mv_sas.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193
  1. /*
  2. * Marvell 88SE64xx/88SE94xx main function
  3. *
  4. * Copyright 2007 Red Hat, Inc.
  5. * Copyright 2008 Marvell. <kewei@marvell.com>
  6. * Copyright 2009-2011 Marvell. <yuxiangl@marvell.com>
  7. *
  8. * This file is licensed under GPLv2.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; version 2 of the
  13. * License.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
  23. * USA
  24. */
  25. #include "mv_sas.h"
  26. static int mvs_find_tag(struct mvs_info *mvi, struct sas_task *task, u32 *tag)
  27. {
  28. if (task->lldd_task) {
  29. struct mvs_slot_info *slot;
  30. slot = task->lldd_task;
  31. *tag = slot->slot_tag;
  32. return 1;
  33. }
  34. return 0;
  35. }
  36. void mvs_tag_clear(struct mvs_info *mvi, u32 tag)
  37. {
  38. void *bitmap = mvi->tags;
  39. clear_bit(tag, bitmap);
  40. }
  41. void mvs_tag_free(struct mvs_info *mvi, u32 tag)
  42. {
  43. mvs_tag_clear(mvi, tag);
  44. }
  45. void mvs_tag_set(struct mvs_info *mvi, unsigned int tag)
  46. {
  47. void *bitmap = mvi->tags;
  48. set_bit(tag, bitmap);
  49. }
  50. inline int mvs_tag_alloc(struct mvs_info *mvi, u32 *tag_out)
  51. {
  52. unsigned int index, tag;
  53. void *bitmap = mvi->tags;
  54. index = find_first_zero_bit(bitmap, mvi->tags_num);
  55. tag = index;
  56. if (tag >= mvi->tags_num)
  57. return -SAS_QUEUE_FULL;
  58. mvs_tag_set(mvi, tag);
  59. *tag_out = tag;
  60. return 0;
  61. }
  62. void mvs_tag_init(struct mvs_info *mvi)
  63. {
  64. int i;
  65. for (i = 0; i < mvi->tags_num; ++i)
  66. mvs_tag_clear(mvi, i);
  67. }
  68. struct mvs_info *mvs_find_dev_mvi(struct domain_device *dev)
  69. {
  70. unsigned long i = 0, j = 0, hi = 0;
  71. struct sas_ha_struct *sha = dev->port->ha;
  72. struct mvs_info *mvi = NULL;
  73. struct asd_sas_phy *phy;
  74. while (sha->sas_port[i]) {
  75. if (sha->sas_port[i] == dev->port) {
  76. phy = container_of(sha->sas_port[i]->phy_list.next,
  77. struct asd_sas_phy, port_phy_el);
  78. j = 0;
  79. while (sha->sas_phy[j]) {
  80. if (sha->sas_phy[j] == phy)
  81. break;
  82. j++;
  83. }
  84. break;
  85. }
  86. i++;
  87. }
  88. hi = j/((struct mvs_prv_info *)sha->lldd_ha)->n_phy;
  89. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi];
  90. return mvi;
  91. }
  92. int mvs_find_dev_phyno(struct domain_device *dev, int *phyno)
  93. {
  94. unsigned long i = 0, j = 0, n = 0, num = 0;
  95. struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
  96. struct mvs_info *mvi = mvi_dev->mvi_info;
  97. struct sas_ha_struct *sha = dev->port->ha;
  98. while (sha->sas_port[i]) {
  99. if (sha->sas_port[i] == dev->port) {
  100. struct asd_sas_phy *phy;
  101. list_for_each_entry(phy,
  102. &sha->sas_port[i]->phy_list, port_phy_el) {
  103. j = 0;
  104. while (sha->sas_phy[j]) {
  105. if (sha->sas_phy[j] == phy)
  106. break;
  107. j++;
  108. }
  109. phyno[n] = (j >= mvi->chip->n_phy) ?
  110. (j - mvi->chip->n_phy) : j;
  111. num++;
  112. n++;
  113. }
  114. break;
  115. }
  116. i++;
  117. }
  118. return num;
  119. }
  120. struct mvs_device *mvs_find_dev_by_reg_set(struct mvs_info *mvi,
  121. u8 reg_set)
  122. {
  123. u32 dev_no;
  124. for (dev_no = 0; dev_no < MVS_MAX_DEVICES; dev_no++) {
  125. if (mvi->devices[dev_no].taskfileset == MVS_ID_NOT_MAPPED)
  126. continue;
  127. if (mvi->devices[dev_no].taskfileset == reg_set)
  128. return &mvi->devices[dev_no];
  129. }
  130. return NULL;
  131. }
  132. static inline void mvs_free_reg_set(struct mvs_info *mvi,
  133. struct mvs_device *dev)
  134. {
  135. if (!dev) {
  136. mv_printk("device has been free.\n");
  137. return;
  138. }
  139. if (dev->taskfileset == MVS_ID_NOT_MAPPED)
  140. return;
  141. MVS_CHIP_DISP->free_reg_set(mvi, &dev->taskfileset);
  142. }
  143. static inline u8 mvs_assign_reg_set(struct mvs_info *mvi,
  144. struct mvs_device *dev)
  145. {
  146. if (dev->taskfileset != MVS_ID_NOT_MAPPED)
  147. return 0;
  148. return MVS_CHIP_DISP->assign_reg_set(mvi, &dev->taskfileset);
  149. }
  150. void mvs_phys_reset(struct mvs_info *mvi, u32 phy_mask, int hard)
  151. {
  152. u32 no;
  153. for_each_phy(phy_mask, phy_mask, no) {
  154. if (!(phy_mask & 1))
  155. continue;
  156. MVS_CHIP_DISP->phy_reset(mvi, no, hard);
  157. }
  158. }
  159. int mvs_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
  160. void *funcdata)
  161. {
  162. int rc = 0, phy_id = sas_phy->id;
  163. u32 tmp, i = 0, hi;
  164. struct sas_ha_struct *sha = sas_phy->ha;
  165. struct mvs_info *mvi = NULL;
  166. while (sha->sas_phy[i]) {
  167. if (sha->sas_phy[i] == sas_phy)
  168. break;
  169. i++;
  170. }
  171. hi = i/((struct mvs_prv_info *)sha->lldd_ha)->n_phy;
  172. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi];
  173. switch (func) {
  174. case PHY_FUNC_SET_LINK_RATE:
  175. MVS_CHIP_DISP->phy_set_link_rate(mvi, phy_id, funcdata);
  176. break;
  177. case PHY_FUNC_HARD_RESET:
  178. tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_id);
  179. if (tmp & PHY_RST_HARD)
  180. break;
  181. MVS_CHIP_DISP->phy_reset(mvi, phy_id, MVS_HARD_RESET);
  182. break;
  183. case PHY_FUNC_LINK_RESET:
  184. MVS_CHIP_DISP->phy_enable(mvi, phy_id);
  185. MVS_CHIP_DISP->phy_reset(mvi, phy_id, MVS_SOFT_RESET);
  186. break;
  187. case PHY_FUNC_DISABLE:
  188. MVS_CHIP_DISP->phy_disable(mvi, phy_id);
  189. break;
  190. case PHY_FUNC_RELEASE_SPINUP_HOLD:
  191. default:
  192. rc = -ENOSYS;
  193. }
  194. msleep(200);
  195. return rc;
  196. }
  197. void __devinit mvs_set_sas_addr(struct mvs_info *mvi, int port_id,
  198. u32 off_lo, u32 off_hi, u64 sas_addr)
  199. {
  200. u32 lo = (u32)sas_addr;
  201. u32 hi = (u32)(sas_addr>>32);
  202. MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_lo);
  203. MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, lo);
  204. MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_hi);
  205. MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, hi);
  206. }
  207. static void mvs_bytes_dmaed(struct mvs_info *mvi, int i)
  208. {
  209. struct mvs_phy *phy = &mvi->phy[i];
  210. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  211. struct sas_ha_struct *sas_ha;
  212. if (!phy->phy_attached)
  213. return;
  214. if (!(phy->att_dev_info & PORT_DEV_TRGT_MASK)
  215. && phy->phy_type & PORT_TYPE_SAS) {
  216. return;
  217. }
  218. sas_ha = mvi->sas;
  219. sas_ha->notify_phy_event(sas_phy, PHYE_OOB_DONE);
  220. if (sas_phy->phy) {
  221. struct sas_phy *sphy = sas_phy->phy;
  222. sphy->negotiated_linkrate = sas_phy->linkrate;
  223. sphy->minimum_linkrate = phy->minimum_linkrate;
  224. sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
  225. sphy->maximum_linkrate = phy->maximum_linkrate;
  226. sphy->maximum_linkrate_hw = MVS_CHIP_DISP->phy_max_link_rate();
  227. }
  228. if (phy->phy_type & PORT_TYPE_SAS) {
  229. struct sas_identify_frame *id;
  230. id = (struct sas_identify_frame *)phy->frame_rcvd;
  231. id->dev_type = phy->identify.device_type;
  232. id->initiator_bits = SAS_PROTOCOL_ALL;
  233. id->target_bits = phy->identify.target_port_protocols;
  234. /* direct attached SAS device */
  235. if (phy->att_dev_info & PORT_SSP_TRGT_MASK) {
  236. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_PHY_STAT);
  237. MVS_CHIP_DISP->write_port_cfg_data(mvi, i, 0x00);
  238. }
  239. } else if (phy->phy_type & PORT_TYPE_SATA) {
  240. /*Nothing*/
  241. }
  242. mv_dprintk("phy %d byte dmaded.\n", i + mvi->id * mvi->chip->n_phy);
  243. sas_phy->frame_rcvd_size = phy->frame_rcvd_size;
  244. mvi->sas->notify_port_event(sas_phy,
  245. PORTE_BYTES_DMAED);
  246. }
  247. void mvs_scan_start(struct Scsi_Host *shost)
  248. {
  249. int i, j;
  250. unsigned short core_nr;
  251. struct mvs_info *mvi;
  252. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  253. struct mvs_prv_info *mvs_prv = sha->lldd_ha;
  254. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  255. for (j = 0; j < core_nr; j++) {
  256. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[j];
  257. for (i = 0; i < mvi->chip->n_phy; ++i)
  258. mvs_bytes_dmaed(mvi, i);
  259. }
  260. mvs_prv->scan_finished = 1;
  261. }
  262. int mvs_scan_finished(struct Scsi_Host *shost, unsigned long time)
  263. {
  264. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  265. struct mvs_prv_info *mvs_prv = sha->lldd_ha;
  266. if (mvs_prv->scan_finished == 0)
  267. return 0;
  268. sas_drain_work(sha);
  269. return 1;
  270. }
  271. static int mvs_task_prep_smp(struct mvs_info *mvi,
  272. struct mvs_task_exec_info *tei)
  273. {
  274. int elem, rc, i;
  275. struct sas_task *task = tei->task;
  276. struct mvs_cmd_hdr *hdr = tei->hdr;
  277. struct domain_device *dev = task->dev;
  278. struct asd_sas_port *sas_port = dev->port;
  279. struct scatterlist *sg_req, *sg_resp;
  280. u32 req_len, resp_len, tag = tei->tag;
  281. void *buf_tmp;
  282. u8 *buf_oaf;
  283. dma_addr_t buf_tmp_dma;
  284. void *buf_prd;
  285. struct mvs_slot_info *slot = &mvi->slot_info[tag];
  286. u32 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
  287. /*
  288. * DMA-map SMP request, response buffers
  289. */
  290. sg_req = &task->smp_task.smp_req;
  291. elem = dma_map_sg(mvi->dev, sg_req, 1, PCI_DMA_TODEVICE);
  292. if (!elem)
  293. return -ENOMEM;
  294. req_len = sg_dma_len(sg_req);
  295. sg_resp = &task->smp_task.smp_resp;
  296. elem = dma_map_sg(mvi->dev, sg_resp, 1, PCI_DMA_FROMDEVICE);
  297. if (!elem) {
  298. rc = -ENOMEM;
  299. goto err_out;
  300. }
  301. resp_len = SB_RFB_MAX;
  302. /* must be in dwords */
  303. if ((req_len & 0x3) || (resp_len & 0x3)) {
  304. rc = -EINVAL;
  305. goto err_out_2;
  306. }
  307. /*
  308. * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
  309. */
  310. /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ***** */
  311. buf_tmp = slot->buf;
  312. buf_tmp_dma = slot->buf_dma;
  313. hdr->cmd_tbl = cpu_to_le64(sg_dma_address(sg_req));
  314. /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
  315. buf_oaf = buf_tmp;
  316. hdr->open_frame = cpu_to_le64(buf_tmp_dma);
  317. buf_tmp += MVS_OAF_SZ;
  318. buf_tmp_dma += MVS_OAF_SZ;
  319. /* region 3: PRD table *********************************** */
  320. buf_prd = buf_tmp;
  321. if (tei->n_elem)
  322. hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
  323. else
  324. hdr->prd_tbl = 0;
  325. i = MVS_CHIP_DISP->prd_size() * tei->n_elem;
  326. buf_tmp += i;
  327. buf_tmp_dma += i;
  328. /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
  329. slot->response = buf_tmp;
  330. hdr->status_buf = cpu_to_le64(buf_tmp_dma);
  331. if (mvi->flags & MVF_FLAG_SOC)
  332. hdr->reserved[0] = 0;
  333. /*
  334. * Fill in TX ring and command slot header
  335. */
  336. slot->tx = mvi->tx_prod;
  337. mvi->tx[mvi->tx_prod] = cpu_to_le32((TXQ_CMD_SMP << TXQ_CMD_SHIFT) |
  338. TXQ_MODE_I | tag |
  339. (sas_port->phy_mask << TXQ_PHY_SHIFT));
  340. hdr->flags |= flags;
  341. hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | ((req_len - 4) / 4));
  342. hdr->tags = cpu_to_le32(tag);
  343. hdr->data_len = 0;
  344. /* generate open address frame hdr (first 12 bytes) */
  345. /* initiator, SMP, ftype 1h */
  346. buf_oaf[0] = (1 << 7) | (PROTOCOL_SMP << 4) | 0x01;
  347. buf_oaf[1] = min(sas_port->linkrate, dev->linkrate) & 0xf;
  348. *(u16 *)(buf_oaf + 2) = 0xFFFF; /* SAS SPEC */
  349. memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
  350. /* fill in PRD (scatter/gather) table, if any */
  351. MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
  352. return 0;
  353. err_out_2:
  354. dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_resp, 1,
  355. PCI_DMA_FROMDEVICE);
  356. err_out:
  357. dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_req, 1,
  358. PCI_DMA_TODEVICE);
  359. return rc;
  360. }
  361. static u32 mvs_get_ncq_tag(struct sas_task *task, u32 *tag)
  362. {
  363. struct ata_queued_cmd *qc = task->uldd_task;
  364. if (qc) {
  365. if (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
  366. qc->tf.command == ATA_CMD_FPDMA_READ) {
  367. *tag = qc->tag;
  368. return 1;
  369. }
  370. }
  371. return 0;
  372. }
  373. static int mvs_task_prep_ata(struct mvs_info *mvi,
  374. struct mvs_task_exec_info *tei)
  375. {
  376. struct sas_task *task = tei->task;
  377. struct domain_device *dev = task->dev;
  378. struct mvs_device *mvi_dev = dev->lldd_dev;
  379. struct mvs_cmd_hdr *hdr = tei->hdr;
  380. struct asd_sas_port *sas_port = dev->port;
  381. struct mvs_slot_info *slot;
  382. void *buf_prd;
  383. u32 tag = tei->tag, hdr_tag;
  384. u32 flags, del_q;
  385. void *buf_tmp;
  386. u8 *buf_cmd, *buf_oaf;
  387. dma_addr_t buf_tmp_dma;
  388. u32 i, req_len, resp_len;
  389. const u32 max_resp_len = SB_RFB_MAX;
  390. if (mvs_assign_reg_set(mvi, mvi_dev) == MVS_ID_NOT_MAPPED) {
  391. mv_dprintk("Have not enough regiset for dev %d.\n",
  392. mvi_dev->device_id);
  393. return -EBUSY;
  394. }
  395. slot = &mvi->slot_info[tag];
  396. slot->tx = mvi->tx_prod;
  397. del_q = TXQ_MODE_I | tag |
  398. (TXQ_CMD_STP << TXQ_CMD_SHIFT) |
  399. (sas_port->phy_mask << TXQ_PHY_SHIFT) |
  400. (mvi_dev->taskfileset << TXQ_SRS_SHIFT);
  401. mvi->tx[mvi->tx_prod] = cpu_to_le32(del_q);
  402. if (task->data_dir == DMA_FROM_DEVICE)
  403. flags = (MVS_CHIP_DISP->prd_count() << MCH_PRD_LEN_SHIFT);
  404. else
  405. flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
  406. if (task->ata_task.use_ncq)
  407. flags |= MCH_FPDMA;
  408. if (dev->sata_dev.command_set == ATAPI_COMMAND_SET) {
  409. if (task->ata_task.fis.command != ATA_CMD_ID_ATAPI)
  410. flags |= MCH_ATAPI;
  411. }
  412. hdr->flags = cpu_to_le32(flags);
  413. if (task->ata_task.use_ncq && mvs_get_ncq_tag(task, &hdr_tag))
  414. task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
  415. else
  416. hdr_tag = tag;
  417. hdr->tags = cpu_to_le32(hdr_tag);
  418. hdr->data_len = cpu_to_le32(task->total_xfer_len);
  419. /*
  420. * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
  421. */
  422. /* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */
  423. buf_cmd = buf_tmp = slot->buf;
  424. buf_tmp_dma = slot->buf_dma;
  425. hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
  426. buf_tmp += MVS_ATA_CMD_SZ;
  427. buf_tmp_dma += MVS_ATA_CMD_SZ;
  428. /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
  429. /* used for STP. unused for SATA? */
  430. buf_oaf = buf_tmp;
  431. hdr->open_frame = cpu_to_le64(buf_tmp_dma);
  432. buf_tmp += MVS_OAF_SZ;
  433. buf_tmp_dma += MVS_OAF_SZ;
  434. /* region 3: PRD table ********************************************* */
  435. buf_prd = buf_tmp;
  436. if (tei->n_elem)
  437. hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
  438. else
  439. hdr->prd_tbl = 0;
  440. i = MVS_CHIP_DISP->prd_size() * MVS_CHIP_DISP->prd_count();
  441. buf_tmp += i;
  442. buf_tmp_dma += i;
  443. /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
  444. slot->response = buf_tmp;
  445. hdr->status_buf = cpu_to_le64(buf_tmp_dma);
  446. if (mvi->flags & MVF_FLAG_SOC)
  447. hdr->reserved[0] = 0;
  448. req_len = sizeof(struct host_to_dev_fis);
  449. resp_len = MVS_SLOT_BUF_SZ - MVS_ATA_CMD_SZ -
  450. sizeof(struct mvs_err_info) - i;
  451. /* request, response lengths */
  452. resp_len = min(resp_len, max_resp_len);
  453. hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));
  454. if (likely(!task->ata_task.device_control_reg_update))
  455. task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
  456. /* fill in command FIS and ATAPI CDB */
  457. memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
  458. if (dev->sata_dev.command_set == ATAPI_COMMAND_SET)
  459. memcpy(buf_cmd + STP_ATAPI_CMD,
  460. task->ata_task.atapi_packet, 16);
  461. /* generate open address frame hdr (first 12 bytes) */
  462. /* initiator, STP, ftype 1h */
  463. buf_oaf[0] = (1 << 7) | (PROTOCOL_STP << 4) | 0x1;
  464. buf_oaf[1] = min(sas_port->linkrate, dev->linkrate) & 0xf;
  465. *(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1);
  466. memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
  467. /* fill in PRD (scatter/gather) table, if any */
  468. MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
  469. if (task->data_dir == DMA_FROM_DEVICE)
  470. MVS_CHIP_DISP->dma_fix(mvi, sas_port->phy_mask,
  471. TRASH_BUCKET_SIZE, tei->n_elem, buf_prd);
  472. return 0;
  473. }
  474. static int mvs_task_prep_ssp(struct mvs_info *mvi,
  475. struct mvs_task_exec_info *tei, int is_tmf,
  476. struct mvs_tmf_task *tmf)
  477. {
  478. struct sas_task *task = tei->task;
  479. struct mvs_cmd_hdr *hdr = tei->hdr;
  480. struct mvs_port *port = tei->port;
  481. struct domain_device *dev = task->dev;
  482. struct mvs_device *mvi_dev = dev->lldd_dev;
  483. struct asd_sas_port *sas_port = dev->port;
  484. struct mvs_slot_info *slot;
  485. void *buf_prd;
  486. struct ssp_frame_hdr *ssp_hdr;
  487. void *buf_tmp;
  488. u8 *buf_cmd, *buf_oaf, fburst = 0;
  489. dma_addr_t buf_tmp_dma;
  490. u32 flags;
  491. u32 resp_len, req_len, i, tag = tei->tag;
  492. const u32 max_resp_len = SB_RFB_MAX;
  493. u32 phy_mask;
  494. slot = &mvi->slot_info[tag];
  495. phy_mask = ((port->wide_port_phymap) ? port->wide_port_phymap :
  496. sas_port->phy_mask) & TXQ_PHY_MASK;
  497. slot->tx = mvi->tx_prod;
  498. mvi->tx[mvi->tx_prod] = cpu_to_le32(TXQ_MODE_I | tag |
  499. (TXQ_CMD_SSP << TXQ_CMD_SHIFT) |
  500. (phy_mask << TXQ_PHY_SHIFT));
  501. flags = MCH_RETRY;
  502. if (task->ssp_task.enable_first_burst) {
  503. flags |= MCH_FBURST;
  504. fburst = (1 << 7);
  505. }
  506. if (is_tmf)
  507. flags |= (MCH_SSP_FR_TASK << MCH_SSP_FR_TYPE_SHIFT);
  508. else
  509. flags |= (MCH_SSP_FR_CMD << MCH_SSP_FR_TYPE_SHIFT);
  510. hdr->flags = cpu_to_le32(flags | (tei->n_elem << MCH_PRD_LEN_SHIFT));
  511. hdr->tags = cpu_to_le32(tag);
  512. hdr->data_len = cpu_to_le32(task->total_xfer_len);
  513. /*
  514. * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
  515. */
  516. /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
  517. buf_cmd = buf_tmp = slot->buf;
  518. buf_tmp_dma = slot->buf_dma;
  519. hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
  520. buf_tmp += MVS_SSP_CMD_SZ;
  521. buf_tmp_dma += MVS_SSP_CMD_SZ;
  522. /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
  523. buf_oaf = buf_tmp;
  524. hdr->open_frame = cpu_to_le64(buf_tmp_dma);
  525. buf_tmp += MVS_OAF_SZ;
  526. buf_tmp_dma += MVS_OAF_SZ;
  527. /* region 3: PRD table ********************************************* */
  528. buf_prd = buf_tmp;
  529. if (tei->n_elem)
  530. hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
  531. else
  532. hdr->prd_tbl = 0;
  533. i = MVS_CHIP_DISP->prd_size() * tei->n_elem;
  534. buf_tmp += i;
  535. buf_tmp_dma += i;
  536. /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
  537. slot->response = buf_tmp;
  538. hdr->status_buf = cpu_to_le64(buf_tmp_dma);
  539. if (mvi->flags & MVF_FLAG_SOC)
  540. hdr->reserved[0] = 0;
  541. resp_len = MVS_SLOT_BUF_SZ - MVS_SSP_CMD_SZ - MVS_OAF_SZ -
  542. sizeof(struct mvs_err_info) - i;
  543. resp_len = min(resp_len, max_resp_len);
  544. req_len = sizeof(struct ssp_frame_hdr) + 28;
  545. /* request, response lengths */
  546. hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));
  547. /* generate open address frame hdr (first 12 bytes) */
  548. /* initiator, SSP, ftype 1h */
  549. buf_oaf[0] = (1 << 7) | (PROTOCOL_SSP << 4) | 0x1;
  550. buf_oaf[1] = min(sas_port->linkrate, dev->linkrate) & 0xf;
  551. *(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1);
  552. memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
  553. /* fill in SSP frame header (Command Table.SSP frame header) */
  554. ssp_hdr = (struct ssp_frame_hdr *)buf_cmd;
  555. if (is_tmf)
  556. ssp_hdr->frame_type = SSP_TASK;
  557. else
  558. ssp_hdr->frame_type = SSP_COMMAND;
  559. memcpy(ssp_hdr->hashed_dest_addr, dev->hashed_sas_addr,
  560. HASHED_SAS_ADDR_SIZE);
  561. memcpy(ssp_hdr->hashed_src_addr,
  562. dev->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
  563. ssp_hdr->tag = cpu_to_be16(tag);
  564. /* fill in IU for TASK and Command Frame */
  565. buf_cmd += sizeof(*ssp_hdr);
  566. memcpy(buf_cmd, &task->ssp_task.LUN, 8);
  567. if (ssp_hdr->frame_type != SSP_TASK) {
  568. buf_cmd[9] = fburst | task->ssp_task.task_attr |
  569. (task->ssp_task.task_prio << 3);
  570. memcpy(buf_cmd + 12, &task->ssp_task.cdb, 16);
  571. } else{
  572. buf_cmd[10] = tmf->tmf;
  573. switch (tmf->tmf) {
  574. case TMF_ABORT_TASK:
  575. case TMF_QUERY_TASK:
  576. buf_cmd[12] =
  577. (tmf->tag_of_task_to_be_managed >> 8) & 0xff;
  578. buf_cmd[13] =
  579. tmf->tag_of_task_to_be_managed & 0xff;
  580. break;
  581. default:
  582. break;
  583. }
  584. }
  585. /* fill in PRD (scatter/gather) table, if any */
  586. MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
  587. return 0;
  588. }
  589. #define DEV_IS_GONE(mvi_dev) ((!mvi_dev || (mvi_dev->dev_type == NO_DEVICE)))
  590. static int mvs_task_prep(struct sas_task *task, struct mvs_info *mvi, int is_tmf,
  591. struct mvs_tmf_task *tmf, int *pass)
  592. {
  593. struct domain_device *dev = task->dev;
  594. struct mvs_device *mvi_dev = dev->lldd_dev;
  595. struct mvs_task_exec_info tei;
  596. struct mvs_slot_info *slot;
  597. u32 tag = 0xdeadbeef, n_elem = 0;
  598. int rc = 0;
  599. if (!dev->port) {
  600. struct task_status_struct *tsm = &task->task_status;
  601. tsm->resp = SAS_TASK_UNDELIVERED;
  602. tsm->stat = SAS_PHY_DOWN;
  603. /*
  604. * libsas will use dev->port, should
  605. * not call task_done for sata
  606. */
  607. if (dev->dev_type != SATA_DEV)
  608. task->task_done(task);
  609. return rc;
  610. }
  611. if (DEV_IS_GONE(mvi_dev)) {
  612. if (mvi_dev)
  613. mv_dprintk("device %d not ready.\n",
  614. mvi_dev->device_id);
  615. else
  616. mv_dprintk("device %016llx not ready.\n",
  617. SAS_ADDR(dev->sas_addr));
  618. rc = SAS_PHY_DOWN;
  619. return rc;
  620. }
  621. tei.port = dev->port->lldd_port;
  622. if (tei.port && !tei.port->port_attached && !tmf) {
  623. if (sas_protocol_ata(task->task_proto)) {
  624. struct task_status_struct *ts = &task->task_status;
  625. mv_dprintk("SATA/STP port %d does not attach"
  626. "device.\n", dev->port->id);
  627. ts->resp = SAS_TASK_COMPLETE;
  628. ts->stat = SAS_PHY_DOWN;
  629. task->task_done(task);
  630. } else {
  631. struct task_status_struct *ts = &task->task_status;
  632. mv_dprintk("SAS port %d does not attach"
  633. "device.\n", dev->port->id);
  634. ts->resp = SAS_TASK_UNDELIVERED;
  635. ts->stat = SAS_PHY_DOWN;
  636. task->task_done(task);
  637. }
  638. return rc;
  639. }
  640. if (!sas_protocol_ata(task->task_proto)) {
  641. if (task->num_scatter) {
  642. n_elem = dma_map_sg(mvi->dev,
  643. task->scatter,
  644. task->num_scatter,
  645. task->data_dir);
  646. if (!n_elem) {
  647. rc = -ENOMEM;
  648. goto prep_out;
  649. }
  650. }
  651. } else {
  652. n_elem = task->num_scatter;
  653. }
  654. rc = mvs_tag_alloc(mvi, &tag);
  655. if (rc)
  656. goto err_out;
  657. slot = &mvi->slot_info[tag];
  658. task->lldd_task = NULL;
  659. slot->n_elem = n_elem;
  660. slot->slot_tag = tag;
  661. slot->buf = pci_pool_alloc(mvi->dma_pool, GFP_ATOMIC, &slot->buf_dma);
  662. if (!slot->buf)
  663. goto err_out_tag;
  664. memset(slot->buf, 0, MVS_SLOT_BUF_SZ);
  665. tei.task = task;
  666. tei.hdr = &mvi->slot[tag];
  667. tei.tag = tag;
  668. tei.n_elem = n_elem;
  669. switch (task->task_proto) {
  670. case SAS_PROTOCOL_SMP:
  671. rc = mvs_task_prep_smp(mvi, &tei);
  672. break;
  673. case SAS_PROTOCOL_SSP:
  674. rc = mvs_task_prep_ssp(mvi, &tei, is_tmf, tmf);
  675. break;
  676. case SAS_PROTOCOL_SATA:
  677. case SAS_PROTOCOL_STP:
  678. case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
  679. rc = mvs_task_prep_ata(mvi, &tei);
  680. break;
  681. default:
  682. dev_printk(KERN_ERR, mvi->dev,
  683. "unknown sas_task proto: 0x%x\n",
  684. task->task_proto);
  685. rc = -EINVAL;
  686. break;
  687. }
  688. if (rc) {
  689. mv_dprintk("rc is %x\n", rc);
  690. goto err_out_slot_buf;
  691. }
  692. slot->task = task;
  693. slot->port = tei.port;
  694. task->lldd_task = slot;
  695. list_add_tail(&slot->entry, &tei.port->list);
  696. spin_lock(&task->task_state_lock);
  697. task->task_state_flags |= SAS_TASK_AT_INITIATOR;
  698. spin_unlock(&task->task_state_lock);
  699. mvi_dev->running_req++;
  700. ++(*pass);
  701. mvi->tx_prod = (mvi->tx_prod + 1) & (MVS_CHIP_SLOT_SZ - 1);
  702. return rc;
  703. err_out_slot_buf:
  704. pci_pool_free(mvi->dma_pool, slot->buf, slot->buf_dma);
  705. err_out_tag:
  706. mvs_tag_free(mvi, tag);
  707. err_out:
  708. dev_printk(KERN_ERR, mvi->dev, "mvsas prep failed[%d]!\n", rc);
  709. if (!sas_protocol_ata(task->task_proto))
  710. if (n_elem)
  711. dma_unmap_sg(mvi->dev, task->scatter, n_elem,
  712. task->data_dir);
  713. prep_out:
  714. return rc;
  715. }
  716. static struct mvs_task_list *mvs_task_alloc_list(int *num, gfp_t gfp_flags)
  717. {
  718. struct mvs_task_list *first = NULL;
  719. for (; *num > 0; --*num) {
  720. struct mvs_task_list *mvs_list = kmem_cache_zalloc(mvs_task_list_cache, gfp_flags);
  721. if (!mvs_list)
  722. break;
  723. INIT_LIST_HEAD(&mvs_list->list);
  724. if (!first)
  725. first = mvs_list;
  726. else
  727. list_add_tail(&mvs_list->list, &first->list);
  728. }
  729. return first;
  730. }
  731. static inline void mvs_task_free_list(struct mvs_task_list *mvs_list)
  732. {
  733. LIST_HEAD(list);
  734. struct list_head *pos, *a;
  735. struct mvs_task_list *mlist = NULL;
  736. __list_add(&list, mvs_list->list.prev, &mvs_list->list);
  737. list_for_each_safe(pos, a, &list) {
  738. list_del_init(pos);
  739. mlist = list_entry(pos, struct mvs_task_list, list);
  740. kmem_cache_free(mvs_task_list_cache, mlist);
  741. }
  742. }
  743. static int mvs_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags,
  744. struct completion *completion, int is_tmf,
  745. struct mvs_tmf_task *tmf)
  746. {
  747. struct mvs_info *mvi = NULL;
  748. u32 rc = 0;
  749. u32 pass = 0;
  750. unsigned long flags = 0;
  751. mvi = ((struct mvs_device *)task->dev->lldd_dev)->mvi_info;
  752. spin_lock_irqsave(&mvi->lock, flags);
  753. rc = mvs_task_prep(task, mvi, is_tmf, tmf, &pass);
  754. if (rc)
  755. dev_printk(KERN_ERR, mvi->dev, "mvsas exec failed[%d]!\n", rc);
  756. if (likely(pass))
  757. MVS_CHIP_DISP->start_delivery(mvi, (mvi->tx_prod - 1) &
  758. (MVS_CHIP_SLOT_SZ - 1));
  759. spin_unlock_irqrestore(&mvi->lock, flags);
  760. return rc;
  761. }
  762. static int mvs_collector_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags,
  763. struct completion *completion, int is_tmf,
  764. struct mvs_tmf_task *tmf)
  765. {
  766. struct domain_device *dev = task->dev;
  767. struct mvs_prv_info *mpi = dev->port->ha->lldd_ha;
  768. struct mvs_info *mvi = NULL;
  769. struct sas_task *t = task;
  770. struct mvs_task_list *mvs_list = NULL, *a;
  771. LIST_HEAD(q);
  772. int pass[2] = {0};
  773. u32 rc = 0;
  774. u32 n = num;
  775. unsigned long flags = 0;
  776. mvs_list = mvs_task_alloc_list(&n, gfp_flags);
  777. if (n) {
  778. printk(KERN_ERR "%s: mvs alloc list failed.\n", __func__);
  779. rc = -ENOMEM;
  780. goto free_list;
  781. }
  782. __list_add(&q, mvs_list->list.prev, &mvs_list->list);
  783. list_for_each_entry(a, &q, list) {
  784. a->task = t;
  785. t = list_entry(t->list.next, struct sas_task, list);
  786. }
  787. list_for_each_entry(a, &q , list) {
  788. t = a->task;
  789. mvi = ((struct mvs_device *)t->dev->lldd_dev)->mvi_info;
  790. spin_lock_irqsave(&mvi->lock, flags);
  791. rc = mvs_task_prep(t, mvi, is_tmf, tmf, &pass[mvi->id]);
  792. if (rc)
  793. dev_printk(KERN_ERR, mvi->dev, "mvsas exec failed[%d]!\n", rc);
  794. spin_unlock_irqrestore(&mvi->lock, flags);
  795. }
  796. if (likely(pass[0]))
  797. MVS_CHIP_DISP->start_delivery(mpi->mvi[0],
  798. (mpi->mvi[0]->tx_prod - 1) & (MVS_CHIP_SLOT_SZ - 1));
  799. if (likely(pass[1]))
  800. MVS_CHIP_DISP->start_delivery(mpi->mvi[1],
  801. (mpi->mvi[1]->tx_prod - 1) & (MVS_CHIP_SLOT_SZ - 1));
  802. list_del_init(&q);
  803. free_list:
  804. if (mvs_list)
  805. mvs_task_free_list(mvs_list);
  806. return rc;
  807. }
  808. int mvs_queue_command(struct sas_task *task, const int num,
  809. gfp_t gfp_flags)
  810. {
  811. struct mvs_device *mvi_dev = task->dev->lldd_dev;
  812. struct sas_ha_struct *sas = mvi_dev->mvi_info->sas;
  813. if (sas->lldd_max_execute_num < 2)
  814. return mvs_task_exec(task, num, gfp_flags, NULL, 0, NULL);
  815. else
  816. return mvs_collector_task_exec(task, num, gfp_flags, NULL, 0, NULL);
  817. }
  818. static void mvs_slot_free(struct mvs_info *mvi, u32 rx_desc)
  819. {
  820. u32 slot_idx = rx_desc & RXQ_SLOT_MASK;
  821. mvs_tag_clear(mvi, slot_idx);
  822. }
  823. static void mvs_slot_task_free(struct mvs_info *mvi, struct sas_task *task,
  824. struct mvs_slot_info *slot, u32 slot_idx)
  825. {
  826. if (!slot->task)
  827. return;
  828. if (!sas_protocol_ata(task->task_proto))
  829. if (slot->n_elem)
  830. dma_unmap_sg(mvi->dev, task->scatter,
  831. slot->n_elem, task->data_dir);
  832. switch (task->task_proto) {
  833. case SAS_PROTOCOL_SMP:
  834. dma_unmap_sg(mvi->dev, &task->smp_task.smp_resp, 1,
  835. PCI_DMA_FROMDEVICE);
  836. dma_unmap_sg(mvi->dev, &task->smp_task.smp_req, 1,
  837. PCI_DMA_TODEVICE);
  838. break;
  839. case SAS_PROTOCOL_SATA:
  840. case SAS_PROTOCOL_STP:
  841. case SAS_PROTOCOL_SSP:
  842. default:
  843. /* do nothing */
  844. break;
  845. }
  846. if (slot->buf) {
  847. pci_pool_free(mvi->dma_pool, slot->buf, slot->buf_dma);
  848. slot->buf = NULL;
  849. }
  850. list_del_init(&slot->entry);
  851. task->lldd_task = NULL;
  852. slot->task = NULL;
  853. slot->port = NULL;
  854. slot->slot_tag = 0xFFFFFFFF;
  855. mvs_slot_free(mvi, slot_idx);
  856. }
  857. static void mvs_update_wideport(struct mvs_info *mvi, int phy_no)
  858. {
  859. struct mvs_phy *phy = &mvi->phy[phy_no];
  860. struct mvs_port *port = phy->port;
  861. int j, no;
  862. for_each_phy(port->wide_port_phymap, j, no) {
  863. if (j & 1) {
  864. MVS_CHIP_DISP->write_port_cfg_addr(mvi, no,
  865. PHYR_WIDE_PORT);
  866. MVS_CHIP_DISP->write_port_cfg_data(mvi, no,
  867. port->wide_port_phymap);
  868. } else {
  869. MVS_CHIP_DISP->write_port_cfg_addr(mvi, no,
  870. PHYR_WIDE_PORT);
  871. MVS_CHIP_DISP->write_port_cfg_data(mvi, no,
  872. 0);
  873. }
  874. }
  875. }
  876. static u32 mvs_is_phy_ready(struct mvs_info *mvi, int i)
  877. {
  878. u32 tmp;
  879. struct mvs_phy *phy = &mvi->phy[i];
  880. struct mvs_port *port = phy->port;
  881. tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, i);
  882. if ((tmp & PHY_READY_MASK) && !(phy->irq_status & PHYEV_POOF)) {
  883. if (!port)
  884. phy->phy_attached = 1;
  885. return tmp;
  886. }
  887. if (port) {
  888. if (phy->phy_type & PORT_TYPE_SAS) {
  889. port->wide_port_phymap &= ~(1U << i);
  890. if (!port->wide_port_phymap)
  891. port->port_attached = 0;
  892. mvs_update_wideport(mvi, i);
  893. } else if (phy->phy_type & PORT_TYPE_SATA)
  894. port->port_attached = 0;
  895. phy->port = NULL;
  896. phy->phy_attached = 0;
  897. phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
  898. }
  899. return 0;
  900. }
  901. static void *mvs_get_d2h_reg(struct mvs_info *mvi, int i, void *buf)
  902. {
  903. u32 *s = (u32 *) buf;
  904. if (!s)
  905. return NULL;
  906. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG3);
  907. s[3] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
  908. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG2);
  909. s[2] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
  910. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG1);
  911. s[1] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
  912. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG0);
  913. s[0] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
  914. if (((s[1] & 0x00FFFFFF) == 0x00EB1401) && (*(u8 *)&s[3] == 0x01))
  915. s[1] = 0x00EB1401 | (*((u8 *)&s[1] + 3) & 0x10);
  916. return s;
  917. }
  918. static u32 mvs_is_sig_fis_received(u32 irq_status)
  919. {
  920. return irq_status & PHYEV_SIG_FIS;
  921. }
  922. static void mvs_sig_remove_timer(struct mvs_phy *phy)
  923. {
  924. if (phy->timer.function)
  925. del_timer(&phy->timer);
  926. phy->timer.function = NULL;
  927. }
  928. void mvs_update_phyinfo(struct mvs_info *mvi, int i, int get_st)
  929. {
  930. struct mvs_phy *phy = &mvi->phy[i];
  931. struct sas_identify_frame *id;
  932. id = (struct sas_identify_frame *)phy->frame_rcvd;
  933. if (get_st) {
  934. phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, i);
  935. phy->phy_status = mvs_is_phy_ready(mvi, i);
  936. }
  937. if (phy->phy_status) {
  938. int oob_done = 0;
  939. struct asd_sas_phy *sas_phy = &mvi->phy[i].sas_phy;
  940. oob_done = MVS_CHIP_DISP->oob_done(mvi, i);
  941. MVS_CHIP_DISP->fix_phy_info(mvi, i, id);
  942. if (phy->phy_type & PORT_TYPE_SATA) {
  943. phy->identify.target_port_protocols = SAS_PROTOCOL_STP;
  944. if (mvs_is_sig_fis_received(phy->irq_status)) {
  945. mvs_sig_remove_timer(phy);
  946. phy->phy_attached = 1;
  947. phy->att_dev_sas_addr =
  948. i + mvi->id * mvi->chip->n_phy;
  949. if (oob_done)
  950. sas_phy->oob_mode = SATA_OOB_MODE;
  951. phy->frame_rcvd_size =
  952. sizeof(struct dev_to_host_fis);
  953. mvs_get_d2h_reg(mvi, i, id);
  954. } else {
  955. u32 tmp;
  956. dev_printk(KERN_DEBUG, mvi->dev,
  957. "Phy%d : No sig fis\n", i);
  958. tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, i);
  959. MVS_CHIP_DISP->write_port_irq_mask(mvi, i,
  960. tmp | PHYEV_SIG_FIS);
  961. phy->phy_attached = 0;
  962. phy->phy_type &= ~PORT_TYPE_SATA;
  963. goto out_done;
  964. }
  965. } else if (phy->phy_type & PORT_TYPE_SAS
  966. || phy->att_dev_info & PORT_SSP_INIT_MASK) {
  967. phy->phy_attached = 1;
  968. phy->identify.device_type =
  969. phy->att_dev_info & PORT_DEV_TYPE_MASK;
  970. if (phy->identify.device_type == SAS_END_DEV)
  971. phy->identify.target_port_protocols =
  972. SAS_PROTOCOL_SSP;
  973. else if (phy->identify.device_type != NO_DEVICE)
  974. phy->identify.target_port_protocols =
  975. SAS_PROTOCOL_SMP;
  976. if (oob_done)
  977. sas_phy->oob_mode = SAS_OOB_MODE;
  978. phy->frame_rcvd_size =
  979. sizeof(struct sas_identify_frame);
  980. }
  981. memcpy(sas_phy->attached_sas_addr,
  982. &phy->att_dev_sas_addr, SAS_ADDR_SIZE);
  983. if (MVS_CHIP_DISP->phy_work_around)
  984. MVS_CHIP_DISP->phy_work_around(mvi, i);
  985. }
  986. mv_dprintk("phy %d attach dev info is %x\n",
  987. i + mvi->id * mvi->chip->n_phy, phy->att_dev_info);
  988. mv_dprintk("phy %d attach sas addr is %llx\n",
  989. i + mvi->id * mvi->chip->n_phy, phy->att_dev_sas_addr);
  990. out_done:
  991. if (get_st)
  992. MVS_CHIP_DISP->write_port_irq_stat(mvi, i, phy->irq_status);
  993. }
  994. static void mvs_port_notify_formed(struct asd_sas_phy *sas_phy, int lock)
  995. {
  996. struct sas_ha_struct *sas_ha = sas_phy->ha;
  997. struct mvs_info *mvi = NULL; int i = 0, hi;
  998. struct mvs_phy *phy = sas_phy->lldd_phy;
  999. struct asd_sas_port *sas_port = sas_phy->port;
  1000. struct mvs_port *port;
  1001. unsigned long flags = 0;
  1002. if (!sas_port)
  1003. return;
  1004. while (sas_ha->sas_phy[i]) {
  1005. if (sas_ha->sas_phy[i] == sas_phy)
  1006. break;
  1007. i++;
  1008. }
  1009. hi = i/((struct mvs_prv_info *)sas_ha->lldd_ha)->n_phy;
  1010. mvi = ((struct mvs_prv_info *)sas_ha->lldd_ha)->mvi[hi];
  1011. if (i >= mvi->chip->n_phy)
  1012. port = &mvi->port[i - mvi->chip->n_phy];
  1013. else
  1014. port = &mvi->port[i];
  1015. if (lock)
  1016. spin_lock_irqsave(&mvi->lock, flags);
  1017. port->port_attached = 1;
  1018. phy->port = port;
  1019. sas_port->lldd_port = port;
  1020. if (phy->phy_type & PORT_TYPE_SAS) {
  1021. port->wide_port_phymap = sas_port->phy_mask;
  1022. mv_printk("set wide port phy map %x\n", sas_port->phy_mask);
  1023. mvs_update_wideport(mvi, sas_phy->id);
  1024. /* direct attached SAS device */
  1025. if (phy->att_dev_info & PORT_SSP_TRGT_MASK) {
  1026. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_PHY_STAT);
  1027. MVS_CHIP_DISP->write_port_cfg_data(mvi, i, 0x04);
  1028. }
  1029. }
  1030. if (lock)
  1031. spin_unlock_irqrestore(&mvi->lock, flags);
  1032. }
  1033. static void mvs_port_notify_deformed(struct asd_sas_phy *sas_phy, int lock)
  1034. {
  1035. struct domain_device *dev;
  1036. struct mvs_phy *phy = sas_phy->lldd_phy;
  1037. struct mvs_info *mvi = phy->mvi;
  1038. struct asd_sas_port *port = sas_phy->port;
  1039. int phy_no = 0;
  1040. while (phy != &mvi->phy[phy_no]) {
  1041. phy_no++;
  1042. if (phy_no >= MVS_MAX_PHYS)
  1043. return;
  1044. }
  1045. list_for_each_entry(dev, &port->dev_list, dev_list_node)
  1046. mvs_do_release_task(phy->mvi, phy_no, dev);
  1047. }
  1048. void mvs_port_formed(struct asd_sas_phy *sas_phy)
  1049. {
  1050. mvs_port_notify_formed(sas_phy, 1);
  1051. }
  1052. void mvs_port_deformed(struct asd_sas_phy *sas_phy)
  1053. {
  1054. mvs_port_notify_deformed(sas_phy, 1);
  1055. }
  1056. struct mvs_device *mvs_alloc_dev(struct mvs_info *mvi)
  1057. {
  1058. u32 dev;
  1059. for (dev = 0; dev < MVS_MAX_DEVICES; dev++) {
  1060. if (mvi->devices[dev].dev_type == NO_DEVICE) {
  1061. mvi->devices[dev].device_id = dev;
  1062. return &mvi->devices[dev];
  1063. }
  1064. }
  1065. if (dev == MVS_MAX_DEVICES)
  1066. mv_printk("max support %d devices, ignore ..\n",
  1067. MVS_MAX_DEVICES);
  1068. return NULL;
  1069. }
  1070. void mvs_free_dev(struct mvs_device *mvi_dev)
  1071. {
  1072. u32 id = mvi_dev->device_id;
  1073. memset(mvi_dev, 0, sizeof(*mvi_dev));
  1074. mvi_dev->device_id = id;
  1075. mvi_dev->dev_type = NO_DEVICE;
  1076. mvi_dev->dev_status = MVS_DEV_NORMAL;
  1077. mvi_dev->taskfileset = MVS_ID_NOT_MAPPED;
  1078. }
  1079. int mvs_dev_found_notify(struct domain_device *dev, int lock)
  1080. {
  1081. unsigned long flags = 0;
  1082. int res = 0;
  1083. struct mvs_info *mvi = NULL;
  1084. struct domain_device *parent_dev = dev->parent;
  1085. struct mvs_device *mvi_device;
  1086. mvi = mvs_find_dev_mvi(dev);
  1087. if (lock)
  1088. spin_lock_irqsave(&mvi->lock, flags);
  1089. mvi_device = mvs_alloc_dev(mvi);
  1090. if (!mvi_device) {
  1091. res = -1;
  1092. goto found_out;
  1093. }
  1094. dev->lldd_dev = mvi_device;
  1095. mvi_device->dev_status = MVS_DEV_NORMAL;
  1096. mvi_device->dev_type = dev->dev_type;
  1097. mvi_device->mvi_info = mvi;
  1098. mvi_device->sas_device = dev;
  1099. if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) {
  1100. int phy_id;
  1101. u8 phy_num = parent_dev->ex_dev.num_phys;
  1102. struct ex_phy *phy;
  1103. for (phy_id = 0; phy_id < phy_num; phy_id++) {
  1104. phy = &parent_dev->ex_dev.ex_phy[phy_id];
  1105. if (SAS_ADDR(phy->attached_sas_addr) ==
  1106. SAS_ADDR(dev->sas_addr)) {
  1107. mvi_device->attached_phy = phy_id;
  1108. break;
  1109. }
  1110. }
  1111. if (phy_id == phy_num) {
  1112. mv_printk("Error: no attached dev:%016llx"
  1113. "at ex:%016llx.\n",
  1114. SAS_ADDR(dev->sas_addr),
  1115. SAS_ADDR(parent_dev->sas_addr));
  1116. res = -1;
  1117. }
  1118. }
  1119. found_out:
  1120. if (lock)
  1121. spin_unlock_irqrestore(&mvi->lock, flags);
  1122. return res;
  1123. }
  1124. int mvs_dev_found(struct domain_device *dev)
  1125. {
  1126. return mvs_dev_found_notify(dev, 1);
  1127. }
  1128. void mvs_dev_gone_notify(struct domain_device *dev)
  1129. {
  1130. unsigned long flags = 0;
  1131. struct mvs_device *mvi_dev = dev->lldd_dev;
  1132. struct mvs_info *mvi = mvi_dev->mvi_info;
  1133. spin_lock_irqsave(&mvi->lock, flags);
  1134. if (mvi_dev) {
  1135. mv_dprintk("found dev[%d:%x] is gone.\n",
  1136. mvi_dev->device_id, mvi_dev->dev_type);
  1137. mvs_release_task(mvi, dev);
  1138. mvs_free_reg_set(mvi, mvi_dev);
  1139. mvs_free_dev(mvi_dev);
  1140. } else {
  1141. mv_dprintk("found dev has gone.\n");
  1142. }
  1143. dev->lldd_dev = NULL;
  1144. mvi_dev->sas_device = NULL;
  1145. spin_unlock_irqrestore(&mvi->lock, flags);
  1146. }
  1147. void mvs_dev_gone(struct domain_device *dev)
  1148. {
  1149. mvs_dev_gone_notify(dev);
  1150. }
  1151. static void mvs_task_done(struct sas_task *task)
  1152. {
  1153. if (!del_timer(&task->slow_task->timer))
  1154. return;
  1155. complete(&task->slow_task->completion);
  1156. }
  1157. static void mvs_tmf_timedout(unsigned long data)
  1158. {
  1159. struct sas_task *task = (struct sas_task *)data;
  1160. task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  1161. complete(&task->slow_task->completion);
  1162. }
  1163. #define MVS_TASK_TIMEOUT 20
  1164. static int mvs_exec_internal_tmf_task(struct domain_device *dev,
  1165. void *parameter, u32 para_len, struct mvs_tmf_task *tmf)
  1166. {
  1167. int res, retry;
  1168. struct sas_task *task = NULL;
  1169. for (retry = 0; retry < 3; retry++) {
  1170. task = sas_alloc_slow_task(GFP_KERNEL);
  1171. if (!task)
  1172. return -ENOMEM;
  1173. task->dev = dev;
  1174. task->task_proto = dev->tproto;
  1175. memcpy(&task->ssp_task, parameter, para_len);
  1176. task->task_done = mvs_task_done;
  1177. task->slow_task->timer.data = (unsigned long) task;
  1178. task->slow_task->timer.function = mvs_tmf_timedout;
  1179. task->slow_task->timer.expires = jiffies + MVS_TASK_TIMEOUT*HZ;
  1180. add_timer(&task->slow_task->timer);
  1181. res = mvs_task_exec(task, 1, GFP_KERNEL, NULL, 1, tmf);
  1182. if (res) {
  1183. del_timer(&task->slow_task->timer);
  1184. mv_printk("executing internel task failed:%d\n", res);
  1185. goto ex_err;
  1186. }
  1187. wait_for_completion(&task->slow_task->completion);
  1188. res = TMF_RESP_FUNC_FAILED;
  1189. /* Even TMF timed out, return direct. */
  1190. if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  1191. if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  1192. mv_printk("TMF task[%x] timeout.\n", tmf->tmf);
  1193. goto ex_err;
  1194. }
  1195. }
  1196. if (task->task_status.resp == SAS_TASK_COMPLETE &&
  1197. task->task_status.stat == SAM_STAT_GOOD) {
  1198. res = TMF_RESP_FUNC_COMPLETE;
  1199. break;
  1200. }
  1201. if (task->task_status.resp == SAS_TASK_COMPLETE &&
  1202. task->task_status.stat == SAS_DATA_UNDERRUN) {
  1203. /* no error, but return the number of bytes of
  1204. * underrun */
  1205. res = task->task_status.residual;
  1206. break;
  1207. }
  1208. if (task->task_status.resp == SAS_TASK_COMPLETE &&
  1209. task->task_status.stat == SAS_DATA_OVERRUN) {
  1210. mv_dprintk("blocked task error.\n");
  1211. res = -EMSGSIZE;
  1212. break;
  1213. } else {
  1214. mv_dprintk(" task to dev %016llx response: 0x%x "
  1215. "status 0x%x\n",
  1216. SAS_ADDR(dev->sas_addr),
  1217. task->task_status.resp,
  1218. task->task_status.stat);
  1219. sas_free_task(task);
  1220. task = NULL;
  1221. }
  1222. }
  1223. ex_err:
  1224. BUG_ON(retry == 3 && task != NULL);
  1225. sas_free_task(task);
  1226. return res;
  1227. }
  1228. static int mvs_debug_issue_ssp_tmf(struct domain_device *dev,
  1229. u8 *lun, struct mvs_tmf_task *tmf)
  1230. {
  1231. struct sas_ssp_task ssp_task;
  1232. if (!(dev->tproto & SAS_PROTOCOL_SSP))
  1233. return TMF_RESP_FUNC_ESUPP;
  1234. memcpy(ssp_task.LUN, lun, 8);
  1235. return mvs_exec_internal_tmf_task(dev, &ssp_task,
  1236. sizeof(ssp_task), tmf);
  1237. }
  1238. /* Standard mandates link reset for ATA (type 0)
  1239. and hard reset for SSP (type 1) , only for RECOVERY */
  1240. static int mvs_debug_I_T_nexus_reset(struct domain_device *dev)
  1241. {
  1242. int rc;
  1243. struct sas_phy *phy = sas_get_local_phy(dev);
  1244. int reset_type = (dev->dev_type == SATA_DEV ||
  1245. (dev->tproto & SAS_PROTOCOL_STP)) ? 0 : 1;
  1246. rc = sas_phy_reset(phy, reset_type);
  1247. sas_put_local_phy(phy);
  1248. msleep(2000);
  1249. return rc;
  1250. }
  1251. /* mandatory SAM-3 */
  1252. int mvs_lu_reset(struct domain_device *dev, u8 *lun)
  1253. {
  1254. unsigned long flags;
  1255. int rc = TMF_RESP_FUNC_FAILED;
  1256. struct mvs_tmf_task tmf_task;
  1257. struct mvs_device * mvi_dev = dev->lldd_dev;
  1258. struct mvs_info *mvi = mvi_dev->mvi_info;
  1259. tmf_task.tmf = TMF_LU_RESET;
  1260. mvi_dev->dev_status = MVS_DEV_EH;
  1261. rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
  1262. if (rc == TMF_RESP_FUNC_COMPLETE) {
  1263. spin_lock_irqsave(&mvi->lock, flags);
  1264. mvs_release_task(mvi, dev);
  1265. spin_unlock_irqrestore(&mvi->lock, flags);
  1266. }
  1267. /* If failed, fall-through I_T_Nexus reset */
  1268. mv_printk("%s for device[%x]:rc= %d\n", __func__,
  1269. mvi_dev->device_id, rc);
  1270. return rc;
  1271. }
  1272. int mvs_I_T_nexus_reset(struct domain_device *dev)
  1273. {
  1274. unsigned long flags;
  1275. int rc = TMF_RESP_FUNC_FAILED;
  1276. struct mvs_device * mvi_dev = (struct mvs_device *)dev->lldd_dev;
  1277. struct mvs_info *mvi = mvi_dev->mvi_info;
  1278. if (mvi_dev->dev_status != MVS_DEV_EH)
  1279. return TMF_RESP_FUNC_COMPLETE;
  1280. else
  1281. mvi_dev->dev_status = MVS_DEV_NORMAL;
  1282. rc = mvs_debug_I_T_nexus_reset(dev);
  1283. mv_printk("%s for device[%x]:rc= %d\n",
  1284. __func__, mvi_dev->device_id, rc);
  1285. spin_lock_irqsave(&mvi->lock, flags);
  1286. mvs_release_task(mvi, dev);
  1287. spin_unlock_irqrestore(&mvi->lock, flags);
  1288. return rc;
  1289. }
  1290. /* optional SAM-3 */
  1291. int mvs_query_task(struct sas_task *task)
  1292. {
  1293. u32 tag;
  1294. struct scsi_lun lun;
  1295. struct mvs_tmf_task tmf_task;
  1296. int rc = TMF_RESP_FUNC_FAILED;
  1297. if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) {
  1298. struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task;
  1299. struct domain_device *dev = task->dev;
  1300. struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
  1301. struct mvs_info *mvi = mvi_dev->mvi_info;
  1302. int_to_scsilun(cmnd->device->lun, &lun);
  1303. rc = mvs_find_tag(mvi, task, &tag);
  1304. if (rc == 0) {
  1305. rc = TMF_RESP_FUNC_FAILED;
  1306. return rc;
  1307. }
  1308. tmf_task.tmf = TMF_QUERY_TASK;
  1309. tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag);
  1310. rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
  1311. switch (rc) {
  1312. /* The task is still in Lun, release it then */
  1313. case TMF_RESP_FUNC_SUCC:
  1314. /* The task is not in Lun or failed, reset the phy */
  1315. case TMF_RESP_FUNC_FAILED:
  1316. case TMF_RESP_FUNC_COMPLETE:
  1317. break;
  1318. }
  1319. }
  1320. mv_printk("%s:rc= %d\n", __func__, rc);
  1321. return rc;
  1322. }
  1323. /* mandatory SAM-3, still need free task/slot info */
  1324. int mvs_abort_task(struct sas_task *task)
  1325. {
  1326. struct scsi_lun lun;
  1327. struct mvs_tmf_task tmf_task;
  1328. struct domain_device *dev = task->dev;
  1329. struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
  1330. struct mvs_info *mvi;
  1331. int rc = TMF_RESP_FUNC_FAILED;
  1332. unsigned long flags;
  1333. u32 tag;
  1334. if (!mvi_dev) {
  1335. mv_printk("Device has removed\n");
  1336. return TMF_RESP_FUNC_FAILED;
  1337. }
  1338. mvi = mvi_dev->mvi_info;
  1339. spin_lock_irqsave(&task->task_state_lock, flags);
  1340. if (task->task_state_flags & SAS_TASK_STATE_DONE) {
  1341. spin_unlock_irqrestore(&task->task_state_lock, flags);
  1342. rc = TMF_RESP_FUNC_COMPLETE;
  1343. goto out;
  1344. }
  1345. spin_unlock_irqrestore(&task->task_state_lock, flags);
  1346. mvi_dev->dev_status = MVS_DEV_EH;
  1347. if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) {
  1348. struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task;
  1349. int_to_scsilun(cmnd->device->lun, &lun);
  1350. rc = mvs_find_tag(mvi, task, &tag);
  1351. if (rc == 0) {
  1352. mv_printk("No such tag in %s\n", __func__);
  1353. rc = TMF_RESP_FUNC_FAILED;
  1354. return rc;
  1355. }
  1356. tmf_task.tmf = TMF_ABORT_TASK;
  1357. tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag);
  1358. rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
  1359. /* if successful, clear the task and callback forwards.*/
  1360. if (rc == TMF_RESP_FUNC_COMPLETE) {
  1361. u32 slot_no;
  1362. struct mvs_slot_info *slot;
  1363. if (task->lldd_task) {
  1364. slot = task->lldd_task;
  1365. slot_no = (u32) (slot - mvi->slot_info);
  1366. spin_lock_irqsave(&mvi->lock, flags);
  1367. mvs_slot_complete(mvi, slot_no, 1);
  1368. spin_unlock_irqrestore(&mvi->lock, flags);
  1369. }
  1370. }
  1371. } else if (task->task_proto & SAS_PROTOCOL_SATA ||
  1372. task->task_proto & SAS_PROTOCOL_STP) {
  1373. if (SATA_DEV == dev->dev_type) {
  1374. struct mvs_slot_info *slot = task->lldd_task;
  1375. u32 slot_idx = (u32)(slot - mvi->slot_info);
  1376. mv_dprintk("mvs_abort_task() mvi=%p task=%p "
  1377. "slot=%p slot_idx=x%x\n",
  1378. mvi, task, slot, slot_idx);
  1379. mvs_tmf_timedout((unsigned long)task);
  1380. mvs_slot_task_free(mvi, task, slot, slot_idx);
  1381. rc = TMF_RESP_FUNC_COMPLETE;
  1382. goto out;
  1383. }
  1384. }
  1385. out:
  1386. if (rc != TMF_RESP_FUNC_COMPLETE)
  1387. mv_printk("%s:rc= %d\n", __func__, rc);
  1388. return rc;
  1389. }
  1390. int mvs_abort_task_set(struct domain_device *dev, u8 *lun)
  1391. {
  1392. int rc = TMF_RESP_FUNC_FAILED;
  1393. struct mvs_tmf_task tmf_task;
  1394. tmf_task.tmf = TMF_ABORT_TASK_SET;
  1395. rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
  1396. return rc;
  1397. }
  1398. int mvs_clear_aca(struct domain_device *dev, u8 *lun)
  1399. {
  1400. int rc = TMF_RESP_FUNC_FAILED;
  1401. struct mvs_tmf_task tmf_task;
  1402. tmf_task.tmf = TMF_CLEAR_ACA;
  1403. rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
  1404. return rc;
  1405. }
  1406. int mvs_clear_task_set(struct domain_device *dev, u8 *lun)
  1407. {
  1408. int rc = TMF_RESP_FUNC_FAILED;
  1409. struct mvs_tmf_task tmf_task;
  1410. tmf_task.tmf = TMF_CLEAR_TASK_SET;
  1411. rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
  1412. return rc;
  1413. }
  1414. static int mvs_sata_done(struct mvs_info *mvi, struct sas_task *task,
  1415. u32 slot_idx, int err)
  1416. {
  1417. struct mvs_device *mvi_dev = task->dev->lldd_dev;
  1418. struct task_status_struct *tstat = &task->task_status;
  1419. struct ata_task_resp *resp = (struct ata_task_resp *)tstat->buf;
  1420. int stat = SAM_STAT_GOOD;
  1421. resp->frame_len = sizeof(struct dev_to_host_fis);
  1422. memcpy(&resp->ending_fis[0],
  1423. SATA_RECEIVED_D2H_FIS(mvi_dev->taskfileset),
  1424. sizeof(struct dev_to_host_fis));
  1425. tstat->buf_valid_size = sizeof(*resp);
  1426. if (unlikely(err)) {
  1427. if (unlikely(err & CMD_ISS_STPD))
  1428. stat = SAS_OPEN_REJECT;
  1429. else
  1430. stat = SAS_PROTO_RESPONSE;
  1431. }
  1432. return stat;
  1433. }
  1434. void mvs_set_sense(u8 *buffer, int len, int d_sense,
  1435. int key, int asc, int ascq)
  1436. {
  1437. memset(buffer, 0, len);
  1438. if (d_sense) {
  1439. /* Descriptor format */
  1440. if (len < 4) {
  1441. mv_printk("Length %d of sense buffer too small to "
  1442. "fit sense %x:%x:%x", len, key, asc, ascq);
  1443. }
  1444. buffer[0] = 0x72; /* Response Code */
  1445. if (len > 1)
  1446. buffer[1] = key; /* Sense Key */
  1447. if (len > 2)
  1448. buffer[2] = asc; /* ASC */
  1449. if (len > 3)
  1450. buffer[3] = ascq; /* ASCQ */
  1451. } else {
  1452. if (len < 14) {
  1453. mv_printk("Length %d of sense buffer too small to "
  1454. "fit sense %x:%x:%x", len, key, asc, ascq);
  1455. }
  1456. buffer[0] = 0x70; /* Response Code */
  1457. if (len > 2)
  1458. buffer[2] = key; /* Sense Key */
  1459. if (len > 7)
  1460. buffer[7] = 0x0a; /* Additional Sense Length */
  1461. if (len > 12)
  1462. buffer[12] = asc; /* ASC */
  1463. if (len > 13)
  1464. buffer[13] = ascq; /* ASCQ */
  1465. }
  1466. return;
  1467. }
  1468. void mvs_fill_ssp_resp_iu(struct ssp_response_iu *iu,
  1469. u8 key, u8 asc, u8 asc_q)
  1470. {
  1471. iu->datapres = 2;
  1472. iu->response_data_len = 0;
  1473. iu->sense_data_len = 17;
  1474. iu->status = 02;
  1475. mvs_set_sense(iu->sense_data, 17, 0,
  1476. key, asc, asc_q);
  1477. }
  1478. static int mvs_slot_err(struct mvs_info *mvi, struct sas_task *task,
  1479. u32 slot_idx)
  1480. {
  1481. struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
  1482. int stat;
  1483. u32 err_dw0 = le32_to_cpu(*(u32 *)slot->response);
  1484. u32 err_dw1 = le32_to_cpu(*((u32 *)slot->response + 1));
  1485. u32 tfs = 0;
  1486. enum mvs_port_type type = PORT_TYPE_SAS;
  1487. if (err_dw0 & CMD_ISS_STPD)
  1488. MVS_CHIP_DISP->issue_stop(mvi, type, tfs);
  1489. MVS_CHIP_DISP->command_active(mvi, slot_idx);
  1490. stat = SAM_STAT_CHECK_CONDITION;
  1491. switch (task->task_proto) {
  1492. case SAS_PROTOCOL_SSP:
  1493. {
  1494. stat = SAS_ABORTED_TASK;
  1495. if ((err_dw0 & NO_DEST) || err_dw1 & bit(31)) {
  1496. struct ssp_response_iu *iu = slot->response +
  1497. sizeof(struct mvs_err_info);
  1498. mvs_fill_ssp_resp_iu(iu, NOT_READY, 0x04, 01);
  1499. sas_ssp_task_response(mvi->dev, task, iu);
  1500. stat = SAM_STAT_CHECK_CONDITION;
  1501. }
  1502. if (err_dw1 & bit(31))
  1503. mv_printk("reuse same slot, retry command.\n");
  1504. break;
  1505. }
  1506. case SAS_PROTOCOL_SMP:
  1507. stat = SAM_STAT_CHECK_CONDITION;
  1508. break;
  1509. case SAS_PROTOCOL_SATA:
  1510. case SAS_PROTOCOL_STP:
  1511. case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
  1512. {
  1513. task->ata_task.use_ncq = 0;
  1514. stat = SAS_PROTO_RESPONSE;
  1515. mvs_sata_done(mvi, task, slot_idx, err_dw0);
  1516. }
  1517. break;
  1518. default:
  1519. break;
  1520. }
  1521. return stat;
  1522. }
  1523. int mvs_slot_complete(struct mvs_info *mvi, u32 rx_desc, u32 flags)
  1524. {
  1525. u32 slot_idx = rx_desc & RXQ_SLOT_MASK;
  1526. struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
  1527. struct sas_task *task = slot->task;
  1528. struct mvs_device *mvi_dev = NULL;
  1529. struct task_status_struct *tstat;
  1530. struct domain_device *dev;
  1531. u32 aborted;
  1532. void *to;
  1533. enum exec_status sts;
  1534. if (unlikely(!task || !task->lldd_task || !task->dev))
  1535. return -1;
  1536. tstat = &task->task_status;
  1537. dev = task->dev;
  1538. mvi_dev = dev->lldd_dev;
  1539. spin_lock(&task->task_state_lock);
  1540. task->task_state_flags &=
  1541. ~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR);
  1542. task->task_state_flags |= SAS_TASK_STATE_DONE;
  1543. /* race condition*/
  1544. aborted = task->task_state_flags & SAS_TASK_STATE_ABORTED;
  1545. spin_unlock(&task->task_state_lock);
  1546. memset(tstat, 0, sizeof(*tstat));
  1547. tstat->resp = SAS_TASK_COMPLETE;
  1548. if (unlikely(aborted)) {
  1549. tstat->stat = SAS_ABORTED_TASK;
  1550. if (mvi_dev && mvi_dev->running_req)
  1551. mvi_dev->running_req--;
  1552. if (sas_protocol_ata(task->task_proto))
  1553. mvs_free_reg_set(mvi, mvi_dev);
  1554. mvs_slot_task_free(mvi, task, slot, slot_idx);
  1555. return -1;
  1556. }
  1557. /* when no device attaching, go ahead and complete by error handling*/
  1558. if (unlikely(!mvi_dev || flags)) {
  1559. if (!mvi_dev)
  1560. mv_dprintk("port has not device.\n");
  1561. tstat->stat = SAS_PHY_DOWN;
  1562. goto out;
  1563. }
  1564. /* error info record present */
  1565. if (unlikely((rx_desc & RXQ_ERR) && (*(u64 *) slot->response))) {
  1566. mv_dprintk("port %d slot %d rx_desc %X has error info"
  1567. "%016llX.\n", slot->port->sas_port.id, slot_idx,
  1568. rx_desc, (u64)(*(u64 *)slot->response));
  1569. tstat->stat = mvs_slot_err(mvi, task, slot_idx);
  1570. tstat->resp = SAS_TASK_COMPLETE;
  1571. goto out;
  1572. }
  1573. switch (task->task_proto) {
  1574. case SAS_PROTOCOL_SSP:
  1575. /* hw says status == 0, datapres == 0 */
  1576. if (rx_desc & RXQ_GOOD) {
  1577. tstat->stat = SAM_STAT_GOOD;
  1578. tstat->resp = SAS_TASK_COMPLETE;
  1579. }
  1580. /* response frame present */
  1581. else if (rx_desc & RXQ_RSP) {
  1582. struct ssp_response_iu *iu = slot->response +
  1583. sizeof(struct mvs_err_info);
  1584. sas_ssp_task_response(mvi->dev, task, iu);
  1585. } else
  1586. tstat->stat = SAM_STAT_CHECK_CONDITION;
  1587. break;
  1588. case SAS_PROTOCOL_SMP: {
  1589. struct scatterlist *sg_resp = &task->smp_task.smp_resp;
  1590. tstat->stat = SAM_STAT_GOOD;
  1591. to = kmap_atomic(sg_page(sg_resp));
  1592. memcpy(to + sg_resp->offset,
  1593. slot->response + sizeof(struct mvs_err_info),
  1594. sg_dma_len(sg_resp));
  1595. kunmap_atomic(to);
  1596. break;
  1597. }
  1598. case SAS_PROTOCOL_SATA:
  1599. case SAS_PROTOCOL_STP:
  1600. case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: {
  1601. tstat->stat = mvs_sata_done(mvi, task, slot_idx, 0);
  1602. break;
  1603. }
  1604. default:
  1605. tstat->stat = SAM_STAT_CHECK_CONDITION;
  1606. break;
  1607. }
  1608. if (!slot->port->port_attached) {
  1609. mv_dprintk("port %d has removed.\n", slot->port->sas_port.id);
  1610. tstat->stat = SAS_PHY_DOWN;
  1611. }
  1612. out:
  1613. if (mvi_dev && mvi_dev->running_req) {
  1614. mvi_dev->running_req--;
  1615. if (sas_protocol_ata(task->task_proto) && !mvi_dev->running_req)
  1616. mvs_free_reg_set(mvi, mvi_dev);
  1617. }
  1618. mvs_slot_task_free(mvi, task, slot, slot_idx);
  1619. sts = tstat->stat;
  1620. spin_unlock(&mvi->lock);
  1621. if (task->task_done)
  1622. task->task_done(task);
  1623. spin_lock(&mvi->lock);
  1624. return sts;
  1625. }
  1626. void mvs_do_release_task(struct mvs_info *mvi,
  1627. int phy_no, struct domain_device *dev)
  1628. {
  1629. u32 slot_idx;
  1630. struct mvs_phy *phy;
  1631. struct mvs_port *port;
  1632. struct mvs_slot_info *slot, *slot2;
  1633. phy = &mvi->phy[phy_no];
  1634. port = phy->port;
  1635. if (!port)
  1636. return;
  1637. /* clean cmpl queue in case request is already finished */
  1638. mvs_int_rx(mvi, false);
  1639. list_for_each_entry_safe(slot, slot2, &port->list, entry) {
  1640. struct sas_task *task;
  1641. slot_idx = (u32) (slot - mvi->slot_info);
  1642. task = slot->task;
  1643. if (dev && task->dev != dev)
  1644. continue;
  1645. mv_printk("Release slot [%x] tag[%x], task [%p]:\n",
  1646. slot_idx, slot->slot_tag, task);
  1647. MVS_CHIP_DISP->command_active(mvi, slot_idx);
  1648. mvs_slot_complete(mvi, slot_idx, 1);
  1649. }
  1650. }
  1651. void mvs_release_task(struct mvs_info *mvi,
  1652. struct domain_device *dev)
  1653. {
  1654. int i, phyno[WIDE_PORT_MAX_PHY], num;
  1655. num = mvs_find_dev_phyno(dev, phyno);
  1656. for (i = 0; i < num; i++)
  1657. mvs_do_release_task(mvi, phyno[i], dev);
  1658. }
  1659. static void mvs_phy_disconnected(struct mvs_phy *phy)
  1660. {
  1661. phy->phy_attached = 0;
  1662. phy->att_dev_info = 0;
  1663. phy->att_dev_sas_addr = 0;
  1664. }
  1665. static void mvs_work_queue(struct work_struct *work)
  1666. {
  1667. struct delayed_work *dw = container_of(work, struct delayed_work, work);
  1668. struct mvs_wq *mwq = container_of(dw, struct mvs_wq, work_q);
  1669. struct mvs_info *mvi = mwq->mvi;
  1670. unsigned long flags;
  1671. u32 phy_no = (unsigned long) mwq->data;
  1672. struct sas_ha_struct *sas_ha = mvi->sas;
  1673. struct mvs_phy *phy = &mvi->phy[phy_no];
  1674. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  1675. spin_lock_irqsave(&mvi->lock, flags);
  1676. if (mwq->handler & PHY_PLUG_EVENT) {
  1677. if (phy->phy_event & PHY_PLUG_OUT) {
  1678. u32 tmp;
  1679. struct sas_identify_frame *id;
  1680. id = (struct sas_identify_frame *)phy->frame_rcvd;
  1681. tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no);
  1682. phy->phy_event &= ~PHY_PLUG_OUT;
  1683. if (!(tmp & PHY_READY_MASK)) {
  1684. sas_phy_disconnected(sas_phy);
  1685. mvs_phy_disconnected(phy);
  1686. sas_ha->notify_phy_event(sas_phy,
  1687. PHYE_LOSS_OF_SIGNAL);
  1688. mv_dprintk("phy%d Removed Device\n", phy_no);
  1689. } else {
  1690. MVS_CHIP_DISP->detect_porttype(mvi, phy_no);
  1691. mvs_update_phyinfo(mvi, phy_no, 1);
  1692. mvs_bytes_dmaed(mvi, phy_no);
  1693. mvs_port_notify_formed(sas_phy, 0);
  1694. mv_dprintk("phy%d Attached Device\n", phy_no);
  1695. }
  1696. }
  1697. } else if (mwq->handler & EXP_BRCT_CHG) {
  1698. phy->phy_event &= ~EXP_BRCT_CHG;
  1699. sas_ha->notify_port_event(sas_phy,
  1700. PORTE_BROADCAST_RCVD);
  1701. mv_dprintk("phy%d Got Broadcast Change\n", phy_no);
  1702. }
  1703. list_del(&mwq->entry);
  1704. spin_unlock_irqrestore(&mvi->lock, flags);
  1705. kfree(mwq);
  1706. }
  1707. static int mvs_handle_event(struct mvs_info *mvi, void *data, int handler)
  1708. {
  1709. struct mvs_wq *mwq;
  1710. int ret = 0;
  1711. mwq = kmalloc(sizeof(struct mvs_wq), GFP_ATOMIC);
  1712. if (mwq) {
  1713. mwq->mvi = mvi;
  1714. mwq->data = data;
  1715. mwq->handler = handler;
  1716. MV_INIT_DELAYED_WORK(&mwq->work_q, mvs_work_queue, mwq);
  1717. list_add_tail(&mwq->entry, &mvi->wq_list);
  1718. schedule_delayed_work(&mwq->work_q, HZ * 2);
  1719. } else
  1720. ret = -ENOMEM;
  1721. return ret;
  1722. }
  1723. static void mvs_sig_time_out(unsigned long tphy)
  1724. {
  1725. struct mvs_phy *phy = (struct mvs_phy *)tphy;
  1726. struct mvs_info *mvi = phy->mvi;
  1727. u8 phy_no;
  1728. for (phy_no = 0; phy_no < mvi->chip->n_phy; phy_no++) {
  1729. if (&mvi->phy[phy_no] == phy) {
  1730. mv_dprintk("Get signature time out, reset phy %d\n",
  1731. phy_no+mvi->id*mvi->chip->n_phy);
  1732. MVS_CHIP_DISP->phy_reset(mvi, phy_no, MVS_HARD_RESET);
  1733. }
  1734. }
  1735. }
  1736. void mvs_int_port(struct mvs_info *mvi, int phy_no, u32 events)
  1737. {
  1738. u32 tmp;
  1739. struct mvs_phy *phy = &mvi->phy[phy_no];
  1740. phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, phy_no);
  1741. MVS_CHIP_DISP->write_port_irq_stat(mvi, phy_no, phy->irq_status);
  1742. mv_dprintk("phy %d ctrl sts=0x%08X.\n", phy_no+mvi->id*mvi->chip->n_phy,
  1743. MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no));
  1744. mv_dprintk("phy %d irq sts = 0x%08X\n", phy_no+mvi->id*mvi->chip->n_phy,
  1745. phy->irq_status);
  1746. /*
  1747. * events is port event now ,
  1748. * we need check the interrupt status which belongs to per port.
  1749. */
  1750. if (phy->irq_status & PHYEV_DCDR_ERR) {
  1751. mv_dprintk("phy %d STP decoding error.\n",
  1752. phy_no + mvi->id*mvi->chip->n_phy);
  1753. }
  1754. if (phy->irq_status & PHYEV_POOF) {
  1755. mdelay(500);
  1756. if (!(phy->phy_event & PHY_PLUG_OUT)) {
  1757. int dev_sata = phy->phy_type & PORT_TYPE_SATA;
  1758. int ready;
  1759. mvs_do_release_task(mvi, phy_no, NULL);
  1760. phy->phy_event |= PHY_PLUG_OUT;
  1761. MVS_CHIP_DISP->clear_srs_irq(mvi, 0, 1);
  1762. mvs_handle_event(mvi,
  1763. (void *)(unsigned long)phy_no,
  1764. PHY_PLUG_EVENT);
  1765. ready = mvs_is_phy_ready(mvi, phy_no);
  1766. if (ready || dev_sata) {
  1767. if (MVS_CHIP_DISP->stp_reset)
  1768. MVS_CHIP_DISP->stp_reset(mvi,
  1769. phy_no);
  1770. else
  1771. MVS_CHIP_DISP->phy_reset(mvi,
  1772. phy_no, MVS_SOFT_RESET);
  1773. return;
  1774. }
  1775. }
  1776. }
  1777. if (phy->irq_status & PHYEV_COMWAKE) {
  1778. tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, phy_no);
  1779. MVS_CHIP_DISP->write_port_irq_mask(mvi, phy_no,
  1780. tmp | PHYEV_SIG_FIS);
  1781. if (phy->timer.function == NULL) {
  1782. phy->timer.data = (unsigned long)phy;
  1783. phy->timer.function = mvs_sig_time_out;
  1784. phy->timer.expires = jiffies + 5*HZ;
  1785. add_timer(&phy->timer);
  1786. }
  1787. }
  1788. if (phy->irq_status & (PHYEV_SIG_FIS | PHYEV_ID_DONE)) {
  1789. phy->phy_status = mvs_is_phy_ready(mvi, phy_no);
  1790. mv_dprintk("notify plug in on phy[%d]\n", phy_no);
  1791. if (phy->phy_status) {
  1792. mdelay(10);
  1793. MVS_CHIP_DISP->detect_porttype(mvi, phy_no);
  1794. if (phy->phy_type & PORT_TYPE_SATA) {
  1795. tmp = MVS_CHIP_DISP->read_port_irq_mask(
  1796. mvi, phy_no);
  1797. tmp &= ~PHYEV_SIG_FIS;
  1798. MVS_CHIP_DISP->write_port_irq_mask(mvi,
  1799. phy_no, tmp);
  1800. }
  1801. mvs_update_phyinfo(mvi, phy_no, 0);
  1802. if (phy->phy_type & PORT_TYPE_SAS) {
  1803. MVS_CHIP_DISP->phy_reset(mvi, phy_no, MVS_PHY_TUNE);
  1804. mdelay(10);
  1805. }
  1806. mvs_bytes_dmaed(mvi, phy_no);
  1807. /* whether driver is going to handle hot plug */
  1808. if (phy->phy_event & PHY_PLUG_OUT) {
  1809. mvs_port_notify_formed(&phy->sas_phy, 0);
  1810. phy->phy_event &= ~PHY_PLUG_OUT;
  1811. }
  1812. } else {
  1813. mv_dprintk("plugin interrupt but phy%d is gone\n",
  1814. phy_no + mvi->id*mvi->chip->n_phy);
  1815. }
  1816. } else if (phy->irq_status & PHYEV_BROAD_CH) {
  1817. mv_dprintk("phy %d broadcast change.\n",
  1818. phy_no + mvi->id*mvi->chip->n_phy);
  1819. mvs_handle_event(mvi, (void *)(unsigned long)phy_no,
  1820. EXP_BRCT_CHG);
  1821. }
  1822. }
  1823. int mvs_int_rx(struct mvs_info *mvi, bool self_clear)
  1824. {
  1825. u32 rx_prod_idx, rx_desc;
  1826. bool attn = false;
  1827. /* the first dword in the RX ring is special: it contains
  1828. * a mirror of the hardware's RX producer index, so that
  1829. * we don't have to stall the CPU reading that register.
  1830. * The actual RX ring is offset by one dword, due to this.
  1831. */
  1832. rx_prod_idx = mvi->rx_cons;
  1833. mvi->rx_cons = le32_to_cpu(mvi->rx[0]);
  1834. if (mvi->rx_cons == 0xfff) /* h/w hasn't touched RX ring yet */
  1835. return 0;
  1836. /* The CMPL_Q may come late, read from register and try again
  1837. * note: if coalescing is enabled,
  1838. * it will need to read from register every time for sure
  1839. */
  1840. if (unlikely(mvi->rx_cons == rx_prod_idx))
  1841. mvi->rx_cons = MVS_CHIP_DISP->rx_update(mvi) & RX_RING_SZ_MASK;
  1842. if (mvi->rx_cons == rx_prod_idx)
  1843. return 0;
  1844. while (mvi->rx_cons != rx_prod_idx) {
  1845. /* increment our internal RX consumer pointer */
  1846. rx_prod_idx = (rx_prod_idx + 1) & (MVS_RX_RING_SZ - 1);
  1847. rx_desc = le32_to_cpu(mvi->rx[rx_prod_idx + 1]);
  1848. if (likely(rx_desc & RXQ_DONE))
  1849. mvs_slot_complete(mvi, rx_desc, 0);
  1850. if (rx_desc & RXQ_ATTN) {
  1851. attn = true;
  1852. } else if (rx_desc & RXQ_ERR) {
  1853. if (!(rx_desc & RXQ_DONE))
  1854. mvs_slot_complete(mvi, rx_desc, 0);
  1855. } else if (rx_desc & RXQ_SLOT_RESET) {
  1856. mvs_slot_free(mvi, rx_desc);
  1857. }
  1858. }
  1859. if (attn && self_clear)
  1860. MVS_CHIP_DISP->int_full(mvi);
  1861. return 0;
  1862. }