xmit.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb,
  64. bool dequeue);
  65. enum {
  66. MCS_HT20,
  67. MCS_HT20_SGI,
  68. MCS_HT40,
  69. MCS_HT40_SGI,
  70. };
  71. /*********************/
  72. /* Aggregation logic */
  73. /*********************/
  74. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  75. __acquires(&txq->axq_lock)
  76. {
  77. spin_lock_bh(&txq->axq_lock);
  78. }
  79. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  80. __releases(&txq->axq_lock)
  81. {
  82. spin_unlock_bh(&txq->axq_lock);
  83. }
  84. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  85. __releases(&txq->axq_lock)
  86. {
  87. struct sk_buff_head q;
  88. struct sk_buff *skb;
  89. __skb_queue_head_init(&q);
  90. skb_queue_splice_init(&txq->complete_q, &q);
  91. spin_unlock_bh(&txq->axq_lock);
  92. while ((skb = __skb_dequeue(&q)))
  93. ieee80211_tx_status(sc->hw, skb);
  94. }
  95. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  96. {
  97. struct ath_atx_ac *ac = tid->ac;
  98. if (tid->paused)
  99. return;
  100. if (tid->sched)
  101. return;
  102. tid->sched = true;
  103. list_add_tail(&tid->list, &ac->tid_q);
  104. if (ac->sched)
  105. return;
  106. ac->sched = true;
  107. list_add_tail(&ac->list, &txq->axq_acq);
  108. }
  109. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  110. {
  111. struct ath_txq *txq = tid->ac->txq;
  112. WARN_ON(!tid->paused);
  113. ath_txq_lock(sc, txq);
  114. tid->paused = false;
  115. if (skb_queue_empty(&tid->buf_q))
  116. goto unlock;
  117. ath_tx_queue_tid(txq, tid);
  118. ath_txq_schedule(sc, txq);
  119. unlock:
  120. ath_txq_unlock_complete(sc, txq);
  121. }
  122. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  123. {
  124. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  125. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  126. sizeof(tx_info->rate_driver_data));
  127. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  128. }
  129. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  130. {
  131. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  132. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  133. }
  134. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  135. {
  136. struct ath_txq *txq = tid->ac->txq;
  137. struct sk_buff *skb;
  138. struct ath_buf *bf;
  139. struct list_head bf_head;
  140. struct ath_tx_status ts;
  141. struct ath_frame_info *fi;
  142. bool sendbar = false;
  143. INIT_LIST_HEAD(&bf_head);
  144. memset(&ts, 0, sizeof(ts));
  145. while ((skb = __skb_dequeue(&tid->buf_q))) {
  146. fi = get_frame_info(skb);
  147. bf = fi->bf;
  148. if (bf && fi->retries) {
  149. list_add_tail(&bf->list, &bf_head);
  150. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  151. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  152. sendbar = true;
  153. } else {
  154. ath_tx_send_normal(sc, txq, NULL, skb);
  155. }
  156. }
  157. if (tid->baw_head == tid->baw_tail) {
  158. tid->state &= ~AGGR_ADDBA_COMPLETE;
  159. tid->state &= ~AGGR_CLEANUP;
  160. }
  161. if (sendbar) {
  162. ath_txq_unlock(sc, txq);
  163. ath_send_bar(tid, tid->seq_start);
  164. ath_txq_lock(sc, txq);
  165. }
  166. }
  167. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  168. int seqno)
  169. {
  170. int index, cindex;
  171. index = ATH_BA_INDEX(tid->seq_start, seqno);
  172. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  173. __clear_bit(cindex, tid->tx_buf);
  174. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  175. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  176. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  177. if (tid->bar_index >= 0)
  178. tid->bar_index--;
  179. }
  180. }
  181. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  182. u16 seqno)
  183. {
  184. int index, cindex;
  185. index = ATH_BA_INDEX(tid->seq_start, seqno);
  186. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  187. __set_bit(cindex, tid->tx_buf);
  188. if (index >= ((tid->baw_tail - tid->baw_head) &
  189. (ATH_TID_MAX_BUFS - 1))) {
  190. tid->baw_tail = cindex;
  191. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  192. }
  193. }
  194. /*
  195. * TODO: For frame(s) that are in the retry state, we will reuse the
  196. * sequence number(s) without setting the retry bit. The
  197. * alternative is to give up on these and BAR the receiver's window
  198. * forward.
  199. */
  200. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  201. struct ath_atx_tid *tid)
  202. {
  203. struct sk_buff *skb;
  204. struct ath_buf *bf;
  205. struct list_head bf_head;
  206. struct ath_tx_status ts;
  207. struct ath_frame_info *fi;
  208. memset(&ts, 0, sizeof(ts));
  209. INIT_LIST_HEAD(&bf_head);
  210. while ((skb = __skb_dequeue(&tid->buf_q))) {
  211. fi = get_frame_info(skb);
  212. bf = fi->bf;
  213. if (!bf) {
  214. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  215. continue;
  216. }
  217. list_add_tail(&bf->list, &bf_head);
  218. if (fi->retries)
  219. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  220. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  221. }
  222. tid->seq_next = tid->seq_start;
  223. tid->baw_tail = tid->baw_head;
  224. tid->bar_index = -1;
  225. }
  226. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  227. struct sk_buff *skb, int count)
  228. {
  229. struct ath_frame_info *fi = get_frame_info(skb);
  230. struct ath_buf *bf = fi->bf;
  231. struct ieee80211_hdr *hdr;
  232. int prev = fi->retries;
  233. TX_STAT_INC(txq->axq_qnum, a_retries);
  234. fi->retries += count;
  235. if (prev > 0)
  236. return;
  237. hdr = (struct ieee80211_hdr *)skb->data;
  238. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  239. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  240. sizeof(*hdr), DMA_TO_DEVICE);
  241. }
  242. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  243. {
  244. struct ath_buf *bf = NULL;
  245. spin_lock_bh(&sc->tx.txbuflock);
  246. if (unlikely(list_empty(&sc->tx.txbuf))) {
  247. spin_unlock_bh(&sc->tx.txbuflock);
  248. return NULL;
  249. }
  250. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  251. list_del(&bf->list);
  252. spin_unlock_bh(&sc->tx.txbuflock);
  253. return bf;
  254. }
  255. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  256. {
  257. spin_lock_bh(&sc->tx.txbuflock);
  258. list_add_tail(&bf->list, &sc->tx.txbuf);
  259. spin_unlock_bh(&sc->tx.txbuflock);
  260. }
  261. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  262. {
  263. struct ath_buf *tbf;
  264. tbf = ath_tx_get_buffer(sc);
  265. if (WARN_ON(!tbf))
  266. return NULL;
  267. ATH_TXBUF_RESET(tbf);
  268. tbf->bf_mpdu = bf->bf_mpdu;
  269. tbf->bf_buf_addr = bf->bf_buf_addr;
  270. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  271. tbf->bf_state = bf->bf_state;
  272. return tbf;
  273. }
  274. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  275. struct ath_tx_status *ts, int txok,
  276. int *nframes, int *nbad)
  277. {
  278. struct ath_frame_info *fi;
  279. u16 seq_st = 0;
  280. u32 ba[WME_BA_BMP_SIZE >> 5];
  281. int ba_index;
  282. int isaggr = 0;
  283. *nbad = 0;
  284. *nframes = 0;
  285. isaggr = bf_isaggr(bf);
  286. if (isaggr) {
  287. seq_st = ts->ts_seqnum;
  288. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  289. }
  290. while (bf) {
  291. fi = get_frame_info(bf->bf_mpdu);
  292. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  293. (*nframes)++;
  294. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  295. (*nbad)++;
  296. bf = bf->bf_next;
  297. }
  298. }
  299. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  300. struct ath_buf *bf, struct list_head *bf_q,
  301. struct ath_tx_status *ts, int txok, bool retry)
  302. {
  303. struct ath_node *an = NULL;
  304. struct sk_buff *skb;
  305. struct ieee80211_sta *sta;
  306. struct ieee80211_hw *hw = sc->hw;
  307. struct ieee80211_hdr *hdr;
  308. struct ieee80211_tx_info *tx_info;
  309. struct ath_atx_tid *tid = NULL;
  310. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  311. struct list_head bf_head;
  312. struct sk_buff_head bf_pending;
  313. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  314. u32 ba[WME_BA_BMP_SIZE >> 5];
  315. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  316. bool rc_update = true;
  317. struct ieee80211_tx_rate rates[4];
  318. struct ath_frame_info *fi;
  319. int nframes;
  320. u8 tidno;
  321. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  322. int i, retries;
  323. int bar_index = -1;
  324. skb = bf->bf_mpdu;
  325. hdr = (struct ieee80211_hdr *)skb->data;
  326. tx_info = IEEE80211_SKB_CB(skb);
  327. memcpy(rates, tx_info->control.rates, sizeof(rates));
  328. retries = ts->ts_longretry + 1;
  329. for (i = 0; i < ts->ts_rateindex; i++)
  330. retries += rates[i].count;
  331. rcu_read_lock();
  332. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  333. if (!sta) {
  334. rcu_read_unlock();
  335. INIT_LIST_HEAD(&bf_head);
  336. while (bf) {
  337. bf_next = bf->bf_next;
  338. if (!bf->bf_stale || bf_next != NULL)
  339. list_move_tail(&bf->list, &bf_head);
  340. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  341. bf = bf_next;
  342. }
  343. return;
  344. }
  345. an = (struct ath_node *)sta->drv_priv;
  346. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  347. tid = ATH_AN_2_TID(an, tidno);
  348. seq_first = tid->seq_start;
  349. /*
  350. * The hardware occasionally sends a tx status for the wrong TID.
  351. * In this case, the BA status cannot be considered valid and all
  352. * subframes need to be retransmitted
  353. */
  354. if (tidno != ts->tid)
  355. txok = false;
  356. isaggr = bf_isaggr(bf);
  357. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  358. if (isaggr && txok) {
  359. if (ts->ts_flags & ATH9K_TX_BA) {
  360. seq_st = ts->ts_seqnum;
  361. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  362. } else {
  363. /*
  364. * AR5416 can become deaf/mute when BA
  365. * issue happens. Chip needs to be reset.
  366. * But AP code may have sychronization issues
  367. * when perform internal reset in this routine.
  368. * Only enable reset in STA mode for now.
  369. */
  370. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  371. needreset = 1;
  372. }
  373. }
  374. __skb_queue_head_init(&bf_pending);
  375. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  376. while (bf) {
  377. u16 seqno = bf->bf_state.seqno;
  378. txfail = txpending = sendbar = 0;
  379. bf_next = bf->bf_next;
  380. skb = bf->bf_mpdu;
  381. tx_info = IEEE80211_SKB_CB(skb);
  382. fi = get_frame_info(skb);
  383. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  384. /* transmit completion, subframe is
  385. * acked by block ack */
  386. acked_cnt++;
  387. } else if (!isaggr && txok) {
  388. /* transmit completion */
  389. acked_cnt++;
  390. } else if ((tid->state & AGGR_CLEANUP) || !retry) {
  391. /*
  392. * cleanup in progress, just fail
  393. * the un-acked sub-frames
  394. */
  395. txfail = 1;
  396. } else if (flush) {
  397. txpending = 1;
  398. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  399. if (txok || !an->sleeping)
  400. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  401. retries);
  402. txpending = 1;
  403. } else {
  404. txfail = 1;
  405. txfail_cnt++;
  406. bar_index = max_t(int, bar_index,
  407. ATH_BA_INDEX(seq_first, seqno));
  408. }
  409. /*
  410. * Make sure the last desc is reclaimed if it
  411. * not a holding desc.
  412. */
  413. INIT_LIST_HEAD(&bf_head);
  414. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  415. bf_next != NULL || !bf_last->bf_stale)
  416. list_move_tail(&bf->list, &bf_head);
  417. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  418. /*
  419. * complete the acked-ones/xretried ones; update
  420. * block-ack window
  421. */
  422. ath_tx_update_baw(sc, tid, seqno);
  423. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  424. memcpy(tx_info->control.rates, rates, sizeof(rates));
  425. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  426. rc_update = false;
  427. }
  428. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  429. !txfail);
  430. } else {
  431. /* retry the un-acked ones */
  432. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  433. bf->bf_next == NULL && bf_last->bf_stale) {
  434. struct ath_buf *tbf;
  435. tbf = ath_clone_txbuf(sc, bf_last);
  436. /*
  437. * Update tx baw and complete the
  438. * frame with failed status if we
  439. * run out of tx buf.
  440. */
  441. if (!tbf) {
  442. ath_tx_update_baw(sc, tid, seqno);
  443. ath_tx_complete_buf(sc, bf, txq,
  444. &bf_head, ts, 0);
  445. bar_index = max_t(int, bar_index,
  446. ATH_BA_INDEX(seq_first, seqno));
  447. break;
  448. }
  449. fi->bf = tbf;
  450. }
  451. /*
  452. * Put this buffer to the temporary pending
  453. * queue to retain ordering
  454. */
  455. __skb_queue_tail(&bf_pending, skb);
  456. }
  457. bf = bf_next;
  458. }
  459. /* prepend un-acked frames to the beginning of the pending frame queue */
  460. if (!skb_queue_empty(&bf_pending)) {
  461. if (an->sleeping)
  462. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  463. skb_queue_splice(&bf_pending, &tid->buf_q);
  464. if (!an->sleeping) {
  465. ath_tx_queue_tid(txq, tid);
  466. if (ts->ts_status & ATH9K_TXERR_FILT)
  467. tid->ac->clear_ps_filter = true;
  468. }
  469. }
  470. if (bar_index >= 0) {
  471. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  472. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  473. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  474. ath_txq_unlock(sc, txq);
  475. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  476. ath_txq_lock(sc, txq);
  477. }
  478. if (tid->state & AGGR_CLEANUP)
  479. ath_tx_flush_tid(sc, tid);
  480. rcu_read_unlock();
  481. if (needreset)
  482. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  483. }
  484. static bool ath_lookup_legacy(struct ath_buf *bf)
  485. {
  486. struct sk_buff *skb;
  487. struct ieee80211_tx_info *tx_info;
  488. struct ieee80211_tx_rate *rates;
  489. int i;
  490. skb = bf->bf_mpdu;
  491. tx_info = IEEE80211_SKB_CB(skb);
  492. rates = tx_info->control.rates;
  493. for (i = 0; i < 4; i++) {
  494. if (!rates[i].count || rates[i].idx < 0)
  495. break;
  496. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  497. return true;
  498. }
  499. return false;
  500. }
  501. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  502. struct ath_atx_tid *tid)
  503. {
  504. struct sk_buff *skb;
  505. struct ieee80211_tx_info *tx_info;
  506. struct ieee80211_tx_rate *rates;
  507. u32 max_4ms_framelen, frmlen;
  508. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  509. int q = tid->ac->txq->mac80211_qnum;
  510. int i;
  511. skb = bf->bf_mpdu;
  512. tx_info = IEEE80211_SKB_CB(skb);
  513. rates = tx_info->control.rates;
  514. /*
  515. * Find the lowest frame length among the rate series that will have a
  516. * 4ms (or TXOP limited) transmit duration.
  517. */
  518. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  519. for (i = 0; i < 4; i++) {
  520. int modeidx;
  521. if (!rates[i].count)
  522. continue;
  523. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  524. legacy = 1;
  525. break;
  526. }
  527. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  528. modeidx = MCS_HT40;
  529. else
  530. modeidx = MCS_HT20;
  531. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  532. modeidx++;
  533. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  534. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  535. }
  536. /*
  537. * limit aggregate size by the minimum rate if rate selected is
  538. * not a probe rate, if rate selected is a probe rate then
  539. * avoid aggregation of this packet.
  540. */
  541. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  542. return 0;
  543. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  544. /*
  545. * Override the default aggregation limit for BTCOEX.
  546. */
  547. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  548. if (bt_aggr_limit)
  549. aggr_limit = bt_aggr_limit;
  550. /*
  551. * h/w can accept aggregates up to 16 bit lengths (65535).
  552. * The IE, however can hold up to 65536, which shows up here
  553. * as zero. Ignore 65536 since we are constrained by hw.
  554. */
  555. if (tid->an->maxampdu)
  556. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  557. return aggr_limit;
  558. }
  559. /*
  560. * Returns the number of delimiters to be added to
  561. * meet the minimum required mpdudensity.
  562. */
  563. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  564. struct ath_buf *bf, u16 frmlen,
  565. bool first_subfrm)
  566. {
  567. #define FIRST_DESC_NDELIMS 60
  568. struct sk_buff *skb = bf->bf_mpdu;
  569. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  570. u32 nsymbits, nsymbols;
  571. u16 minlen;
  572. u8 flags, rix;
  573. int width, streams, half_gi, ndelim, mindelim;
  574. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  575. /* Select standard number of delimiters based on frame length alone */
  576. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  577. /*
  578. * If encryption enabled, hardware requires some more padding between
  579. * subframes.
  580. * TODO - this could be improved to be dependent on the rate.
  581. * The hardware can keep up at lower rates, but not higher rates
  582. */
  583. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  584. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  585. ndelim += ATH_AGGR_ENCRYPTDELIM;
  586. /*
  587. * Add delimiter when using RTS/CTS with aggregation
  588. * and non enterprise AR9003 card
  589. */
  590. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  591. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  592. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  593. /*
  594. * Convert desired mpdu density from microeconds to bytes based
  595. * on highest rate in rate series (i.e. first rate) to determine
  596. * required minimum length for subframe. Take into account
  597. * whether high rate is 20 or 40Mhz and half or full GI.
  598. *
  599. * If there is no mpdu density restriction, no further calculation
  600. * is needed.
  601. */
  602. if (tid->an->mpdudensity == 0)
  603. return ndelim;
  604. rix = tx_info->control.rates[0].idx;
  605. flags = tx_info->control.rates[0].flags;
  606. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  607. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  608. if (half_gi)
  609. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  610. else
  611. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  612. if (nsymbols == 0)
  613. nsymbols = 1;
  614. streams = HT_RC_2_STREAMS(rix);
  615. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  616. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  617. if (frmlen < minlen) {
  618. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  619. ndelim = max(mindelim, ndelim);
  620. }
  621. return ndelim;
  622. }
  623. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  624. struct ath_txq *txq,
  625. struct ath_atx_tid *tid,
  626. struct list_head *bf_q,
  627. int *aggr_len)
  628. {
  629. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  630. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  631. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  632. u16 aggr_limit = 0, al = 0, bpad = 0,
  633. al_delta, h_baw = tid->baw_size / 2;
  634. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  635. struct ieee80211_tx_info *tx_info;
  636. struct ath_frame_info *fi;
  637. struct sk_buff *skb;
  638. u16 seqno;
  639. do {
  640. skb = skb_peek(&tid->buf_q);
  641. fi = get_frame_info(skb);
  642. bf = fi->bf;
  643. if (!fi->bf)
  644. bf = ath_tx_setup_buffer(sc, txq, tid, skb, true);
  645. if (!bf)
  646. continue;
  647. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  648. seqno = bf->bf_state.seqno;
  649. /* do not step over block-ack window */
  650. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  651. status = ATH_AGGR_BAW_CLOSED;
  652. break;
  653. }
  654. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  655. struct ath_tx_status ts = {};
  656. struct list_head bf_head;
  657. INIT_LIST_HEAD(&bf_head);
  658. list_add(&bf->list, &bf_head);
  659. __skb_unlink(skb, &tid->buf_q);
  660. ath_tx_update_baw(sc, tid, seqno);
  661. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  662. continue;
  663. }
  664. if (!bf_first)
  665. bf_first = bf;
  666. if (!rl) {
  667. aggr_limit = ath_lookup_rate(sc, bf, tid);
  668. rl = 1;
  669. }
  670. /* do not exceed aggregation limit */
  671. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  672. if (nframes &&
  673. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  674. ath_lookup_legacy(bf))) {
  675. status = ATH_AGGR_LIMITED;
  676. break;
  677. }
  678. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  679. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  680. break;
  681. /* do not exceed subframe limit */
  682. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  683. status = ATH_AGGR_LIMITED;
  684. break;
  685. }
  686. /* add padding for previous frame to aggregation length */
  687. al += bpad + al_delta;
  688. /*
  689. * Get the delimiters needed to meet the MPDU
  690. * density for this node.
  691. */
  692. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  693. !nframes);
  694. bpad = PADBYTES(al_delta) + (ndelim << 2);
  695. nframes++;
  696. bf->bf_next = NULL;
  697. /* link buffers of this frame to the aggregate */
  698. if (!fi->retries)
  699. ath_tx_addto_baw(sc, tid, seqno);
  700. bf->bf_state.ndelim = ndelim;
  701. __skb_unlink(skb, &tid->buf_q);
  702. list_add_tail(&bf->list, bf_q);
  703. if (bf_prev)
  704. bf_prev->bf_next = bf;
  705. bf_prev = bf;
  706. } while (!skb_queue_empty(&tid->buf_q));
  707. *aggr_len = al;
  708. return status;
  709. #undef PADBYTES
  710. }
  711. /*
  712. * rix - rate index
  713. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  714. * width - 0 for 20 MHz, 1 for 40 MHz
  715. * half_gi - to use 4us v/s 3.6 us for symbol time
  716. */
  717. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  718. int width, int half_gi, bool shortPreamble)
  719. {
  720. u32 nbits, nsymbits, duration, nsymbols;
  721. int streams;
  722. /* find number of symbols: PLCP + data */
  723. streams = HT_RC_2_STREAMS(rix);
  724. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  725. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  726. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  727. if (!half_gi)
  728. duration = SYMBOL_TIME(nsymbols);
  729. else
  730. duration = SYMBOL_TIME_HALFGI(nsymbols);
  731. /* addup duration for legacy/ht training and signal fields */
  732. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  733. return duration;
  734. }
  735. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  736. {
  737. int streams = HT_RC_2_STREAMS(mcs);
  738. int symbols, bits;
  739. int bytes = 0;
  740. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  741. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  742. bits -= OFDM_PLCP_BITS;
  743. bytes = bits / 8;
  744. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  745. if (bytes > 65532)
  746. bytes = 65532;
  747. return bytes;
  748. }
  749. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  750. {
  751. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  752. int mcs;
  753. /* 4ms is the default (and maximum) duration */
  754. if (!txop || txop > 4096)
  755. txop = 4096;
  756. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  757. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  758. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  759. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  760. for (mcs = 0; mcs < 32; mcs++) {
  761. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  762. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  763. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  764. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  765. }
  766. }
  767. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  768. struct ath_tx_info *info, int len)
  769. {
  770. struct ath_hw *ah = sc->sc_ah;
  771. struct sk_buff *skb;
  772. struct ieee80211_tx_info *tx_info;
  773. struct ieee80211_tx_rate *rates;
  774. const struct ieee80211_rate *rate;
  775. struct ieee80211_hdr *hdr;
  776. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  777. int i;
  778. u8 rix = 0;
  779. skb = bf->bf_mpdu;
  780. tx_info = IEEE80211_SKB_CB(skb);
  781. rates = tx_info->control.rates;
  782. hdr = (struct ieee80211_hdr *)skb->data;
  783. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  784. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  785. info->rtscts_rate = fi->rtscts_rate;
  786. for (i = 0; i < 4; i++) {
  787. bool is_40, is_sgi, is_sp;
  788. int phy;
  789. if (!rates[i].count || (rates[i].idx < 0))
  790. continue;
  791. rix = rates[i].idx;
  792. info->rates[i].Tries = rates[i].count;
  793. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  794. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  795. info->flags |= ATH9K_TXDESC_RTSENA;
  796. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  797. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  798. info->flags |= ATH9K_TXDESC_CTSENA;
  799. }
  800. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  801. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  802. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  803. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  804. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  805. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  806. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  807. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  808. /* MCS rates */
  809. info->rates[i].Rate = rix | 0x80;
  810. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  811. ah->txchainmask, info->rates[i].Rate);
  812. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  813. is_40, is_sgi, is_sp);
  814. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  815. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  816. continue;
  817. }
  818. /* legacy rates */
  819. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  820. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  821. !(rate->flags & IEEE80211_RATE_ERP_G))
  822. phy = WLAN_RC_PHY_CCK;
  823. else
  824. phy = WLAN_RC_PHY_OFDM;
  825. info->rates[i].Rate = rate->hw_value;
  826. if (rate->hw_value_short) {
  827. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  828. info->rates[i].Rate |= rate->hw_value_short;
  829. } else {
  830. is_sp = false;
  831. }
  832. if (bf->bf_state.bfs_paprd)
  833. info->rates[i].ChSel = ah->txchainmask;
  834. else
  835. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  836. ah->txchainmask, info->rates[i].Rate);
  837. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  838. phy, rate->bitrate * 100, len, rix, is_sp);
  839. }
  840. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  841. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  842. info->flags &= ~ATH9K_TXDESC_RTSENA;
  843. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  844. if (info->flags & ATH9K_TXDESC_RTSENA)
  845. info->flags &= ~ATH9K_TXDESC_CTSENA;
  846. }
  847. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  848. {
  849. struct ieee80211_hdr *hdr;
  850. enum ath9k_pkt_type htype;
  851. __le16 fc;
  852. hdr = (struct ieee80211_hdr *)skb->data;
  853. fc = hdr->frame_control;
  854. if (ieee80211_is_beacon(fc))
  855. htype = ATH9K_PKT_TYPE_BEACON;
  856. else if (ieee80211_is_probe_resp(fc))
  857. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  858. else if (ieee80211_is_atim(fc))
  859. htype = ATH9K_PKT_TYPE_ATIM;
  860. else if (ieee80211_is_pspoll(fc))
  861. htype = ATH9K_PKT_TYPE_PSPOLL;
  862. else
  863. htype = ATH9K_PKT_TYPE_NORMAL;
  864. return htype;
  865. }
  866. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  867. struct ath_txq *txq, int len)
  868. {
  869. struct ath_hw *ah = sc->sc_ah;
  870. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  871. struct ath_buf *bf_first = bf;
  872. struct ath_tx_info info;
  873. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  874. memset(&info, 0, sizeof(info));
  875. info.is_first = true;
  876. info.is_last = true;
  877. info.txpower = MAX_RATE_POWER;
  878. info.qcu = txq->axq_qnum;
  879. info.flags = ATH9K_TXDESC_INTREQ;
  880. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  881. info.flags |= ATH9K_TXDESC_NOACK;
  882. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  883. info.flags |= ATH9K_TXDESC_LDPC;
  884. ath_buf_set_rate(sc, bf, &info, len);
  885. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  886. info.flags |= ATH9K_TXDESC_CLRDMASK;
  887. if (bf->bf_state.bfs_paprd)
  888. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  889. while (bf) {
  890. struct sk_buff *skb = bf->bf_mpdu;
  891. struct ath_frame_info *fi = get_frame_info(skb);
  892. info.type = get_hw_packet_type(skb);
  893. if (bf->bf_next)
  894. info.link = bf->bf_next->bf_daddr;
  895. else
  896. info.link = 0;
  897. info.buf_addr[0] = bf->bf_buf_addr;
  898. info.buf_len[0] = skb->len;
  899. info.pkt_len = fi->framelen;
  900. info.keyix = fi->keyix;
  901. info.keytype = fi->keytype;
  902. if (aggr) {
  903. if (bf == bf_first)
  904. info.aggr = AGGR_BUF_FIRST;
  905. else if (!bf->bf_next)
  906. info.aggr = AGGR_BUF_LAST;
  907. else
  908. info.aggr = AGGR_BUF_MIDDLE;
  909. info.ndelim = bf->bf_state.ndelim;
  910. info.aggr_len = len;
  911. }
  912. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  913. bf = bf->bf_next;
  914. }
  915. }
  916. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  917. struct ath_atx_tid *tid)
  918. {
  919. struct ath_buf *bf;
  920. enum ATH_AGGR_STATUS status;
  921. struct ieee80211_tx_info *tx_info;
  922. struct list_head bf_q;
  923. int aggr_len;
  924. do {
  925. if (skb_queue_empty(&tid->buf_q))
  926. return;
  927. INIT_LIST_HEAD(&bf_q);
  928. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  929. /*
  930. * no frames picked up to be aggregated;
  931. * block-ack window is not open.
  932. */
  933. if (list_empty(&bf_q))
  934. break;
  935. bf = list_first_entry(&bf_q, struct ath_buf, list);
  936. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  937. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  938. if (tid->ac->clear_ps_filter) {
  939. tid->ac->clear_ps_filter = false;
  940. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  941. } else {
  942. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  943. }
  944. /* if only one frame, send as non-aggregate */
  945. if (bf == bf->bf_lastbf) {
  946. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  947. bf->bf_state.bf_type = BUF_AMPDU;
  948. } else {
  949. TX_STAT_INC(txq->axq_qnum, a_aggr);
  950. }
  951. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  952. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  953. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  954. status != ATH_AGGR_BAW_CLOSED);
  955. }
  956. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  957. u16 tid, u16 *ssn)
  958. {
  959. struct ath_atx_tid *txtid;
  960. struct ath_node *an;
  961. u8 density;
  962. an = (struct ath_node *)sta->drv_priv;
  963. txtid = ATH_AN_2_TID(an, tid);
  964. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  965. return -EAGAIN;
  966. /* update ampdu factor/density, they may have changed. This may happen
  967. * in HT IBSS when a beacon with HT-info is received after the station
  968. * has already been added.
  969. */
  970. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  971. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  972. sta->ht_cap.ampdu_factor);
  973. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  974. an->mpdudensity = density;
  975. }
  976. txtid->state |= AGGR_ADDBA_PROGRESS;
  977. txtid->paused = true;
  978. *ssn = txtid->seq_start = txtid->seq_next;
  979. txtid->bar_index = -1;
  980. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  981. txtid->baw_head = txtid->baw_tail = 0;
  982. return 0;
  983. }
  984. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  985. {
  986. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  987. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  988. struct ath_txq *txq = txtid->ac->txq;
  989. if (txtid->state & AGGR_CLEANUP)
  990. return;
  991. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  992. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  993. return;
  994. }
  995. ath_txq_lock(sc, txq);
  996. txtid->paused = true;
  997. /*
  998. * If frames are still being transmitted for this TID, they will be
  999. * cleaned up during tx completion. To prevent race conditions, this
  1000. * TID can only be reused after all in-progress subframes have been
  1001. * completed.
  1002. */
  1003. if (txtid->baw_head != txtid->baw_tail)
  1004. txtid->state |= AGGR_CLEANUP;
  1005. else
  1006. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  1007. ath_tx_flush_tid(sc, txtid);
  1008. ath_txq_unlock_complete(sc, txq);
  1009. }
  1010. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1011. struct ath_node *an)
  1012. {
  1013. struct ath_atx_tid *tid;
  1014. struct ath_atx_ac *ac;
  1015. struct ath_txq *txq;
  1016. bool buffered;
  1017. int tidno;
  1018. for (tidno = 0, tid = &an->tid[tidno];
  1019. tidno < WME_NUM_TID; tidno++, tid++) {
  1020. if (!tid->sched)
  1021. continue;
  1022. ac = tid->ac;
  1023. txq = ac->txq;
  1024. ath_txq_lock(sc, txq);
  1025. buffered = !skb_queue_empty(&tid->buf_q);
  1026. tid->sched = false;
  1027. list_del(&tid->list);
  1028. if (ac->sched) {
  1029. ac->sched = false;
  1030. list_del(&ac->list);
  1031. }
  1032. ath_txq_unlock(sc, txq);
  1033. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1034. }
  1035. }
  1036. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1037. {
  1038. struct ath_atx_tid *tid;
  1039. struct ath_atx_ac *ac;
  1040. struct ath_txq *txq;
  1041. int tidno;
  1042. for (tidno = 0, tid = &an->tid[tidno];
  1043. tidno < WME_NUM_TID; tidno++, tid++) {
  1044. ac = tid->ac;
  1045. txq = ac->txq;
  1046. ath_txq_lock(sc, txq);
  1047. ac->clear_ps_filter = true;
  1048. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1049. ath_tx_queue_tid(txq, tid);
  1050. ath_txq_schedule(sc, txq);
  1051. }
  1052. ath_txq_unlock_complete(sc, txq);
  1053. }
  1054. }
  1055. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1056. {
  1057. struct ath_atx_tid *txtid;
  1058. struct ath_node *an;
  1059. an = (struct ath_node *)sta->drv_priv;
  1060. txtid = ATH_AN_2_TID(an, tid);
  1061. txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1062. txtid->state |= AGGR_ADDBA_COMPLETE;
  1063. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1064. ath_tx_resume_tid(sc, txtid);
  1065. }
  1066. /********************/
  1067. /* Queue Management */
  1068. /********************/
  1069. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  1070. struct ath_txq *txq)
  1071. {
  1072. struct ath_atx_ac *ac, *ac_tmp;
  1073. struct ath_atx_tid *tid, *tid_tmp;
  1074. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1075. list_del(&ac->list);
  1076. ac->sched = false;
  1077. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  1078. list_del(&tid->list);
  1079. tid->sched = false;
  1080. ath_tid_drain(sc, txq, tid);
  1081. }
  1082. }
  1083. }
  1084. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1085. {
  1086. struct ath_hw *ah = sc->sc_ah;
  1087. struct ath9k_tx_queue_info qi;
  1088. static const int subtype_txq_to_hwq[] = {
  1089. [WME_AC_BE] = ATH_TXQ_AC_BE,
  1090. [WME_AC_BK] = ATH_TXQ_AC_BK,
  1091. [WME_AC_VI] = ATH_TXQ_AC_VI,
  1092. [WME_AC_VO] = ATH_TXQ_AC_VO,
  1093. };
  1094. int axq_qnum, i;
  1095. memset(&qi, 0, sizeof(qi));
  1096. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1097. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1098. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1099. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1100. qi.tqi_physCompBuf = 0;
  1101. /*
  1102. * Enable interrupts only for EOL and DESC conditions.
  1103. * We mark tx descriptors to receive a DESC interrupt
  1104. * when a tx queue gets deep; otherwise waiting for the
  1105. * EOL to reap descriptors. Note that this is done to
  1106. * reduce interrupt load and this only defers reaping
  1107. * descriptors, never transmitting frames. Aside from
  1108. * reducing interrupts this also permits more concurrency.
  1109. * The only potential downside is if the tx queue backs
  1110. * up in which case the top half of the kernel may backup
  1111. * due to a lack of tx descriptors.
  1112. *
  1113. * The UAPSD queue is an exception, since we take a desc-
  1114. * based intr on the EOSP frames.
  1115. */
  1116. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1117. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1118. } else {
  1119. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1120. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1121. else
  1122. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1123. TXQ_FLAG_TXDESCINT_ENABLE;
  1124. }
  1125. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1126. if (axq_qnum == -1) {
  1127. /*
  1128. * NB: don't print a message, this happens
  1129. * normally on parts with too few tx queues
  1130. */
  1131. return NULL;
  1132. }
  1133. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1134. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1135. txq->axq_qnum = axq_qnum;
  1136. txq->mac80211_qnum = -1;
  1137. txq->axq_link = NULL;
  1138. __skb_queue_head_init(&txq->complete_q);
  1139. INIT_LIST_HEAD(&txq->axq_q);
  1140. INIT_LIST_HEAD(&txq->axq_acq);
  1141. spin_lock_init(&txq->axq_lock);
  1142. txq->axq_depth = 0;
  1143. txq->axq_ampdu_depth = 0;
  1144. txq->axq_tx_inprogress = false;
  1145. sc->tx.txqsetup |= 1<<axq_qnum;
  1146. txq->txq_headidx = txq->txq_tailidx = 0;
  1147. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1148. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1149. }
  1150. return &sc->tx.txq[axq_qnum];
  1151. }
  1152. int ath_txq_update(struct ath_softc *sc, int qnum,
  1153. struct ath9k_tx_queue_info *qinfo)
  1154. {
  1155. struct ath_hw *ah = sc->sc_ah;
  1156. int error = 0;
  1157. struct ath9k_tx_queue_info qi;
  1158. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1159. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1160. qi.tqi_aifs = qinfo->tqi_aifs;
  1161. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1162. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1163. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1164. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1165. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1166. ath_err(ath9k_hw_common(sc->sc_ah),
  1167. "Unable to update hardware queue %u!\n", qnum);
  1168. error = -EIO;
  1169. } else {
  1170. ath9k_hw_resettxqueue(ah, qnum);
  1171. }
  1172. return error;
  1173. }
  1174. int ath_cabq_update(struct ath_softc *sc)
  1175. {
  1176. struct ath9k_tx_queue_info qi;
  1177. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1178. int qnum = sc->beacon.cabq->axq_qnum;
  1179. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1180. /*
  1181. * Ensure the readytime % is within the bounds.
  1182. */
  1183. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1184. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1185. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1186. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1187. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1188. sc->config.cabqReadytime) / 100;
  1189. ath_txq_update(sc, qnum, &qi);
  1190. return 0;
  1191. }
  1192. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1193. {
  1194. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1195. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1196. }
  1197. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1198. struct list_head *list, bool retry_tx)
  1199. {
  1200. struct ath_buf *bf, *lastbf;
  1201. struct list_head bf_head;
  1202. struct ath_tx_status ts;
  1203. memset(&ts, 0, sizeof(ts));
  1204. ts.ts_status = ATH9K_TX_FLUSH;
  1205. INIT_LIST_HEAD(&bf_head);
  1206. while (!list_empty(list)) {
  1207. bf = list_first_entry(list, struct ath_buf, list);
  1208. if (bf->bf_stale) {
  1209. list_del(&bf->list);
  1210. ath_tx_return_buffer(sc, bf);
  1211. continue;
  1212. }
  1213. lastbf = bf->bf_lastbf;
  1214. list_cut_position(&bf_head, list, &lastbf->list);
  1215. txq->axq_depth--;
  1216. if (bf_is_ampdu_not_probing(bf))
  1217. txq->axq_ampdu_depth--;
  1218. if (bf_isampdu(bf))
  1219. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1220. retry_tx);
  1221. else
  1222. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  1223. }
  1224. }
  1225. /*
  1226. * Drain a given TX queue (could be Beacon or Data)
  1227. *
  1228. * This assumes output has been stopped and
  1229. * we do not need to block ath_tx_tasklet.
  1230. */
  1231. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1232. {
  1233. ath_txq_lock(sc, txq);
  1234. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1235. int idx = txq->txq_tailidx;
  1236. while (!list_empty(&txq->txq_fifo[idx])) {
  1237. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1238. retry_tx);
  1239. INCR(idx, ATH_TXFIFO_DEPTH);
  1240. }
  1241. txq->txq_tailidx = idx;
  1242. }
  1243. txq->axq_link = NULL;
  1244. txq->axq_tx_inprogress = false;
  1245. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1246. /* flush any pending frames if aggregation is enabled */
  1247. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
  1248. ath_txq_drain_pending_buffers(sc, txq);
  1249. ath_txq_unlock_complete(sc, txq);
  1250. }
  1251. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1252. {
  1253. struct ath_hw *ah = sc->sc_ah;
  1254. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1255. struct ath_txq *txq;
  1256. int i;
  1257. u32 npend = 0;
  1258. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1259. return true;
  1260. ath9k_hw_abort_tx_dma(ah);
  1261. /* Check if any queue remains active */
  1262. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1263. if (!ATH_TXQ_SETUP(sc, i))
  1264. continue;
  1265. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1266. npend |= BIT(i);
  1267. }
  1268. if (npend)
  1269. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1270. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1271. if (!ATH_TXQ_SETUP(sc, i))
  1272. continue;
  1273. /*
  1274. * The caller will resume queues with ieee80211_wake_queues.
  1275. * Mark the queue as not stopped to prevent ath_tx_complete
  1276. * from waking the queue too early.
  1277. */
  1278. txq = &sc->tx.txq[i];
  1279. txq->stopped = false;
  1280. ath_draintxq(sc, txq, retry_tx);
  1281. }
  1282. return !npend;
  1283. }
  1284. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1285. {
  1286. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1287. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1288. }
  1289. /* For each axq_acq entry, for each tid, try to schedule packets
  1290. * for transmit until ampdu_depth has reached min Q depth.
  1291. */
  1292. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1293. {
  1294. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1295. struct ath_atx_tid *tid, *last_tid;
  1296. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1297. list_empty(&txq->axq_acq) ||
  1298. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1299. return;
  1300. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1301. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1302. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1303. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1304. list_del(&ac->list);
  1305. ac->sched = false;
  1306. while (!list_empty(&ac->tid_q)) {
  1307. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1308. list);
  1309. list_del(&tid->list);
  1310. tid->sched = false;
  1311. if (tid->paused)
  1312. continue;
  1313. ath_tx_sched_aggr(sc, txq, tid);
  1314. /*
  1315. * add tid to round-robin queue if more frames
  1316. * are pending for the tid
  1317. */
  1318. if (!skb_queue_empty(&tid->buf_q))
  1319. ath_tx_queue_tid(txq, tid);
  1320. if (tid == last_tid ||
  1321. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1322. break;
  1323. }
  1324. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1325. ac->sched = true;
  1326. list_add_tail(&ac->list, &txq->axq_acq);
  1327. }
  1328. if (ac == last_ac ||
  1329. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1330. return;
  1331. }
  1332. }
  1333. /***********/
  1334. /* TX, DMA */
  1335. /***********/
  1336. /*
  1337. * Insert a chain of ath_buf (descriptors) on a txq and
  1338. * assume the descriptors are already chained together by caller.
  1339. */
  1340. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1341. struct list_head *head, bool internal)
  1342. {
  1343. struct ath_hw *ah = sc->sc_ah;
  1344. struct ath_common *common = ath9k_hw_common(ah);
  1345. struct ath_buf *bf, *bf_last;
  1346. bool puttxbuf = false;
  1347. bool edma;
  1348. /*
  1349. * Insert the frame on the outbound list and
  1350. * pass it on to the hardware.
  1351. */
  1352. if (list_empty(head))
  1353. return;
  1354. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1355. bf = list_first_entry(head, struct ath_buf, list);
  1356. bf_last = list_entry(head->prev, struct ath_buf, list);
  1357. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1358. txq->axq_qnum, txq->axq_depth);
  1359. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1360. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1361. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1362. puttxbuf = true;
  1363. } else {
  1364. list_splice_tail_init(head, &txq->axq_q);
  1365. if (txq->axq_link) {
  1366. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1367. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1368. txq->axq_qnum, txq->axq_link,
  1369. ito64(bf->bf_daddr), bf->bf_desc);
  1370. } else if (!edma)
  1371. puttxbuf = true;
  1372. txq->axq_link = bf_last->bf_desc;
  1373. }
  1374. if (puttxbuf) {
  1375. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1376. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1377. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1378. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1379. }
  1380. if (!edma) {
  1381. TX_STAT_INC(txq->axq_qnum, txstart);
  1382. ath9k_hw_txstart(ah, txq->axq_qnum);
  1383. }
  1384. if (!internal) {
  1385. txq->axq_depth++;
  1386. if (bf_is_ampdu_not_probing(bf))
  1387. txq->axq_ampdu_depth++;
  1388. }
  1389. }
  1390. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1391. struct sk_buff *skb, struct ath_tx_control *txctl)
  1392. {
  1393. struct ath_frame_info *fi = get_frame_info(skb);
  1394. struct list_head bf_head;
  1395. struct ath_buf *bf;
  1396. /*
  1397. * Do not queue to h/w when any of the following conditions is true:
  1398. * - there are pending frames in software queue
  1399. * - the TID is currently paused for ADDBA/BAR request
  1400. * - seqno is not within block-ack window
  1401. * - h/w queue depth exceeds low water mark
  1402. */
  1403. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1404. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1405. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1406. /*
  1407. * Add this frame to software queue for scheduling later
  1408. * for aggregation.
  1409. */
  1410. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1411. __skb_queue_tail(&tid->buf_q, skb);
  1412. if (!txctl->an || !txctl->an->sleeping)
  1413. ath_tx_queue_tid(txctl->txq, tid);
  1414. return;
  1415. }
  1416. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
  1417. if (!bf)
  1418. return;
  1419. bf->bf_state.bf_type = BUF_AMPDU;
  1420. INIT_LIST_HEAD(&bf_head);
  1421. list_add(&bf->list, &bf_head);
  1422. /* Add sub-frame to BAW */
  1423. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1424. /* Queue to h/w without aggregation */
  1425. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1426. bf->bf_lastbf = bf;
  1427. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1428. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1429. }
  1430. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1431. struct ath_atx_tid *tid, struct sk_buff *skb)
  1432. {
  1433. struct ath_frame_info *fi = get_frame_info(skb);
  1434. struct list_head bf_head;
  1435. struct ath_buf *bf;
  1436. bf = fi->bf;
  1437. if (!bf)
  1438. bf = ath_tx_setup_buffer(sc, txq, tid, skb, false);
  1439. if (!bf)
  1440. return;
  1441. INIT_LIST_HEAD(&bf_head);
  1442. list_add_tail(&bf->list, &bf_head);
  1443. bf->bf_state.bf_type = 0;
  1444. bf->bf_lastbf = bf;
  1445. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1446. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1447. TX_STAT_INC(txq->axq_qnum, queued);
  1448. }
  1449. static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
  1450. int framelen)
  1451. {
  1452. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1453. struct ieee80211_sta *sta = tx_info->control.sta;
  1454. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1455. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1456. const struct ieee80211_rate *rate;
  1457. struct ath_frame_info *fi = get_frame_info(skb);
  1458. struct ath_node *an = NULL;
  1459. enum ath9k_key_type keytype;
  1460. bool short_preamble = false;
  1461. /*
  1462. * We check if Short Preamble is needed for the CTS rate by
  1463. * checking the BSS's global flag.
  1464. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1465. */
  1466. if (tx_info->control.vif &&
  1467. tx_info->control.vif->bss_conf.use_short_preamble)
  1468. short_preamble = true;
  1469. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1470. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1471. if (sta)
  1472. an = (struct ath_node *) sta->drv_priv;
  1473. memset(fi, 0, sizeof(*fi));
  1474. if (hw_key)
  1475. fi->keyix = hw_key->hw_key_idx;
  1476. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1477. fi->keyix = an->ps_key;
  1478. else
  1479. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1480. fi->keytype = keytype;
  1481. fi->framelen = framelen;
  1482. fi->rtscts_rate = rate->hw_value;
  1483. if (short_preamble)
  1484. fi->rtscts_rate |= rate->hw_value_short;
  1485. }
  1486. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1487. {
  1488. struct ath_hw *ah = sc->sc_ah;
  1489. struct ath9k_channel *curchan = ah->curchan;
  1490. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1491. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1492. (chainmask == 0x7) && (rate < 0x90))
  1493. return 0x3;
  1494. else
  1495. return chainmask;
  1496. }
  1497. /*
  1498. * Assign a descriptor (and sequence number if necessary,
  1499. * and map buffer for DMA. Frees skb on error
  1500. */
  1501. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1502. struct ath_txq *txq,
  1503. struct ath_atx_tid *tid,
  1504. struct sk_buff *skb,
  1505. bool dequeue)
  1506. {
  1507. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1508. struct ath_frame_info *fi = get_frame_info(skb);
  1509. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1510. struct ath_buf *bf;
  1511. int fragno;
  1512. u16 seqno;
  1513. bf = ath_tx_get_buffer(sc);
  1514. if (!bf) {
  1515. ath_dbg(common, XMIT, "TX buffers are full\n");
  1516. goto error;
  1517. }
  1518. ATH_TXBUF_RESET(bf);
  1519. if (tid) {
  1520. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1521. seqno = tid->seq_next;
  1522. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1523. if (fragno)
  1524. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1525. if (!ieee80211_has_morefrags(hdr->frame_control))
  1526. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1527. bf->bf_state.seqno = seqno;
  1528. }
  1529. bf->bf_mpdu = skb;
  1530. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1531. skb->len, DMA_TO_DEVICE);
  1532. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1533. bf->bf_mpdu = NULL;
  1534. bf->bf_buf_addr = 0;
  1535. ath_err(ath9k_hw_common(sc->sc_ah),
  1536. "dma_mapping_error() on TX\n");
  1537. ath_tx_return_buffer(sc, bf);
  1538. goto error;
  1539. }
  1540. fi->bf = bf;
  1541. return bf;
  1542. error:
  1543. if (dequeue)
  1544. __skb_unlink(skb, &tid->buf_q);
  1545. dev_kfree_skb_any(skb);
  1546. return NULL;
  1547. }
  1548. /* FIXME: tx power */
  1549. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1550. struct ath_tx_control *txctl)
  1551. {
  1552. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1553. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1554. struct ath_atx_tid *tid = NULL;
  1555. struct ath_buf *bf;
  1556. u8 tidno;
  1557. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
  1558. ieee80211_is_data_qos(hdr->frame_control)) {
  1559. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1560. IEEE80211_QOS_CTL_TID_MASK;
  1561. tid = ATH_AN_2_TID(txctl->an, tidno);
  1562. WARN_ON(tid->ac->txq != txctl->txq);
  1563. }
  1564. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1565. /*
  1566. * Try aggregation if it's a unicast data frame
  1567. * and the destination is HT capable.
  1568. */
  1569. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1570. } else {
  1571. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
  1572. if (!bf)
  1573. return;
  1574. bf->bf_state.bfs_paprd = txctl->paprd;
  1575. if (txctl->paprd)
  1576. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1577. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1578. }
  1579. }
  1580. /* Upon failure caller should free skb */
  1581. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1582. struct ath_tx_control *txctl)
  1583. {
  1584. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1585. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1586. struct ieee80211_sta *sta = info->control.sta;
  1587. struct ieee80211_vif *vif = info->control.vif;
  1588. struct ath_softc *sc = hw->priv;
  1589. struct ath_txq *txq = txctl->txq;
  1590. int padpos, padsize;
  1591. int frmlen = skb->len + FCS_LEN;
  1592. int q;
  1593. /* NOTE: sta can be NULL according to net/mac80211.h */
  1594. if (sta)
  1595. txctl->an = (struct ath_node *)sta->drv_priv;
  1596. if (info->control.hw_key)
  1597. frmlen += info->control.hw_key->icv_len;
  1598. /*
  1599. * As a temporary workaround, assign seq# here; this will likely need
  1600. * to be cleaned up to work better with Beacon transmission and virtual
  1601. * BSSes.
  1602. */
  1603. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1604. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1605. sc->tx.seq_no += 0x10;
  1606. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1607. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1608. }
  1609. /* Add the padding after the header if this is not already done */
  1610. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1611. padsize = padpos & 3;
  1612. if (padsize && skb->len > padpos) {
  1613. if (skb_headroom(skb) < padsize)
  1614. return -ENOMEM;
  1615. skb_push(skb, padsize);
  1616. memmove(skb->data, skb->data + padsize, padpos);
  1617. hdr = (struct ieee80211_hdr *) skb->data;
  1618. }
  1619. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1620. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1621. !ieee80211_is_data(hdr->frame_control))
  1622. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1623. setup_frame_info(hw, skb, frmlen);
  1624. /*
  1625. * At this point, the vif, hw_key and sta pointers in the tx control
  1626. * info are no longer valid (overwritten by the ath_frame_info data.
  1627. */
  1628. q = skb_get_queue_mapping(skb);
  1629. ath_txq_lock(sc, txq);
  1630. if (txq == sc->tx.txq_map[q] &&
  1631. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1632. !txq->stopped) {
  1633. ieee80211_stop_queue(sc->hw, q);
  1634. txq->stopped = true;
  1635. }
  1636. ath_tx_start_dma(sc, skb, txctl);
  1637. ath_txq_unlock(sc, txq);
  1638. return 0;
  1639. }
  1640. /*****************/
  1641. /* TX Completion */
  1642. /*****************/
  1643. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1644. int tx_flags, struct ath_txq *txq)
  1645. {
  1646. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1647. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1648. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1649. int q, padpos, padsize;
  1650. unsigned long flags;
  1651. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1652. if (!(tx_flags & ATH_TX_ERROR))
  1653. /* Frame was ACKed */
  1654. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1655. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1656. padsize = padpos & 3;
  1657. if (padsize && skb->len>padpos+padsize) {
  1658. /*
  1659. * Remove MAC header padding before giving the frame back to
  1660. * mac80211.
  1661. */
  1662. memmove(skb->data + padsize, skb->data, padpos);
  1663. skb_pull(skb, padsize);
  1664. }
  1665. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1666. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1667. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1668. ath_dbg(common, PS,
  1669. "Going back to sleep after having received TX status (0x%lx)\n",
  1670. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1671. PS_WAIT_FOR_CAB |
  1672. PS_WAIT_FOR_PSPOLL_DATA |
  1673. PS_WAIT_FOR_TX_ACK));
  1674. }
  1675. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1676. q = skb_get_queue_mapping(skb);
  1677. if (txq == sc->tx.txq_map[q]) {
  1678. if (WARN_ON(--txq->pending_frames < 0))
  1679. txq->pending_frames = 0;
  1680. if (txq->stopped &&
  1681. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  1682. ieee80211_wake_queue(sc->hw, q);
  1683. txq->stopped = false;
  1684. }
  1685. }
  1686. __skb_queue_tail(&txq->complete_q, skb);
  1687. }
  1688. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1689. struct ath_txq *txq, struct list_head *bf_q,
  1690. struct ath_tx_status *ts, int txok)
  1691. {
  1692. struct sk_buff *skb = bf->bf_mpdu;
  1693. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1694. unsigned long flags;
  1695. int tx_flags = 0;
  1696. if (!txok)
  1697. tx_flags |= ATH_TX_ERROR;
  1698. if (ts->ts_status & ATH9K_TXERR_FILT)
  1699. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1700. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1701. bf->bf_buf_addr = 0;
  1702. if (bf->bf_state.bfs_paprd) {
  1703. if (time_after(jiffies,
  1704. bf->bf_state.bfs_paprd_timestamp +
  1705. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1706. dev_kfree_skb_any(skb);
  1707. else
  1708. complete(&sc->paprd_complete);
  1709. } else {
  1710. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1711. ath_tx_complete(sc, skb, tx_flags, txq);
  1712. }
  1713. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1714. * accidentally reference it later.
  1715. */
  1716. bf->bf_mpdu = NULL;
  1717. /*
  1718. * Return the list of ath_buf of this mpdu to free queue
  1719. */
  1720. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1721. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1722. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1723. }
  1724. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1725. struct ath_tx_status *ts, int nframes, int nbad,
  1726. int txok)
  1727. {
  1728. struct sk_buff *skb = bf->bf_mpdu;
  1729. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1730. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1731. struct ieee80211_hw *hw = sc->hw;
  1732. struct ath_hw *ah = sc->sc_ah;
  1733. u8 i, tx_rateindex;
  1734. if (txok)
  1735. tx_info->status.ack_signal = ts->ts_rssi;
  1736. tx_rateindex = ts->ts_rateindex;
  1737. WARN_ON(tx_rateindex >= hw->max_rates);
  1738. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1739. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1740. BUG_ON(nbad > nframes);
  1741. }
  1742. tx_info->status.ampdu_len = nframes;
  1743. tx_info->status.ampdu_ack_len = nframes - nbad;
  1744. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1745. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1746. /*
  1747. * If an underrun error is seen assume it as an excessive
  1748. * retry only if max frame trigger level has been reached
  1749. * (2 KB for single stream, and 4 KB for dual stream).
  1750. * Adjust the long retry as if the frame was tried
  1751. * hw->max_rate_tries times to affect how rate control updates
  1752. * PER for the failed rate.
  1753. * In case of congestion on the bus penalizing this type of
  1754. * underruns should help hardware actually transmit new frames
  1755. * successfully by eventually preferring slower rates.
  1756. * This itself should also alleviate congestion on the bus.
  1757. */
  1758. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1759. ATH9K_TX_DELIM_UNDERRUN)) &&
  1760. ieee80211_is_data(hdr->frame_control) &&
  1761. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1762. tx_info->status.rates[tx_rateindex].count =
  1763. hw->max_rate_tries;
  1764. }
  1765. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1766. tx_info->status.rates[i].count = 0;
  1767. tx_info->status.rates[i].idx = -1;
  1768. }
  1769. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1770. }
  1771. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1772. struct ath_tx_status *ts, struct ath_buf *bf,
  1773. struct list_head *bf_head)
  1774. {
  1775. int txok;
  1776. txq->axq_depth--;
  1777. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1778. txq->axq_tx_inprogress = false;
  1779. if (bf_is_ampdu_not_probing(bf))
  1780. txq->axq_ampdu_depth--;
  1781. if (!bf_isampdu(bf)) {
  1782. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  1783. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  1784. } else
  1785. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1786. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1787. ath_txq_schedule(sc, txq);
  1788. }
  1789. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1790. {
  1791. struct ath_hw *ah = sc->sc_ah;
  1792. struct ath_common *common = ath9k_hw_common(ah);
  1793. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1794. struct list_head bf_head;
  1795. struct ath_desc *ds;
  1796. struct ath_tx_status ts;
  1797. int status;
  1798. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1799. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1800. txq->axq_link);
  1801. ath_txq_lock(sc, txq);
  1802. for (;;) {
  1803. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1804. break;
  1805. if (list_empty(&txq->axq_q)) {
  1806. txq->axq_link = NULL;
  1807. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1808. ath_txq_schedule(sc, txq);
  1809. break;
  1810. }
  1811. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1812. /*
  1813. * There is a race condition that a BH gets scheduled
  1814. * after sw writes TxE and before hw re-load the last
  1815. * descriptor to get the newly chained one.
  1816. * Software must keep the last DONE descriptor as a
  1817. * holding descriptor - software does so by marking
  1818. * it with the STALE flag.
  1819. */
  1820. bf_held = NULL;
  1821. if (bf->bf_stale) {
  1822. bf_held = bf;
  1823. if (list_is_last(&bf_held->list, &txq->axq_q))
  1824. break;
  1825. bf = list_entry(bf_held->list.next, struct ath_buf,
  1826. list);
  1827. }
  1828. lastbf = bf->bf_lastbf;
  1829. ds = lastbf->bf_desc;
  1830. memset(&ts, 0, sizeof(ts));
  1831. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1832. if (status == -EINPROGRESS)
  1833. break;
  1834. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1835. /*
  1836. * Remove ath_buf's of the same transmit unit from txq,
  1837. * however leave the last descriptor back as the holding
  1838. * descriptor for hw.
  1839. */
  1840. lastbf->bf_stale = true;
  1841. INIT_LIST_HEAD(&bf_head);
  1842. if (!list_is_singular(&lastbf->list))
  1843. list_cut_position(&bf_head,
  1844. &txq->axq_q, lastbf->list.prev);
  1845. if (bf_held) {
  1846. list_del(&bf_held->list);
  1847. ath_tx_return_buffer(sc, bf_held);
  1848. }
  1849. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1850. }
  1851. ath_txq_unlock_complete(sc, txq);
  1852. }
  1853. void ath_tx_tasklet(struct ath_softc *sc)
  1854. {
  1855. struct ath_hw *ah = sc->sc_ah;
  1856. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  1857. int i;
  1858. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1859. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1860. ath_tx_processq(sc, &sc->tx.txq[i]);
  1861. }
  1862. }
  1863. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1864. {
  1865. struct ath_tx_status ts;
  1866. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1867. struct ath_hw *ah = sc->sc_ah;
  1868. struct ath_txq *txq;
  1869. struct ath_buf *bf, *lastbf;
  1870. struct list_head bf_head;
  1871. int status;
  1872. for (;;) {
  1873. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1874. break;
  1875. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1876. if (status == -EINPROGRESS)
  1877. break;
  1878. if (status == -EIO) {
  1879. ath_dbg(common, XMIT, "Error processing tx status\n");
  1880. break;
  1881. }
  1882. /* Process beacon completions separately */
  1883. if (ts.qid == sc->beacon.beaconq) {
  1884. sc->beacon.tx_processed = true;
  1885. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  1886. continue;
  1887. }
  1888. txq = &sc->tx.txq[ts.qid];
  1889. ath_txq_lock(sc, txq);
  1890. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1891. ath_txq_unlock(sc, txq);
  1892. return;
  1893. }
  1894. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1895. struct ath_buf, list);
  1896. lastbf = bf->bf_lastbf;
  1897. INIT_LIST_HEAD(&bf_head);
  1898. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1899. &lastbf->list);
  1900. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1901. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1902. if (!list_empty(&txq->axq_q)) {
  1903. struct list_head bf_q;
  1904. INIT_LIST_HEAD(&bf_q);
  1905. txq->axq_link = NULL;
  1906. list_splice_tail_init(&txq->axq_q, &bf_q);
  1907. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1908. }
  1909. }
  1910. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1911. ath_txq_unlock_complete(sc, txq);
  1912. }
  1913. }
  1914. /*****************/
  1915. /* Init, Cleanup */
  1916. /*****************/
  1917. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1918. {
  1919. struct ath_descdma *dd = &sc->txsdma;
  1920. u8 txs_len = sc->sc_ah->caps.txs_len;
  1921. dd->dd_desc_len = size * txs_len;
  1922. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1923. &dd->dd_desc_paddr, GFP_KERNEL);
  1924. if (!dd->dd_desc)
  1925. return -ENOMEM;
  1926. return 0;
  1927. }
  1928. static int ath_tx_edma_init(struct ath_softc *sc)
  1929. {
  1930. int err;
  1931. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1932. if (!err)
  1933. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1934. sc->txsdma.dd_desc_paddr,
  1935. ATH_TXSTATUS_RING_SIZE);
  1936. return err;
  1937. }
  1938. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1939. {
  1940. struct ath_descdma *dd = &sc->txsdma;
  1941. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1942. dd->dd_desc_paddr);
  1943. }
  1944. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1945. {
  1946. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1947. int error = 0;
  1948. spin_lock_init(&sc->tx.txbuflock);
  1949. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1950. "tx", nbufs, 1, 1);
  1951. if (error != 0) {
  1952. ath_err(common,
  1953. "Failed to allocate tx descriptors: %d\n", error);
  1954. goto err;
  1955. }
  1956. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1957. "beacon", ATH_BCBUF, 1, 1);
  1958. if (error != 0) {
  1959. ath_err(common,
  1960. "Failed to allocate beacon descriptors: %d\n", error);
  1961. goto err;
  1962. }
  1963. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1964. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1965. error = ath_tx_edma_init(sc);
  1966. if (error)
  1967. goto err;
  1968. }
  1969. err:
  1970. if (error != 0)
  1971. ath_tx_cleanup(sc);
  1972. return error;
  1973. }
  1974. void ath_tx_cleanup(struct ath_softc *sc)
  1975. {
  1976. if (sc->beacon.bdma.dd_desc_len != 0)
  1977. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1978. if (sc->tx.txdma.dd_desc_len != 0)
  1979. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1980. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1981. ath_tx_edma_cleanup(sc);
  1982. }
  1983. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1984. {
  1985. struct ath_atx_tid *tid;
  1986. struct ath_atx_ac *ac;
  1987. int tidno, acno;
  1988. for (tidno = 0, tid = &an->tid[tidno];
  1989. tidno < WME_NUM_TID;
  1990. tidno++, tid++) {
  1991. tid->an = an;
  1992. tid->tidno = tidno;
  1993. tid->seq_start = tid->seq_next = 0;
  1994. tid->baw_size = WME_MAX_BA;
  1995. tid->baw_head = tid->baw_tail = 0;
  1996. tid->sched = false;
  1997. tid->paused = false;
  1998. tid->state &= ~AGGR_CLEANUP;
  1999. __skb_queue_head_init(&tid->buf_q);
  2000. acno = TID_TO_WME_AC(tidno);
  2001. tid->ac = &an->ac[acno];
  2002. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2003. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2004. }
  2005. for (acno = 0, ac = &an->ac[acno];
  2006. acno < WME_NUM_AC; acno++, ac++) {
  2007. ac->sched = false;
  2008. ac->txq = sc->tx.txq_map[acno];
  2009. INIT_LIST_HEAD(&ac->tid_q);
  2010. }
  2011. }
  2012. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2013. {
  2014. struct ath_atx_ac *ac;
  2015. struct ath_atx_tid *tid;
  2016. struct ath_txq *txq;
  2017. int tidno;
  2018. for (tidno = 0, tid = &an->tid[tidno];
  2019. tidno < WME_NUM_TID; tidno++, tid++) {
  2020. ac = tid->ac;
  2021. txq = ac->txq;
  2022. ath_txq_lock(sc, txq);
  2023. if (tid->sched) {
  2024. list_del(&tid->list);
  2025. tid->sched = false;
  2026. }
  2027. if (ac->sched) {
  2028. list_del(&ac->list);
  2029. tid->ac->sched = false;
  2030. }
  2031. ath_tid_drain(sc, txq, tid);
  2032. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2033. tid->state &= ~AGGR_CLEANUP;
  2034. ath_txq_unlock(sc, txq);
  2035. }
  2036. }