spi-rspi.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829
  1. /*
  2. * SH RSPI driver
  3. *
  4. * Copyright (C) 2012 Renesas Solutions Corp.
  5. *
  6. * Based on spi-sh.c:
  7. * Copyright (C) 2011 Renesas Solutions Corp.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; version 2 of the License.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/sched.h>
  26. #include <linux/errno.h>
  27. #include <linux/list.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/io.h>
  32. #include <linux/clk.h>
  33. #include <linux/dmaengine.h>
  34. #include <linux/dma-mapping.h>
  35. #include <linux/sh_dma.h>
  36. #include <linux/spi/spi.h>
  37. #include <linux/spi/rspi.h>
  38. #define RSPI_SPCR 0x00
  39. #define RSPI_SSLP 0x01
  40. #define RSPI_SPPCR 0x02
  41. #define RSPI_SPSR 0x03
  42. #define RSPI_SPDR 0x04
  43. #define RSPI_SPSCR 0x08
  44. #define RSPI_SPSSR 0x09
  45. #define RSPI_SPBR 0x0a
  46. #define RSPI_SPDCR 0x0b
  47. #define RSPI_SPCKD 0x0c
  48. #define RSPI_SSLND 0x0d
  49. #define RSPI_SPND 0x0e
  50. #define RSPI_SPCR2 0x0f
  51. #define RSPI_SPCMD0 0x10
  52. #define RSPI_SPCMD1 0x12
  53. #define RSPI_SPCMD2 0x14
  54. #define RSPI_SPCMD3 0x16
  55. #define RSPI_SPCMD4 0x18
  56. #define RSPI_SPCMD5 0x1a
  57. #define RSPI_SPCMD6 0x1c
  58. #define RSPI_SPCMD7 0x1e
  59. /* SPCR */
  60. #define SPCR_SPRIE 0x80
  61. #define SPCR_SPE 0x40
  62. #define SPCR_SPTIE 0x20
  63. #define SPCR_SPEIE 0x10
  64. #define SPCR_MSTR 0x08
  65. #define SPCR_MODFEN 0x04
  66. #define SPCR_TXMD 0x02
  67. #define SPCR_SPMS 0x01
  68. /* SSLP */
  69. #define SSLP_SSL1P 0x02
  70. #define SSLP_SSL0P 0x01
  71. /* SPPCR */
  72. #define SPPCR_MOIFE 0x20
  73. #define SPPCR_MOIFV 0x10
  74. #define SPPCR_SPOM 0x04
  75. #define SPPCR_SPLP2 0x02
  76. #define SPPCR_SPLP 0x01
  77. /* SPSR */
  78. #define SPSR_SPRF 0x80
  79. #define SPSR_SPTEF 0x20
  80. #define SPSR_PERF 0x08
  81. #define SPSR_MODF 0x04
  82. #define SPSR_IDLNF 0x02
  83. #define SPSR_OVRF 0x01
  84. /* SPSCR */
  85. #define SPSCR_SPSLN_MASK 0x07
  86. /* SPSSR */
  87. #define SPSSR_SPECM_MASK 0x70
  88. #define SPSSR_SPCP_MASK 0x07
  89. /* SPDCR */
  90. #define SPDCR_SPLW 0x20
  91. #define SPDCR_SPRDTD 0x10
  92. #define SPDCR_SLSEL1 0x08
  93. #define SPDCR_SLSEL0 0x04
  94. #define SPDCR_SLSEL_MASK 0x0c
  95. #define SPDCR_SPFC1 0x02
  96. #define SPDCR_SPFC0 0x01
  97. /* SPCKD */
  98. #define SPCKD_SCKDL_MASK 0x07
  99. /* SSLND */
  100. #define SSLND_SLNDL_MASK 0x07
  101. /* SPND */
  102. #define SPND_SPNDL_MASK 0x07
  103. /* SPCR2 */
  104. #define SPCR2_PTE 0x08
  105. #define SPCR2_SPIE 0x04
  106. #define SPCR2_SPOE 0x02
  107. #define SPCR2_SPPE 0x01
  108. /* SPCMDn */
  109. #define SPCMD_SCKDEN 0x8000
  110. #define SPCMD_SLNDEN 0x4000
  111. #define SPCMD_SPNDEN 0x2000
  112. #define SPCMD_LSBF 0x1000
  113. #define SPCMD_SPB_MASK 0x0f00
  114. #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
  115. #define SPCMD_SPB_20BIT 0x0000
  116. #define SPCMD_SPB_24BIT 0x0100
  117. #define SPCMD_SPB_32BIT 0x0200
  118. #define SPCMD_SSLKP 0x0080
  119. #define SPCMD_SSLA_MASK 0x0030
  120. #define SPCMD_BRDV_MASK 0x000c
  121. #define SPCMD_CPOL 0x0002
  122. #define SPCMD_CPHA 0x0001
  123. struct rspi_data {
  124. void __iomem *addr;
  125. u32 max_speed_hz;
  126. struct spi_master *master;
  127. struct list_head queue;
  128. struct work_struct ws;
  129. wait_queue_head_t wait;
  130. spinlock_t lock;
  131. struct clk *clk;
  132. unsigned char spsr;
  133. /* for dmaengine */
  134. struct sh_dmae_slave dma_tx;
  135. struct sh_dmae_slave dma_rx;
  136. struct dma_chan *chan_tx;
  137. struct dma_chan *chan_rx;
  138. int irq;
  139. unsigned dma_width_16bit:1;
  140. unsigned dma_callbacked:1;
  141. };
  142. static void rspi_write8(struct rspi_data *rspi, u8 data, u16 offset)
  143. {
  144. iowrite8(data, rspi->addr + offset);
  145. }
  146. static void rspi_write16(struct rspi_data *rspi, u16 data, u16 offset)
  147. {
  148. iowrite16(data, rspi->addr + offset);
  149. }
  150. static u8 rspi_read8(struct rspi_data *rspi, u16 offset)
  151. {
  152. return ioread8(rspi->addr + offset);
  153. }
  154. static u16 rspi_read16(struct rspi_data *rspi, u16 offset)
  155. {
  156. return ioread16(rspi->addr + offset);
  157. }
  158. static unsigned char rspi_calc_spbr(struct rspi_data *rspi)
  159. {
  160. int tmp;
  161. unsigned char spbr;
  162. tmp = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
  163. spbr = clamp(tmp, 0, 255);
  164. return spbr;
  165. }
  166. static void rspi_enable_irq(struct rspi_data *rspi, u8 enable)
  167. {
  168. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
  169. }
  170. static void rspi_disable_irq(struct rspi_data *rspi, u8 disable)
  171. {
  172. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
  173. }
  174. static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
  175. u8 enable_bit)
  176. {
  177. int ret;
  178. rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
  179. rspi_enable_irq(rspi, enable_bit);
  180. ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
  181. if (ret == 0 && !(rspi->spsr & wait_mask))
  182. return -ETIMEDOUT;
  183. return 0;
  184. }
  185. static void rspi_assert_ssl(struct rspi_data *rspi)
  186. {
  187. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
  188. }
  189. static void rspi_negate_ssl(struct rspi_data *rspi)
  190. {
  191. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
  192. }
  193. static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
  194. {
  195. /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
  196. rspi_write8(rspi, 0x00, RSPI_SPPCR);
  197. /* Sets transfer bit rate */
  198. rspi_write8(rspi, rspi_calc_spbr(rspi), RSPI_SPBR);
  199. /* Sets number of frames to be used: 1 frame */
  200. rspi_write8(rspi, 0x00, RSPI_SPDCR);
  201. /* Sets RSPCK, SSL, next-access delay value */
  202. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  203. rspi_write8(rspi, 0x00, RSPI_SSLND);
  204. rspi_write8(rspi, 0x00, RSPI_SPND);
  205. /* Sets parity, interrupt mask */
  206. rspi_write8(rspi, 0x00, RSPI_SPCR2);
  207. /* Sets SPCMD */
  208. rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | SPCMD_SSLKP,
  209. RSPI_SPCMD0);
  210. /* Sets RSPI mode */
  211. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  212. return 0;
  213. }
  214. static int rspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
  215. struct spi_transfer *t)
  216. {
  217. int remain = t->len;
  218. u8 *data;
  219. data = (u8 *)t->tx_buf;
  220. while (remain > 0) {
  221. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD,
  222. RSPI_SPCR);
  223. if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
  224. dev_err(&rspi->master->dev,
  225. "%s: tx empty timeout\n", __func__);
  226. return -ETIMEDOUT;
  227. }
  228. rspi_write16(rspi, *data, RSPI_SPDR);
  229. data++;
  230. remain--;
  231. }
  232. /* Waiting for the last transmition */
  233. rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  234. return 0;
  235. }
  236. static void rspi_dma_complete(void *arg)
  237. {
  238. struct rspi_data *rspi = arg;
  239. rspi->dma_callbacked = 1;
  240. wake_up_interruptible(&rspi->wait);
  241. }
  242. static int rspi_dma_map_sg(struct scatterlist *sg, void *buf, unsigned len,
  243. struct dma_chan *chan,
  244. enum dma_transfer_direction dir)
  245. {
  246. sg_init_table(sg, 1);
  247. sg_set_buf(sg, buf, len);
  248. sg_dma_len(sg) = len;
  249. return dma_map_sg(chan->device->dev, sg, 1, dir);
  250. }
  251. static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
  252. enum dma_transfer_direction dir)
  253. {
  254. dma_unmap_sg(chan->device->dev, sg, 1, dir);
  255. }
  256. static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
  257. {
  258. u16 *dst = buf;
  259. const u8 *src = data;
  260. while (len) {
  261. *dst++ = (u16)(*src++);
  262. len--;
  263. }
  264. }
  265. static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
  266. {
  267. u8 *dst = buf;
  268. const u16 *src = data;
  269. while (len) {
  270. *dst++ = (u8)*src++;
  271. len--;
  272. }
  273. }
  274. static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
  275. {
  276. struct scatterlist sg;
  277. void *buf = NULL;
  278. struct dma_async_tx_descriptor *desc;
  279. unsigned len;
  280. int ret = 0;
  281. if (rspi->dma_width_16bit) {
  282. /*
  283. * If DMAC bus width is 16-bit, the driver allocates a dummy
  284. * buffer. And, the driver converts original data into the
  285. * DMAC data as the following format:
  286. * original data: 1st byte, 2nd byte ...
  287. * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
  288. */
  289. len = t->len * 2;
  290. buf = kmalloc(len, GFP_KERNEL);
  291. if (!buf)
  292. return -ENOMEM;
  293. rspi_memory_to_8bit(buf, t->tx_buf, t->len);
  294. } else {
  295. len = t->len;
  296. buf = (void *)t->tx_buf;
  297. }
  298. if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
  299. ret = -EFAULT;
  300. goto end_nomap;
  301. }
  302. desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
  303. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  304. if (!desc) {
  305. ret = -EIO;
  306. goto end;
  307. }
  308. /*
  309. * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
  310. * called. So, this driver disables the IRQ while DMA transfer.
  311. */
  312. disable_irq(rspi->irq);
  313. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
  314. rspi_enable_irq(rspi, SPCR_SPTIE);
  315. rspi->dma_callbacked = 0;
  316. desc->callback = rspi_dma_complete;
  317. desc->callback_param = rspi;
  318. dmaengine_submit(desc);
  319. dma_async_issue_pending(rspi->chan_tx);
  320. ret = wait_event_interruptible_timeout(rspi->wait,
  321. rspi->dma_callbacked, HZ);
  322. if (ret > 0 && rspi->dma_callbacked)
  323. ret = 0;
  324. else if (!ret)
  325. ret = -ETIMEDOUT;
  326. rspi_disable_irq(rspi, SPCR_SPTIE);
  327. enable_irq(rspi->irq);
  328. end:
  329. rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
  330. end_nomap:
  331. if (rspi->dma_width_16bit)
  332. kfree(buf);
  333. return ret;
  334. }
  335. static void rspi_receive_init(struct rspi_data *rspi)
  336. {
  337. unsigned char spsr;
  338. spsr = rspi_read8(rspi, RSPI_SPSR);
  339. if (spsr & SPSR_SPRF)
  340. rspi_read16(rspi, RSPI_SPDR); /* dummy read */
  341. if (spsr & SPSR_OVRF)
  342. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
  343. RSPI_SPCR);
  344. }
  345. static int rspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
  346. struct spi_transfer *t)
  347. {
  348. int remain = t->len;
  349. u8 *data;
  350. rspi_receive_init(rspi);
  351. data = (u8 *)t->rx_buf;
  352. while (remain > 0) {
  353. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD,
  354. RSPI_SPCR);
  355. if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
  356. dev_err(&rspi->master->dev,
  357. "%s: tx empty timeout\n", __func__);
  358. return -ETIMEDOUT;
  359. }
  360. /* dummy write for generate clock */
  361. rspi_write16(rspi, 0x00, RSPI_SPDR);
  362. if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
  363. dev_err(&rspi->master->dev,
  364. "%s: receive timeout\n", __func__);
  365. return -ETIMEDOUT;
  366. }
  367. /* SPDR allows 16 or 32-bit access only */
  368. *data = (u8)rspi_read16(rspi, RSPI_SPDR);
  369. data++;
  370. remain--;
  371. }
  372. return 0;
  373. }
  374. static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
  375. {
  376. struct scatterlist sg, sg_dummy;
  377. void *dummy = NULL, *rx_buf = NULL;
  378. struct dma_async_tx_descriptor *desc, *desc_dummy;
  379. unsigned len;
  380. int ret = 0;
  381. if (rspi->dma_width_16bit) {
  382. /*
  383. * If DMAC bus width is 16-bit, the driver allocates a dummy
  384. * buffer. And, finally the driver converts the DMAC data into
  385. * actual data as the following format:
  386. * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
  387. * actual data: 1st byte, 2nd byte ...
  388. */
  389. len = t->len * 2;
  390. rx_buf = kmalloc(len, GFP_KERNEL);
  391. if (!rx_buf)
  392. return -ENOMEM;
  393. } else {
  394. len = t->len;
  395. rx_buf = t->rx_buf;
  396. }
  397. /* prepare dummy transfer to generate SPI clocks */
  398. dummy = kzalloc(len, GFP_KERNEL);
  399. if (!dummy) {
  400. ret = -ENOMEM;
  401. goto end_nomap;
  402. }
  403. if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
  404. DMA_TO_DEVICE)) {
  405. ret = -EFAULT;
  406. goto end_nomap;
  407. }
  408. desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
  409. DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  410. if (!desc_dummy) {
  411. ret = -EIO;
  412. goto end_dummy_mapped;
  413. }
  414. /* prepare receive transfer */
  415. if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
  416. DMA_FROM_DEVICE)) {
  417. ret = -EFAULT;
  418. goto end_dummy_mapped;
  419. }
  420. desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
  421. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  422. if (!desc) {
  423. ret = -EIO;
  424. goto end;
  425. }
  426. rspi_receive_init(rspi);
  427. /*
  428. * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
  429. * called. So, this driver disables the IRQ while DMA transfer.
  430. */
  431. disable_irq(rspi->irq);
  432. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
  433. rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
  434. rspi->dma_callbacked = 0;
  435. desc->callback = rspi_dma_complete;
  436. desc->callback_param = rspi;
  437. dmaengine_submit(desc);
  438. dma_async_issue_pending(rspi->chan_rx);
  439. desc_dummy->callback = NULL; /* No callback */
  440. dmaengine_submit(desc_dummy);
  441. dma_async_issue_pending(rspi->chan_tx);
  442. ret = wait_event_interruptible_timeout(rspi->wait,
  443. rspi->dma_callbacked, HZ);
  444. if (ret > 0 && rspi->dma_callbacked)
  445. ret = 0;
  446. else if (!ret)
  447. ret = -ETIMEDOUT;
  448. rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
  449. enable_irq(rspi->irq);
  450. end:
  451. rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
  452. end_dummy_mapped:
  453. rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
  454. end_nomap:
  455. if (rspi->dma_width_16bit) {
  456. if (!ret)
  457. rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
  458. kfree(rx_buf);
  459. }
  460. kfree(dummy);
  461. return ret;
  462. }
  463. static int rspi_is_dma(struct rspi_data *rspi, struct spi_transfer *t)
  464. {
  465. if (t->tx_buf && rspi->chan_tx)
  466. return 1;
  467. /* If the module receives data by DMAC, it also needs TX DMAC */
  468. if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
  469. return 1;
  470. return 0;
  471. }
  472. static void rspi_work(struct work_struct *work)
  473. {
  474. struct rspi_data *rspi = container_of(work, struct rspi_data, ws);
  475. struct spi_message *mesg;
  476. struct spi_transfer *t;
  477. unsigned long flags;
  478. int ret;
  479. spin_lock_irqsave(&rspi->lock, flags);
  480. while (!list_empty(&rspi->queue)) {
  481. mesg = list_entry(rspi->queue.next, struct spi_message, queue);
  482. list_del_init(&mesg->queue);
  483. spin_unlock_irqrestore(&rspi->lock, flags);
  484. rspi_assert_ssl(rspi);
  485. list_for_each_entry(t, &mesg->transfers, transfer_list) {
  486. if (t->tx_buf) {
  487. if (rspi_is_dma(rspi, t))
  488. ret = rspi_send_dma(rspi, t);
  489. else
  490. ret = rspi_send_pio(rspi, mesg, t);
  491. if (ret < 0)
  492. goto error;
  493. }
  494. if (t->rx_buf) {
  495. if (rspi_is_dma(rspi, t))
  496. ret = rspi_receive_dma(rspi, t);
  497. else
  498. ret = rspi_receive_pio(rspi, mesg, t);
  499. if (ret < 0)
  500. goto error;
  501. }
  502. mesg->actual_length += t->len;
  503. }
  504. rspi_negate_ssl(rspi);
  505. mesg->status = 0;
  506. mesg->complete(mesg->context);
  507. spin_lock_irqsave(&rspi->lock, flags);
  508. }
  509. return;
  510. error:
  511. mesg->status = ret;
  512. mesg->complete(mesg->context);
  513. }
  514. static int rspi_setup(struct spi_device *spi)
  515. {
  516. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  517. if (!spi->bits_per_word)
  518. spi->bits_per_word = 8;
  519. rspi->max_speed_hz = spi->max_speed_hz;
  520. rspi_set_config_register(rspi, 8);
  521. return 0;
  522. }
  523. static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg)
  524. {
  525. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  526. unsigned long flags;
  527. mesg->actual_length = 0;
  528. mesg->status = -EINPROGRESS;
  529. spin_lock_irqsave(&rspi->lock, flags);
  530. list_add_tail(&mesg->queue, &rspi->queue);
  531. schedule_work(&rspi->ws);
  532. spin_unlock_irqrestore(&rspi->lock, flags);
  533. return 0;
  534. }
  535. static void rspi_cleanup(struct spi_device *spi)
  536. {
  537. }
  538. static irqreturn_t rspi_irq(int irq, void *_sr)
  539. {
  540. struct rspi_data *rspi = (struct rspi_data *)_sr;
  541. unsigned long spsr;
  542. irqreturn_t ret = IRQ_NONE;
  543. unsigned char disable_irq = 0;
  544. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  545. if (spsr & SPSR_SPRF)
  546. disable_irq |= SPCR_SPRIE;
  547. if (spsr & SPSR_SPTEF)
  548. disable_irq |= SPCR_SPTIE;
  549. if (disable_irq) {
  550. ret = IRQ_HANDLED;
  551. rspi_disable_irq(rspi, disable_irq);
  552. wake_up(&rspi->wait);
  553. }
  554. return ret;
  555. }
  556. static bool rspi_filter(struct dma_chan *chan, void *filter_param)
  557. {
  558. chan->private = filter_param;
  559. return true;
  560. }
  561. static void __devinit rspi_request_dma(struct rspi_data *rspi,
  562. struct platform_device *pdev)
  563. {
  564. struct rspi_plat_data *rspi_pd = pdev->dev.platform_data;
  565. dma_cap_mask_t mask;
  566. if (!rspi_pd)
  567. return;
  568. rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
  569. /* If the module receives data by DMAC, it also needs TX DMAC */
  570. if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
  571. dma_cap_zero(mask);
  572. dma_cap_set(DMA_SLAVE, mask);
  573. rspi->dma_rx.slave_id = rspi_pd->dma_rx_id;
  574. rspi->chan_rx = dma_request_channel(mask, rspi_filter,
  575. &rspi->dma_rx);
  576. if (rspi->chan_rx)
  577. dev_info(&pdev->dev, "Use DMA when rx.\n");
  578. }
  579. if (rspi_pd->dma_tx_id) {
  580. dma_cap_zero(mask);
  581. dma_cap_set(DMA_SLAVE, mask);
  582. rspi->dma_tx.slave_id = rspi_pd->dma_tx_id;
  583. rspi->chan_tx = dma_request_channel(mask, rspi_filter,
  584. &rspi->dma_tx);
  585. if (rspi->chan_tx)
  586. dev_info(&pdev->dev, "Use DMA when tx\n");
  587. }
  588. }
  589. static void __devexit rspi_release_dma(struct rspi_data *rspi)
  590. {
  591. if (rspi->chan_tx)
  592. dma_release_channel(rspi->chan_tx);
  593. if (rspi->chan_rx)
  594. dma_release_channel(rspi->chan_rx);
  595. }
  596. static int __devexit rspi_remove(struct platform_device *pdev)
  597. {
  598. struct rspi_data *rspi = dev_get_drvdata(&pdev->dev);
  599. spi_unregister_master(rspi->master);
  600. rspi_release_dma(rspi);
  601. free_irq(platform_get_irq(pdev, 0), rspi);
  602. clk_put(rspi->clk);
  603. iounmap(rspi->addr);
  604. spi_master_put(rspi->master);
  605. return 0;
  606. }
  607. static int __devinit rspi_probe(struct platform_device *pdev)
  608. {
  609. struct resource *res;
  610. struct spi_master *master;
  611. struct rspi_data *rspi;
  612. int ret, irq;
  613. char clk_name[16];
  614. /* get base addr */
  615. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  616. if (unlikely(res == NULL)) {
  617. dev_err(&pdev->dev, "invalid resource\n");
  618. return -EINVAL;
  619. }
  620. irq = platform_get_irq(pdev, 0);
  621. if (irq < 0) {
  622. dev_err(&pdev->dev, "platform_get_irq error\n");
  623. return -ENODEV;
  624. }
  625. master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
  626. if (master == NULL) {
  627. dev_err(&pdev->dev, "spi_alloc_master error.\n");
  628. return -ENOMEM;
  629. }
  630. rspi = spi_master_get_devdata(master);
  631. dev_set_drvdata(&pdev->dev, rspi);
  632. rspi->master = master;
  633. rspi->addr = ioremap(res->start, resource_size(res));
  634. if (rspi->addr == NULL) {
  635. dev_err(&pdev->dev, "ioremap error.\n");
  636. ret = -ENOMEM;
  637. goto error1;
  638. }
  639. snprintf(clk_name, sizeof(clk_name), "rspi%d", pdev->id);
  640. rspi->clk = clk_get(&pdev->dev, clk_name);
  641. if (IS_ERR(rspi->clk)) {
  642. dev_err(&pdev->dev, "cannot get clock\n");
  643. ret = PTR_ERR(rspi->clk);
  644. goto error2;
  645. }
  646. clk_enable(rspi->clk);
  647. INIT_LIST_HEAD(&rspi->queue);
  648. spin_lock_init(&rspi->lock);
  649. INIT_WORK(&rspi->ws, rspi_work);
  650. init_waitqueue_head(&rspi->wait);
  651. master->num_chipselect = 2;
  652. master->bus_num = pdev->id;
  653. master->setup = rspi_setup;
  654. master->transfer = rspi_transfer;
  655. master->cleanup = rspi_cleanup;
  656. ret = request_irq(irq, rspi_irq, 0, dev_name(&pdev->dev), rspi);
  657. if (ret < 0) {
  658. dev_err(&pdev->dev, "request_irq error\n");
  659. goto error3;
  660. }
  661. rspi->irq = irq;
  662. rspi_request_dma(rspi, pdev);
  663. ret = spi_register_master(master);
  664. if (ret < 0) {
  665. dev_err(&pdev->dev, "spi_register_master error.\n");
  666. goto error4;
  667. }
  668. dev_info(&pdev->dev, "probed\n");
  669. return 0;
  670. error4:
  671. rspi_release_dma(rspi);
  672. free_irq(irq, rspi);
  673. error3:
  674. clk_put(rspi->clk);
  675. error2:
  676. iounmap(rspi->addr);
  677. error1:
  678. spi_master_put(master);
  679. return ret;
  680. }
  681. static struct platform_driver rspi_driver = {
  682. .probe = rspi_probe,
  683. .remove = __devexit_p(rspi_remove),
  684. .driver = {
  685. .name = "rspi",
  686. .owner = THIS_MODULE,
  687. },
  688. };
  689. module_platform_driver(rspi_driver);
  690. MODULE_DESCRIPTION("Renesas RSPI bus driver");
  691. MODULE_LICENSE("GPL v2");
  692. MODULE_AUTHOR("Yoshihiro Shimoda");
  693. MODULE_ALIAS("platform:rspi");