ar9003_calib.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090
  1. /*
  2. * Copyright (c) 2010-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "hw-ops.h"
  18. #include "ar9003_phy.h"
  19. #include "ar9003_rtt.h"
  20. #include "ar9003_mci.h"
  21. #define MAX_MEASUREMENT MAX_IQCAL_MEASUREMENT
  22. #define MAX_MAG_DELTA 11
  23. #define MAX_PHS_DELTA 10
  24. struct coeff {
  25. int mag_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT];
  26. int phs_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT];
  27. int iqc_coeff[2];
  28. };
  29. enum ar9003_cal_types {
  30. IQ_MISMATCH_CAL = BIT(0),
  31. TEMP_COMP_CAL = BIT(1),
  32. };
  33. static void ar9003_hw_setup_calibration(struct ath_hw *ah,
  34. struct ath9k_cal_list *currCal)
  35. {
  36. struct ath_common *common = ath9k_hw_common(ah);
  37. /* Select calibration to run */
  38. switch (currCal->calData->calType) {
  39. case IQ_MISMATCH_CAL:
  40. /*
  41. * Start calibration with
  42. * 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples
  43. */
  44. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  45. AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX,
  46. currCal->calData->calCountMax);
  47. REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
  48. ath_dbg(common, CALIBRATE,
  49. "starting IQ Mismatch Calibration\n");
  50. /* Kick-off cal */
  51. REG_SET_BIT(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
  52. break;
  53. case TEMP_COMP_CAL:
  54. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_THERM,
  55. AR_PHY_65NM_CH0_THERM_LOCAL, 1);
  56. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_THERM,
  57. AR_PHY_65NM_CH0_THERM_START, 1);
  58. ath_dbg(common, CALIBRATE,
  59. "starting Temperature Compensation Calibration\n");
  60. break;
  61. }
  62. }
  63. /*
  64. * Generic calibration routine.
  65. * Recalibrate the lower PHY chips to account for temperature/environment
  66. * changes.
  67. */
  68. static bool ar9003_hw_per_calibration(struct ath_hw *ah,
  69. struct ath9k_channel *ichan,
  70. u8 rxchainmask,
  71. struct ath9k_cal_list *currCal)
  72. {
  73. struct ath9k_hw_cal_data *caldata = ah->caldata;
  74. /* Cal is assumed not done until explicitly set below */
  75. bool iscaldone = false;
  76. /* Calibration in progress. */
  77. if (currCal->calState == CAL_RUNNING) {
  78. /* Check to see if it has finished. */
  79. if (!(REG_READ(ah, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
  80. /*
  81. * Accumulate cal measures for active chains
  82. */
  83. currCal->calData->calCollect(ah);
  84. ah->cal_samples++;
  85. if (ah->cal_samples >=
  86. currCal->calData->calNumSamples) {
  87. unsigned int i, numChains = 0;
  88. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  89. if (rxchainmask & (1 << i))
  90. numChains++;
  91. }
  92. /*
  93. * Process accumulated data
  94. */
  95. currCal->calData->calPostProc(ah, numChains);
  96. /* Calibration has finished. */
  97. caldata->CalValid |= currCal->calData->calType;
  98. currCal->calState = CAL_DONE;
  99. iscaldone = true;
  100. } else {
  101. /*
  102. * Set-up collection of another sub-sample until we
  103. * get desired number
  104. */
  105. ar9003_hw_setup_calibration(ah, currCal);
  106. }
  107. }
  108. } else if (!(caldata->CalValid & currCal->calData->calType)) {
  109. /* If current cal is marked invalid in channel, kick it off */
  110. ath9k_hw_reset_calibration(ah, currCal);
  111. }
  112. return iscaldone;
  113. }
  114. static bool ar9003_hw_calibrate(struct ath_hw *ah,
  115. struct ath9k_channel *chan,
  116. u8 rxchainmask,
  117. bool longcal)
  118. {
  119. bool iscaldone = true;
  120. struct ath9k_cal_list *currCal = ah->cal_list_curr;
  121. /*
  122. * For given calibration:
  123. * 1. Call generic cal routine
  124. * 2. When this cal is done (isCalDone) if we have more cals waiting
  125. * (eg after reset), mask this to upper layers by not propagating
  126. * isCalDone if it is set to TRUE.
  127. * Instead, change isCalDone to FALSE and setup the waiting cal(s)
  128. * to be run.
  129. */
  130. if (currCal &&
  131. (currCal->calState == CAL_RUNNING ||
  132. currCal->calState == CAL_WAITING)) {
  133. iscaldone = ar9003_hw_per_calibration(ah, chan,
  134. rxchainmask, currCal);
  135. if (iscaldone) {
  136. ah->cal_list_curr = currCal = currCal->calNext;
  137. if (currCal->calState == CAL_WAITING) {
  138. iscaldone = false;
  139. ath9k_hw_reset_calibration(ah, currCal);
  140. }
  141. }
  142. }
  143. /*
  144. * Do NF cal only at longer intervals. Get the value from
  145. * the previous NF cal and update history buffer.
  146. */
  147. if (longcal && ath9k_hw_getnf(ah, chan)) {
  148. /*
  149. * Load the NF from history buffer of the current channel.
  150. * NF is slow time-variant, so it is OK to use a historical
  151. * value.
  152. */
  153. ath9k_hw_loadnf(ah, ah->curchan);
  154. /* start NF calibration, without updating BB NF register */
  155. ath9k_hw_start_nfcal(ah, false);
  156. }
  157. return iscaldone;
  158. }
  159. static void ar9003_hw_iqcal_collect(struct ath_hw *ah)
  160. {
  161. int i;
  162. /* Accumulate IQ cal measures for active chains */
  163. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  164. if (ah->txchainmask & BIT(i)) {
  165. ah->totalPowerMeasI[i] +=
  166. REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
  167. ah->totalPowerMeasQ[i] +=
  168. REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
  169. ah->totalIqCorrMeas[i] +=
  170. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
  171. ath_dbg(ath9k_hw_common(ah), CALIBRATE,
  172. "%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n",
  173. ah->cal_samples, i, ah->totalPowerMeasI[i],
  174. ah->totalPowerMeasQ[i],
  175. ah->totalIqCorrMeas[i]);
  176. }
  177. }
  178. }
  179. static void ar9003_hw_iqcalibrate(struct ath_hw *ah, u8 numChains)
  180. {
  181. struct ath_common *common = ath9k_hw_common(ah);
  182. u32 powerMeasQ, powerMeasI, iqCorrMeas;
  183. u32 qCoffDenom, iCoffDenom;
  184. int32_t qCoff, iCoff;
  185. int iqCorrNeg, i;
  186. static const u_int32_t offset_array[3] = {
  187. AR_PHY_RX_IQCAL_CORR_B0,
  188. AR_PHY_RX_IQCAL_CORR_B1,
  189. AR_PHY_RX_IQCAL_CORR_B2,
  190. };
  191. for (i = 0; i < numChains; i++) {
  192. powerMeasI = ah->totalPowerMeasI[i];
  193. powerMeasQ = ah->totalPowerMeasQ[i];
  194. iqCorrMeas = ah->totalIqCorrMeas[i];
  195. ath_dbg(common, CALIBRATE,
  196. "Starting IQ Cal and Correction for Chain %d\n", i);
  197. ath_dbg(common, CALIBRATE,
  198. "Original: Chn %d iq_corr_meas = 0x%08x\n",
  199. i, ah->totalIqCorrMeas[i]);
  200. iqCorrNeg = 0;
  201. if (iqCorrMeas > 0x80000000) {
  202. iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
  203. iqCorrNeg = 1;
  204. }
  205. ath_dbg(common, CALIBRATE, "Chn %d pwr_meas_i = 0x%08x\n",
  206. i, powerMeasI);
  207. ath_dbg(common, CALIBRATE, "Chn %d pwr_meas_q = 0x%08x\n",
  208. i, powerMeasQ);
  209. ath_dbg(common, CALIBRATE, "iqCorrNeg is 0x%08x\n", iqCorrNeg);
  210. iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 256;
  211. qCoffDenom = powerMeasQ / 64;
  212. if ((iCoffDenom != 0) && (qCoffDenom != 0)) {
  213. iCoff = iqCorrMeas / iCoffDenom;
  214. qCoff = powerMeasI / qCoffDenom - 64;
  215. ath_dbg(common, CALIBRATE, "Chn %d iCoff = 0x%08x\n",
  216. i, iCoff);
  217. ath_dbg(common, CALIBRATE, "Chn %d qCoff = 0x%08x\n",
  218. i, qCoff);
  219. /* Force bounds on iCoff */
  220. if (iCoff >= 63)
  221. iCoff = 63;
  222. else if (iCoff <= -63)
  223. iCoff = -63;
  224. /* Negate iCoff if iqCorrNeg == 0 */
  225. if (iqCorrNeg == 0x0)
  226. iCoff = -iCoff;
  227. /* Force bounds on qCoff */
  228. if (qCoff >= 63)
  229. qCoff = 63;
  230. else if (qCoff <= -63)
  231. qCoff = -63;
  232. iCoff = iCoff & 0x7f;
  233. qCoff = qCoff & 0x7f;
  234. ath_dbg(common, CALIBRATE,
  235. "Chn %d : iCoff = 0x%x qCoff = 0x%x\n",
  236. i, iCoff, qCoff);
  237. ath_dbg(common, CALIBRATE,
  238. "Register offset (0x%04x) before update = 0x%x\n",
  239. offset_array[i],
  240. REG_READ(ah, offset_array[i]));
  241. REG_RMW_FIELD(ah, offset_array[i],
  242. AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF,
  243. iCoff);
  244. REG_RMW_FIELD(ah, offset_array[i],
  245. AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF,
  246. qCoff);
  247. ath_dbg(common, CALIBRATE,
  248. "Register offset (0x%04x) QI COFF (bitfields 0x%08x) after update = 0x%x\n",
  249. offset_array[i],
  250. AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF,
  251. REG_READ(ah, offset_array[i]));
  252. ath_dbg(common, CALIBRATE,
  253. "Register offset (0x%04x) QQ COFF (bitfields 0x%08x) after update = 0x%x\n",
  254. offset_array[i],
  255. AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF,
  256. REG_READ(ah, offset_array[i]));
  257. ath_dbg(common, CALIBRATE,
  258. "IQ Cal and Correction done for Chain %d\n", i);
  259. }
  260. }
  261. REG_SET_BIT(ah, AR_PHY_RX_IQCAL_CORR_B0,
  262. AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
  263. ath_dbg(common, CALIBRATE,
  264. "IQ Cal and Correction (offset 0x%04x) enabled (bit position 0x%08x). New Value 0x%08x\n",
  265. (unsigned) (AR_PHY_RX_IQCAL_CORR_B0),
  266. AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE,
  267. REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0));
  268. }
  269. static const struct ath9k_percal_data iq_cal_single_sample = {
  270. IQ_MISMATCH_CAL,
  271. MIN_CAL_SAMPLES,
  272. PER_MAX_LOG_COUNT,
  273. ar9003_hw_iqcal_collect,
  274. ar9003_hw_iqcalibrate
  275. };
  276. static void ar9003_hw_init_cal_settings(struct ath_hw *ah)
  277. {
  278. ah->iq_caldata.calData = &iq_cal_single_sample;
  279. }
  280. /*
  281. * solve 4x4 linear equation used in loopback iq cal.
  282. */
  283. static bool ar9003_hw_solve_iq_cal(struct ath_hw *ah,
  284. s32 sin_2phi_1,
  285. s32 cos_2phi_1,
  286. s32 sin_2phi_2,
  287. s32 cos_2phi_2,
  288. s32 mag_a0_d0,
  289. s32 phs_a0_d0,
  290. s32 mag_a1_d0,
  291. s32 phs_a1_d0,
  292. s32 solved_eq[])
  293. {
  294. s32 f1 = cos_2phi_1 - cos_2phi_2,
  295. f3 = sin_2phi_1 - sin_2phi_2,
  296. f2;
  297. s32 mag_tx, phs_tx, mag_rx, phs_rx;
  298. const s32 result_shift = 1 << 15;
  299. struct ath_common *common = ath9k_hw_common(ah);
  300. f2 = (f1 * f1 + f3 * f3) / result_shift;
  301. if (!f2) {
  302. ath_dbg(common, CALIBRATE, "Divide by 0\n");
  303. return false;
  304. }
  305. /* mag mismatch, tx */
  306. mag_tx = f1 * (mag_a0_d0 - mag_a1_d0) + f3 * (phs_a0_d0 - phs_a1_d0);
  307. /* phs mismatch, tx */
  308. phs_tx = f3 * (-mag_a0_d0 + mag_a1_d0) + f1 * (phs_a0_d0 - phs_a1_d0);
  309. mag_tx = (mag_tx / f2);
  310. phs_tx = (phs_tx / f2);
  311. /* mag mismatch, rx */
  312. mag_rx = mag_a0_d0 - (cos_2phi_1 * mag_tx + sin_2phi_1 * phs_tx) /
  313. result_shift;
  314. /* phs mismatch, rx */
  315. phs_rx = phs_a0_d0 + (sin_2phi_1 * mag_tx - cos_2phi_1 * phs_tx) /
  316. result_shift;
  317. solved_eq[0] = mag_tx;
  318. solved_eq[1] = phs_tx;
  319. solved_eq[2] = mag_rx;
  320. solved_eq[3] = phs_rx;
  321. return true;
  322. }
  323. static s32 ar9003_hw_find_mag_approx(struct ath_hw *ah, s32 in_re, s32 in_im)
  324. {
  325. s32 abs_i = abs(in_re),
  326. abs_q = abs(in_im),
  327. max_abs, min_abs;
  328. if (abs_i > abs_q) {
  329. max_abs = abs_i;
  330. min_abs = abs_q;
  331. } else {
  332. max_abs = abs_q;
  333. min_abs = abs_i;
  334. }
  335. return max_abs - (max_abs / 32) + (min_abs / 8) + (min_abs / 4);
  336. }
  337. #define DELPT 32
  338. static bool ar9003_hw_calc_iq_corr(struct ath_hw *ah,
  339. s32 chain_idx,
  340. const s32 iq_res[],
  341. s32 iqc_coeff[])
  342. {
  343. s32 i2_m_q2_a0_d0, i2_p_q2_a0_d0, iq_corr_a0_d0,
  344. i2_m_q2_a0_d1, i2_p_q2_a0_d1, iq_corr_a0_d1,
  345. i2_m_q2_a1_d0, i2_p_q2_a1_d0, iq_corr_a1_d0,
  346. i2_m_q2_a1_d1, i2_p_q2_a1_d1, iq_corr_a1_d1;
  347. s32 mag_a0_d0, mag_a1_d0, mag_a0_d1, mag_a1_d1,
  348. phs_a0_d0, phs_a1_d0, phs_a0_d1, phs_a1_d1,
  349. sin_2phi_1, cos_2phi_1,
  350. sin_2phi_2, cos_2phi_2;
  351. s32 mag_tx, phs_tx, mag_rx, phs_rx;
  352. s32 solved_eq[4], mag_corr_tx, phs_corr_tx, mag_corr_rx, phs_corr_rx,
  353. q_q_coff, q_i_coff;
  354. const s32 res_scale = 1 << 15;
  355. const s32 delpt_shift = 1 << 8;
  356. s32 mag1, mag2;
  357. struct ath_common *common = ath9k_hw_common(ah);
  358. i2_m_q2_a0_d0 = iq_res[0] & 0xfff;
  359. i2_p_q2_a0_d0 = (iq_res[0] >> 12) & 0xfff;
  360. iq_corr_a0_d0 = ((iq_res[0] >> 24) & 0xff) + ((iq_res[1] & 0xf) << 8);
  361. if (i2_m_q2_a0_d0 > 0x800)
  362. i2_m_q2_a0_d0 = -((0xfff - i2_m_q2_a0_d0) + 1);
  363. if (i2_p_q2_a0_d0 > 0x800)
  364. i2_p_q2_a0_d0 = -((0xfff - i2_p_q2_a0_d0) + 1);
  365. if (iq_corr_a0_d0 > 0x800)
  366. iq_corr_a0_d0 = -((0xfff - iq_corr_a0_d0) + 1);
  367. i2_m_q2_a0_d1 = (iq_res[1] >> 4) & 0xfff;
  368. i2_p_q2_a0_d1 = (iq_res[2] & 0xfff);
  369. iq_corr_a0_d1 = (iq_res[2] >> 12) & 0xfff;
  370. if (i2_m_q2_a0_d1 > 0x800)
  371. i2_m_q2_a0_d1 = -((0xfff - i2_m_q2_a0_d1) + 1);
  372. if (i2_p_q2_a0_d1 > 0x800)
  373. i2_p_q2_a0_d1 = -((0xfff - i2_p_q2_a0_d1) + 1);
  374. if (iq_corr_a0_d1 > 0x800)
  375. iq_corr_a0_d1 = -((0xfff - iq_corr_a0_d1) + 1);
  376. i2_m_q2_a1_d0 = ((iq_res[2] >> 24) & 0xff) + ((iq_res[3] & 0xf) << 8);
  377. i2_p_q2_a1_d0 = (iq_res[3] >> 4) & 0xfff;
  378. iq_corr_a1_d0 = iq_res[4] & 0xfff;
  379. if (i2_m_q2_a1_d0 > 0x800)
  380. i2_m_q2_a1_d0 = -((0xfff - i2_m_q2_a1_d0) + 1);
  381. if (i2_p_q2_a1_d0 > 0x800)
  382. i2_p_q2_a1_d0 = -((0xfff - i2_p_q2_a1_d0) + 1);
  383. if (iq_corr_a1_d0 > 0x800)
  384. iq_corr_a1_d0 = -((0xfff - iq_corr_a1_d0) + 1);
  385. i2_m_q2_a1_d1 = (iq_res[4] >> 12) & 0xfff;
  386. i2_p_q2_a1_d1 = ((iq_res[4] >> 24) & 0xff) + ((iq_res[5] & 0xf) << 8);
  387. iq_corr_a1_d1 = (iq_res[5] >> 4) & 0xfff;
  388. if (i2_m_q2_a1_d1 > 0x800)
  389. i2_m_q2_a1_d1 = -((0xfff - i2_m_q2_a1_d1) + 1);
  390. if (i2_p_q2_a1_d1 > 0x800)
  391. i2_p_q2_a1_d1 = -((0xfff - i2_p_q2_a1_d1) + 1);
  392. if (iq_corr_a1_d1 > 0x800)
  393. iq_corr_a1_d1 = -((0xfff - iq_corr_a1_d1) + 1);
  394. if ((i2_p_q2_a0_d0 == 0) || (i2_p_q2_a0_d1 == 0) ||
  395. (i2_p_q2_a1_d0 == 0) || (i2_p_q2_a1_d1 == 0)) {
  396. ath_dbg(common, CALIBRATE,
  397. "Divide by 0:\n"
  398. "a0_d0=%d\n"
  399. "a0_d1=%d\n"
  400. "a2_d0=%d\n"
  401. "a1_d1=%d\n",
  402. i2_p_q2_a0_d0, i2_p_q2_a0_d1,
  403. i2_p_q2_a1_d0, i2_p_q2_a1_d1);
  404. return false;
  405. }
  406. mag_a0_d0 = (i2_m_q2_a0_d0 * res_scale) / i2_p_q2_a0_d0;
  407. phs_a0_d0 = (iq_corr_a0_d0 * res_scale) / i2_p_q2_a0_d0;
  408. mag_a0_d1 = (i2_m_q2_a0_d1 * res_scale) / i2_p_q2_a0_d1;
  409. phs_a0_d1 = (iq_corr_a0_d1 * res_scale) / i2_p_q2_a0_d1;
  410. mag_a1_d0 = (i2_m_q2_a1_d0 * res_scale) / i2_p_q2_a1_d0;
  411. phs_a1_d0 = (iq_corr_a1_d0 * res_scale) / i2_p_q2_a1_d0;
  412. mag_a1_d1 = (i2_m_q2_a1_d1 * res_scale) / i2_p_q2_a1_d1;
  413. phs_a1_d1 = (iq_corr_a1_d1 * res_scale) / i2_p_q2_a1_d1;
  414. /* w/o analog phase shift */
  415. sin_2phi_1 = (((mag_a0_d0 - mag_a0_d1) * delpt_shift) / DELPT);
  416. /* w/o analog phase shift */
  417. cos_2phi_1 = (((phs_a0_d1 - phs_a0_d0) * delpt_shift) / DELPT);
  418. /* w/ analog phase shift */
  419. sin_2phi_2 = (((mag_a1_d0 - mag_a1_d1) * delpt_shift) / DELPT);
  420. /* w/ analog phase shift */
  421. cos_2phi_2 = (((phs_a1_d1 - phs_a1_d0) * delpt_shift) / DELPT);
  422. /*
  423. * force sin^2 + cos^2 = 1;
  424. * find magnitude by approximation
  425. */
  426. mag1 = ar9003_hw_find_mag_approx(ah, cos_2phi_1, sin_2phi_1);
  427. mag2 = ar9003_hw_find_mag_approx(ah, cos_2phi_2, sin_2phi_2);
  428. if ((mag1 == 0) || (mag2 == 0)) {
  429. ath_dbg(common, CALIBRATE, "Divide by 0: mag1=%d, mag2=%d\n",
  430. mag1, mag2);
  431. return false;
  432. }
  433. /* normalization sin and cos by mag */
  434. sin_2phi_1 = (sin_2phi_1 * res_scale / mag1);
  435. cos_2phi_1 = (cos_2phi_1 * res_scale / mag1);
  436. sin_2phi_2 = (sin_2phi_2 * res_scale / mag2);
  437. cos_2phi_2 = (cos_2phi_2 * res_scale / mag2);
  438. /* calculate IQ mismatch */
  439. if (!ar9003_hw_solve_iq_cal(ah,
  440. sin_2phi_1, cos_2phi_1,
  441. sin_2phi_2, cos_2phi_2,
  442. mag_a0_d0, phs_a0_d0,
  443. mag_a1_d0,
  444. phs_a1_d0, solved_eq)) {
  445. ath_dbg(common, CALIBRATE,
  446. "Call to ar9003_hw_solve_iq_cal() failed\n");
  447. return false;
  448. }
  449. mag_tx = solved_eq[0];
  450. phs_tx = solved_eq[1];
  451. mag_rx = solved_eq[2];
  452. phs_rx = solved_eq[3];
  453. ath_dbg(common, CALIBRATE,
  454. "chain %d: mag mismatch=%d phase mismatch=%d\n",
  455. chain_idx, mag_tx/res_scale, phs_tx/res_scale);
  456. if (res_scale == mag_tx) {
  457. ath_dbg(common, CALIBRATE,
  458. "Divide by 0: mag_tx=%d, res_scale=%d\n",
  459. mag_tx, res_scale);
  460. return false;
  461. }
  462. /* calculate and quantize Tx IQ correction factor */
  463. mag_corr_tx = (mag_tx * res_scale) / (res_scale - mag_tx);
  464. phs_corr_tx = -phs_tx;
  465. q_q_coff = (mag_corr_tx * 128 / res_scale);
  466. q_i_coff = (phs_corr_tx * 256 / res_scale);
  467. ath_dbg(common, CALIBRATE, "tx chain %d: mag corr=%d phase corr=%d\n",
  468. chain_idx, q_q_coff, q_i_coff);
  469. if (q_i_coff < -63)
  470. q_i_coff = -63;
  471. if (q_i_coff > 63)
  472. q_i_coff = 63;
  473. if (q_q_coff < -63)
  474. q_q_coff = -63;
  475. if (q_q_coff > 63)
  476. q_q_coff = 63;
  477. iqc_coeff[0] = (q_q_coff * 128) + q_i_coff;
  478. ath_dbg(common, CALIBRATE, "tx chain %d: iq corr coeff=%x\n",
  479. chain_idx, iqc_coeff[0]);
  480. if (-mag_rx == res_scale) {
  481. ath_dbg(common, CALIBRATE,
  482. "Divide by 0: mag_rx=%d, res_scale=%d\n",
  483. mag_rx, res_scale);
  484. return false;
  485. }
  486. /* calculate and quantize Rx IQ correction factors */
  487. mag_corr_rx = (-mag_rx * res_scale) / (res_scale + mag_rx);
  488. phs_corr_rx = -phs_rx;
  489. q_q_coff = (mag_corr_rx * 128 / res_scale);
  490. q_i_coff = (phs_corr_rx * 256 / res_scale);
  491. ath_dbg(common, CALIBRATE, "rx chain %d: mag corr=%d phase corr=%d\n",
  492. chain_idx, q_q_coff, q_i_coff);
  493. if (q_i_coff < -63)
  494. q_i_coff = -63;
  495. if (q_i_coff > 63)
  496. q_i_coff = 63;
  497. if (q_q_coff < -63)
  498. q_q_coff = -63;
  499. if (q_q_coff > 63)
  500. q_q_coff = 63;
  501. iqc_coeff[1] = (q_q_coff * 128) + q_i_coff;
  502. ath_dbg(common, CALIBRATE, "rx chain %d: iq corr coeff=%x\n",
  503. chain_idx, iqc_coeff[1]);
  504. return true;
  505. }
  506. static void ar9003_hw_detect_outlier(int *mp_coeff, int nmeasurement,
  507. int max_delta)
  508. {
  509. int mp_max = -64, max_idx = 0;
  510. int mp_min = 63, min_idx = 0;
  511. int mp_avg = 0, i, outlier_idx = 0, mp_count = 0;
  512. /* find min/max mismatch across all calibrated gains */
  513. for (i = 0; i < nmeasurement; i++) {
  514. if (mp_coeff[i] > mp_max) {
  515. mp_max = mp_coeff[i];
  516. max_idx = i;
  517. } else if (mp_coeff[i] < mp_min) {
  518. mp_min = mp_coeff[i];
  519. min_idx = i;
  520. }
  521. }
  522. /* find average (exclude max abs value) */
  523. for (i = 0; i < nmeasurement; i++) {
  524. if ((abs(mp_coeff[i]) < abs(mp_max)) ||
  525. (abs(mp_coeff[i]) < abs(mp_min))) {
  526. mp_avg += mp_coeff[i];
  527. mp_count++;
  528. }
  529. }
  530. /*
  531. * finding mean magnitude/phase if possible, otherwise
  532. * just use the last value as the mean
  533. */
  534. if (mp_count)
  535. mp_avg /= mp_count;
  536. else
  537. mp_avg = mp_coeff[nmeasurement - 1];
  538. /* detect outlier */
  539. if (abs(mp_max - mp_min) > max_delta) {
  540. if (abs(mp_max - mp_avg) > abs(mp_min - mp_avg))
  541. outlier_idx = max_idx;
  542. else
  543. outlier_idx = min_idx;
  544. mp_coeff[outlier_idx] = mp_avg;
  545. }
  546. }
  547. static void ar9003_hw_tx_iqcal_load_avg_2_passes(struct ath_hw *ah,
  548. struct coeff *coeff,
  549. bool is_reusable)
  550. {
  551. int i, im, nmeasurement;
  552. u32 tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS];
  553. struct ath9k_hw_cal_data *caldata = ah->caldata;
  554. memset(tx_corr_coeff, 0, sizeof(tx_corr_coeff));
  555. for (i = 0; i < MAX_MEASUREMENT / 2; i++) {
  556. tx_corr_coeff[i * 2][0] = tx_corr_coeff[(i * 2) + 1][0] =
  557. AR_PHY_TX_IQCAL_CORR_COEFF_B0(i);
  558. if (!AR_SREV_9485(ah)) {
  559. tx_corr_coeff[i * 2][1] =
  560. tx_corr_coeff[(i * 2) + 1][1] =
  561. AR_PHY_TX_IQCAL_CORR_COEFF_B1(i);
  562. tx_corr_coeff[i * 2][2] =
  563. tx_corr_coeff[(i * 2) + 1][2] =
  564. AR_PHY_TX_IQCAL_CORR_COEFF_B2(i);
  565. }
  566. }
  567. /* Load the average of 2 passes */
  568. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  569. if (!(ah->txchainmask & (1 << i)))
  570. continue;
  571. nmeasurement = REG_READ_FIELD(ah,
  572. AR_PHY_TX_IQCAL_STATUS_B0,
  573. AR_PHY_CALIBRATED_GAINS_0);
  574. if (nmeasurement > MAX_MEASUREMENT)
  575. nmeasurement = MAX_MEASUREMENT;
  576. /* detect outlier only if nmeasurement > 1 */
  577. if (nmeasurement > 1) {
  578. /* Detect magnitude outlier */
  579. ar9003_hw_detect_outlier(coeff->mag_coeff[i],
  580. nmeasurement, MAX_MAG_DELTA);
  581. /* Detect phase outlier */
  582. ar9003_hw_detect_outlier(coeff->phs_coeff[i],
  583. nmeasurement, MAX_PHS_DELTA);
  584. }
  585. for (im = 0; im < nmeasurement; im++) {
  586. coeff->iqc_coeff[0] = (coeff->mag_coeff[i][im] & 0x7f) |
  587. ((coeff->phs_coeff[i][im] & 0x7f) << 7);
  588. if ((im % 2) == 0)
  589. REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
  590. AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
  591. coeff->iqc_coeff[0]);
  592. else
  593. REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
  594. AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
  595. coeff->iqc_coeff[0]);
  596. if (caldata)
  597. caldata->tx_corr_coeff[im][i] =
  598. coeff->iqc_coeff[0];
  599. }
  600. if (caldata)
  601. caldata->num_measures[i] = nmeasurement;
  602. }
  603. REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
  604. AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
  605. REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
  606. AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);
  607. if (caldata)
  608. caldata->done_txiqcal_once = is_reusable;
  609. return;
  610. }
  611. static bool ar9003_hw_tx_iq_cal_run(struct ath_hw *ah)
  612. {
  613. struct ath_common *common = ath9k_hw_common(ah);
  614. u8 tx_gain_forced;
  615. tx_gain_forced = REG_READ_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  616. AR_PHY_TXGAIN_FORCE);
  617. if (tx_gain_forced)
  618. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  619. AR_PHY_TXGAIN_FORCE, 0);
  620. REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_START,
  621. AR_PHY_TX_IQCAL_START_DO_CAL, 1);
  622. if (!ath9k_hw_wait(ah, AR_PHY_TX_IQCAL_START,
  623. AR_PHY_TX_IQCAL_START_DO_CAL, 0,
  624. AH_WAIT_TIMEOUT)) {
  625. ath_dbg(common, CALIBRATE, "Tx IQ Cal is not completed\n");
  626. return false;
  627. }
  628. return true;
  629. }
  630. static void ar9003_hw_tx_iq_cal_post_proc(struct ath_hw *ah, bool is_reusable)
  631. {
  632. struct ath_common *common = ath9k_hw_common(ah);
  633. const u32 txiqcal_status[AR9300_MAX_CHAINS] = {
  634. AR_PHY_TX_IQCAL_STATUS_B0,
  635. AR_PHY_TX_IQCAL_STATUS_B1,
  636. AR_PHY_TX_IQCAL_STATUS_B2,
  637. };
  638. const u_int32_t chan_info_tab[] = {
  639. AR_PHY_CHAN_INFO_TAB_0,
  640. AR_PHY_CHAN_INFO_TAB_1,
  641. AR_PHY_CHAN_INFO_TAB_2,
  642. };
  643. struct coeff coeff;
  644. s32 iq_res[6];
  645. int i, im, j;
  646. int nmeasurement;
  647. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  648. if (!(ah->txchainmask & (1 << i)))
  649. continue;
  650. nmeasurement = REG_READ_FIELD(ah,
  651. AR_PHY_TX_IQCAL_STATUS_B0,
  652. AR_PHY_CALIBRATED_GAINS_0);
  653. if (nmeasurement > MAX_MEASUREMENT)
  654. nmeasurement = MAX_MEASUREMENT;
  655. for (im = 0; im < nmeasurement; im++) {
  656. ath_dbg(common, CALIBRATE,
  657. "Doing Tx IQ Cal for chain %d\n", i);
  658. if (REG_READ(ah, txiqcal_status[i]) &
  659. AR_PHY_TX_IQCAL_STATUS_FAILED) {
  660. ath_dbg(common, CALIBRATE,
  661. "Tx IQ Cal failed for chain %d\n", i);
  662. goto tx_iqcal_fail;
  663. }
  664. for (j = 0; j < 3; j++) {
  665. u32 idx = 2 * j, offset = 4 * (3 * im + j);
  666. REG_RMW_FIELD(ah,
  667. AR_PHY_CHAN_INFO_MEMORY,
  668. AR_PHY_CHAN_INFO_TAB_S2_READ,
  669. 0);
  670. /* 32 bits */
  671. iq_res[idx] = REG_READ(ah,
  672. chan_info_tab[i] +
  673. offset);
  674. REG_RMW_FIELD(ah,
  675. AR_PHY_CHAN_INFO_MEMORY,
  676. AR_PHY_CHAN_INFO_TAB_S2_READ,
  677. 1);
  678. /* 16 bits */
  679. iq_res[idx + 1] = 0xffff & REG_READ(ah,
  680. chan_info_tab[i] + offset);
  681. ath_dbg(common, CALIBRATE,
  682. "IQ_RES[%d]=0x%x IQ_RES[%d]=0x%x\n",
  683. idx, iq_res[idx], idx + 1,
  684. iq_res[idx + 1]);
  685. }
  686. if (!ar9003_hw_calc_iq_corr(ah, i, iq_res,
  687. coeff.iqc_coeff)) {
  688. ath_dbg(common, CALIBRATE,
  689. "Failed in calculation of IQ correction\n");
  690. goto tx_iqcal_fail;
  691. }
  692. coeff.mag_coeff[i][im] = coeff.iqc_coeff[0] & 0x7f;
  693. coeff.phs_coeff[i][im] =
  694. (coeff.iqc_coeff[0] >> 7) & 0x7f;
  695. if (coeff.mag_coeff[i][im] > 63)
  696. coeff.mag_coeff[i][im] -= 128;
  697. if (coeff.phs_coeff[i][im] > 63)
  698. coeff.phs_coeff[i][im] -= 128;
  699. }
  700. }
  701. ar9003_hw_tx_iqcal_load_avg_2_passes(ah, &coeff, is_reusable);
  702. return;
  703. tx_iqcal_fail:
  704. ath_dbg(common, CALIBRATE, "Tx IQ Cal failed\n");
  705. return;
  706. }
  707. static void ar9003_hw_tx_iq_cal_reload(struct ath_hw *ah)
  708. {
  709. struct ath9k_hw_cal_data *caldata = ah->caldata;
  710. u32 tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS];
  711. int i, im;
  712. memset(tx_corr_coeff, 0, sizeof(tx_corr_coeff));
  713. for (i = 0; i < MAX_MEASUREMENT / 2; i++) {
  714. tx_corr_coeff[i * 2][0] = tx_corr_coeff[(i * 2) + 1][0] =
  715. AR_PHY_TX_IQCAL_CORR_COEFF_B0(i);
  716. if (!AR_SREV_9485(ah)) {
  717. tx_corr_coeff[i * 2][1] =
  718. tx_corr_coeff[(i * 2) + 1][1] =
  719. AR_PHY_TX_IQCAL_CORR_COEFF_B1(i);
  720. tx_corr_coeff[i * 2][2] =
  721. tx_corr_coeff[(i * 2) + 1][2] =
  722. AR_PHY_TX_IQCAL_CORR_COEFF_B2(i);
  723. }
  724. }
  725. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  726. if (!(ah->txchainmask & (1 << i)))
  727. continue;
  728. for (im = 0; im < caldata->num_measures[i]; im++) {
  729. if ((im % 2) == 0)
  730. REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
  731. AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
  732. caldata->tx_corr_coeff[im][i]);
  733. else
  734. REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
  735. AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
  736. caldata->tx_corr_coeff[im][i]);
  737. }
  738. }
  739. REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
  740. AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
  741. REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
  742. AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);
  743. }
  744. static bool ar9003_hw_init_cal(struct ath_hw *ah,
  745. struct ath9k_channel *chan)
  746. {
  747. struct ath_common *common = ath9k_hw_common(ah);
  748. struct ath9k_hw_cal_data *caldata = ah->caldata;
  749. bool txiqcal_done = false, txclcal_done = false;
  750. bool is_reusable = true, status = true;
  751. bool run_rtt_cal = false, run_agc_cal;
  752. bool rtt = !!(ah->caps.hw_caps & ATH9K_HW_CAP_RTT);
  753. u32 agc_ctrl = 0, agc_supp_cals = AR_PHY_AGC_CONTROL_OFFSET_CAL |
  754. AR_PHY_AGC_CONTROL_FLTR_CAL |
  755. AR_PHY_AGC_CONTROL_PKDET_CAL;
  756. int i, j;
  757. u32 cl_idx[AR9300_MAX_CHAINS] = { AR_PHY_CL_TAB_0,
  758. AR_PHY_CL_TAB_1,
  759. AR_PHY_CL_TAB_2 };
  760. if (rtt) {
  761. if (!ar9003_hw_rtt_restore(ah, chan))
  762. run_rtt_cal = true;
  763. if (run_rtt_cal)
  764. ath_dbg(common, CALIBRATE, "RTT calibration to be done\n");
  765. }
  766. run_agc_cal = run_rtt_cal;
  767. if (run_rtt_cal) {
  768. ar9003_hw_rtt_enable(ah);
  769. ar9003_hw_rtt_set_mask(ah, 0x00);
  770. ar9003_hw_rtt_clear_hist(ah);
  771. }
  772. if (rtt && !run_rtt_cal) {
  773. agc_ctrl = REG_READ(ah, AR_PHY_AGC_CONTROL);
  774. agc_supp_cals &= agc_ctrl;
  775. agc_ctrl &= ~(AR_PHY_AGC_CONTROL_OFFSET_CAL |
  776. AR_PHY_AGC_CONTROL_FLTR_CAL |
  777. AR_PHY_AGC_CONTROL_PKDET_CAL);
  778. REG_WRITE(ah, AR_PHY_AGC_CONTROL, agc_ctrl);
  779. }
  780. if (ah->enabled_cals & TX_CL_CAL) {
  781. if (caldata && caldata->done_txclcal_once)
  782. REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL,
  783. AR_PHY_CL_CAL_ENABLE);
  784. else {
  785. REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL,
  786. AR_PHY_CL_CAL_ENABLE);
  787. run_agc_cal = true;
  788. }
  789. }
  790. if (!(ah->enabled_cals & TX_IQ_CAL))
  791. goto skip_tx_iqcal;
  792. /* Do Tx IQ Calibration */
  793. REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_1,
  794. AR_PHY_TX_IQCAL_CONTROL_1_IQCORR_I_Q_COFF_DELPT,
  795. DELPT);
  796. /*
  797. * For AR9485 or later chips, TxIQ cal runs as part of
  798. * AGC calibration
  799. */
  800. if (ah->enabled_cals & TX_IQ_ON_AGC_CAL) {
  801. if (caldata && !caldata->done_txiqcal_once)
  802. REG_SET_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0,
  803. AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
  804. else
  805. REG_CLR_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0,
  806. AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
  807. txiqcal_done = run_agc_cal = true;
  808. goto skip_tx_iqcal;
  809. } else if (caldata && !caldata->done_txiqcal_once)
  810. run_agc_cal = true;
  811. if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal)
  812. ar9003_mci_init_cal_req(ah, &is_reusable);
  813. if (!(IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))) {
  814. txiqcal_done = ar9003_hw_tx_iq_cal_run(ah);
  815. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  816. udelay(5);
  817. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  818. }
  819. skip_tx_iqcal:
  820. if (run_agc_cal || !(ah->ah_flags & AH_FASTCC)) {
  821. /* Calibrate the AGC */
  822. REG_WRITE(ah, AR_PHY_AGC_CONTROL,
  823. REG_READ(ah, AR_PHY_AGC_CONTROL) |
  824. AR_PHY_AGC_CONTROL_CAL);
  825. /* Poll for offset calibration complete */
  826. status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL,
  827. AR_PHY_AGC_CONTROL_CAL,
  828. 0, AH_WAIT_TIMEOUT);
  829. }
  830. if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal)
  831. ar9003_mci_init_cal_done(ah);
  832. if (rtt && !run_rtt_cal) {
  833. agc_ctrl |= agc_supp_cals;
  834. REG_WRITE(ah, AR_PHY_AGC_CONTROL, agc_ctrl);
  835. }
  836. if (!status) {
  837. if (run_rtt_cal)
  838. ar9003_hw_rtt_disable(ah);
  839. ath_dbg(common, CALIBRATE,
  840. "offset calibration failed to complete in 1ms; noisy environment?\n");
  841. return false;
  842. }
  843. if (txiqcal_done)
  844. ar9003_hw_tx_iq_cal_post_proc(ah, is_reusable);
  845. else if (caldata && caldata->done_txiqcal_once)
  846. ar9003_hw_tx_iq_cal_reload(ah);
  847. #define CL_TAB_ENTRY(reg_base) (reg_base + (4 * j))
  848. if (caldata && (ah->enabled_cals & TX_CL_CAL)) {
  849. txclcal_done = !!(REG_READ(ah, AR_PHY_AGC_CONTROL) &
  850. AR_PHY_AGC_CONTROL_CLC_SUCCESS);
  851. if (caldata->done_txclcal_once) {
  852. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  853. if (!(ah->txchainmask & (1 << i)))
  854. continue;
  855. for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
  856. REG_WRITE(ah, CL_TAB_ENTRY(cl_idx[i]),
  857. caldata->tx_clcal[i][j]);
  858. }
  859. } else if (is_reusable && txclcal_done) {
  860. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  861. if (!(ah->txchainmask & (1 << i)))
  862. continue;
  863. for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
  864. caldata->tx_clcal[i][j] =
  865. REG_READ(ah,
  866. CL_TAB_ENTRY(cl_idx[i]));
  867. }
  868. caldata->done_txclcal_once = true;
  869. }
  870. }
  871. #undef CL_TAB_ENTRY
  872. if (run_rtt_cal && caldata) {
  873. if (is_reusable) {
  874. if (!ath9k_hw_rfbus_req(ah))
  875. ath_err(ath9k_hw_common(ah),
  876. "Could not stop baseband\n");
  877. else
  878. ar9003_hw_rtt_fill_hist(ah);
  879. ath9k_hw_rfbus_done(ah);
  880. }
  881. ar9003_hw_rtt_disable(ah);
  882. }
  883. /* Initialize list pointers */
  884. ah->cal_list = ah->cal_list_last = ah->cal_list_curr = NULL;
  885. ah->supp_cals = IQ_MISMATCH_CAL;
  886. if (ah->supp_cals & IQ_MISMATCH_CAL) {
  887. INIT_CAL(&ah->iq_caldata);
  888. INSERT_CAL(ah, &ah->iq_caldata);
  889. ath_dbg(common, CALIBRATE, "enabling IQ Calibration\n");
  890. }
  891. if (ah->supp_cals & TEMP_COMP_CAL) {
  892. INIT_CAL(&ah->tempCompCalData);
  893. INSERT_CAL(ah, &ah->tempCompCalData);
  894. ath_dbg(common, CALIBRATE,
  895. "enabling Temperature Compensation Calibration\n");
  896. }
  897. /* Initialize current pointer to first element in list */
  898. ah->cal_list_curr = ah->cal_list;
  899. if (ah->cal_list_curr)
  900. ath9k_hw_reset_calibration(ah, ah->cal_list_curr);
  901. if (caldata)
  902. caldata->CalValid = 0;
  903. return true;
  904. }
  905. void ar9003_hw_attach_calib_ops(struct ath_hw *ah)
  906. {
  907. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  908. struct ath_hw_ops *ops = ath9k_hw_ops(ah);
  909. priv_ops->init_cal_settings = ar9003_hw_init_cal_settings;
  910. priv_ops->init_cal = ar9003_hw_init_cal;
  911. priv_ops->setup_calibration = ar9003_hw_setup_calibration;
  912. ops->calibrate = ar9003_hw_calibrate;
  913. }