ar9003_phy.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
  1. /*
  2. * Copyright (c) 2010-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/export.h>
  17. #include "hw.h"
  18. #include "ar9003_phy.h"
  19. static const int firstep_table[] =
  20. /* level: 0 1 2 3 4 5 6 7 8 */
  21. { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
  22. static const int cycpwrThr1_table[] =
  23. /* level: 0 1 2 3 4 5 6 7 8 */
  24. { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
  25. /*
  26. * register values to turn OFDM weak signal detection OFF
  27. */
  28. static const int m1ThreshLow_off = 127;
  29. static const int m2ThreshLow_off = 127;
  30. static const int m1Thresh_off = 127;
  31. static const int m2Thresh_off = 127;
  32. static const int m2CountThr_off = 31;
  33. static const int m2CountThrLow_off = 63;
  34. static const int m1ThreshLowExt_off = 127;
  35. static const int m2ThreshLowExt_off = 127;
  36. static const int m1ThreshExt_off = 127;
  37. static const int m2ThreshExt_off = 127;
  38. /**
  39. * ar9003_hw_set_channel - set channel on single-chip device
  40. * @ah: atheros hardware structure
  41. * @chan:
  42. *
  43. * This is the function to change channel on single-chip devices, that is
  44. * for AR9300 family of chipsets.
  45. *
  46. * This function takes the channel value in MHz and sets
  47. * hardware channel value. Assumes writes have been enabled to analog bus.
  48. *
  49. * Actual Expression,
  50. *
  51. * For 2GHz channel,
  52. * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  53. * (freq_ref = 40MHz)
  54. *
  55. * For 5GHz channel,
  56. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
  57. * (freq_ref = 40MHz/(24>>amodeRefSel))
  58. *
  59. * For 5GHz channels which are 5MHz spaced,
  60. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  61. * (freq_ref = 40MHz)
  62. */
  63. static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  64. {
  65. u16 bMode, fracMode = 0, aModeRefSel = 0;
  66. u32 freq, channelSel = 0, reg32 = 0;
  67. struct chan_centers centers;
  68. int loadSynthChannel;
  69. ath9k_hw_get_channel_centers(ah, chan, &centers);
  70. freq = centers.synth_center;
  71. if (freq < 4800) { /* 2 GHz, fractional mode */
  72. if (AR_SREV_9330(ah)) {
  73. u32 chan_frac;
  74. u32 div;
  75. if (ah->is_clk_25mhz)
  76. div = 75;
  77. else
  78. div = 120;
  79. channelSel = (freq * 4) / div;
  80. chan_frac = (((freq * 4) % div) * 0x20000) / div;
  81. channelSel = (channelSel << 17) | chan_frac;
  82. } else if (AR_SREV_9485(ah)) {
  83. u32 chan_frac;
  84. /*
  85. * freq_ref = 40 / (refdiva >> amoderefsel); where refdiva=1 and amoderefsel=0
  86. * ndiv = ((chan_mhz * 4) / 3) / freq_ref;
  87. * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000
  88. */
  89. channelSel = (freq * 4) / 120;
  90. chan_frac = (((freq * 4) % 120) * 0x20000) / 120;
  91. channelSel = (channelSel << 17) | chan_frac;
  92. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  93. if (ah->is_clk_25mhz) {
  94. u32 chan_frac;
  95. channelSel = (freq * 2) / 75;
  96. chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
  97. channelSel = (channelSel << 17) | chan_frac;
  98. } else
  99. channelSel = CHANSEL_2G(freq) >> 1;
  100. } else
  101. channelSel = CHANSEL_2G(freq);
  102. /* Set to 2G mode */
  103. bMode = 1;
  104. } else {
  105. if ((AR_SREV_9340(ah) || AR_SREV_9550(ah)) &&
  106. ah->is_clk_25mhz) {
  107. u32 chan_frac;
  108. channelSel = freq / 75;
  109. chan_frac = ((freq % 75) * 0x20000) / 75;
  110. channelSel = (channelSel << 17) | chan_frac;
  111. } else {
  112. channelSel = CHANSEL_5G(freq);
  113. /* Doubler is ON, so, divide channelSel by 2. */
  114. channelSel >>= 1;
  115. }
  116. /* Set to 5G mode */
  117. bMode = 0;
  118. }
  119. /* Enable fractional mode for all channels */
  120. fracMode = 1;
  121. aModeRefSel = 0;
  122. loadSynthChannel = 0;
  123. reg32 = (bMode << 29);
  124. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  125. /* Enable Long shift Select for Synthesizer */
  126. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
  127. AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
  128. /* Program Synth. setting */
  129. reg32 = (channelSel << 2) | (fracMode << 30) |
  130. (aModeRefSel << 28) | (loadSynthChannel << 31);
  131. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  132. /* Toggle Load Synth channel bit */
  133. loadSynthChannel = 1;
  134. reg32 = (channelSel << 2) | (fracMode << 30) |
  135. (aModeRefSel << 28) | (loadSynthChannel << 31);
  136. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  137. ah->curchan = chan;
  138. return 0;
  139. }
  140. /**
  141. * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
  142. * @ah: atheros hardware structure
  143. * @chan:
  144. *
  145. * For single-chip solutions. Converts to baseband spur frequency given the
  146. * input channel frequency and compute register settings below.
  147. *
  148. * Spur mitigation for MRC CCK
  149. */
  150. static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
  151. struct ath9k_channel *chan)
  152. {
  153. static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
  154. int cur_bb_spur, negative = 0, cck_spur_freq;
  155. int i;
  156. int range, max_spur_cnts, synth_freq;
  157. u8 *spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah, IS_CHAN_2GHZ(chan));
  158. /*
  159. * Need to verify range +/- 10 MHz in control channel, otherwise spur
  160. * is out-of-band and can be ignored.
  161. */
  162. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  163. AR_SREV_9550(ah)) {
  164. if (spur_fbin_ptr[0] == 0) /* No spur */
  165. return;
  166. max_spur_cnts = 5;
  167. if (IS_CHAN_HT40(chan)) {
  168. range = 19;
  169. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  170. AR_PHY_GC_DYN2040_PRI_CH) == 0)
  171. synth_freq = chan->channel + 10;
  172. else
  173. synth_freq = chan->channel - 10;
  174. } else {
  175. range = 10;
  176. synth_freq = chan->channel;
  177. }
  178. } else {
  179. range = AR_SREV_9462(ah) ? 5 : 10;
  180. max_spur_cnts = 4;
  181. synth_freq = chan->channel;
  182. }
  183. for (i = 0; i < max_spur_cnts; i++) {
  184. if (AR_SREV_9462(ah) && (i == 0 || i == 3))
  185. continue;
  186. negative = 0;
  187. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  188. AR_SREV_9550(ah))
  189. cur_bb_spur = ath9k_hw_fbin2freq(spur_fbin_ptr[i],
  190. IS_CHAN_2GHZ(chan));
  191. else
  192. cur_bb_spur = spur_freq[i];
  193. cur_bb_spur -= synth_freq;
  194. if (cur_bb_spur < 0) {
  195. negative = 1;
  196. cur_bb_spur = -cur_bb_spur;
  197. }
  198. if (cur_bb_spur < range) {
  199. cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
  200. if (negative == 1)
  201. cck_spur_freq = -cck_spur_freq;
  202. cck_spur_freq = cck_spur_freq & 0xfffff;
  203. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  204. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
  205. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  206. AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
  207. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  208. AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
  209. 0x2);
  210. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  211. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
  212. 0x1);
  213. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  214. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
  215. cck_spur_freq);
  216. return;
  217. }
  218. }
  219. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  220. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
  221. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  222. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
  223. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  224. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
  225. }
  226. /* Clean all spur register fields */
  227. static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
  228. {
  229. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  230. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
  231. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  232. AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
  233. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  234. AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
  235. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  236. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
  237. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  238. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
  239. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  240. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
  241. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  242. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
  243. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  244. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
  245. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  246. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
  247. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  248. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
  249. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  250. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
  251. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  252. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
  253. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  254. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
  255. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  256. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
  257. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  258. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
  259. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  260. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
  261. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  262. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
  263. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  264. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
  265. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  266. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
  267. }
  268. static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
  269. int freq_offset,
  270. int spur_freq_sd,
  271. int spur_delta_phase,
  272. int spur_subchannel_sd)
  273. {
  274. int mask_index = 0;
  275. /* OFDM Spur mitigation */
  276. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  277. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
  278. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  279. AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
  280. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  281. AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
  282. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  283. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
  284. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  285. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
  286. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  287. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
  288. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  289. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
  290. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  291. AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
  292. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  293. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
  294. if (REG_READ_FIELD(ah, AR_PHY_MODE,
  295. AR_PHY_MODE_DYNAMIC) == 0x1)
  296. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  297. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
  298. mask_index = (freq_offset << 4) / 5;
  299. if (mask_index < 0)
  300. mask_index = mask_index - 1;
  301. mask_index = mask_index & 0x7f;
  302. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  303. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
  304. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  305. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
  306. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  307. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
  308. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  309. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
  310. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  311. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
  312. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  313. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
  314. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  315. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
  316. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  317. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
  318. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  319. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
  320. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  321. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
  322. }
  323. static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
  324. struct ath9k_channel *chan,
  325. int freq_offset)
  326. {
  327. int spur_freq_sd = 0;
  328. int spur_subchannel_sd = 0;
  329. int spur_delta_phase = 0;
  330. if (IS_CHAN_HT40(chan)) {
  331. if (freq_offset < 0) {
  332. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  333. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  334. spur_subchannel_sd = 1;
  335. else
  336. spur_subchannel_sd = 0;
  337. spur_freq_sd = ((freq_offset + 10) << 9) / 11;
  338. } else {
  339. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  340. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  341. spur_subchannel_sd = 0;
  342. else
  343. spur_subchannel_sd = 1;
  344. spur_freq_sd = ((freq_offset - 10) << 9) / 11;
  345. }
  346. spur_delta_phase = (freq_offset << 17) / 5;
  347. } else {
  348. spur_subchannel_sd = 0;
  349. spur_freq_sd = (freq_offset << 9) /11;
  350. spur_delta_phase = (freq_offset << 18) / 5;
  351. }
  352. spur_freq_sd = spur_freq_sd & 0x3ff;
  353. spur_delta_phase = spur_delta_phase & 0xfffff;
  354. ar9003_hw_spur_ofdm(ah,
  355. freq_offset,
  356. spur_freq_sd,
  357. spur_delta_phase,
  358. spur_subchannel_sd);
  359. }
  360. /* Spur mitigation for OFDM */
  361. static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
  362. struct ath9k_channel *chan)
  363. {
  364. int synth_freq;
  365. int range = 10;
  366. int freq_offset = 0;
  367. int mode;
  368. u8* spurChansPtr;
  369. unsigned int i;
  370. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  371. if (IS_CHAN_5GHZ(chan)) {
  372. spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
  373. mode = 0;
  374. }
  375. else {
  376. spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
  377. mode = 1;
  378. }
  379. if (spurChansPtr[0] == 0)
  380. return; /* No spur in the mode */
  381. if (IS_CHAN_HT40(chan)) {
  382. range = 19;
  383. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  384. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  385. synth_freq = chan->channel - 10;
  386. else
  387. synth_freq = chan->channel + 10;
  388. } else {
  389. range = 10;
  390. synth_freq = chan->channel;
  391. }
  392. ar9003_hw_spur_ofdm_clear(ah);
  393. for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) {
  394. freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i], mode);
  395. freq_offset -= synth_freq;
  396. if (abs(freq_offset) < range) {
  397. ar9003_hw_spur_ofdm_work(ah, chan, freq_offset);
  398. break;
  399. }
  400. }
  401. }
  402. static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
  403. struct ath9k_channel *chan)
  404. {
  405. ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
  406. ar9003_hw_spur_mitigate_ofdm(ah, chan);
  407. }
  408. static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
  409. struct ath9k_channel *chan)
  410. {
  411. u32 pll;
  412. pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
  413. if (chan && IS_CHAN_HALF_RATE(chan))
  414. pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
  415. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  416. pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
  417. pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
  418. return pll;
  419. }
  420. static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
  421. struct ath9k_channel *chan)
  422. {
  423. u32 phymode;
  424. u32 enableDacFifo = 0;
  425. enableDacFifo =
  426. (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
  427. /* Enable 11n HT, 20 MHz */
  428. phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 |
  429. AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
  430. /* Configure baseband for dynamic 20/40 operation */
  431. if (IS_CHAN_HT40(chan)) {
  432. phymode |= AR_PHY_GC_DYN2040_EN;
  433. /* Configure control (primary) channel at +-10MHz */
  434. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  435. (chan->chanmode == CHANNEL_G_HT40PLUS))
  436. phymode |= AR_PHY_GC_DYN2040_PRI_CH;
  437. }
  438. /* make sure we preserve INI settings */
  439. phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
  440. /* turn off Green Field detection for STA for now */
  441. phymode &= ~AR_PHY_GC_GF_DETECT_EN;
  442. REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
  443. /* Configure MAC for 20/40 operation */
  444. ath9k_hw_set11nmac2040(ah);
  445. /* global transmit timeout (25 TUs default)*/
  446. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  447. /* carrier sense timeout */
  448. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  449. }
  450. static void ar9003_hw_init_bb(struct ath_hw *ah,
  451. struct ath9k_channel *chan)
  452. {
  453. u32 synthDelay;
  454. /*
  455. * Wait for the frequency synth to settle (synth goes on
  456. * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
  457. * Value is in 100ns increments.
  458. */
  459. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  460. /* Activate the PHY (includes baseband activate + synthesizer on) */
  461. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  462. ath9k_hw_synth_delay(ah, chan, synthDelay);
  463. }
  464. static void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
  465. {
  466. switch (rx) {
  467. case 0x5:
  468. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  469. AR_PHY_SWAP_ALT_CHAIN);
  470. case 0x3:
  471. case 0x1:
  472. case 0x2:
  473. case 0x7:
  474. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
  475. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
  476. break;
  477. default:
  478. break;
  479. }
  480. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
  481. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  482. else if (AR_SREV_9462(ah))
  483. /* xxx only when MCI support is enabled */
  484. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  485. else
  486. REG_WRITE(ah, AR_SELFGEN_MASK, tx);
  487. if (tx == 0x5) {
  488. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  489. AR_PHY_SWAP_ALT_CHAIN);
  490. }
  491. }
  492. /*
  493. * Override INI values with chip specific configuration.
  494. */
  495. static void ar9003_hw_override_ini(struct ath_hw *ah)
  496. {
  497. u32 val;
  498. /*
  499. * Set the RX_ABORT and RX_DIS and clear it only after
  500. * RXE is set for MAC. This prevents frames with
  501. * corrupted descriptor status.
  502. */
  503. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  504. /*
  505. * For AR9280 and above, there is a new feature that allows
  506. * Multicast search based on both MAC Address and Key ID. By default,
  507. * this feature is enabled. But since the driver is not using this
  508. * feature, we switch it off; otherwise multicast search based on
  509. * MAC addr only will fail.
  510. */
  511. val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
  512. REG_WRITE(ah, AR_PCU_MISC_MODE2,
  513. val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
  514. REG_SET_BIT(ah, AR_PHY_CCK_DETECT,
  515. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  516. }
  517. static void ar9003_hw_prog_ini(struct ath_hw *ah,
  518. struct ar5416IniArray *iniArr,
  519. int column)
  520. {
  521. unsigned int i, regWrites = 0;
  522. /* New INI format: Array may be undefined (pre, core, post arrays) */
  523. if (!iniArr->ia_array)
  524. return;
  525. /*
  526. * New INI format: Pre, core, and post arrays for a given subsystem
  527. * may be modal (> 2 columns) or non-modal (2 columns). Determine if
  528. * the array is non-modal and force the column to 1.
  529. */
  530. if (column >= iniArr->ia_columns)
  531. column = 1;
  532. for (i = 0; i < iniArr->ia_rows; i++) {
  533. u32 reg = INI_RA(iniArr, i, 0);
  534. u32 val = INI_RA(iniArr, i, column);
  535. REG_WRITE(ah, reg, val);
  536. DO_DELAY(regWrites);
  537. }
  538. }
  539. static int ar9550_hw_get_modes_txgain_index(struct ath_hw *ah,
  540. struct ath9k_channel *chan)
  541. {
  542. int ret;
  543. switch (chan->chanmode) {
  544. case CHANNEL_A:
  545. case CHANNEL_A_HT20:
  546. if (chan->channel <= 5350)
  547. ret = 1;
  548. else if ((chan->channel > 5350) && (chan->channel <= 5600))
  549. ret = 3;
  550. else
  551. ret = 5;
  552. break;
  553. case CHANNEL_A_HT40PLUS:
  554. case CHANNEL_A_HT40MINUS:
  555. if (chan->channel <= 5350)
  556. ret = 2;
  557. else if ((chan->channel > 5350) && (chan->channel <= 5600))
  558. ret = 4;
  559. else
  560. ret = 6;
  561. break;
  562. case CHANNEL_G:
  563. case CHANNEL_G_HT20:
  564. case CHANNEL_B:
  565. ret = 8;
  566. break;
  567. case CHANNEL_G_HT40PLUS:
  568. case CHANNEL_G_HT40MINUS:
  569. ret = 7;
  570. break;
  571. default:
  572. ret = -EINVAL;
  573. }
  574. return ret;
  575. }
  576. static int ar9003_hw_process_ini(struct ath_hw *ah,
  577. struct ath9k_channel *chan)
  578. {
  579. unsigned int regWrites = 0, i;
  580. u32 modesIndex;
  581. switch (chan->chanmode) {
  582. case CHANNEL_A:
  583. case CHANNEL_A_HT20:
  584. modesIndex = 1;
  585. break;
  586. case CHANNEL_A_HT40PLUS:
  587. case CHANNEL_A_HT40MINUS:
  588. modesIndex = 2;
  589. break;
  590. case CHANNEL_G:
  591. case CHANNEL_G_HT20:
  592. case CHANNEL_B:
  593. modesIndex = 4;
  594. break;
  595. case CHANNEL_G_HT40PLUS:
  596. case CHANNEL_G_HT40MINUS:
  597. modesIndex = 3;
  598. break;
  599. default:
  600. return -EINVAL;
  601. }
  602. for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
  603. ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
  604. ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
  605. ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
  606. ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
  607. if (i == ATH_INI_POST && AR_SREV_9462_20(ah))
  608. ar9003_hw_prog_ini(ah,
  609. &ah->ini_radio_post_sys2ant,
  610. modesIndex);
  611. }
  612. REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
  613. if (AR_SREV_9550(ah))
  614. REG_WRITE_ARRAY(&ah->ini_modes_rx_gain_bounds, modesIndex,
  615. regWrites);
  616. if (AR_SREV_9550(ah)) {
  617. int modes_txgain_index;
  618. modes_txgain_index = ar9550_hw_get_modes_txgain_index(ah, chan);
  619. if (modes_txgain_index < 0)
  620. return -EINVAL;
  621. REG_WRITE_ARRAY(&ah->iniModesTxGain, modes_txgain_index,
  622. regWrites);
  623. } else {
  624. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  625. }
  626. /*
  627. * For 5GHz channels requiring Fast Clock, apply
  628. * different modal values.
  629. */
  630. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  631. REG_WRITE_ARRAY(&ah->iniModesFastClock,
  632. modesIndex, regWrites);
  633. REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
  634. if (chan->channel == 2484)
  635. ar9003_hw_prog_ini(ah, &ah->ini_japan2484, 1);
  636. if (AR_SREV_9462(ah))
  637. REG_WRITE(ah, AR_GLB_SWREG_DISCONT_MODE,
  638. AR_GLB_SWREG_DISCONT_EN_BT_WLAN);
  639. ah->modes_index = modesIndex;
  640. ar9003_hw_override_ini(ah);
  641. ar9003_hw_set_channel_regs(ah, chan);
  642. ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
  643. ath9k_hw_apply_txpower(ah, chan, false);
  644. if (AR_SREV_9462(ah)) {
  645. if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0,
  646. AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL))
  647. ah->enabled_cals |= TX_IQ_CAL;
  648. else
  649. ah->enabled_cals &= ~TX_IQ_CAL;
  650. if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE)
  651. ah->enabled_cals |= TX_CL_CAL;
  652. else
  653. ah->enabled_cals &= ~TX_CL_CAL;
  654. }
  655. return 0;
  656. }
  657. static void ar9003_hw_set_rfmode(struct ath_hw *ah,
  658. struct ath9k_channel *chan)
  659. {
  660. u32 rfMode = 0;
  661. if (chan == NULL)
  662. return;
  663. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  664. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  665. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  666. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  667. if (IS_CHAN_QUARTER_RATE(chan))
  668. rfMode |= AR_PHY_MODE_QUARTER;
  669. if (IS_CHAN_HALF_RATE(chan))
  670. rfMode |= AR_PHY_MODE_HALF;
  671. if (rfMode & (AR_PHY_MODE_QUARTER | AR_PHY_MODE_HALF))
  672. REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
  673. AR_PHY_FRAME_CTL_CF_OVERLAP_WINDOW, 3);
  674. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  675. }
  676. static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
  677. {
  678. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  679. }
  680. static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
  681. struct ath9k_channel *chan)
  682. {
  683. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  684. u32 clockMhzScaled = 0x64000000;
  685. struct chan_centers centers;
  686. /*
  687. * half and quarter rate can divide the scaled clock by 2 or 4
  688. * scale for selected channel bandwidth
  689. */
  690. if (IS_CHAN_HALF_RATE(chan))
  691. clockMhzScaled = clockMhzScaled >> 1;
  692. else if (IS_CHAN_QUARTER_RATE(chan))
  693. clockMhzScaled = clockMhzScaled >> 2;
  694. /*
  695. * ALGO -> coef = 1e8/fcarrier*fclock/40;
  696. * scaled coef to provide precision for this floating calculation
  697. */
  698. ath9k_hw_get_channel_centers(ah, chan, &centers);
  699. coef_scaled = clockMhzScaled / centers.synth_center;
  700. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  701. &ds_coef_exp);
  702. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  703. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  704. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  705. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  706. /*
  707. * For Short GI,
  708. * scaled coeff is 9/10 that of normal coeff
  709. */
  710. coef_scaled = (9 * coef_scaled) / 10;
  711. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  712. &ds_coef_exp);
  713. /* for short gi */
  714. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  715. AR_PHY_SGI_DSC_MAN, ds_coef_man);
  716. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  717. AR_PHY_SGI_DSC_EXP, ds_coef_exp);
  718. }
  719. static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
  720. {
  721. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  722. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  723. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  724. }
  725. /*
  726. * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
  727. * Read the phy active delay register. Value is in 100ns increments.
  728. */
  729. static void ar9003_hw_rfbus_done(struct ath_hw *ah)
  730. {
  731. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  732. ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
  733. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  734. }
  735. static bool ar9003_hw_ani_control(struct ath_hw *ah,
  736. enum ath9k_ani_cmd cmd, int param)
  737. {
  738. struct ath_common *common = ath9k_hw_common(ah);
  739. struct ath9k_channel *chan = ah->curchan;
  740. struct ar5416AniState *aniState = &chan->ani;
  741. s32 value, value2;
  742. switch (cmd & ah->ani_function) {
  743. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  744. /*
  745. * on == 1 means ofdm weak signal detection is ON
  746. * on == 1 is the default, for less noise immunity
  747. *
  748. * on == 0 means ofdm weak signal detection is OFF
  749. * on == 0 means more noise imm
  750. */
  751. u32 on = param ? 1 : 0;
  752. if (on)
  753. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  754. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  755. else
  756. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  757. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  758. if (on != aniState->ofdmWeakSigDetect) {
  759. ath_dbg(common, ANI,
  760. "** ch %d: ofdm weak signal: %s=>%s\n",
  761. chan->channel,
  762. aniState->ofdmWeakSigDetect ?
  763. "on" : "off",
  764. on ? "on" : "off");
  765. if (on)
  766. ah->stats.ast_ani_ofdmon++;
  767. else
  768. ah->stats.ast_ani_ofdmoff++;
  769. aniState->ofdmWeakSigDetect = on;
  770. }
  771. break;
  772. }
  773. case ATH9K_ANI_FIRSTEP_LEVEL:{
  774. u32 level = param;
  775. if (level >= ARRAY_SIZE(firstep_table)) {
  776. ath_dbg(common, ANI,
  777. "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
  778. level, ARRAY_SIZE(firstep_table));
  779. return false;
  780. }
  781. /*
  782. * make register setting relative to default
  783. * from INI file & cap value
  784. */
  785. value = firstep_table[level] -
  786. firstep_table[ATH9K_ANI_FIRSTEP_LVL] +
  787. aniState->iniDef.firstep;
  788. if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  789. value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  790. if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  791. value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  792. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  793. AR_PHY_FIND_SIG_FIRSTEP,
  794. value);
  795. /*
  796. * we need to set first step low register too
  797. * make register setting relative to default
  798. * from INI file & cap value
  799. */
  800. value2 = firstep_table[level] -
  801. firstep_table[ATH9K_ANI_FIRSTEP_LVL] +
  802. aniState->iniDef.firstepLow;
  803. if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  804. value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  805. if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  806. value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  807. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
  808. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
  809. if (level != aniState->firstepLevel) {
  810. ath_dbg(common, ANI,
  811. "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
  812. chan->channel,
  813. aniState->firstepLevel,
  814. level,
  815. ATH9K_ANI_FIRSTEP_LVL,
  816. value,
  817. aniState->iniDef.firstep);
  818. ath_dbg(common, ANI,
  819. "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
  820. chan->channel,
  821. aniState->firstepLevel,
  822. level,
  823. ATH9K_ANI_FIRSTEP_LVL,
  824. value2,
  825. aniState->iniDef.firstepLow);
  826. if (level > aniState->firstepLevel)
  827. ah->stats.ast_ani_stepup++;
  828. else if (level < aniState->firstepLevel)
  829. ah->stats.ast_ani_stepdown++;
  830. aniState->firstepLevel = level;
  831. }
  832. break;
  833. }
  834. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  835. u32 level = param;
  836. if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
  837. ath_dbg(common, ANI,
  838. "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
  839. level, ARRAY_SIZE(cycpwrThr1_table));
  840. return false;
  841. }
  842. /*
  843. * make register setting relative to default
  844. * from INI file & cap value
  845. */
  846. value = cycpwrThr1_table[level] -
  847. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] +
  848. aniState->iniDef.cycpwrThr1;
  849. if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  850. value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  851. if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  852. value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  853. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  854. AR_PHY_TIMING5_CYCPWR_THR1,
  855. value);
  856. /*
  857. * set AR_PHY_EXT_CCA for extension channel
  858. * make register setting relative to default
  859. * from INI file & cap value
  860. */
  861. value2 = cycpwrThr1_table[level] -
  862. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] +
  863. aniState->iniDef.cycpwrThr1Ext;
  864. if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  865. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  866. if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  867. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  868. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  869. AR_PHY_EXT_CYCPWR_THR1, value2);
  870. if (level != aniState->spurImmunityLevel) {
  871. ath_dbg(common, ANI,
  872. "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
  873. chan->channel,
  874. aniState->spurImmunityLevel,
  875. level,
  876. ATH9K_ANI_SPUR_IMMUNE_LVL,
  877. value,
  878. aniState->iniDef.cycpwrThr1);
  879. ath_dbg(common, ANI,
  880. "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
  881. chan->channel,
  882. aniState->spurImmunityLevel,
  883. level,
  884. ATH9K_ANI_SPUR_IMMUNE_LVL,
  885. value2,
  886. aniState->iniDef.cycpwrThr1Ext);
  887. if (level > aniState->spurImmunityLevel)
  888. ah->stats.ast_ani_spurup++;
  889. else if (level < aniState->spurImmunityLevel)
  890. ah->stats.ast_ani_spurdown++;
  891. aniState->spurImmunityLevel = level;
  892. }
  893. break;
  894. }
  895. case ATH9K_ANI_MRC_CCK:{
  896. /*
  897. * is_on == 1 means MRC CCK ON (default, less noise imm)
  898. * is_on == 0 means MRC CCK is OFF (more noise imm)
  899. */
  900. bool is_on = param ? 1 : 0;
  901. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  902. AR_PHY_MRC_CCK_ENABLE, is_on);
  903. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  904. AR_PHY_MRC_CCK_MUX_REG, is_on);
  905. if (is_on != aniState->mrcCCK) {
  906. ath_dbg(common, ANI, "** ch %d: MRC CCK: %s=>%s\n",
  907. chan->channel,
  908. aniState->mrcCCK ? "on" : "off",
  909. is_on ? "on" : "off");
  910. if (is_on)
  911. ah->stats.ast_ani_ccklow++;
  912. else
  913. ah->stats.ast_ani_cckhigh++;
  914. aniState->mrcCCK = is_on;
  915. }
  916. break;
  917. }
  918. case ATH9K_ANI_PRESENT:
  919. break;
  920. default:
  921. ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
  922. return false;
  923. }
  924. ath_dbg(common, ANI,
  925. "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
  926. aniState->spurImmunityLevel,
  927. aniState->ofdmWeakSigDetect ? "on" : "off",
  928. aniState->firstepLevel,
  929. aniState->mrcCCK ? "on" : "off",
  930. aniState->listenTime,
  931. aniState->ofdmPhyErrCount,
  932. aniState->cckPhyErrCount);
  933. return true;
  934. }
  935. static void ar9003_hw_do_getnf(struct ath_hw *ah,
  936. int16_t nfarray[NUM_NF_READINGS])
  937. {
  938. #define AR_PHY_CH_MINCCA_PWR 0x1FF00000
  939. #define AR_PHY_CH_MINCCA_PWR_S 20
  940. #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000
  941. #define AR_PHY_CH_EXT_MINCCA_PWR_S 16
  942. int16_t nf;
  943. int i;
  944. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  945. if (ah->rxchainmask & BIT(i)) {
  946. nf = MS(REG_READ(ah, ah->nf_regs[i]),
  947. AR_PHY_CH_MINCCA_PWR);
  948. nfarray[i] = sign_extend32(nf, 8);
  949. if (IS_CHAN_HT40(ah->curchan)) {
  950. u8 ext_idx = AR9300_MAX_CHAINS + i;
  951. nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]),
  952. AR_PHY_CH_EXT_MINCCA_PWR);
  953. nfarray[ext_idx] = sign_extend32(nf, 8);
  954. }
  955. }
  956. }
  957. }
  958. static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
  959. {
  960. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
  961. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
  962. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
  963. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
  964. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
  965. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
  966. if (AR_SREV_9330(ah))
  967. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ;
  968. if (AR_SREV_9462(ah)) {
  969. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_2GHZ;
  970. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9462_2GHZ;
  971. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_5GHZ;
  972. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9462_5GHZ;
  973. }
  974. }
  975. /*
  976. * Initialize the ANI register values with default (ini) values.
  977. * This routine is called during a (full) hardware reset after
  978. * all the registers are initialised from the INI.
  979. */
  980. static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
  981. {
  982. struct ar5416AniState *aniState;
  983. struct ath_common *common = ath9k_hw_common(ah);
  984. struct ath9k_channel *chan = ah->curchan;
  985. struct ath9k_ani_default *iniDef;
  986. u32 val;
  987. aniState = &ah->curchan->ani;
  988. iniDef = &aniState->iniDef;
  989. ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
  990. ah->hw_version.macVersion,
  991. ah->hw_version.macRev,
  992. ah->opmode,
  993. chan->channel,
  994. chan->channelFlags);
  995. val = REG_READ(ah, AR_PHY_SFCORR);
  996. iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
  997. iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
  998. iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
  999. val = REG_READ(ah, AR_PHY_SFCORR_LOW);
  1000. iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
  1001. iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
  1002. iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
  1003. val = REG_READ(ah, AR_PHY_SFCORR_EXT);
  1004. iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
  1005. iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
  1006. iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
  1007. iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
  1008. iniDef->firstep = REG_READ_FIELD(ah,
  1009. AR_PHY_FIND_SIG,
  1010. AR_PHY_FIND_SIG_FIRSTEP);
  1011. iniDef->firstepLow = REG_READ_FIELD(ah,
  1012. AR_PHY_FIND_SIG_LOW,
  1013. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
  1014. iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
  1015. AR_PHY_TIMING5,
  1016. AR_PHY_TIMING5_CYCPWR_THR1);
  1017. iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
  1018. AR_PHY_EXT_CCA,
  1019. AR_PHY_EXT_CYCPWR_THR1);
  1020. /* these levels just got reset to defaults by the INI */
  1021. aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
  1022. aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
  1023. aniState->ofdmWeakSigDetect = ATH9K_ANI_USE_OFDM_WEAK_SIG;
  1024. aniState->mrcCCK = true;
  1025. }
  1026. static void ar9003_hw_set_radar_params(struct ath_hw *ah,
  1027. struct ath_hw_radar_conf *conf)
  1028. {
  1029. u32 radar_0 = 0, radar_1 = 0;
  1030. if (!conf) {
  1031. REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
  1032. return;
  1033. }
  1034. radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
  1035. radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
  1036. radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
  1037. radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
  1038. radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
  1039. radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
  1040. radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
  1041. radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
  1042. radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
  1043. radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
  1044. radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
  1045. REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
  1046. REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
  1047. if (conf->ext_channel)
  1048. REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1049. else
  1050. REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1051. }
  1052. static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
  1053. {
  1054. struct ath_hw_radar_conf *conf = &ah->radar_conf;
  1055. conf->fir_power = -28;
  1056. conf->radar_rssi = 0;
  1057. conf->pulse_height = 10;
  1058. conf->pulse_rssi = 24;
  1059. conf->pulse_inband = 8;
  1060. conf->pulse_maxlen = 255;
  1061. conf->pulse_inband_step = 12;
  1062. conf->radar_inband = 8;
  1063. }
  1064. static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah,
  1065. struct ath_hw_antcomb_conf *antconf)
  1066. {
  1067. u32 regval;
  1068. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1069. antconf->main_lna_conf = (regval & AR_PHY_9485_ANT_DIV_MAIN_LNACONF) >>
  1070. AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S;
  1071. antconf->alt_lna_conf = (regval & AR_PHY_9485_ANT_DIV_ALT_LNACONF) >>
  1072. AR_PHY_9485_ANT_DIV_ALT_LNACONF_S;
  1073. antconf->fast_div_bias = (regval & AR_PHY_9485_ANT_FAST_DIV_BIAS) >>
  1074. AR_PHY_9485_ANT_FAST_DIV_BIAS_S;
  1075. if (AR_SREV_9330_11(ah)) {
  1076. antconf->lna1_lna2_delta = -9;
  1077. antconf->div_group = 1;
  1078. } else if (AR_SREV_9485(ah)) {
  1079. antconf->lna1_lna2_delta = -9;
  1080. antconf->div_group = 2;
  1081. } else {
  1082. antconf->lna1_lna2_delta = -3;
  1083. antconf->div_group = 0;
  1084. }
  1085. }
  1086. static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah,
  1087. struct ath_hw_antcomb_conf *antconf)
  1088. {
  1089. u32 regval;
  1090. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1091. regval &= ~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
  1092. AR_PHY_9485_ANT_DIV_ALT_LNACONF |
  1093. AR_PHY_9485_ANT_FAST_DIV_BIAS |
  1094. AR_PHY_9485_ANT_DIV_MAIN_GAINTB |
  1095. AR_PHY_9485_ANT_DIV_ALT_GAINTB);
  1096. regval |= ((antconf->main_lna_conf <<
  1097. AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S)
  1098. & AR_PHY_9485_ANT_DIV_MAIN_LNACONF);
  1099. regval |= ((antconf->alt_lna_conf << AR_PHY_9485_ANT_DIV_ALT_LNACONF_S)
  1100. & AR_PHY_9485_ANT_DIV_ALT_LNACONF);
  1101. regval |= ((antconf->fast_div_bias << AR_PHY_9485_ANT_FAST_DIV_BIAS_S)
  1102. & AR_PHY_9485_ANT_FAST_DIV_BIAS);
  1103. regval |= ((antconf->main_gaintb << AR_PHY_9485_ANT_DIV_MAIN_GAINTB_S)
  1104. & AR_PHY_9485_ANT_DIV_MAIN_GAINTB);
  1105. regval |= ((antconf->alt_gaintb << AR_PHY_9485_ANT_DIV_ALT_GAINTB_S)
  1106. & AR_PHY_9485_ANT_DIV_ALT_GAINTB);
  1107. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1108. }
  1109. static int ar9003_hw_fast_chan_change(struct ath_hw *ah,
  1110. struct ath9k_channel *chan,
  1111. u8 *ini_reloaded)
  1112. {
  1113. unsigned int regWrites = 0;
  1114. u32 modesIndex;
  1115. switch (chan->chanmode) {
  1116. case CHANNEL_A:
  1117. case CHANNEL_A_HT20:
  1118. modesIndex = 1;
  1119. break;
  1120. case CHANNEL_A_HT40PLUS:
  1121. case CHANNEL_A_HT40MINUS:
  1122. modesIndex = 2;
  1123. break;
  1124. case CHANNEL_G:
  1125. case CHANNEL_G_HT20:
  1126. case CHANNEL_B:
  1127. modesIndex = 4;
  1128. break;
  1129. case CHANNEL_G_HT40PLUS:
  1130. case CHANNEL_G_HT40MINUS:
  1131. modesIndex = 3;
  1132. break;
  1133. default:
  1134. return -EINVAL;
  1135. }
  1136. if (modesIndex == ah->modes_index) {
  1137. *ini_reloaded = false;
  1138. goto set_rfmode;
  1139. }
  1140. ar9003_hw_prog_ini(ah, &ah->iniSOC[ATH_INI_POST], modesIndex);
  1141. ar9003_hw_prog_ini(ah, &ah->iniMac[ATH_INI_POST], modesIndex);
  1142. ar9003_hw_prog_ini(ah, &ah->iniBB[ATH_INI_POST], modesIndex);
  1143. ar9003_hw_prog_ini(ah, &ah->iniRadio[ATH_INI_POST], modesIndex);
  1144. if (AR_SREV_9462_20(ah))
  1145. ar9003_hw_prog_ini(ah,
  1146. &ah->ini_radio_post_sys2ant,
  1147. modesIndex);
  1148. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  1149. /*
  1150. * For 5GHz channels requiring Fast Clock, apply
  1151. * different modal values.
  1152. */
  1153. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  1154. REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites);
  1155. REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
  1156. ah->modes_index = modesIndex;
  1157. *ini_reloaded = true;
  1158. set_rfmode:
  1159. ar9003_hw_set_rfmode(ah, chan);
  1160. return 0;
  1161. }
  1162. void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
  1163. {
  1164. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1165. struct ath_hw_ops *ops = ath9k_hw_ops(ah);
  1166. static const u32 ar9300_cca_regs[6] = {
  1167. AR_PHY_CCA_0,
  1168. AR_PHY_CCA_1,
  1169. AR_PHY_CCA_2,
  1170. AR_PHY_EXT_CCA,
  1171. AR_PHY_EXT_CCA_1,
  1172. AR_PHY_EXT_CCA_2,
  1173. };
  1174. priv_ops->rf_set_freq = ar9003_hw_set_channel;
  1175. priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
  1176. priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
  1177. priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
  1178. priv_ops->init_bb = ar9003_hw_init_bb;
  1179. priv_ops->process_ini = ar9003_hw_process_ini;
  1180. priv_ops->set_rfmode = ar9003_hw_set_rfmode;
  1181. priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
  1182. priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
  1183. priv_ops->rfbus_req = ar9003_hw_rfbus_req;
  1184. priv_ops->rfbus_done = ar9003_hw_rfbus_done;
  1185. priv_ops->ani_control = ar9003_hw_ani_control;
  1186. priv_ops->do_getnf = ar9003_hw_do_getnf;
  1187. priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
  1188. priv_ops->set_radar_params = ar9003_hw_set_radar_params;
  1189. priv_ops->fast_chan_change = ar9003_hw_fast_chan_change;
  1190. ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get;
  1191. ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set;
  1192. ar9003_hw_set_nf_limits(ah);
  1193. ar9003_hw_set_radar_conf(ah);
  1194. memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
  1195. }
  1196. void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
  1197. {
  1198. struct ath_common *common = ath9k_hw_common(ah);
  1199. u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
  1200. u32 val, idle_count;
  1201. if (!idle_tmo_ms) {
  1202. /* disable IRQ, disable chip-reset for BB panic */
  1203. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1204. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
  1205. ~(AR_PHY_WATCHDOG_RST_ENABLE |
  1206. AR_PHY_WATCHDOG_IRQ_ENABLE));
  1207. /* disable watchdog in non-IDLE mode, disable in IDLE mode */
  1208. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1209. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
  1210. ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1211. AR_PHY_WATCHDOG_IDLE_ENABLE));
  1212. ath_dbg(common, RESET, "Disabled BB Watchdog\n");
  1213. return;
  1214. }
  1215. /* enable IRQ, disable chip-reset for BB watchdog */
  1216. val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
  1217. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1218. (val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
  1219. ~AR_PHY_WATCHDOG_RST_ENABLE);
  1220. /* bound limit to 10 secs */
  1221. if (idle_tmo_ms > 10000)
  1222. idle_tmo_ms = 10000;
  1223. /*
  1224. * The time unit for watchdog event is 2^15 44/88MHz cycles.
  1225. *
  1226. * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
  1227. * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
  1228. *
  1229. * Given we use fast clock now in 5 GHz, these time units should
  1230. * be common for both 2 GHz and 5 GHz.
  1231. */
  1232. idle_count = (100 * idle_tmo_ms) / 74;
  1233. if (ah->curchan && IS_CHAN_HT40(ah->curchan))
  1234. idle_count = (100 * idle_tmo_ms) / 37;
  1235. /*
  1236. * enable watchdog in non-IDLE mode, disable in IDLE mode,
  1237. * set idle time-out.
  1238. */
  1239. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1240. AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1241. AR_PHY_WATCHDOG_IDLE_MASK |
  1242. (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
  1243. ath_dbg(common, RESET, "Enabled BB Watchdog timeout (%u ms)\n",
  1244. idle_tmo_ms);
  1245. }
  1246. void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
  1247. {
  1248. /*
  1249. * we want to avoid printing in ISR context so we save the
  1250. * watchdog status to be printed later in bottom half context.
  1251. */
  1252. ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
  1253. /*
  1254. * the watchdog timer should reset on status read but to be sure
  1255. * sure we write 0 to the watchdog status bit.
  1256. */
  1257. REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
  1258. ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
  1259. }
  1260. void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
  1261. {
  1262. struct ath_common *common = ath9k_hw_common(ah);
  1263. u32 status;
  1264. if (likely(!(common->debug_mask & ATH_DBG_RESET)))
  1265. return;
  1266. status = ah->bb_watchdog_last_status;
  1267. ath_dbg(common, RESET,
  1268. "\n==== BB update: BB status=0x%08x ====\n", status);
  1269. ath_dbg(common, RESET,
  1270. "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
  1271. MS(status, AR_PHY_WATCHDOG_INFO),
  1272. MS(status, AR_PHY_WATCHDOG_DET_HANG),
  1273. MS(status, AR_PHY_WATCHDOG_RADAR_SM),
  1274. MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
  1275. MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
  1276. MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
  1277. MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
  1278. MS(status, AR_PHY_WATCHDOG_AGC_SM),
  1279. MS(status, AR_PHY_WATCHDOG_SRCH_SM));
  1280. ath_dbg(common, RESET, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
  1281. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
  1282. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
  1283. ath_dbg(common, RESET, "** BB mode: BB_gen_controls=0x%08x **\n",
  1284. REG_READ(ah, AR_PHY_GEN_CTRL));
  1285. #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
  1286. if (common->cc_survey.cycles)
  1287. ath_dbg(common, RESET,
  1288. "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
  1289. PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
  1290. ath_dbg(common, RESET, "==== BB update: done ====\n\n");
  1291. }
  1292. EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);
  1293. void ar9003_hw_disable_phy_restart(struct ath_hw *ah)
  1294. {
  1295. u32 val;
  1296. /* While receiving unsupported rate frame rx state machine
  1297. * gets into a state 0xb and if phy_restart happens in that
  1298. * state, BB would go hang. If RXSM is in 0xb state after
  1299. * first bb panic, ensure to disable the phy_restart.
  1300. */
  1301. if (!((MS(ah->bb_watchdog_last_status,
  1302. AR_PHY_WATCHDOG_RX_OFDM_SM) == 0xb) ||
  1303. ah->bb_hang_rx_ofdm))
  1304. return;
  1305. ah->bb_hang_rx_ofdm = true;
  1306. val = REG_READ(ah, AR_PHY_RESTART);
  1307. val &= ~AR_PHY_RESTART_ENA;
  1308. REG_WRITE(ah, AR_PHY_RESTART, val);
  1309. }
  1310. EXPORT_SYMBOL(ar9003_hw_disable_phy_restart);