelist;
  1830. counters = page->counters;
  1831. new.counters = counters;
  1832. VM_BUG_ON(!new.frozen);
  1833. new.inuse = page->objects;
  1834. new.frozen = freelist != NULL;
  1835. } while (!__cmpxchg_double_slab(s, page,
  1836. freelist, counters,
  1837. NULL, new.counters,
  1838. "get_freelist"));
  1839. return freelist;
  1840. }
  1841. /*
  1842. * Slow path. The lockless freelist is empty or we need to perform
  1843. * debugging duties.
  1844. *
  1845. * Processing is still very fast if new objects have been freed to the
  1846. * regular freelist. In that case we simply take over the regular freelist
  1847. * as the lockless freelist and zap the regular freelist.
  1848. *
  1849. * If that is not working then we fall back to the partial lists. We take the
  1850. * first element of the freelist as the object to allocate now and move the
  1851. * rest of the freelist to the lockless freelist.
  1852. *
  1853. * And if we were unable to get a new slab from the partial slab lists then
  1854. * we need to allocate a new slab. This is the slowest path since it involves
  1855. * a call to the page allocator and the setup of a new slab.
  1856. */
  1857. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1858. unsigned long addr, struct kmem_cache_cpu *c)
  1859. {
  1860. void *freelist;
  1861. struct page *page;
  1862. unsigned long flags;
  1863. local_irq_save(flags);
  1864. #ifdef CONFIG_PREEMPT
  1865. /*
  1866. * We may have been preempted and rescheduled on a different
  1867. * cpu before disabling interrupts. Need to reload cpu area
  1868. * pointer.
  1869. */
  1870. c = this_cpu_ptr(s->cpu_slab);
  1871. #endif
  1872. page = c->page;
  1873. if (!page)
  1874. goto new_slab;
  1875. redo:
  1876. if (unlikely(!node_match(page, node))) {
  1877. stat(s, ALLOC_NODE_MISMATCH);
  1878. deactivate_slab(s, page, c->freelist);
  1879. c->page = NULL;
  1880. c->freelist = NULL;
  1881. goto new_slab;
  1882. }
  1883. /*
  1884. * By rights, we should be searching for a slab page that was
  1885. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1886. * information when the page leaves the per-cpu allocator
  1887. */
  1888. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1889. deactivate_slab(s, page, c->freelist);
  1890. c->page = NULL;
  1891. c->freelist = NULL;
  1892. goto new_slab;
  1893. }
  1894. /* must check again c->freelist in case of cpu migration or IRQ */
  1895. freelist = c->freelist;
  1896. if (freelist)
  1897. goto load_freelist;
  1898. stat(s, ALLOC_SLOWPATH);
  1899. freelist = get_freelist(s, page);
  1900. if (!freelist) {
  1901. c->page = NULL;
  1902. stat(s, DEACTIVATE_BYPASS);
  1903. goto new_slab;
  1904. }
  1905. stat(s, ALLOC_REFILL);
  1906. load_freelist:
  1907. /*
  1908. * freelist is pointing to the list of objects to be used.
  1909. * page is pointing to the page from which the objects are obtained.
  1910. * That page must be frozen for per cpu allocations to work.
  1911. */
  1912. VM_BUG_ON(!c->page->frozen);
  1913. c->freelist = get_freepointer(s, freelist);
  1914. c->tid = next_tid(c->tid);
  1915. local_irq_restore(flags);
  1916. return freelist;
  1917. new_slab:
  1918. if (c->partial) {
  1919. page = c->page = c->partial;
  1920. c->partial = page->next;
  1921. stat(s, CPU_PARTIAL_ALLOC);
  1922. c->freelist = NULL;
  1923. goto redo;
  1924. }
  1925. freelist = new_slab_objects(s, gfpflags, node, &c);
  1926. if (unlikely(!freelist)) {
  1927. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1928. slab_out_of_memory(s, gfpflags, node);
  1929. local_irq_restore(flags);
  1930. return NULL;
  1931. }
  1932. page = c->page;
  1933. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1934. goto load_freelist;
  1935. /* Only entered in the debug case */
  1936. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1937. goto new_slab; /* Slab failed checks. Next slab needed */
  1938. deactivate_slab(s, page, get_freepointer(s, freelist));
  1939. c->page = NULL;
  1940. c->freelist = NULL;
  1941. local_irq_restore(flags);
  1942. return freelist;
  1943. }
  1944. /*
  1945. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1946. * have the fastpath folded into their functions. So no function call
  1947. * overhead for requests that can be satisfied on the fastpath.
  1948. *
  1949. * The fastpath works by first checking if the lockless freelist can be used.
  1950. * If not then __slab_alloc is called for slow processing.
  1951. *
  1952. * Otherwise we can simply pick the next object from the lockless free list.
  1953. */
  1954. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1955. gfp_t gfpflags, int node, unsigned long addr)
  1956. {
  1957. void **object;
  1958. struct kmem_cache_cpu *c;
  1959. struct page *page;
  1960. unsigned long tid;
  1961. if (slab_pre_alloc_hook(s, gfpflags))
  1962. return NULL;
  1963. redo:
  1964. /*
  1965. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1966. * enabled. We may switch back and forth between cpus while
  1967. * reading from one cpu area. That does not matter as long
  1968. * as we end up on the original cpu again when doing the cmpxchg.
  1969. */
  1970. c = __this_cpu_ptr(s->cpu_slab);
  1971. /*
  1972. * The transaction ids are globally unique per cpu and per operation on
  1973. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1974. * occurs on the right processor and that there was no operation on the
  1975. * linked list in between.
  1976. */
  1977. tid = c->tid;
  1978. barrier();
  1979. object = c->freelist;
  1980. page = c->page;
  1981. if (unlikely(!object || !node_match(page, node)))
  1982. object = __slab_alloc(s, gfpflags, node, addr, c);
  1983. else {
  1984. void *next_object = get_freepointer_safe(s, object);
  1985. /*
  1986. * The cmpxchg will only match if there was no additional
  1987. * operation and if we are on the right processor.
  1988. *
  1989. * The cmpxchg does the following atomically (without lock semantics!)
  1990. * 1. Relocate first pointer to the current per cpu area.
  1991. * 2. Verify that tid and freelist have not been changed
  1992. * 3. If they were not changed replace tid and freelist
  1993. *
  1994. * Since this is without lock semantics the protection is only against
  1995. * code executing on this cpu *not* from access by other cpus.
  1996. */
  1997. if (unlikely(!this_cpu_cmpxchg_double(
  1998. s->cpu_slab->freelist, s->cpu_slab->tid,
  1999. object, tid,
  2000. next_object, next_tid(tid)))) {
  2001. note_cmpxchg_failure("slab_alloc", s, tid);
  2002. goto redo;
  2003. }
  2004. prefetch_freepointer(s, next_object);
  2005. stat(s, ALLOC_FASTPATH);
  2006. }
  2007. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2008. memset(object, 0, s->object_size);
  2009. slab_post_alloc_hook(s, gfpflags, object);
  2010. return object;
  2011. }
  2012. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2013. {
  2014. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2015. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2016. return ret;
  2017. }
  2018. EXPORT_SYMBOL(kmem_cache_alloc);
  2019. #ifdef CONFIG_TRACING
  2020. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2021. {
  2022. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2023. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2024. return ret;
  2025. }
  2026. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2027. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2028. {
  2029. void *ret = kmalloc_order(size, flags, order);
  2030. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2031. return ret;
  2032. }
  2033. EXPORT_SYMBOL(kmalloc_order_trace);
  2034. #endif
  2035. #ifdef CONFIG_NUMA
  2036. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2037. {
  2038. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2039. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2040. s->object_size, s->size, gfpflags, node);
  2041. return ret;
  2042. }
  2043. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2044. #ifdef CONFIG_TRACING
  2045. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2046. gfp_t gfpflags,
  2047. int node, size_t size)
  2048. {
  2049. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2050. trace_kmalloc_node(_RET_IP_, ret,
  2051. size, s->size, gfpflags, node);
  2052. return ret;
  2053. }
  2054. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2055. #endif
  2056. #endif
  2057. /*
  2058. * Slow patch handling. This may still be called frequently since objects
  2059. * have a longer lifetime than the cpu slabs in most processing loads.
  2060. *
  2061. * So we still attempt to reduce cache line usage. Just take the slab
  2062. * lock and free the item. If there is no additional partial page
  2063. * handling required then we can return immediately.
  2064. */
  2065. static void __slab_free(struct kmem_cache *s, struct page *page,
  2066. void *x, unsigned long addr)
  2067. {
  2068. void *prior;
  2069. void **object = (void *)x;
  2070. int was_frozen;
  2071. int inuse;
  2072. struct page new;
  2073. unsigned long counters;
  2074. struct kmem_cache_node *n = NULL;
  2075. unsigned long uninitialized_var(flags);
  2076. stat(s, FREE_SLOWPATH);
  2077. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  2078. return;
  2079. do {
  2080. prior = page->freelist;
  2081. counters = page->counters;
  2082. set_freepointer(s, object, prior);
  2083. new.counters = counters;
  2084. was_frozen = new.frozen;
  2085. new.inuse--;
  2086. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2087. if (!kmem_cache_debug(s) && !prior)
  2088. /*
  2089. * Slab was on no list before and will be partially empty
  2090. * We can defer the list move and instead freeze it.
  2091. */
  2092. new.frozen = 1;
  2093. else { /* Needs to be taken off a list */
  2094. n = get_node(s, page_to_nid(page));
  2095. /*
  2096. * Speculatively acquire the list_lock.
  2097. * If the cmpxchg does not succeed then we may
  2098. * drop the list_lock without any processing.
  2099. *
  2100. * Otherwise the list_lock will synchronize with
  2101. * other processors updating the list of slabs.
  2102. */
  2103. spin_lock_irqsave(&n->list_lock, flags);
  2104. }
  2105. }
  2106. inuse = new.inuse;
  2107. } while (!cmpxchg_double_slab(s, page,
  2108. prior, counters,
  2109. object, new.counters,
  2110. "__slab_free"));
  2111. if (likely(!n)) {
  2112. /*
  2113. * If we just froze the page then put it onto the
  2114. * per cpu partial list.
  2115. */
  2116. if (new.frozen && !was_frozen) {
  2117. put_cpu_partial(s, page, 1);
  2118. stat(s, CPU_PARTIAL_FREE);
  2119. }
  2120. /*
  2121. * The list lock was not taken therefore no list
  2122. * activity can be necessary.
  2123. */
  2124. if (was_frozen)
  2125. stat(s, FREE_FROZEN);
  2126. return;
  2127. }
  2128. /*
  2129. * was_frozen may have been set after we acquired the list_lock in
  2130. * an earlier loop. So we need to check it here again.
  2131. */
  2132. if (was_frozen)
  2133. stat(s, FREE_FROZEN);
  2134. else {
  2135. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2136. goto slab_empty;
  2137. /*
  2138. * Objects left in the slab. If it was not on the partial list before
  2139. * then add it.
  2140. */
  2141. if (unlikely(!prior)) {
  2142. remove_full(s, page);
  2143. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2144. stat(s, FREE_ADD_PARTIAL);
  2145. }
  2146. }
  2147. spin_unlock_irqrestore(&n->list_lock, flags);
  2148. return;
  2149. slab_empty:
  2150. if (prior) {
  2151. /*
  2152. * Slab on the partial list.
  2153. */
  2154. remove_partial(n, page);
  2155. stat(s, FREE_REMOVE_PARTIAL);
  2156. } else
  2157. /* Slab must be on the full list */
  2158. remove_full(s, page);
  2159. spin_unlock_irqrestore(&n->list_lock, flags);
  2160. stat(s, FREE_SLAB);
  2161. discard_slab(s, page);
  2162. }
  2163. /*
  2164. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2165. * can perform fastpath freeing without additional function calls.
  2166. *
  2167. * The fastpath is only possible if we are freeing to the current cpu slab
  2168. * of this processor. This typically the case if we have just allocated
  2169. * the item before.
  2170. *
  2171. * If fastpath is not possible then fall back to __slab_free where we deal
  2172. * with all sorts of special processing.
  2173. */
  2174. static __always_inline void slab_free(struct kmem_cache *s,
  2175. struct page *page, void *x, unsigned long addr)
  2176. {
  2177. void **object = (void *)x;
  2178. struct kmem_cache_cpu *c;
  2179. unsigned long tid;
  2180. slab_free_hook(s, x);
  2181. redo:
  2182. /*
  2183. * Determine the currently cpus per cpu slab.
  2184. * The cpu may change afterward. However that does not matter since
  2185. * data is retrieved via this pointer. If we are on the same cpu
  2186. * during the cmpxchg then the free will succedd.
  2187. */
  2188. c = __this_cpu_ptr(s->cpu_slab);
  2189. tid = c->tid;
  2190. barrier();
  2191. if (likely(page == c->page)) {
  2192. set_freepointer(s, object, c->freelist);
  2193. if (unlikely(!this_cpu_cmpxchg_double(
  2194. s->cpu_slab->freelist, s->cpu_slab->tid,
  2195. c->freelist, tid,
  2196. object, next_tid(tid)))) {
  2197. note_cmpxchg_failure("slab_free", s, tid);
  2198. goto redo;
  2199. }
  2200. stat(s, FREE_FASTPATH);
  2201. } else
  2202. __slab_free(s, page, x, addr);
  2203. }
  2204. void kmem_cache_free(struct kmem_cache *s, void *x)
  2205. {
  2206. struct page *page;
  2207. page = virt_to_head_page(x);
  2208. slab_free(s, page, x, _RET_IP_);
  2209. trace_kmem_cache_free(_RET_IP_, x);
  2210. }
  2211. EXPORT_SYMBOL(kmem_cache_free);
  2212. /*
  2213. * Object placement in a slab is made very easy because we always start at
  2214. * offset 0. If we tune the size of the object to the alignment then we can
  2215. * get the required alignment by putting one properly sized object after
  2216. * another.
  2217. *
  2218. * Notice that the allocation order determines the sizes of the per cpu
  2219. * caches. Each processor has always one slab available for allocations.
  2220. * Increasing the allocation order reduces the number of times that slabs
  2221. * must be moved on and off the partial lists and is therefore a factor in
  2222. * locking overhead.
  2223. */
  2224. /*
  2225. * Mininum / Maximum order of slab pages. This influences locking overhead
  2226. * and slab fragmentation. A higher order reduces the number of partial slabs
  2227. * and increases the number of allocations possible without having to
  2228. * take the list_lock.
  2229. */
  2230. static int slub_min_order;
  2231. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2232. static int slub_min_objects;
  2233. /*
  2234. * Merge control. If this is set then no merging of slab caches will occur.
  2235. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2236. */
  2237. static int slub_nomerge;
  2238. /*
  2239. * Calculate the order of allocation given an slab object size.
  2240. *
  2241. * The order of allocation has significant impact on performance and other
  2242. * system components. Generally order 0 allocations should be preferred since
  2243. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2244. * be problematic to put into order 0 slabs because there may be too much
  2245. * unused space left. We go to a higher order if more than 1/16th of the slab
  2246. * would be wasted.
  2247. *
  2248. * In order to reach satisfactory performance we must ensure that a minimum
  2249. * number of objects is in one slab. Otherwise we may generate too much
  2250. * activity on the partial lists which requires taking the list_lock. This is
  2251. * less a concern for large slabs though which are rarely used.
  2252. *
  2253. * slub_max_order specifies the order where we begin to stop considering the
  2254. * number of objects in a slab as critical. If we reach slub_max_order then
  2255. * we try to keep the page order as low as possible. So we accept more waste
  2256. * of space in favor of a small page order.
  2257. *
  2258. * Higher order allocations also allow the placement of more objects in a
  2259. * slab and thereby reduce object handling overhead. If the user has
  2260. * requested a higher mininum order then we start with that one instead of
  2261. * the smallest order which will fit the object.
  2262. */
  2263. static inline int slab_order(int size, int min_objects,
  2264. int max_order, int fract_leftover, int reserved)
  2265. {
  2266. int order;
  2267. int rem;
  2268. int min_order = slub_min_order;
  2269. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2270. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2271. for (order = max(min_order,
  2272. fls(min_objects * size - 1) - PAGE_SHIFT);
  2273. order <= max_order; order++) {
  2274. unsigned long slab_size = PAGE_SIZE << order;
  2275. if (slab_size < min_objects * size + reserved)
  2276. continue;
  2277. rem = (slab_size - reserved) % size;
  2278. if (rem <= slab_size / fract_leftover)
  2279. break;
  2280. }
  2281. return order;
  2282. }
  2283. static inline int calculate_order(int size, int reserved)
  2284. {
  2285. int order;
  2286. int min_objects;
  2287. int fraction;
  2288. int max_objects;
  2289. /*
  2290. * Attempt to find best configuration for a slab. This
  2291. * works by first attempting to generate a layout with
  2292. * the best configuration and backing off gradually.
  2293. *
  2294. * First we reduce the acceptable waste in a slab. Then
  2295. * we reduce the minimum objects required in a slab.
  2296. */
  2297. min_objects = slub_min_objects;
  2298. if (!min_objects)
  2299. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2300. max_objects = order_objects(slub_max_order, size, reserved);
  2301. min_objects = min(min_objects, max_objects);
  2302. while (min_objects > 1) {
  2303. fraction = 16;
  2304. while (fraction >= 4) {
  2305. order = slab_order(size, min_objects,
  2306. slub_max_order, fraction, reserved);
  2307. if (order <= slub_max_order)
  2308. return order;
  2309. fraction /= 2;
  2310. }
  2311. min_objects--;
  2312. }
  2313. /*
  2314. * We were unable to place multiple objects in a slab. Now
  2315. * lets see if we can place a single object there.
  2316. */
  2317. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2318. if (order <= slub_max_order)
  2319. return order;
  2320. /*
  2321. * Doh this slab cannot be placed using slub_max_order.
  2322. */
  2323. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2324. if (order < MAX_ORDER)
  2325. return order;
  2326. return -ENOSYS;
  2327. }
  2328. /*
  2329. * Figure out what the alignment of the objects will be.
  2330. */
  2331. static unsigned long calculate_alignment(unsigned long flags,
  2332. unsigned long align, unsigned long size)
  2333. {
  2334. /*
  2335. * If the user wants hardware cache aligned objects then follow that
  2336. * suggestion if the object is sufficiently large.
  2337. *
  2338. * The hardware cache alignment cannot override the specified
  2339. * alignment though. If that is greater then use it.
  2340. */
  2341. if (flags & SLAB_HWCACHE_ALIGN) {
  2342. unsigned long ralign = cache_line_size();
  2343. while (size <= ralign / 2)
  2344. ralign /= 2;
  2345. align = max(align, ralign);
  2346. }
  2347. if (align < ARCH_SLAB_MINALIGN)
  2348. align = ARCH_SLAB_MINALIGN;
  2349. return ALIGN(align, sizeof(void *));
  2350. }
  2351. static void
  2352. init_kmem_cache_node(struct kmem_cache_node *n)
  2353. {
  2354. n->nr_partial = 0;
  2355. spin_lock_init(&n->list_lock);
  2356. INIT_LIST_HEAD(&n->partial);
  2357. #ifdef CONFIG_SLUB_DEBUG
  2358. atomic_long_set(&n->nr_slabs, 0);
  2359. atomic_long_set(&n->total_objects, 0);
  2360. INIT_LIST_HEAD(&n->full);
  2361. #endif
  2362. }
  2363. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2364. {
  2365. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2366. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2367. /*
  2368. * Must align to double word boundary for the double cmpxchg
  2369. * instructions to work; see __pcpu_double_call_return_bool().
  2370. */
  2371. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2372. 2 * sizeof(void *));
  2373. if (!s->cpu_slab)
  2374. return 0;
  2375. init_kmem_cache_cpus(s);
  2376. return 1;
  2377. }
  2378. static struct kmem_cache *kmem_cache_node;
  2379. /*
  2380. * No kmalloc_node yet so do it by hand. We know that this is the first
  2381. * slab on the node for this slabcache. There are no concurrent accesses
  2382. * possible.
  2383. *
  2384. * Note that this function only works on the kmalloc_node_cache
  2385. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2386. * memory on a fresh node that has no slab structures yet.
  2387. */
  2388. static void early_kmem_cache_node_alloc(int node)
  2389. {
  2390. struct page *page;
  2391. struct kmem_cache_node *n;
  2392. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2393. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2394. BUG_ON(!page);
  2395. if (page_to_nid(page) != node) {
  2396. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2397. "node %d\n", node);
  2398. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2399. "in order to be able to continue\n");
  2400. }
  2401. n = page->freelist;
  2402. BUG_ON(!n);
  2403. page->freelist = get_freepointer(kmem_cache_node, n);
  2404. page->inuse = 1;
  2405. page->frozen = 0;
  2406. kmem_cache_node->node[node] = n;
  2407. #ifdef CONFIG_SLUB_DEBUG
  2408. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2409. init_tracking(kmem_cache_node, n);
  2410. #endif
  2411. init_kmem_cache_node(n);
  2412. inc_slabs_node(kmem_cache_node, node, page->objects);
  2413. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2414. }
  2415. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2416. {
  2417. int node;
  2418. for_each_node_state(node, N_NORMAL_MEMORY) {
  2419. struct kmem_cache_node *n = s->node[node];
  2420. if (n)
  2421. kmem_cache_free(kmem_cache_node, n);
  2422. s->node[node] = NULL;
  2423. }
  2424. }
  2425. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2426. {
  2427. int node;
  2428. for_each_node_state(node, N_NORMAL_MEMORY) {
  2429. struct kmem_cache_node *n;
  2430. if (slab_state == DOWN) {
  2431. early_kmem_cache_node_alloc(node);
  2432. continue;
  2433. }
  2434. n = kmem_cache_alloc_node(kmem_cache_node,
  2435. GFP_KERNEL, node);
  2436. if (!n) {
  2437. free_kmem_cache_nodes(s);
  2438. return 0;
  2439. }
  2440. s->node[node] = n;
  2441. init_kmem_cache_node(n);
  2442. }
  2443. return 1;
  2444. }
  2445. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2446. {
  2447. if (min < MIN_PARTIAL)
  2448. min = MIN_PARTIAL;
  2449. else if (min > MAX_PARTIAL)
  2450. min = MAX_PARTIAL;
  2451. s->min_partial = min;
  2452. }
  2453. /*
  2454. * calculate_sizes() determines the order and the distribution of data within
  2455. * a slab object.
  2456. */
  2457. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2458. {
  2459. unsigned long flags = s->flags;
  2460. unsigned long size = s->object_size;
  2461. unsigned long align = s->align;
  2462. int order;
  2463. /*
  2464. * Round up object size to the next word boundary. We can only
  2465. * place the free pointer at word boundaries and this determines
  2466. * the possible location of the free pointer.
  2467. */
  2468. size = ALIGN(size, sizeof(void *));
  2469. #ifdef CONFIG_SLUB_DEBUG
  2470. /*
  2471. * Determine if we can poison the object itself. If the user of
  2472. * the slab may touch the object after free or before allocation
  2473. * then we should never poison the object itself.
  2474. */
  2475. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2476. !s->ctor)
  2477. s->flags |= __OBJECT_POISON;
  2478. else
  2479. s->flags &= ~__OBJECT_POISON;
  2480. /*
  2481. * If we are Redzoning then check if there is some space between the
  2482. * end of the object and the free pointer. If not then add an
  2483. * additional word to have some bytes to store Redzone information.
  2484. */
  2485. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2486. size += sizeof(void *);
  2487. #endif
  2488. /*
  2489. * With that we have determined the number of bytes in actual use
  2490. * by the object. This is the potential offset to the free pointer.
  2491. */
  2492. s->inuse = size;
  2493. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2494. s->ctor)) {
  2495. /*
  2496. * Relocate free pointer after the object if it is not
  2497. * permitted to overwrite the first word of the object on
  2498. * kmem_cache_free.
  2499. *
  2500. * This is the case if we do RCU, have a constructor or
  2501. * destructor or are poisoning the objects.
  2502. */
  2503. s->offset = size;
  2504. size += sizeof(void *);
  2505. }
  2506. #ifdef CONFIG_SLUB_DEBUG
  2507. if (flags & SLAB_STORE_USER)
  2508. /*
  2509. * Need to store information about allocs and frees after
  2510. * the object.
  2511. */
  2512. size += 2 * sizeof(struct track);
  2513. if (flags & SLAB_RED_ZONE)
  2514. /*
  2515. * Add some empty padding so that we can catch
  2516. * overwrites from earlier objects rather than let
  2517. * tracking information or the free pointer be
  2518. * corrupted if a user writes before the start
  2519. * of the object.
  2520. */
  2521. size += sizeof(void *);
  2522. #endif
  2523. /*
  2524. * Determine the alignment based on various parameters that the
  2525. * user specified and the dynamic determination of cache line size
  2526. * on bootup.
  2527. */
  2528. align = calculate_alignment(flags, align, s->object_size);
  2529. s->align = align;
  2530. /*
  2531. * SLUB stores one object immediately after another beginning from
  2532. * offset 0. In order to align the objects we have to simply size
  2533. * each object to conform to the alignment.
  2534. */
  2535. size = ALIGN(size, align);
  2536. s->size = size;
  2537. if (forced_order >= 0)
  2538. order = forced_order;
  2539. else
  2540. order = calculate_order(size, s->reserved);
  2541. if (order < 0)
  2542. return 0;
  2543. s->allocflags = 0;
  2544. if (order)
  2545. s->allocflags |= __GFP_COMP;
  2546. if (s->flags & SLAB_CACHE_DMA)
  2547. s->allocflags |= SLUB_DMA;
  2548. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2549. s->allocflags |= __GFP_RECLAIMABLE;
  2550. /*
  2551. * Determine the number of objects per slab
  2552. */
  2553. s->oo = oo_make(order, size, s->reserved);
  2554. s->min = oo_make(get_order(size), size, s->reserved);
  2555. if (oo_objects(s->oo) > oo_objects(s->max))
  2556. s->max = s->oo;
  2557. return !!oo_objects(s->oo);
  2558. }
  2559. static int kmem_cache_open(struct kmem_cache *s,
  2560. const char *name, size_t size,
  2561. size_t align, unsigned long flags,
  2562. void (*ctor)(void *))
  2563. {
  2564. memset(s, 0, kmem_size);
  2565. s->name = name;
  2566. s->ctor = ctor;
  2567. s->object_size = size;
  2568. s->align = align;
  2569. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2570. s->reserved = 0;
  2571. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2572. s->reserved = sizeof(struct rcu_head);
  2573. if (!calculate_sizes(s, -1))
  2574. goto error;
  2575. if (disable_higher_order_debug) {
  2576. /*
  2577. * Disable debugging flags that store metadata if the min slab
  2578. * order increased.
  2579. */
  2580. if (get_order(s->size) > get_order(s->object_size)) {
  2581. s->flags &= ~DEBUG_METADATA_FLAGS;
  2582. s->offset = 0;
  2583. if (!calculate_sizes(s, -1))
  2584. goto error;
  2585. }
  2586. }
  2587. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2588. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2589. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2590. /* Enable fast mode */
  2591. s->flags |= __CMPXCHG_DOUBLE;
  2592. #endif
  2593. /*
  2594. * The larger the object size is, the more pages we want on the partial
  2595. * list to avoid pounding the page allocator excessively.
  2596. */
  2597. set_min_partial(s, ilog2(s->size) / 2);
  2598. /*
  2599. * cpu_partial determined the maximum number of objects kept in the
  2600. * per cpu partial lists of a processor.
  2601. *
  2602. * Per cpu partial lists mainly contain slabs that just have one
  2603. * object freed. If they are used for allocation then they can be
  2604. * filled up again with minimal effort. The slab will never hit the
  2605. * per node partial lists and therefore no locking will be required.
  2606. *
  2607. * This setting also determines
  2608. *
  2609. * A) The number of objects from per cpu partial slabs dumped to the
  2610. * per node list when we reach the limit.
  2611. * B) The number of objects in cpu partial slabs to extract from the
  2612. * per node list when we run out of per cpu objects. We only fetch 50%
  2613. * to keep some capacity around for frees.
  2614. */
  2615. if (kmem_cache_debug(s))
  2616. s->cpu_partial = 0;
  2617. else if (s->size >= PAGE_SIZE)
  2618. s->cpu_partial = 2;
  2619. else if (s->size >= 1024)
  2620. s->cpu_partial = 6;
  2621. else if (s->size >= 256)
  2622. s->cpu_partial = 13;
  2623. else
  2624. s->cpu_partial = 30;
  2625. s->refcount = 1;
  2626. #ifdef CONFIG_NUMA
  2627. s->remote_node_defrag_ratio = 1000;
  2628. #endif
  2629. if (!init_kmem_cache_nodes(s))
  2630. goto error;
  2631. if (alloc_kmem_cache_cpus(s))
  2632. return 1;
  2633. free_kmem_cache_nodes(s);
  2634. error:
  2635. if (flags & SLAB_PANIC)
  2636. panic("Cannot create slab %s size=%lu realsize=%u "
  2637. "order=%u offset=%u flags=%lx\n",
  2638. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2639. s->offset, flags);
  2640. return 0;
  2641. }
  2642. /*
  2643. * Determine the size of a slab object
  2644. */
  2645. unsigned int kmem_cache_size(struct kmem_cache *s)
  2646. {
  2647. return s->object_size;
  2648. }
  2649. EXPORT_SYMBOL(kmem_cache_size);
  2650. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2651. const char *text)
  2652. {
  2653. #ifdef CONFIG_SLUB_DEBUG
  2654. void *addr = page_address(page);
  2655. void *p;
  2656. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2657. sizeof(long), GFP_ATOMIC);
  2658. if (!map)
  2659. return;
  2660. slab_err(s, page, "%s", text);
  2661. slab_lock(page);
  2662. get_map(s, page, map);
  2663. for_each_object(p, s, addr, page->objects) {
  2664. if (!test_bit(slab_index(p, s, addr), map)) {
  2665. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2666. p, p - addr);
  2667. print_tracking(s, p);
  2668. }
  2669. }
  2670. slab_unlock(page);
  2671. kfree(map);
  2672. #endif
  2673. }
  2674. /*
  2675. * Attempt to free all partial slabs on a node.
  2676. * This is called from kmem_cache_close(). We must be the last thread
  2677. * using the cache and therefore we do not need to lock anymore.
  2678. */
  2679. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2680. {
  2681. struct page *page, *h;
  2682. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2683. if (!page->inuse) {
  2684. remove_partial(n, page);
  2685. discard_slab(s, page);
  2686. } else {
  2687. list_slab_objects(s, page,
  2688. "Objects remaining on kmem_cache_close()");
  2689. }
  2690. }
  2691. }
  2692. /*
  2693. * Release all resources used by a slab cache.
  2694. */
  2695. static inline int kmem_cache_close(struct kmem_cache *s)
  2696. {
  2697. int node;
  2698. flush_all(s);
  2699. free_percpu(s->cpu_slab);
  2700. /* Attempt to free all objects */
  2701. for_each_node_state(node, N_NORMAL_MEMORY) {
  2702. struct kmem_cache_node *n = get_node(s, node);
  2703. free_partial(s, n);
  2704. if (n->nr_partial || slabs_node(s, node))
  2705. return 1;
  2706. }
  2707. free_kmem_cache_nodes(s);
  2708. return 0;
  2709. }
  2710. /*
  2711. * Close a cache and release the kmem_cache structure
  2712. * (must be used for caches created using kmem_cache_create)
  2713. */
  2714. void kmem_cache_destroy(struct kmem_cache *s)
  2715. {
  2716. mutex_lock(&slab_mutex);
  2717. s->refcount--;
  2718. if (!s->refcount) {
  2719. list_del(&s->list);
  2720. mutex_unlock(&slab_mutex);
  2721. if (kmem_cache_close(s)) {
  2722. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2723. "still has objects.\n", s->name, __func__);
  2724. dump_stack();
  2725. }
  2726. if (s->flags & SLAB_DESTROY_BY_RCU)
  2727. rcu_barrier();
  2728. sysfs_slab_remove(s);
  2729. } else
  2730. mutex_unlock(&slab_mutex);
  2731. }
  2732. EXPORT_SYMBOL(kmem_cache_destroy);
  2733. /********************************************************************
  2734. * Kmalloc subsystem
  2735. *******************************************************************/
  2736. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2737. EXPORT_SYMBOL(kmalloc_caches);
  2738. static struct kmem_cache *kmem_cache;
  2739. #ifdef CONFIG_ZONE_DMA
  2740. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2741. #endif
  2742. static int __init setup_slub_min_order(char *str)
  2743. {
  2744. get_option(&str, &slub_min_order);
  2745. return 1;
  2746. }
  2747. __setup("slub_min_order=", setup_slub_min_order);
  2748. static int __init setup_slub_max_order(char *str)
  2749. {
  2750. get_option(&str, &slub_max_order);
  2751. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2752. return 1;
  2753. }
  2754. __setup("slub_max_order=", setup_slub_max_order);
  2755. static int __init setup_slub_min_objects(char *str)
  2756. {
  2757. get_option(&str, &slub_min_objects);
  2758. return 1;
  2759. }
  2760. __setup("slub_min_objects=", setup_slub_min_objects);
  2761. static int __init setup_slub_nomerge(char *str)
  2762. {
  2763. slub_nomerge = 1;
  2764. return 1;
  2765. }
  2766. __setup("slub_nomerge", setup_slub_nomerge);
  2767. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2768. int size, unsigned int flags)
  2769. {
  2770. struct kmem_cache *s;
  2771. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2772. /*
  2773. * This function is called with IRQs disabled during early-boot on
  2774. * single CPU so there's no need to take slab_mutex here.
  2775. */
  2776. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2777. flags, NULL))
  2778. goto panic;
  2779. list_add(&s->list, &slab_caches);
  2780. return s;
  2781. panic:
  2782. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2783. return NULL;
  2784. }
  2785. /*
  2786. * Conversion table for small slabs sizes / 8 to the index in the
  2787. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2788. * of two cache sizes there. The size of larger slabs can be determined using
  2789. * fls.
  2790. */
  2791. static s8 size_index[24] = {
  2792. 3, /* 8 */
  2793. 4, /* 16 */
  2794. 5, /* 24 */
  2795. 5, /* 32 */
  2796. 6, /* 40 */
  2797. 6, /* 48 */
  2798. 6, /* 56 */
  2799. 6, /* 64 */
  2800. 1, /* 72 */
  2801. 1, /* 80 */
  2802. 1, /* 88 */
  2803. 1, /* 96 */
  2804. 7, /* 104 */
  2805. 7, /* 112 */
  2806. 7, /* 120 */
  2807. 7, /* 128 */
  2808. 2, /* 136 */
  2809. 2, /* 144 */
  2810. 2, /* 152 */
  2811. 2, /* 160 */
  2812. 2, /* 168 */
  2813. 2, /* 176 */
  2814. 2, /* 184 */
  2815. 2 /* 192 */
  2816. };
  2817. static inline int size_index_elem(size_t bytes)
  2818. {
  2819. return (bytes - 1) / 8;
  2820. }
  2821. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2822. {
  2823. int index;
  2824. if (size <= 192) {
  2825. if (!size)
  2826. return ZERO_SIZE_PTR;
  2827. index = size_index[size_index_elem(size)];
  2828. } else
  2829. index = fls(size - 1);
  2830. #ifdef CONFIG_ZONE_DMA
  2831. if (unlikely((flags & SLUB_DMA)))
  2832. return kmalloc_dma_caches[index];
  2833. #endif
  2834. return kmalloc_caches[index];
  2835. }
  2836. void *__kmalloc(size_t size, gfp_t flags)
  2837. {
  2838. struct kmem_cache *s;
  2839. void *ret;
  2840. if (unlikely(size > SLUB_MAX_SIZE))
  2841. return kmalloc_large(size, flags);
  2842. s = get_slab(size, flags);
  2843. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2844. return s;
  2845. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2846. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2847. return ret;
  2848. }
  2849. EXPORT_SYMBOL(__kmalloc);
  2850. #ifdef CONFIG_NUMA
  2851. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2852. {
  2853. struct page *page;
  2854. void *ptr = NULL;
  2855. flags |= __GFP_COMP | __GFP_NOTRACK;
  2856. page = alloc_pages_node(node, flags, get_order(size));
  2857. if (page)
  2858. ptr = page_address(page);
  2859. kmemleak_alloc(ptr, size, 1, flags);
  2860. return ptr;
  2861. }
  2862. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2863. {
  2864. struct kmem_cache *s;
  2865. void *ret;
  2866. if (unlikely(size > SLUB_MAX_SIZE)) {
  2867. ret = kmalloc_large_node(size, flags, node);
  2868. trace_kmalloc_node(_RET_IP_, ret,
  2869. size, PAGE_SIZE << get_order(size),
  2870. flags, node);
  2871. return ret;
  2872. }
  2873. s = get_slab(size, flags);
  2874. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2875. return s;
  2876. ret = slab_alloc(s, flags, node, _RET_IP_);
  2877. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2878. return ret;
  2879. }
  2880. EXPORT_SYMBOL(__kmalloc_node);
  2881. #endif
  2882. size_t ksize(const void *object)
  2883. {
  2884. struct page *page;
  2885. if (unlikely(object == ZERO_SIZE_PTR))
  2886. return 0;
  2887. page = virt_to_head_page(object);
  2888. if (unlikely(!PageSlab(page))) {
  2889. WARN_ON(!PageCompound(page));
  2890. return PAGE_SIZE << compound_order(page);
  2891. }
  2892. return slab_ksize(page->slab);
  2893. }
  2894. EXPORT_SYMBOL(ksize);
  2895. #ifdef CONFIG_SLUB_DEBUG
  2896. bool verify_mem_not_deleted(const void *x)
  2897. {
  2898. struct page *page;
  2899. void *object = (void *)x;
  2900. unsigned long flags;
  2901. bool rv;
  2902. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2903. return false;
  2904. local_irq_save(flags);
  2905. page = virt_to_head_page(x);
  2906. if (unlikely(!PageSlab(page))) {
  2907. /* maybe it was from stack? */
  2908. rv = true;
  2909. goto out_unlock;
  2910. }
  2911. slab_lock(page);
  2912. if (on_freelist(page->slab, page, object)) {
  2913. object_err(page->slab, page, object, "Object is on free-list");
  2914. rv = false;
  2915. } else {
  2916. rv = true;
  2917. }
  2918. slab_unlock(page);
  2919. out_unlock:
  2920. local_irq_restore(flags);
  2921. return rv;
  2922. }
  2923. EXPORT_SYMBOL(verify_mem_not_deleted);
  2924. #endif
  2925. void kfree(const void *x)
  2926. {
  2927. struct page *page;
  2928. void *object = (void *)x;
  2929. trace_kfree(_RET_IP_, x);
  2930. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2931. return;
  2932. page = virt_to_head_page(x);
  2933. if (unlikely(!PageSlab(page))) {
  2934. BUG_ON(!PageCompound(page));
  2935. kmemleak_free(x);
  2936. put_page(page);
  2937. return;
  2938. }
  2939. slab_free(page->slab, page, object, _RET_IP_);
  2940. }
  2941. EXPORT_SYMBOL(kfree);
  2942. /*
  2943. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2944. * the remaining slabs by the number of items in use. The slabs with the
  2945. * most items in use come first. New allocations will then fill those up
  2946. * and thus they can be removed from the partial lists.
  2947. *
  2948. * The slabs with the least items are placed last. This results in them
  2949. * being allocated from last increasing the chance that the last objects
  2950. * are freed in them.
  2951. */
  2952. int kmem_cache_shrink(struct kmem_cache *s)
  2953. {
  2954. int node;
  2955. int i;
  2956. struct kmem_cache_node *n;
  2957. struct page *page;
  2958. struct page *t;
  2959. int objects = oo_objects(s->max);
  2960. struct list_head *slabs_by_inuse =
  2961. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2962. unsigned long flags;
  2963. if (!slabs_by_inuse)
  2964. return -ENOMEM;
  2965. flush_all(s);
  2966. for_each_node_state(node, N_NORMAL_MEMORY) {
  2967. n = get_node(s, node);
  2968. if (!n->nr_partial)
  2969. continue;
  2970. for (i = 0; i < objects; i++)
  2971. INIT_LIST_HEAD(slabs_by_inuse + i);
  2972. spin_lock_irqsave(&n->list_lock, flags);
  2973. /*
  2974. * Build lists indexed by the items in use in each slab.
  2975. *
  2976. * Note that concurrent frees may occur while we hold the
  2977. * list_lock. page->inuse here is the upper limit.
  2978. */
  2979. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2980. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2981. if (!page->inuse)
  2982. n->nr_partial--;
  2983. }
  2984. /*
  2985. * Rebuild the partial list with the slabs filled up most
  2986. * first and the least used slabs at the end.
  2987. */
  2988. for (i = objects - 1; i > 0; i--)
  2989. list_splice(slabs_by_inuse + i, n->partial.prev);
  2990. spin_unlock_irqrestore(&n->list_lock, flags);
  2991. /* Release empty slabs */
  2992. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2993. discard_slab(s, page);
  2994. }
  2995. kfree(slabs_by_inuse);
  2996. return 0;
  2997. }
  2998. EXPORT_SYMBOL(kmem_cache_shrink);
  2999. #if defined(CONFIG_MEMORY_HOTPLUG)
  3000. static int slab_mem_going_offline_callback(void *arg)
  3001. {
  3002. struct kmem_cache *s;
  3003. mutex_lock(&slab_mutex);
  3004. list_for_each_entry(s, &slab_caches, list)
  3005. kmem_cache_shrink(s);
  3006. mutex_unlock(&slab_mutex);
  3007. return 0;
  3008. }
  3009. static void slab_mem_offline_callback(void *arg)
  3010. {
  3011. struct kmem_cache_node *n;
  3012. struct kmem_cache *s;
  3013. struct memory_notify *marg = arg;
  3014. int offline_node;
  3015. offline_node = marg->status_change_nid;
  3016. /*
  3017. * If the node still has available memory. we need kmem_cache_node
  3018. * for it yet.
  3019. */
  3020. if (offline_node < 0)
  3021. return;
  3022. mutex_lock(&slab_mutex);
  3023. list_for_each_entry(s, &slab_caches, list) {
  3024. n = get_node(s, offline_node);
  3025. if (n) {
  3026. /*
  3027. * if n->nr_slabs > 0, slabs still exist on the node
  3028. * that is going down. We were unable to free them,
  3029. * and offline_pages() function shouldn't call this
  3030. * callback. So, we must fail.
  3031. */
  3032. BUG_ON(slabs_node(s, offline_node));
  3033. s->node[offline_node] = NULL;
  3034. kmem_cache_free(kmem_cache_node, n);
  3035. }
  3036. }
  3037. mutex_unlock(&slab_mutex);
  3038. }
  3039. static int slab_mem_going_online_callback(void *arg)
  3040. {
  3041. struct kmem_cache_node *n;
  3042. struct kmem_cache *s;
  3043. struct memory_notify *marg = arg;
  3044. int nid = marg->status_change_nid;
  3045. int ret = 0;
  3046. /*
  3047. * If the node's memory is already available, then kmem_cache_node is
  3048. * already created. Nothing to do.
  3049. */
  3050. if (nid < 0)
  3051. return 0;
  3052. /*
  3053. * We are bringing a node online. No memory is available yet. We must
  3054. * allocate a kmem_cache_node structure in order to bring the node
  3055. * online.
  3056. */
  3057. mutex_lock(&slab_mutex);
  3058. list_for_each_entry(s, &slab_caches, list) {
  3059. /*
  3060. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3061. * since memory is not yet available from the node that
  3062. * is brought up.
  3063. */
  3064. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3065. if (!n) {
  3066. ret = -ENOMEM;
  3067. goto out;
  3068. }
  3069. init_kmem_cache_node(n);
  3070. s->node[nid] = n;
  3071. }
  3072. out:
  3073. mutex_unlock(&slab_mutex);
  3074. return ret;
  3075. }
  3076. static int slab_memory_callback(struct notifier_block *self,
  3077. unsigned long action, void *arg)
  3078. {
  3079. int ret = 0;
  3080. switch (action) {
  3081. case MEM_GOING_ONLINE:
  3082. ret = slab_mem_going_online_callback(arg);
  3083. break;
  3084. case MEM_GOING_OFFLINE:
  3085. ret = slab_mem_going_offline_callback(arg);
  3086. break;
  3087. case MEM_OFFLINE:
  3088. case MEM_CANCEL_ONLINE:
  3089. slab_mem_offline_callback(arg);
  3090. break;
  3091. case MEM_ONLINE:
  3092. case MEM_CANCEL_OFFLINE:
  3093. break;
  3094. }
  3095. if (ret)
  3096. ret = notifier_from_errno(ret);
  3097. else
  3098. ret = NOTIFY_OK;
  3099. return ret;
  3100. }
  3101. #endif /* CONFIG_MEMORY_HOTPLUG */
  3102. /********************************************************************
  3103. * Basic setup of slabs
  3104. *******************************************************************/
  3105. /*
  3106. * Used for early kmem_cache structures that were allocated using
  3107. * the page allocator
  3108. */
  3109. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3110. {
  3111. int node;
  3112. list_add(&s->list, &slab_caches);
  3113. s->refcount = -1;
  3114. for_each_node_state(node, N_NORMAL_MEMORY) {
  3115. struct kmem_cache_node *n = get_node(s, node);
  3116. struct page *p;
  3117. if (n) {
  3118. list_for_each_entry(p, &n->partial, lru)
  3119. p->slab = s;
  3120. #ifdef CONFIG_SLUB_DEBUG
  3121. list_for_each_entry(p, &n->full, lru)
  3122. p->slab = s;
  3123. #endif
  3124. }
  3125. }
  3126. }
  3127. void __init kmem_cache_init(void)
  3128. {
  3129. int i;
  3130. int caches = 0;
  3131. struct kmem_cache *temp_kmem_cache;
  3132. int order;
  3133. struct kmem_cache *temp_kmem_cache_node;
  3134. unsigned long kmalloc_size;
  3135. if (debug_guardpage_minorder())
  3136. slub_max_order = 0;
  3137. kmem_size = offsetof(struct kmem_cache, node) +
  3138. nr_node_ids * sizeof(struct kmem_cache_node *);
  3139. /* Allocate two kmem_caches from the page allocator */
  3140. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3141. order = get_order(2 * kmalloc_size);
  3142. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3143. /*
  3144. * Must first have the slab cache available for the allocations of the
  3145. * struct kmem_cache_node's. There is special bootstrap code in
  3146. * kmem_cache_open for slab_state == DOWN.
  3147. */
  3148. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3149. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3150. sizeof(struct kmem_cache_node),
  3151. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3152. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3153. /* Able to allocate the per node structures */
  3154. slab_state = PARTIAL;
  3155. temp_kmem_cache = kmem_cache;
  3156. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3157. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3158. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3159. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3160. /*
  3161. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3162. * kmem_cache_node is separately allocated so no need to
  3163. * update any list pointers.
  3164. */
  3165. temp_kmem_cache_node = kmem_cache_node;
  3166. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3167. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3168. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3169. caches++;
  3170. kmem_cache_bootstrap_fixup(kmem_cache);
  3171. caches++;
  3172. /* Free temporary boot structure */
  3173. free_pages((unsigned long)temp_kmem_cache, order);
  3174. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3175. /*
  3176. * Patch up the size_index table if we have strange large alignment
  3177. * requirements for the kmalloc array. This is only the case for
  3178. * MIPS it seems. The standard arches will not generate any code here.
  3179. *
  3180. * Largest permitted alignment is 256 bytes due to the way we
  3181. * handle the index determination for the smaller caches.
  3182. *
  3183. * Make sure that nothing crazy happens if someone starts tinkering
  3184. * around with ARCH_KMALLOC_MINALIGN
  3185. */
  3186. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3187. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3188. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3189. int elem = size_index_elem(i);
  3190. if (elem >= ARRAY_SIZE(size_index))
  3191. break;
  3192. size_index[elem] = KMALLOC_SHIFT_LOW;
  3193. }
  3194. if (KMALLOC_MIN_SIZE == 64) {
  3195. /*
  3196. * The 96 byte size cache is not used if the alignment
  3197. * is 64 byte.
  3198. */
  3199. for (i = 64 + 8; i <= 96; i += 8)
  3200. size_index[size_index_elem(i)] = 7;
  3201. } else if (KMALLOC_MIN_SIZE == 128) {
  3202. /*
  3203. * The 192 byte sized cache is not used if the alignment
  3204. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3205. * instead.
  3206. */
  3207. for (i = 128 + 8; i <= 192; i += 8)
  3208. size_index[size_index_elem(i)] = 8;
  3209. }
  3210. /* Caches that are not of the two-to-the-power-of size */
  3211. if (KMALLOC_MIN_SIZE <= 32) {
  3212. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3213. caches++;
  3214. }
  3215. if (KMALLOC_MIN_SIZE <= 64) {
  3216. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3217. caches++;
  3218. }
  3219. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3220. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3221. caches++;
  3222. }
  3223. slab_state = UP;
  3224. /* Provide the correct kmalloc names now that the caches are up */
  3225. if (KMALLOC_MIN_SIZE <= 32) {
  3226. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3227. BUG_ON(!kmalloc_caches[1]->name);
  3228. }
  3229. if (KMALLOC_MIN_SIZE <= 64) {
  3230. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3231. BUG_ON(!kmalloc_caches[2]->name);
  3232. }
  3233. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3234. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3235. BUG_ON(!s);
  3236. kmalloc_caches[i]->name = s;
  3237. }
  3238. #ifdef CONFIG_SMP
  3239. register_cpu_notifier(&slab_notifier);
  3240. #endif
  3241. #ifdef CONFIG_ZONE_DMA
  3242. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3243. struct kmem_cache *s = kmalloc_caches[i];
  3244. if (s && s->size) {
  3245. char *name = kasprintf(GFP_NOWAIT,
  3246. "dma-kmalloc-%d", s->object_size);
  3247. BUG_ON(!name);
  3248. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3249. s->object_size, SLAB_CACHE_DMA);
  3250. }
  3251. }
  3252. #endif
  3253. printk(KERN_INFO
  3254. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3255. " CPUs=%d, Nodes=%d\n",
  3256. caches, cache_line_size(),
  3257. slub_min_order, slub_max_order, slub_min_objects,
  3258. nr_cpu_ids, nr_node_ids);
  3259. }
  3260. void __init kmem_cache_init_late(void)
  3261. {
  3262. }
  3263. /*
  3264. * Find a mergeable slab cache
  3265. */
  3266. static int slab_unmergeable(struct kmem_cache *s)
  3267. {
  3268. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3269. return 1;
  3270. if (s->ctor)
  3271. return 1;
  3272. /*
  3273. * We may have set a slab to be unmergeable during bootstrap.
  3274. */
  3275. if (s->refcount < 0)
  3276. return 1;
  3277. return 0;
  3278. }
  3279. static struct kmem_cache *find_mergeable(size_t size,
  3280. size_t align, unsigned long flags, const char *name,
  3281. void (*ctor)(void *))
  3282. {
  3283. struct kmem_cache *s;
  3284. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3285. return NULL;
  3286. if (ctor)
  3287. return NULL;
  3288. size = ALIGN(size, sizeof(void *));
  3289. align = calculate_alignment(flags, align, size);
  3290. size = ALIGN(size, align);
  3291. flags = kmem_cache_flags(size, flags, name, NULL);
  3292. list_for_each_entry(s, &slab_caches, list) {
  3293. if (slab_unmergeable(s))
  3294. continue;
  3295. if (size > s->size)
  3296. continue;
  3297. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3298. continue;
  3299. /*
  3300. * Check if alignment is compatible.
  3301. * Courtesy of Adrian Drzewiecki
  3302. */
  3303. if ((s->size & ~(align - 1)) != s->size)
  3304. continue;
  3305. if (s->size - size >= sizeof(void *))
  3306. continue;
  3307. return s;
  3308. }
  3309. return NULL;
  3310. }
  3311. struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
  3312. size_t align, unsigned long flags, void (*ctor)(void *))
  3313. {
  3314. struct kmem_cache *s;
  3315. char *n;
  3316. s = find_mergeable(size, align, flags, name, ctor);
  3317. if (s) {
  3318. s->refcount++;
  3319. /*
  3320. * Adjust the object sizes so that we clear
  3321. * the complete object on kzalloc.
  3322. */
  3323. s->object_size = max(s->object_size, (int)size);
  3324. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3325. if (sysfs_slab_alias(s, name)) {
  3326. s->refcount--;
  3327. return NULL;
  3328. }
  3329. return s;
  3330. }
  3331. n = kstrdup(name, GFP_KERNEL);
  3332. if (!n)
  3333. return NULL;
  3334. s = kmalloc(kmem_size, GFP_KERNEL);
  3335. if (s) {
  3336. if (kmem_cache_open(s, n,
  3337. size, align, flags, ctor)) {
  3338. int r;
  3339. list_add(&s->list, &slab_caches);
  3340. mutex_unlock(&slab_mutex);
  3341. r = sysfs_slab_add(s);
  3342. mutex_lock(&slab_mutex);
  3343. if (!r)
  3344. return s;
  3345. list_del(&s->list);
  3346. kmem_cache_close(s);
  3347. }
  3348. kfree(s);
  3349. }
  3350. kfree(n);
  3351. return NULL;
  3352. }
  3353. #ifdef CONFIG_SMP
  3354. /*
  3355. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3356. * necessary.
  3357. */
  3358. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3359. unsigned long action, void *hcpu)
  3360. {
  3361. long cpu = (long)hcpu;
  3362. struct kmem_cache *s;
  3363. unsigned long flags;
  3364. switch (action) {
  3365. case CPU_UP_CANCELED:
  3366. case CPU_UP_CANCELED_FROZEN:
  3367. case CPU_DEAD:
  3368. case CPU_DEAD_FROZEN:
  3369. mutex_lock(&slab_mutex);
  3370. list_for_each_entry(s, &slab_caches, list) {
  3371. local_irq_save(flags);
  3372. __flush_cpu_slab(s, cpu);
  3373. local_irq_restore(flags);
  3374. }
  3375. mutex_unlock(&slab_mutex);
  3376. break;
  3377. default:
  3378. break;
  3379. }
  3380. return NOTIFY_OK;
  3381. }
  3382. static struct notifier_block __cpuinitdata slab_notifier = {
  3383. .notifier_call = slab_cpuup_callback
  3384. };
  3385. #endif
  3386. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3387. {
  3388. struct kmem_cache *s;
  3389. void *ret;
  3390. if (unlikely(size > SLUB_MAX_SIZE))
  3391. return kmalloc_large(size, gfpflags);
  3392. s = get_slab(size, gfpflags);
  3393. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3394. return s;
  3395. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3396. /* Honor the call site pointer we received. */
  3397. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3398. return ret;
  3399. }
  3400. #ifdef CONFIG_NUMA
  3401. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3402. int node, unsigned long caller)
  3403. {
  3404. struct kmem_cache *s;
  3405. void *ret;
  3406. if (unlikely(size > SLUB_MAX_SIZE)) {
  3407. ret = kmalloc_large_node(size, gfpflags, node);
  3408. trace_kmalloc_node(caller, ret,
  3409. size, PAGE_SIZE << get_order(size),
  3410. gfpflags, node);
  3411. return ret;
  3412. }
  3413. s = get_slab(size, gfpflags);
  3414. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3415. return s;
  3416. ret = slab_alloc(s, gfpflags, node, caller);
  3417. /* Honor the call site pointer we received. */
  3418. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3419. return ret;
  3420. }
  3421. #endif
  3422. #ifdef CONFIG_SYSFS
  3423. static int count_inuse(struct page *page)
  3424. {
  3425. return page->inuse;
  3426. }
  3427. static int count_total(struct page *page)
  3428. {
  3429. return page->objects;
  3430. }
  3431. #endif
  3432. #ifdef CONFIG_SLUB_DEBUG
  3433. static int validate_slab(struct kmem_cache *s, struct page *page,
  3434. unsigned long *map)
  3435. {
  3436. void *p;
  3437. void *addr = page_address(page);
  3438. if (!check_slab(s, page) ||
  3439. !on_freelist(s, page, NULL))
  3440. return 0;
  3441. /* Now we know that a valid freelist exists */
  3442. bitmap_zero(map, page->objects);
  3443. get_map(s, page, map);
  3444. for_each_object(p, s, addr, page->objects) {
  3445. if (test_bit(slab_index(p, s, addr), map))
  3446. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3447. return 0;
  3448. }
  3449. for_each_object(p, s, addr, page->objects)
  3450. if (!test_bit(slab_index(p, s, addr), map))
  3451. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3452. return 0;
  3453. return 1;
  3454. }
  3455. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3456. unsigned long *map)
  3457. {
  3458. slab_lock(page);
  3459. validate_slab(s, page, map);
  3460. slab_unlock(page);
  3461. }
  3462. static int validate_slab_node(struct kmem_cache *s,
  3463. struct kmem_cache_node *n, unsigned long *map)
  3464. {
  3465. unsigned long count = 0;
  3466. struct page *page;
  3467. unsigned long flags;
  3468. spin_lock_irqsave(&n->list_lock, flags);
  3469. list_for_each_entry(page, &n->partial, lru) {
  3470. validate_slab_slab(s, page, map);
  3471. count++;
  3472. }
  3473. if (count != n->nr_partial)
  3474. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3475. "counter=%ld\n", s->name, count, n->nr_partial);
  3476. if (!(s->flags & SLAB_STORE_USER))
  3477. goto out;
  3478. list_for_each_entry(page, &n->full, lru) {
  3479. validate_slab_slab(s, page, map);
  3480. count++;
  3481. }
  3482. if (count != atomic_long_read(&n->nr_slabs))
  3483. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3484. "counter=%ld\n", s->name, count,
  3485. atomic_long_read(&n->nr_slabs));
  3486. out:
  3487. spin_unlock_irqrestore(&n->list_lock, flags);
  3488. return count;
  3489. }
  3490. static long validate_slab_cache(struct kmem_cache *s)
  3491. {
  3492. int node;
  3493. unsigned long count = 0;
  3494. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3495. sizeof(unsigned long), GFP_KERNEL);
  3496. if (!map)
  3497. return -ENOMEM;
  3498. flush_all(s);
  3499. for_each_node_state(node, N_NORMAL_MEMORY) {
  3500. struct kmem_cache_node *n = get_node(s, node);
  3501. count += validate_slab_node(s, n, map);
  3502. }
  3503. kfree(map);
  3504. return count;
  3505. }
  3506. /*
  3507. * Generate lists of code addresses where slabcache objects are allocated
  3508. * and freed.
  3509. */
  3510. struct location {
  3511. unsigned long count;
  3512. unsigned long addr;
  3513. long long sum_time;
  3514. long min_time;
  3515. long max_time;
  3516. long min_pid;
  3517. long max_pid;
  3518. DECLARE_BITMAP(cpus, NR_CPUS);
  3519. nodemask_t nodes;
  3520. };
  3521. struct loc_track {
  3522. unsigned long max;
  3523. unsigned long count;
  3524. struct location *loc;
  3525. };
  3526. static void free_loc_track(struct loc_track *t)
  3527. {
  3528. if (t->max)
  3529. free_pages((unsigned long)t->loc,
  3530. get_order(sizeof(struct location) * t->max));
  3531. }
  3532. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3533. {
  3534. struct location *l;
  3535. int order;
  3536. order = get_order(sizeof(struct location) * max);
  3537. l = (void *)__get_free_pages(flags, order);
  3538. if (!l)
  3539. return 0;
  3540. if (t->count) {
  3541. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3542. free_loc_track(t);
  3543. }
  3544. t->max = max;
  3545. t->loc = l;
  3546. return 1;
  3547. }
  3548. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3549. const struct track *track)
  3550. {
  3551. long start, end, pos;
  3552. struct location *l;
  3553. unsigned long caddr;
  3554. unsigned long age = jiffies - track->when;
  3555. start = -1;
  3556. end = t->count;
  3557. for ( ; ; ) {
  3558. pos = start + (end - start + 1) / 2;
  3559. /*
  3560. * There is nothing at "end". If we end up there
  3561. * we need to add something to before end.
  3562. */
  3563. if (pos == end)
  3564. break;
  3565. caddr = t->loc[pos].addr;
  3566. if (track->addr == caddr) {
  3567. l = &t->loc[pos];
  3568. l->count++;
  3569. if (track->when) {
  3570. l->sum_time += age;
  3571. if (age < l->min_time)
  3572. l->min_time = age;
  3573. if (age > l->max_time)
  3574. l->max_time = age;
  3575. if (track->pid < l->min_pid)
  3576. l->min_pid = track->pid;
  3577. if (track->pid > l->max_pid)
  3578. l->max_pid = track->pid;
  3579. cpumask_set_cpu(track->cpu,
  3580. to_cpumask(l->cpus));
  3581. }
  3582. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3583. return 1;
  3584. }
  3585. if (track->addr < caddr)
  3586. end = pos;
  3587. else
  3588. start = pos;
  3589. }
  3590. /*
  3591. * Not found. Insert new tracking element.
  3592. */
  3593. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3594. return 0;
  3595. l = t->loc + pos;
  3596. if (pos < t->count)
  3597. memmove(l + 1, l,
  3598. (t->count - pos) * sizeof(struct location));
  3599. t->count++;
  3600. l->count = 1;
  3601. l->addr = track->addr;
  3602. l->sum_time = age;
  3603. l->min_time = age;
  3604. l->max_time = age;
  3605. l->min_pid = track->pid;
  3606. l->max_pid = track->pid;
  3607. cpumask_clear(to_cpumask(l->cpus));
  3608. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3609. nodes_clear(l->nodes);
  3610. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3611. return 1;
  3612. }
  3613. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3614. struct page *page, enum track_item alloc,
  3615. unsigned long *map)
  3616. {
  3617. void *addr = page_address(page);
  3618. void *p;
  3619. bitmap_zero(map, page->objects);
  3620. get_map(s, page, map);
  3621. for_each_object(p, s, addr, page->objects)
  3622. if (!test_bit(slab_index(p, s, addr), map))
  3623. add_location(t, s, get_track(s, p, alloc));
  3624. }
  3625. static int list_locations(struct kmem_cache *s, char *buf,
  3626. enum track_item alloc)
  3627. {
  3628. int len = 0;
  3629. unsigned long i;
  3630. struct loc_track t = { 0, 0, NULL };
  3631. int node;
  3632. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3633. sizeof(unsigned long), GFP_KERNEL);
  3634. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3635. GFP_TEMPORARY)) {
  3636. kfree(map);
  3637. return sprintf(buf, "Out of memory\n");
  3638. }
  3639. /* Push back cpu slabs */
  3640. flush_all(s);
  3641. for_each_node_state(node, N_NORMAL_MEMORY) {
  3642. struct kmem_cache_node *n = get_node(s, node);
  3643. unsigned long flags;
  3644. struct page *page;
  3645. if (!atomic_long_read(&n->nr_slabs))
  3646. continue;
  3647. spin_lock_irqsave(&n->list_lock, flags);
  3648. list_for_each_entry(page, &n->partial, lru)
  3649. process_slab(&t, s, page, alloc, map);
  3650. list_for_each_entry(page, &n->full, lru)
  3651. process_slab(&t, s, page, alloc, map);
  3652. spin_unlock_irqrestore(&n->list_lock, flags);
  3653. }
  3654. for (i = 0; i < t.count; i++) {
  3655. struct location *l = &t.loc[i];
  3656. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3657. break;
  3658. len += sprintf(buf + len, "%7ld ", l->count);
  3659. if (l->addr)
  3660. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3661. else
  3662. len += sprintf(buf + len, "<not-available>");
  3663. if (l->sum_time != l->min_time) {
  3664. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3665. l->min_time,
  3666. (long)div_u64(l->sum_time, l->count),
  3667. l->max_time);
  3668. } else
  3669. len += sprintf(buf + len, " age=%ld",
  3670. l->min_time);
  3671. if (l->min_pid != l->max_pid)
  3672. len += sprintf(buf + len, " pid=%ld-%ld",
  3673. l->min_pid, l->max_pid);
  3674. else
  3675. len += sprintf(buf + len, " pid=%ld",
  3676. l->min_pid);
  3677. if (num_online_cpus() > 1 &&
  3678. !cpumask_empty(to_cpumask(l->cpus)) &&
  3679. len < PAGE_SIZE - 60) {
  3680. len += sprintf(buf + len, " cpus=");
  3681. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3682. to_cpumask(l->cpus));
  3683. }
  3684. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3685. len < PAGE_SIZE - 60) {
  3686. len += sprintf(buf + len, " nodes=");
  3687. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3688. l->nodes);
  3689. }
  3690. len += sprintf(buf + len, "\n");
  3691. }
  3692. free_loc_track(&t);
  3693. kfree(map);
  3694. if (!t.count)
  3695. len += sprintf(buf, "No data\n");
  3696. return len;
  3697. }
  3698. #endif
  3699. #ifdef SLUB_RESILIENCY_TEST
  3700. static void resiliency_test(void)
  3701. {
  3702. u8 *p;
  3703. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3704. printk(KERN_ERR "SLUB resiliency testing\n");
  3705. printk(KERN_ERR "-----------------------\n");
  3706. printk(KERN_ERR "A. Corruption after allocation\n");
  3707. p = kzalloc(16, GFP_KERNEL);
  3708. p[16] = 0x12;
  3709. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3710. " 0x12->0x%p\n\n", p + 16);
  3711. validate_slab_cache(kmalloc_caches[4]);
  3712. /* Hmmm... The next two are dangerous */
  3713. p = kzalloc(32, GFP_KERNEL);
  3714. p[32 + sizeof(void *)] = 0x34;
  3715. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3716. " 0x34 -> -0x%p\n", p);
  3717. printk(KERN_ERR
  3718. "If allocated object is overwritten then not detectable\n\n");
  3719. validate_slab_cache(kmalloc_caches[5]);
  3720. p = kzalloc(64, GFP_KERNEL);
  3721. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3722. *p = 0x56;
  3723. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3724. p);
  3725. printk(KERN_ERR
  3726. "If allocated object is overwritten then not detectable\n\n");
  3727. validate_slab_cache(kmalloc_caches[6]);
  3728. printk(KERN_ERR "\nB. Corruption after free\n");
  3729. p = kzalloc(128, GFP_KERNEL);
  3730. kfree(p);
  3731. *p = 0x78;
  3732. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3733. validate_slab_cache(kmalloc_caches[7]);
  3734. p = kzalloc(256, GFP_KERNEL);
  3735. kfree(p);
  3736. p[50] = 0x9a;
  3737. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3738. p);
  3739. validate_slab_cache(kmalloc_caches[8]);
  3740. p = kzalloc(512, GFP_KERNEL);
  3741. kfree(p);
  3742. p[512] = 0xab;
  3743. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3744. validate_slab_cache(kmalloc_caches[9]);
  3745. }
  3746. #else
  3747. #ifdef CONFIG_SYSFS
  3748. static void resiliency_test(void) {};
  3749. #endif
  3750. #endif
  3751. #ifdef CONFIG_SYSFS
  3752. enum slab_stat_type {
  3753. SL_ALL, /* All slabs */
  3754. SL_PARTIAL, /* Only partially allocated slabs */
  3755. SL_CPU, /* Only slabs used for cpu caches */
  3756. SL_OBJECTS, /* Determine allocated objects not slabs */
  3757. SL_TOTAL /* Determine object capacity not slabs */
  3758. };
  3759. #define SO_ALL (1 << SL_ALL)
  3760. #define SO_PARTIAL (1 << SL_PARTIAL)
  3761. #define SO_CPU (1 << SL_CPU)
  3762. #define SO_OBJECTS (1 << SL_OBJECTS)
  3763. #define SO_TOTAL (1 << SL_TOTAL)
  3764. static ssize_t show_slab_objects(struct kmem_cache *s,
  3765. char *buf, unsigned long flags)
  3766. {
  3767. unsigned long total = 0;
  3768. int node;
  3769. int x;
  3770. unsigned long *nodes;
  3771. unsigned long *per_cpu;
  3772. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3773. if (!nodes)
  3774. return -ENOMEM;
  3775. per_cpu = nodes + nr_node_ids;
  3776. if (flags & SO_CPU) {
  3777. int cpu;
  3778. for_each_possible_cpu(cpu) {
  3779. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3780. int node;
  3781. struct page *page;
  3782. page = ACCESS_ONCE(c->page);
  3783. if (!page)
  3784. continue;
  3785. node = page_to_nid(page);
  3786. if (flags & SO_TOTAL)
  3787. x = page->objects;
  3788. else if (flags & SO_OBJECTS)
  3789. x = page->inuse;
  3790. else
  3791. x = 1;
  3792. total += x;
  3793. nodes[node] += x;
  3794. page = ACCESS_ONCE(c->partial);
  3795. if (page) {
  3796. x = page->pobjects;
  3797. total += x;
  3798. nodes[node] += x;
  3799. }
  3800. per_cpu[node]++;
  3801. }
  3802. }
  3803. lock_memory_hotplug();
  3804. #ifdef CONFIG_SLUB_DEBUG
  3805. if (flags & SO_ALL) {
  3806. for_each_node_state(node, N_NORMAL_MEMORY) {
  3807. struct kmem_cache_node *n = get_node(s, node);
  3808. if (flags & SO_TOTAL)
  3809. x = atomic_long_read(&n->total_objects);
  3810. else if (flags & SO_OBJECTS)
  3811. x = atomic_long_read(&n->total_objects) -
  3812. count_partial(n, count_free);
  3813. else
  3814. x = atomic_long_read(&n->nr_slabs);
  3815. total += x;
  3816. nodes[node] += x;
  3817. }
  3818. } else
  3819. #endif
  3820. if (flags & SO_PARTIAL) {
  3821. for_each_node_state(node, N_NORMAL_MEMORY) {
  3822. struct kmem_cache_node *n = get_node(s, node);
  3823. if (flags & SO_TOTAL)
  3824. x = count_partial(n, count_total);
  3825. else if (flags & SO_OBJECTS)
  3826. x = count_partial(n, count_inuse);
  3827. else
  3828. x = n->nr_partial;
  3829. total += x;
  3830. nodes[node] += x;
  3831. }
  3832. }
  3833. x = sprintf(buf, "%lu", total);
  3834. #ifdef CONFIG_NUMA
  3835. for_each_node_state(node, N_NORMAL_MEMORY)
  3836. if (nodes[node])
  3837. x += sprintf(buf + x, " N%d=%lu",
  3838. node, nodes[node]);
  3839. #endif
  3840. unlock_memory_hotplug();
  3841. kfree(nodes);
  3842. return x + sprintf(buf + x, "\n");
  3843. }
  3844. #ifdef CONFIG_SLUB_DEBUG
  3845. static int any_slab_objects(struct kmem_cache *s)
  3846. {
  3847. int node;
  3848. for_each_online_node(node) {
  3849. struct kmem_cache_node *n = get_node(s, node);
  3850. if (!n)
  3851. continue;
  3852. if (atomic_long_read(&n->total_objects))
  3853. return 1;
  3854. }
  3855. return 0;
  3856. }
  3857. #endif
  3858. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3859. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3860. struct slab_attribute {
  3861. struct attribute attr;
  3862. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3863. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3864. };
  3865. #define SLAB_ATTR_RO(_name) \
  3866. static struct slab_attribute _name##_attr = \
  3867. __ATTR(_name, 0400, _name##_show, NULL)
  3868. #define SLAB_ATTR(_name) \
  3869. static struct slab_attribute _name##_attr = \
  3870. __ATTR(_name, 0600, _name##_show, _name##_store)
  3871. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3872. {
  3873. return sprintf(buf, "%d\n", s->size);
  3874. }
  3875. SLAB_ATTR_RO(slab_size);
  3876. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3877. {
  3878. return sprintf(buf, "%d\n", s->align);
  3879. }
  3880. SLAB_ATTR_RO(align);
  3881. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3882. {
  3883. return sprintf(buf, "%d\n", s->object_size);
  3884. }
  3885. SLAB_ATTR_RO(object_size);
  3886. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3887. {
  3888. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3889. }
  3890. SLAB_ATTR_RO(objs_per_slab);
  3891. static ssize_t order_store(struct kmem_cache *s,
  3892. const char *buf, size_t length)
  3893. {
  3894. unsigned long order;
  3895. int err;
  3896. err = strict_strtoul(buf, 10, &order);
  3897. if (err)
  3898. return err;
  3899. if (order > slub_max_order || order < slub_min_order)
  3900. return -EINVAL;
  3901. calculate_sizes(s, order);
  3902. return length;
  3903. }
  3904. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3905. {
  3906. return sprintf(buf, "%d\n", oo_order(s->oo));
  3907. }
  3908. SLAB_ATTR(order);
  3909. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3910. {
  3911. return sprintf(buf, "%lu\n", s->min_partial);
  3912. }
  3913. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3914. size_t length)
  3915. {
  3916. unsigned long min;
  3917. int err;
  3918. err = strict_strtoul(buf, 10, &min);
  3919. if (err)
  3920. return err;
  3921. set_min_partial(s, min);
  3922. return length;
  3923. }
  3924. SLAB_ATTR(min_partial);
  3925. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3926. {
  3927. return sprintf(buf, "%u\n", s->cpu_partial);
  3928. }
  3929. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3930. size_t length)
  3931. {
  3932. unsigned long objects;
  3933. int err;
  3934. err = strict_strtoul(buf, 10, &objects);
  3935. if (err)
  3936. return err;
  3937. if (objects && kmem_cache_debug(s))
  3938. return -EINVAL;
  3939. s->cpu_partial = objects;
  3940. flush_all(s);
  3941. return length;
  3942. }
  3943. SLAB_ATTR(cpu_partial);
  3944. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3945. {
  3946. if (!s->ctor)
  3947. return 0;
  3948. return sprintf(buf, "%pS\n", s->ctor);
  3949. }
  3950. SLAB_ATTR_RO(ctor);
  3951. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3952. {
  3953. return sprintf(buf, "%d\n", s->refcount - 1);
  3954. }
  3955. SLAB_ATTR_RO(aliases);
  3956. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3957. {
  3958. return show_slab_objects(s, buf, SO_PARTIAL);
  3959. }
  3960. SLAB_ATTR_RO(partial);
  3961. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3962. {
  3963. return show_slab_objects(s, buf, SO_CPU);
  3964. }
  3965. SLAB_ATTR_RO(cpu_slabs);
  3966. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3967. {
  3968. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3969. }
  3970. SLAB_ATTR_RO(objects);
  3971. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3972. {
  3973. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3974. }
  3975. SLAB_ATTR_RO(objects_partial);
  3976. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3977. {
  3978. int objects = 0;
  3979. int pages = 0;
  3980. int cpu;
  3981. int len;
  3982. for_each_online_cpu(cpu) {
  3983. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3984. if (page) {
  3985. pages += page->pages;
  3986. objects += page->pobjects;
  3987. }
  3988. }
  3989. len = sprintf(buf, "%d(%d)", objects, pages);
  3990. #ifdef CONFIG_SMP
  3991. for_each_online_cpu(cpu) {
  3992. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3993. if (page && len < PAGE_SIZE - 20)
  3994. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3995. page->pobjects, page->pages);
  3996. }
  3997. #endif
  3998. return len + sprintf(buf + len, "\n");
  3999. }
  4000. SLAB_ATTR_RO(slabs_cpu_partial);
  4001. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  4002. {
  4003. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  4004. }
  4005. static ssize_t reclaim_account_store(struct kmem_cache *s,
  4006. const char *buf, size_t length)
  4007. {
  4008. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  4009. if (buf[0] == '1')
  4010. s->flags |= SLAB_RECLAIM_ACCOUNT;
  4011. return length;
  4012. }
  4013. SLAB_ATTR(reclaim_account);
  4014. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  4015. {
  4016. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  4017. }
  4018. SLAB_ATTR_RO(hwcache_align);
  4019. #ifdef CONFIG_ZONE_DMA
  4020. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4021. {
  4022. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4023. }
  4024. SLAB_ATTR_RO(cache_dma);
  4025. #endif
  4026. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4027. {
  4028. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4029. }
  4030. SLAB_ATTR_RO(destroy_by_rcu);
  4031. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4032. {
  4033. return sprintf(buf, "%d\n", s->reserved);
  4034. }
  4035. SLAB_ATTR_RO(reserved);
  4036. #ifdef CONFIG_SLUB_DEBUG
  4037. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4038. {
  4039. return show_slab_objects(s, buf, SO_ALL);
  4040. }
  4041. SLAB_ATTR_RO(slabs);
  4042. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4043. {
  4044. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4045. }
  4046. SLAB_ATTR_RO(total_objects);
  4047. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4048. {
  4049. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4050. }
  4051. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4052. const char *buf, size_t length)
  4053. {
  4054. s->flags &= ~SLAB_DEBUG_FREE;
  4055. if (buf[0] == '1') {
  4056. s->flags &= ~__CMPXCHG_DOUBLE;
  4057. s->flags |= SLAB_DEBUG_FREE;
  4058. }
  4059. return length;
  4060. }
  4061. SLAB_ATTR(sanity_checks);
  4062. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4063. {
  4064. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4065. }
  4066. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4067. size_t length)
  4068. {
  4069. s->flags &= ~SLAB_TRACE;
  4070. if (buf[0] == '1') {
  4071. s->flags &= ~__CMPXCHG_DOUBLE;
  4072. s->flags |= SLAB_TRACE;
  4073. }
  4074. return length;
  4075. }
  4076. SLAB_ATTR(trace);
  4077. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4078. {
  4079. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4080. }
  4081. static ssize_t red_zone_store(struct kmem_cache *s,
  4082. const char *buf, size_t length)
  4083. {
  4084. if (any_slab_objects(s))
  4085. return -EBUSY;
  4086. s->flags &= ~SLAB_RED_ZONE;
  4087. if (buf[0] == '1') {
  4088. s->flags &= ~__CMPXCHG_DOUBLE;
  4089. s->flags |= SLAB_RED_ZONE;
  4090. }
  4091. calculate_sizes(s, -1);
  4092. return length;
  4093. }
  4094. SLAB_ATTR(red_zone);
  4095. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4096. {
  4097. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4098. }
  4099. static ssize_t poison_store(struct kmem_cache *s,
  4100. const char *buf, size_t length)
  4101. {
  4102. if (any_slab_objects(s))
  4103. return -EBUSY;
  4104. s->flags &= ~SLAB_POISON;
  4105. if (buf[0] == '1') {
  4106. s->flags &= ~__CMPXCHG_DOUBLE;
  4107. s->flags |= SLAB_POISON;
  4108. }
  4109. calculate_sizes(s, -1);
  4110. return length;
  4111. }
  4112. SLAB_ATTR(poison);
  4113. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4114. {
  4115. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4116. }
  4117. static ssize_t store_user_store(struct kmem_cache *s,
  4118. const char *buf, size_t length)
  4119. {
  4120. if (any_slab_objects(s))
  4121. return -EBUSY;
  4122. s->flags &= ~SLAB_STORE_USER;
  4123. if (buf[0] == '1') {
  4124. s->flags &= ~__CMPXCHG_DOUBLE;
  4125. s->flags |= SLAB_STORE_USER;
  4126. }
  4127. calculate_sizes(s, -1);
  4128. return length;
  4129. }
  4130. SLAB_ATTR(store_user);
  4131. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4132. {
  4133. return 0;
  4134. }
  4135. static ssize_t validate_store(struct kmem_cache *s,
  4136. const char *buf, size_t length)
  4137. {
  4138. int ret = -EINVAL;
  4139. if (buf[0] == '1') {
  4140. ret = validate_slab_cache(s);
  4141. if (ret >= 0)
  4142. ret = length;
  4143. }
  4144. return ret;
  4145. }
  4146. SLAB_ATTR(validate);
  4147. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4148. {
  4149. if (!(s->flags & SLAB_STORE_USER))
  4150. return -ENOSYS;
  4151. return list_locations(s, buf, TRACK_ALLOC);
  4152. }
  4153. SLAB_ATTR_RO(alloc_calls);
  4154. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4155. {
  4156. if (!(s->flags & SLAB_STORE_USER))
  4157. return -ENOSYS;
  4158. return list_locations(s, buf, TRACK_FREE);
  4159. }
  4160. SLAB_ATTR_RO(free_calls);
  4161. #endif /* CONFIG_SLUB_DEBUG */
  4162. #ifdef CONFIG_FAILSLAB
  4163. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4164. {
  4165. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4166. }
  4167. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4168. size_t length)
  4169. {
  4170. s->flags &= ~SLAB_FAILSLAB;
  4171. if (buf[0] == '1')
  4172. s->flags |= SLAB_FAILSLAB;
  4173. return length;
  4174. }
  4175. SLAB_ATTR(failslab);
  4176. #endif
  4177. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4178. {
  4179. return 0;
  4180. }
  4181. static ssize_t shrink_store(struct kmem_cache *s,
  4182. const char *buf, size_t length)
  4183. {
  4184. if (buf[0] == '1') {
  4185. int rc = kmem_cache_shrink(s);
  4186. if (rc)
  4187. return rc;
  4188. } else
  4189. return -EINVAL;
  4190. return length;
  4191. }
  4192. SLAB_ATTR(shrink);
  4193. #ifdef CONFIG_NUMA
  4194. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4195. {
  4196. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4197. }
  4198. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4199. const char *buf, size_t length)
  4200. {
  4201. unsigned long ratio;
  4202. int err;
  4203. err = strict_strtoul(buf, 10, &ratio);
  4204. if (err)
  4205. return err;
  4206. if (ratio <= 100)
  4207. s->remote_node_defrag_ratio = ratio * 10;
  4208. return length;
  4209. }
  4210. SLAB_ATTR(remote_node_defrag_ratio);
  4211. #endif
  4212. #ifdef CONFIG_SLUB_STATS
  4213. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4214. {
  4215. unsigned long sum = 0;
  4216. int cpu;
  4217. int len;
  4218. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4219. if (!data)
  4220. return -ENOMEM;
  4221. for_each_online_cpu(cpu) {
  4222. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4223. data[cpu] = x;
  4224. sum += x;
  4225. }
  4226. len = sprintf(buf, "%lu", sum);
  4227. #ifdef CONFIG_SMP
  4228. for_each_online_cpu(cpu) {
  4229. if (data[cpu] && len < PAGE_SIZE - 20)
  4230. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4231. }
  4232. #endif
  4233. kfree(data);
  4234. return len + sprintf(buf + len, "\n");
  4235. }
  4236. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4237. {
  4238. int cpu;
  4239. for_each_online_cpu(cpu)
  4240. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4241. }
  4242. #define STAT_ATTR(si, text) \
  4243. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4244. { \
  4245. return show_stat(s, buf, si); \
  4246. } \
  4247. static ssize_t text##_store(struct kmem_cache *s, \
  4248. const char *buf, size_t length) \
  4249. { \
  4250. if (buf[0] != '0') \
  4251. return -EINVAL; \
  4252. clear_stat(s, si); \
  4253. return length; \
  4254. } \
  4255. SLAB_ATTR(text); \
  4256. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4257. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4258. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4259. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4260. STAT_ATTR(FREE_FROZEN, free_frozen);
  4261. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4262. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4263. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4264. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4265. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4266. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4267. STAT_ATTR(FREE_SLAB, free_slab);
  4268. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4269. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4270. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4271. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4272. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4273. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4274. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4275. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4276. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4277. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4278. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4279. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4280. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4281. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4282. #endif
  4283. static struct attribute *slab_attrs[] = {
  4284. &slab_size_attr.attr,
  4285. &object_size_attr.attr,
  4286. &objs_per_slab_attr.attr,
  4287. &order_attr.attr,
  4288. &min_partial_attr.attr,
  4289. &cpu_partial_attr.attr,
  4290. &objects_attr.attr,
  4291. &objects_partial_attr.attr,
  4292. &partial_attr.attr,
  4293. &cpu_slabs_attr.attr,
  4294. &ctor_attr.attr,
  4295. &aliases_attr.attr,
  4296. &align_attr.attr,
  4297. &hwcache_align_attr.attr,
  4298. &reclaim_account_attr.attr,
  4299. &destroy_by_rcu_attr.attr,
  4300. &shrink_attr.attr,
  4301. &reserved_attr.attr,
  4302. &slabs_cpu_partial_attr.attr,
  4303. #ifdef CONFIG_SLUB_DEBUG
  4304. &total_objects_attr.attr,
  4305. &slabs_attr.attr,
  4306. &sanity_checks_attr.attr,
  4307. &trace_attr.attr,
  4308. &red_zone_attr.attr,
  4309. &poison_attr.attr,
  4310. &store_user_attr.attr,
  4311. &validate_attr.attr,
  4312. &alloc_calls_attr.attr,
  4313. &free_calls_attr.attr,
  4314. #endif
  4315. #ifdef CONFIG_ZONE_DMA
  4316. &cache_dma_attr.attr,
  4317. #endif
  4318. #ifdef CONFIG_NUMA
  4319. &remote_node_defrag_ratio_attr.attr,
  4320. #endif
  4321. #ifdef CONFIG_SLUB_STATS
  4322. &alloc_fastpath_attr.attr,
  4323. &alloc_slowpath_attr.attr,
  4324. &free_fastpath_attr.attr,
  4325. &free_slowpath_attr.attr,
  4326. &free_frozen_attr.attr,
  4327. &free_add_partial_attr.attr,
  4328. &free_remove_partial_attr.attr,
  4329. &alloc_from_partial_attr.attr,
  4330. &alloc_slab_attr.attr,
  4331. &alloc_refill_attr.attr,
  4332. &alloc_node_mismatch_attr.attr,
  4333. &free_slab_attr.attr,
  4334. &cpuslab_flush_attr.attr,
  4335. &deactivate_full_attr.attr,
  4336. &deactivate_empty_attr.attr,
  4337. &deactivate_to_head_attr.attr,
  4338. &deactivate_to_tail_attr.attr,
  4339. &deactivate_remote_frees_attr.attr,
  4340. &deactivate_bypass_attr.attr,
  4341. &order_fallback_attr.attr,
  4342. &cmpxchg_double_fail_attr.attr,
  4343. &cmpxchg_double_cpu_fail_attr.attr,
  4344. &cpu_partial_alloc_attr.attr,
  4345. &cpu_partial_free_attr.attr,
  4346. &cpu_partial_node_attr.attr,
  4347. &cpu_partial_drain_attr.attr,
  4348. #endif
  4349. #ifdef CONFIG_FAILSLAB
  4350. &failslab_attr.attr,
  4351. #endif
  4352. NULL
  4353. };
  4354. static struct attribute_group slab_attr_group = {
  4355. .attrs = slab_attrs,
  4356. };
  4357. static ssize_t slab_attr_show(struct kobject *kobj,
  4358. struct attribute *attr,
  4359. char *buf)
  4360. {
  4361. struct slab_attribute *attribute;
  4362. struct kmem_cache *s;
  4363. int err;
  4364. attribute = to_slab_attr(attr);
  4365. s = to_slab(kobj);
  4366. if (!attribute->show)
  4367. return -EIO;
  4368. err = attribute->show(s, buf);
  4369. return err;
  4370. }
  4371. static ssize_t slab_attr_store(struct kobject *kobj,
  4372. struct attribute *attr,
  4373. const char *buf, size_t len)
  4374. {
  4375. struct slab_attribute *attribute;
  4376. struct kmem_cache *s;
  4377. int err;
  4378. attribute = to_slab_attr(attr);
  4379. s = to_slab(kobj);
  4380. if (!attribute->store)
  4381. return -EIO;
  4382. err = attribute->store(s, buf, len);
  4383. return err;
  4384. }
  4385. static void kmem_cache_release(struct kobject *kobj)
  4386. {
  4387. struct kmem_cache *s = to_slab(kobj);
  4388. kfree(s->name);
  4389. kfree(s);
  4390. }
  4391. static const struct sysfs_ops slab_sysfs_ops = {
  4392. .show = slab_attr_show,
  4393. .store = slab_attr_store,
  4394. };
  4395. static struct kobj_type slab_ktype = {
  4396. .sysfs_ops = &slab_sysfs_ops,
  4397. .release = kmem_cache_release
  4398. };
  4399. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4400. {
  4401. struct kobj_type *ktype = get_ktype(kobj);
  4402. if (ktype == &slab_ktype)
  4403. return 1;
  4404. return 0;
  4405. }
  4406. static const struct kset_uevent_ops slab_uevent_ops = {
  4407. .filter = uevent_filter,
  4408. };
  4409. static struct kset *slab_kset;
  4410. #define ID_STR_LENGTH 64
  4411. /* Create a unique string id for a slab cache:
  4412. *
  4413. * Format :[flags-]size
  4414. */
  4415. static char *create_unique_id(struct kmem_cache *s)
  4416. {
  4417. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4418. char *p = name;
  4419. BUG_ON(!name);
  4420. *p++ = ':';
  4421. /*
  4422. * First flags affecting slabcache operations. We will only
  4423. * get here for aliasable slabs so we do not need to support
  4424. * too many flags. The flags here must cover all flags that
  4425. * are matched during merging to guarantee that the id is
  4426. * unique.
  4427. */
  4428. if (s->flags & SLAB_CACHE_DMA)
  4429. *p++ = 'd';
  4430. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4431. *p++ = 'a';
  4432. if (s->flags & SLAB_DEBUG_FREE)
  4433. *p++ = 'F';
  4434. if (!(s->flags & SLAB_NOTRACK))
  4435. *p++ = 't';
  4436. if (p != name + 1)
  4437. *p++ = '-';
  4438. p += sprintf(p, "%07d", s->size);
  4439. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4440. return name;
  4441. }
  4442. static int sysfs_slab_add(struct kmem_cache *s)
  4443. {
  4444. int err;
  4445. const char *name;
  4446. int unmergeable;
  4447. if (slab_state < FULL)
  4448. /* Defer until later */
  4449. return 0;
  4450. unmergeable = slab_unmergeable(s);
  4451. if (unmergeable) {
  4452. /*
  4453. * Slabcache can never be merged so we can use the name proper.
  4454. * This is typically the case for debug situations. In that
  4455. * case we can catch duplicate names easily.
  4456. */
  4457. sysfs_remove_link(&slab_kset->kobj, s->name);
  4458. name = s->name;
  4459. } else {
  4460. /*
  4461. * Create a unique name for the slab as a target
  4462. * for the symlinks.
  4463. */
  4464. name = create_unique_id(s);
  4465. }
  4466. s->kobj.kset = slab_kset;
  4467. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4468. if (err) {
  4469. kobject_put(&s->kobj);
  4470. return err;
  4471. }
  4472. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4473. if (err) {
  4474. kobject_del(&s->kobj);
  4475. kobject_put(&s->kobj);
  4476. return err;
  4477. }
  4478. kobject_uevent(&s->kobj, KOBJ_ADD);
  4479. if (!unmergeable) {
  4480. /* Setup first alias */
  4481. sysfs_slab_alias(s, s->name);
  4482. kfree(name);
  4483. }
  4484. return 0;
  4485. }
  4486. static void sysfs_slab_remove(struct kmem_cache *s)
  4487. {
  4488. if (slab_state < FULL)
  4489. /*
  4490. * Sysfs has not been setup yet so no need to remove the
  4491. * cache from sysfs.
  4492. */
  4493. return;
  4494. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4495. kobject_del(&s->kobj);
  4496. kobject_put(&s->kobj);
  4497. }
  4498. /*
  4499. * Need to buffer aliases during bootup until sysfs becomes
  4500. * available lest we lose that information.
  4501. */
  4502. struct saved_alias {
  4503. struct kmem_cache *s;
  4504. const char *name;
  4505. struct saved_alias *next;
  4506. };
  4507. static struct saved_alias *alias_list;
  4508. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4509. {
  4510. struct saved_alias *al;
  4511. if (slab_state == FULL) {
  4512. /*
  4513. * If we have a leftover link then remove it.
  4514. */
  4515. sysfs_remove_link(&slab_kset->kobj, name);
  4516. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4517. }
  4518. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4519. if (!al)
  4520. return -ENOMEM;
  4521. al->s = s;
  4522. al->name = name;
  4523. al->next = alias_list;
  4524. alias_list = al;
  4525. return 0;
  4526. }
  4527. static int __init slab_sysfs_init(void)
  4528. {
  4529. struct kmem_cache *s;
  4530. int err;
  4531. mutex_lock(&slab_mutex);
  4532. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4533. if (!slab_kset) {
  4534. mutex_unlock(&slab_mutex);
  4535. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4536. return -ENOSYS;
  4537. }
  4538. slab_state = FULL;
  4539. list_for_each_entry(s, &slab_caches, list) {
  4540. err = sysfs_slab_add(s);
  4541. if (err)
  4542. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4543. " to sysfs\n", s->name);
  4544. }
  4545. while (alias_list) {
  4546. struct saved_alias *al = alias_list;
  4547. alias_list = alias_list->next;
  4548. err = sysfs_slab_alias(al->s, al->name);
  4549. if (err)
  4550. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4551. " %s to sysfs\n", al->name);
  4552. kfree(al);
  4553. }
  4554. mutex_unlock(&slab_mutex);
  4555. resiliency_test();
  4556. return 0;
  4557. }
  4558. __initcall(slab_sysfs_init);
  4559. #endif /* CONFIG_SYSFS */
  4560. /*
  4561. * The /proc/slabinfo ABI
  4562. */
  4563. #ifdef CONFIG_SLABINFO
  4564. static void print_slabinfo_header(struct seq_file *m)
  4565. {
  4566. seq_puts(m, "slabinfo - version: 2.1\n");
  4567. seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
  4568. "<objperslab> <pagesperslab>");
  4569. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4570. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4571. seq_putc(m, '\n');
  4572. }
  4573. static void *s_start(struct seq_file *m, loff_t *pos)
  4574. {
  4575. loff_t n = *pos;
  4576. mutex_lock(&slab_mutex);
  4577. if (!n)
  4578. print_slabinfo_header(m);
  4579. return seq_list_start(&slab_caches, *pos);
  4580. }
  4581. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4582. {
  4583. return seq_list_next(p, &slab_caches, pos);
  4584. }
  4585. static void s_stop(struct seq_file *m, void *p)
  4586. {
  4587. mutex_unlock(&slab_mutex);
  4588. }
  4589. static int s_show(struct seq_file *m, void *p)
  4590. {
  4591. unsigned long nr_partials = 0;
  4592. unsigned long nr_slabs = 0;
  4593. unsigned long nr_inuse = 0;
  4594. unsigned long nr_objs = 0;
  4595. unsigned long nr_free = 0;
  4596. struct kmem_cache *s;
  4597. int node;
  4598. s = list_entry(p, struct kmem_cache, list);
  4599. for_each_online_node(node) {
  4600. struct kmem_cache_node *n = get_node(s, node);
  4601. if (!n)
  4602. continue;
  4603. nr_partials += n->nr_partial;
  4604. nr_slabs += atomic_long_read(&n->nr_slabs);
  4605. nr_objs += atomic_long_read(&n->total_objects);
  4606. nr_free += count_partial(n, count_free);
  4607. }
  4608. nr_inuse = nr_objs - nr_free;
  4609. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4610. nr_objs, s->size, oo_objects(s->oo),
  4611. (1 << oo_order(s->oo)));
  4612. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4613. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4614. 0UL);
  4615. seq_putc(m, '\n');
  4616. return 0;
  4617. }
  4618. static const struct seq_operations slabinfo_op = {
  4619. .start = s_start,
  4620. .next = s_next,
  4621. .stop = s_stop,
  4622. .show = s_show,
  4623. };
  4624. static int slabinfo_open(struct inode *inode, struct file *file)
  4625. {
  4626. return seq_open(file, &slabinfo_op);
  4627. }
  4628. static const struct file_operations proc_slabinfo_operations = {
  4629. .open = slabinfo_open,
  4630. .read = seq_read,
  4631. .llseek = seq_lseek,
  4632. .release = seq_release,
  4633. };
  4634. static int __init slab_proc_init(void)
  4635. {
  4636. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4637. return 0;
  4638. }
  4639. module_init(slab_proc_init);
  4640. #endif /* CONFIG_SLABINFO */