nic.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2011 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/pci.h>
  14. #include <linux/module.h>
  15. #include <linux/seq_file.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "regs.h"
  21. #include "io.h"
  22. #include "workarounds.h"
  23. /**************************************************************************
  24. *
  25. * Configurable values
  26. *
  27. **************************************************************************
  28. */
  29. /* This is set to 16 for a good reason. In summary, if larger than
  30. * 16, the descriptor cache holds more than a default socket
  31. * buffer's worth of packets (for UDP we can only have at most one
  32. * socket buffer's worth outstanding). This combined with the fact
  33. * that we only get 1 TX event per descriptor cache means the NIC
  34. * goes idle.
  35. */
  36. #define TX_DC_ENTRIES 16
  37. #define TX_DC_ENTRIES_ORDER 1
  38. #define RX_DC_ENTRIES 64
  39. #define RX_DC_ENTRIES_ORDER 3
  40. /* If EFX_MAX_INT_ERRORS internal errors occur within
  41. * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  42. * disable it.
  43. */
  44. #define EFX_INT_ERROR_EXPIRE 3600
  45. #define EFX_MAX_INT_ERRORS 5
  46. /* Depth of RX flush request fifo */
  47. #define EFX_RX_FLUSH_COUNT 4
  48. /* Driver generated events */
  49. #define _EFX_CHANNEL_MAGIC_TEST 0x000101
  50. #define _EFX_CHANNEL_MAGIC_FILL 0x000102
  51. #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
  52. #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
  53. #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
  54. #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
  55. #define EFX_CHANNEL_MAGIC_TEST(_channel) \
  56. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  57. #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
  58. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
  59. efx_rx_queue_index(_rx_queue))
  60. #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
  61. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
  62. efx_rx_queue_index(_rx_queue))
  63. #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
  64. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
  65. (_tx_queue)->queue)
  66. /**************************************************************************
  67. *
  68. * Solarstorm hardware access
  69. *
  70. **************************************************************************/
  71. static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  72. unsigned int index)
  73. {
  74. efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  75. value, index);
  76. }
  77. /* Read the current event from the event queue */
  78. static inline efx_qword_t *efx_event(struct efx_channel *channel,
  79. unsigned int index)
  80. {
  81. return ((efx_qword_t *) (channel->eventq.addr)) +
  82. (index & channel->eventq_mask);
  83. }
  84. /* See if an event is present
  85. *
  86. * We check both the high and low dword of the event for all ones. We
  87. * wrote all ones when we cleared the event, and no valid event can
  88. * have all ones in either its high or low dwords. This approach is
  89. * robust against reordering.
  90. *
  91. * Note that using a single 64-bit comparison is incorrect; even
  92. * though the CPU read will be atomic, the DMA write may not be.
  93. */
  94. static inline int efx_event_present(efx_qword_t *event)
  95. {
  96. return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
  97. EFX_DWORD_IS_ALL_ONES(event->dword[1]));
  98. }
  99. static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  100. const efx_oword_t *mask)
  101. {
  102. return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  103. ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  104. }
  105. int efx_nic_test_registers(struct efx_nic *efx,
  106. const struct efx_nic_register_test *regs,
  107. size_t n_regs)
  108. {
  109. unsigned address = 0, i, j;
  110. efx_oword_t mask, imask, original, reg, buf;
  111. for (i = 0; i < n_regs; ++i) {
  112. address = regs[i].address;
  113. mask = imask = regs[i].mask;
  114. EFX_INVERT_OWORD(imask);
  115. efx_reado(efx, &original, address);
  116. /* bit sweep on and off */
  117. for (j = 0; j < 128; j++) {
  118. if (!EFX_EXTRACT_OWORD32(mask, j, j))
  119. continue;
  120. /* Test this testable bit can be set in isolation */
  121. EFX_AND_OWORD(reg, original, mask);
  122. EFX_SET_OWORD32(reg, j, j, 1);
  123. efx_writeo(efx, &reg, address);
  124. efx_reado(efx, &buf, address);
  125. if (efx_masked_compare_oword(&reg, &buf, &mask))
  126. goto fail;
  127. /* Test this testable bit can be cleared in isolation */
  128. EFX_OR_OWORD(reg, original, mask);
  129. EFX_SET_OWORD32(reg, j, j, 0);
  130. efx_writeo(efx, &reg, address);
  131. efx_reado(efx, &buf, address);
  132. if (efx_masked_compare_oword(&reg, &buf, &mask))
  133. goto fail;
  134. }
  135. efx_writeo(efx, &original, address);
  136. }
  137. return 0;
  138. fail:
  139. netif_err(efx, hw, efx->net_dev,
  140. "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
  141. " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
  142. EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
  143. return -EIO;
  144. }
  145. /**************************************************************************
  146. *
  147. * Special buffer handling
  148. * Special buffers are used for event queues and the TX and RX
  149. * descriptor rings.
  150. *
  151. *************************************************************************/
  152. /*
  153. * Initialise a special buffer
  154. *
  155. * This will define a buffer (previously allocated via
  156. * efx_alloc_special_buffer()) in the buffer table, allowing
  157. * it to be used for event queues, descriptor rings etc.
  158. */
  159. static void
  160. efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  161. {
  162. efx_qword_t buf_desc;
  163. unsigned int index;
  164. dma_addr_t dma_addr;
  165. int i;
  166. EFX_BUG_ON_PARANOID(!buffer->addr);
  167. /* Write buffer descriptors to NIC */
  168. for (i = 0; i < buffer->entries; i++) {
  169. index = buffer->index + i;
  170. dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
  171. netif_dbg(efx, probe, efx->net_dev,
  172. "mapping special buffer %d at %llx\n",
  173. index, (unsigned long long)dma_addr);
  174. EFX_POPULATE_QWORD_3(buf_desc,
  175. FRF_AZ_BUF_ADR_REGION, 0,
  176. FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
  177. FRF_AZ_BUF_OWNER_ID_FBUF, 0);
  178. efx_write_buf_tbl(efx, &buf_desc, index);
  179. }
  180. }
  181. /* Unmaps a buffer and clears the buffer table entries */
  182. static void
  183. efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  184. {
  185. efx_oword_t buf_tbl_upd;
  186. unsigned int start = buffer->index;
  187. unsigned int end = (buffer->index + buffer->entries - 1);
  188. if (!buffer->entries)
  189. return;
  190. netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
  191. buffer->index, buffer->index + buffer->entries - 1);
  192. EFX_POPULATE_OWORD_4(buf_tbl_upd,
  193. FRF_AZ_BUF_UPD_CMD, 0,
  194. FRF_AZ_BUF_CLR_CMD, 1,
  195. FRF_AZ_BUF_CLR_END_ID, end,
  196. FRF_AZ_BUF_CLR_START_ID, start);
  197. efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
  198. }
  199. /*
  200. * Allocate a new special buffer
  201. *
  202. * This allocates memory for a new buffer, clears it and allocates a
  203. * new buffer ID range. It does not write into the buffer table.
  204. *
  205. * This call will allocate 4KB buffers, since 8KB buffers can't be
  206. * used for event queues and descriptor rings.
  207. */
  208. static int efx_alloc_special_buffer(struct efx_nic *efx,
  209. struct efx_special_buffer *buffer,
  210. unsigned int len)
  211. {
  212. len = ALIGN(len, EFX_BUF_SIZE);
  213. buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
  214. &buffer->dma_addr, GFP_KERNEL);
  215. if (!buffer->addr)
  216. return -ENOMEM;
  217. buffer->len = len;
  218. buffer->entries = len / EFX_BUF_SIZE;
  219. BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
  220. /* All zeros is a potentially valid event so memset to 0xff */
  221. memset(buffer->addr, 0xff, len);
  222. /* Select new buffer ID */
  223. buffer->index = efx->next_buffer_table;
  224. efx->next_buffer_table += buffer->entries;
  225. #ifdef CONFIG_SFC_SRIOV
  226. BUG_ON(efx_sriov_enabled(efx) &&
  227. efx->vf_buftbl_base < efx->next_buffer_table);
  228. #endif
  229. netif_dbg(efx, probe, efx->net_dev,
  230. "allocating special buffers %d-%d at %llx+%x "
  231. "(virt %p phys %llx)\n", buffer->index,
  232. buffer->index + buffer->entries - 1,
  233. (u64)buffer->dma_addr, len,
  234. buffer->addr, (u64)virt_to_phys(buffer->addr));
  235. return 0;
  236. }
  237. static void
  238. efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  239. {
  240. if (!buffer->addr)
  241. return;
  242. netif_dbg(efx, hw, efx->net_dev,
  243. "deallocating special buffers %d-%d at %llx+%x "
  244. "(virt %p phys %llx)\n", buffer->index,
  245. buffer->index + buffer->entries - 1,
  246. (u64)buffer->dma_addr, buffer->len,
  247. buffer->addr, (u64)virt_to_phys(buffer->addr));
  248. dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
  249. buffer->dma_addr);
  250. buffer->addr = NULL;
  251. buffer->entries = 0;
  252. }
  253. /**************************************************************************
  254. *
  255. * Generic buffer handling
  256. * These buffers are used for interrupt status and MAC stats
  257. *
  258. **************************************************************************/
  259. int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
  260. unsigned int len)
  261. {
  262. buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
  263. &buffer->dma_addr, GFP_ATOMIC);
  264. if (!buffer->addr)
  265. return -ENOMEM;
  266. buffer->len = len;
  267. memset(buffer->addr, 0, len);
  268. return 0;
  269. }
  270. void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
  271. {
  272. if (buffer->addr) {
  273. dma_free_coherent(&efx->pci_dev->dev, buffer->len,
  274. buffer->addr, buffer->dma_addr);
  275. buffer->addr = NULL;
  276. }
  277. }
  278. /**************************************************************************
  279. *
  280. * TX path
  281. *
  282. **************************************************************************/
  283. /* Returns a pointer to the specified transmit descriptor in the TX
  284. * descriptor queue belonging to the specified channel.
  285. */
  286. static inline efx_qword_t *
  287. efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
  288. {
  289. return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
  290. }
  291. /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
  292. static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
  293. {
  294. unsigned write_ptr;
  295. efx_dword_t reg;
  296. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  297. EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
  298. efx_writed_page(tx_queue->efx, &reg,
  299. FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
  300. }
  301. /* Write pointer and first descriptor for TX descriptor ring */
  302. static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
  303. const efx_qword_t *txd)
  304. {
  305. unsigned write_ptr;
  306. efx_oword_t reg;
  307. BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
  308. BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
  309. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  310. EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
  311. FRF_AZ_TX_DESC_WPTR, write_ptr);
  312. reg.qword[0] = *txd;
  313. efx_writeo_page(tx_queue->efx, &reg,
  314. FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
  315. }
  316. static inline bool
  317. efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
  318. {
  319. unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
  320. if (empty_read_count == 0)
  321. return false;
  322. tx_queue->empty_read_count = 0;
  323. return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
  324. }
  325. /* For each entry inserted into the software descriptor ring, create a
  326. * descriptor in the hardware TX descriptor ring (in host memory), and
  327. * write a doorbell.
  328. */
  329. void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
  330. {
  331. struct efx_tx_buffer *buffer;
  332. efx_qword_t *txd;
  333. unsigned write_ptr;
  334. unsigned old_write_count = tx_queue->write_count;
  335. BUG_ON(tx_queue->write_count == tx_queue->insert_count);
  336. do {
  337. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  338. buffer = &tx_queue->buffer[write_ptr];
  339. txd = efx_tx_desc(tx_queue, write_ptr);
  340. ++tx_queue->write_count;
  341. /* Create TX descriptor ring entry */
  342. EFX_POPULATE_QWORD_4(*txd,
  343. FSF_AZ_TX_KER_CONT, buffer->continuation,
  344. FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
  345. FSF_AZ_TX_KER_BUF_REGION, 0,
  346. FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
  347. } while (tx_queue->write_count != tx_queue->insert_count);
  348. wmb(); /* Ensure descriptors are written before they are fetched */
  349. if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
  350. txd = efx_tx_desc(tx_queue,
  351. old_write_count & tx_queue->ptr_mask);
  352. efx_push_tx_desc(tx_queue, txd);
  353. ++tx_queue->pushes;
  354. } else {
  355. efx_notify_tx_desc(tx_queue);
  356. }
  357. }
  358. /* Allocate hardware resources for a TX queue */
  359. int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
  360. {
  361. struct efx_nic *efx = tx_queue->efx;
  362. unsigned entries;
  363. entries = tx_queue->ptr_mask + 1;
  364. return efx_alloc_special_buffer(efx, &tx_queue->txd,
  365. entries * sizeof(efx_qword_t));
  366. }
  367. void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
  368. {
  369. struct efx_nic *efx = tx_queue->efx;
  370. efx_oword_t reg;
  371. /* Pin TX descriptor ring */
  372. efx_init_special_buffer(efx, &tx_queue->txd);
  373. /* Push TX descriptor ring to card */
  374. EFX_POPULATE_OWORD_10(reg,
  375. FRF_AZ_TX_DESCQ_EN, 1,
  376. FRF_AZ_TX_ISCSI_DDIG_EN, 0,
  377. FRF_AZ_TX_ISCSI_HDIG_EN, 0,
  378. FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
  379. FRF_AZ_TX_DESCQ_EVQ_ID,
  380. tx_queue->channel->channel,
  381. FRF_AZ_TX_DESCQ_OWNER_ID, 0,
  382. FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
  383. FRF_AZ_TX_DESCQ_SIZE,
  384. __ffs(tx_queue->txd.entries),
  385. FRF_AZ_TX_DESCQ_TYPE, 0,
  386. FRF_BZ_TX_NON_IP_DROP_DIS, 1);
  387. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  388. int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
  389. EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
  390. EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
  391. !csum);
  392. }
  393. efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
  394. tx_queue->queue);
  395. if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
  396. /* Only 128 bits in this register */
  397. BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
  398. efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
  399. if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
  400. clear_bit_le(tx_queue->queue, (void *)&reg);
  401. else
  402. set_bit_le(tx_queue->queue, (void *)&reg);
  403. efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
  404. }
  405. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  406. EFX_POPULATE_OWORD_1(reg,
  407. FRF_BZ_TX_PACE,
  408. (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
  409. FFE_BZ_TX_PACE_OFF :
  410. FFE_BZ_TX_PACE_RESERVED);
  411. efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
  412. tx_queue->queue);
  413. }
  414. }
  415. static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
  416. {
  417. struct efx_nic *efx = tx_queue->efx;
  418. efx_oword_t tx_flush_descq;
  419. EFX_POPULATE_OWORD_2(tx_flush_descq,
  420. FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
  421. FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
  422. efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
  423. }
  424. void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
  425. {
  426. struct efx_nic *efx = tx_queue->efx;
  427. efx_oword_t tx_desc_ptr;
  428. /* Remove TX descriptor ring from card */
  429. EFX_ZERO_OWORD(tx_desc_ptr);
  430. efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
  431. tx_queue->queue);
  432. /* Unpin TX descriptor ring */
  433. efx_fini_special_buffer(efx, &tx_queue->txd);
  434. }
  435. /* Free buffers backing TX queue */
  436. void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
  437. {
  438. efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
  439. }
  440. /**************************************************************************
  441. *
  442. * RX path
  443. *
  444. **************************************************************************/
  445. /* Returns a pointer to the specified descriptor in the RX descriptor queue */
  446. static inline efx_qword_t *
  447. efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
  448. {
  449. return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
  450. }
  451. /* This creates an entry in the RX descriptor queue */
  452. static inline void
  453. efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
  454. {
  455. struct efx_rx_buffer *rx_buf;
  456. efx_qword_t *rxd;
  457. rxd = efx_rx_desc(rx_queue, index);
  458. rx_buf = efx_rx_buffer(rx_queue, index);
  459. EFX_POPULATE_QWORD_3(*rxd,
  460. FSF_AZ_RX_KER_BUF_SIZE,
  461. rx_buf->len -
  462. rx_queue->efx->type->rx_buffer_padding,
  463. FSF_AZ_RX_KER_BUF_REGION, 0,
  464. FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
  465. }
  466. /* This writes to the RX_DESC_WPTR register for the specified receive
  467. * descriptor ring.
  468. */
  469. void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
  470. {
  471. struct efx_nic *efx = rx_queue->efx;
  472. efx_dword_t reg;
  473. unsigned write_ptr;
  474. while (rx_queue->notified_count != rx_queue->added_count) {
  475. efx_build_rx_desc(
  476. rx_queue,
  477. rx_queue->notified_count & rx_queue->ptr_mask);
  478. ++rx_queue->notified_count;
  479. }
  480. wmb();
  481. write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
  482. EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
  483. efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
  484. efx_rx_queue_index(rx_queue));
  485. }
  486. int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
  487. {
  488. struct efx_nic *efx = rx_queue->efx;
  489. unsigned entries;
  490. entries = rx_queue->ptr_mask + 1;
  491. return efx_alloc_special_buffer(efx, &rx_queue->rxd,
  492. entries * sizeof(efx_qword_t));
  493. }
  494. void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
  495. {
  496. efx_oword_t rx_desc_ptr;
  497. struct efx_nic *efx = rx_queue->efx;
  498. bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
  499. bool iscsi_digest_en = is_b0;
  500. netif_dbg(efx, hw, efx->net_dev,
  501. "RX queue %d ring in special buffers %d-%d\n",
  502. efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
  503. rx_queue->rxd.index + rx_queue->rxd.entries - 1);
  504. /* Pin RX descriptor ring */
  505. efx_init_special_buffer(efx, &rx_queue->rxd);
  506. /* Push RX descriptor ring to card */
  507. EFX_POPULATE_OWORD_10(rx_desc_ptr,
  508. FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
  509. FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
  510. FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
  511. FRF_AZ_RX_DESCQ_EVQ_ID,
  512. efx_rx_queue_channel(rx_queue)->channel,
  513. FRF_AZ_RX_DESCQ_OWNER_ID, 0,
  514. FRF_AZ_RX_DESCQ_LABEL,
  515. efx_rx_queue_index(rx_queue),
  516. FRF_AZ_RX_DESCQ_SIZE,
  517. __ffs(rx_queue->rxd.entries),
  518. FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
  519. /* For >=B0 this is scatter so disable */
  520. FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
  521. FRF_AZ_RX_DESCQ_EN, 1);
  522. efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
  523. efx_rx_queue_index(rx_queue));
  524. }
  525. static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
  526. {
  527. struct efx_nic *efx = rx_queue->efx;
  528. efx_oword_t rx_flush_descq;
  529. EFX_POPULATE_OWORD_2(rx_flush_descq,
  530. FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
  531. FRF_AZ_RX_FLUSH_DESCQ,
  532. efx_rx_queue_index(rx_queue));
  533. efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
  534. }
  535. void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
  536. {
  537. efx_oword_t rx_desc_ptr;
  538. struct efx_nic *efx = rx_queue->efx;
  539. /* Remove RX descriptor ring from card */
  540. EFX_ZERO_OWORD(rx_desc_ptr);
  541. efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
  542. efx_rx_queue_index(rx_queue));
  543. /* Unpin RX descriptor ring */
  544. efx_fini_special_buffer(efx, &rx_queue->rxd);
  545. }
  546. /* Free buffers backing RX queue */
  547. void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
  548. {
  549. efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
  550. }
  551. /**************************************************************************
  552. *
  553. * Flush handling
  554. *
  555. **************************************************************************/
  556. /* efx_nic_flush_queues() must be woken up when all flushes are completed,
  557. * or more RX flushes can be kicked off.
  558. */
  559. static bool efx_flush_wake(struct efx_nic *efx)
  560. {
  561. /* Ensure that all updates are visible to efx_nic_flush_queues() */
  562. smp_mb();
  563. return (atomic_read(&efx->drain_pending) == 0 ||
  564. (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
  565. && atomic_read(&efx->rxq_flush_pending) > 0));
  566. }
  567. /* Flush all the transmit queues, and continue flushing receive queues until
  568. * they're all flushed. Wait for the DRAIN events to be recieved so that there
  569. * are no more RX and TX events left on any channel. */
  570. int efx_nic_flush_queues(struct efx_nic *efx)
  571. {
  572. unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
  573. struct efx_channel *channel;
  574. struct efx_rx_queue *rx_queue;
  575. struct efx_tx_queue *tx_queue;
  576. int rc = 0;
  577. efx->fc_disable++;
  578. efx->type->prepare_flush(efx);
  579. efx_for_each_channel(channel, efx) {
  580. efx_for_each_channel_tx_queue(tx_queue, channel) {
  581. atomic_inc(&efx->drain_pending);
  582. efx_flush_tx_queue(tx_queue);
  583. }
  584. efx_for_each_channel_rx_queue(rx_queue, channel) {
  585. atomic_inc(&efx->drain_pending);
  586. rx_queue->flush_pending = true;
  587. atomic_inc(&efx->rxq_flush_pending);
  588. }
  589. }
  590. while (timeout && atomic_read(&efx->drain_pending) > 0) {
  591. /* If SRIOV is enabled, then offload receive queue flushing to
  592. * the firmware (though we will still have to poll for
  593. * completion). If that fails, fall back to the old scheme.
  594. */
  595. if (efx_sriov_enabled(efx)) {
  596. rc = efx_mcdi_flush_rxqs(efx);
  597. if (!rc)
  598. goto wait;
  599. }
  600. /* The hardware supports four concurrent rx flushes, each of
  601. * which may need to be retried if there is an outstanding
  602. * descriptor fetch
  603. */
  604. efx_for_each_channel(channel, efx) {
  605. efx_for_each_channel_rx_queue(rx_queue, channel) {
  606. if (atomic_read(&efx->rxq_flush_outstanding) >=
  607. EFX_RX_FLUSH_COUNT)
  608. break;
  609. if (rx_queue->flush_pending) {
  610. rx_queue->flush_pending = false;
  611. atomic_dec(&efx->rxq_flush_pending);
  612. atomic_inc(&efx->rxq_flush_outstanding);
  613. efx_flush_rx_queue(rx_queue);
  614. }
  615. }
  616. }
  617. wait:
  618. timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
  619. timeout);
  620. }
  621. if (atomic_read(&efx->drain_pending)) {
  622. netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
  623. "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
  624. atomic_read(&efx->rxq_flush_outstanding),
  625. atomic_read(&efx->rxq_flush_pending));
  626. rc = -ETIMEDOUT;
  627. atomic_set(&efx->drain_pending, 0);
  628. atomic_set(&efx->rxq_flush_pending, 0);
  629. atomic_set(&efx->rxq_flush_outstanding, 0);
  630. }
  631. efx->fc_disable--;
  632. return rc;
  633. }
  634. /**************************************************************************
  635. *
  636. * Event queue processing
  637. * Event queues are processed by per-channel tasklets.
  638. *
  639. **************************************************************************/
  640. /* Update a channel's event queue's read pointer (RPTR) register
  641. *
  642. * This writes the EVQ_RPTR_REG register for the specified channel's
  643. * event queue.
  644. */
  645. void efx_nic_eventq_read_ack(struct efx_channel *channel)
  646. {
  647. efx_dword_t reg;
  648. struct efx_nic *efx = channel->efx;
  649. EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
  650. channel->eventq_read_ptr & channel->eventq_mask);
  651. efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
  652. channel->channel);
  653. }
  654. /* Use HW to insert a SW defined event */
  655. void efx_generate_event(struct efx_nic *efx, unsigned int evq,
  656. efx_qword_t *event)
  657. {
  658. efx_oword_t drv_ev_reg;
  659. BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
  660. FRF_AZ_DRV_EV_DATA_WIDTH != 64);
  661. drv_ev_reg.u32[0] = event->u32[0];
  662. drv_ev_reg.u32[1] = event->u32[1];
  663. drv_ev_reg.u32[2] = 0;
  664. drv_ev_reg.u32[3] = 0;
  665. EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
  666. efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
  667. }
  668. static void efx_magic_event(struct efx_channel *channel, u32 magic)
  669. {
  670. efx_qword_t event;
  671. EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
  672. FSE_AZ_EV_CODE_DRV_GEN_EV,
  673. FSF_AZ_DRV_GEN_EV_MAGIC, magic);
  674. efx_generate_event(channel->efx, channel->channel, &event);
  675. }
  676. /* Handle a transmit completion event
  677. *
  678. * The NIC batches TX completion events; the message we receive is of
  679. * the form "complete all TX events up to this index".
  680. */
  681. static int
  682. efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
  683. {
  684. unsigned int tx_ev_desc_ptr;
  685. unsigned int tx_ev_q_label;
  686. struct efx_tx_queue *tx_queue;
  687. struct efx_nic *efx = channel->efx;
  688. int tx_packets = 0;
  689. if (unlikely(ACCESS_ONCE(efx->reset_pending)))
  690. return 0;
  691. if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
  692. /* Transmit completion */
  693. tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
  694. tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
  695. tx_queue = efx_channel_get_tx_queue(
  696. channel, tx_ev_q_label % EFX_TXQ_TYPES);
  697. tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
  698. tx_queue->ptr_mask);
  699. efx_xmit_done(tx_queue, tx_ev_desc_ptr);
  700. } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
  701. /* Rewrite the FIFO write pointer */
  702. tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
  703. tx_queue = efx_channel_get_tx_queue(
  704. channel, tx_ev_q_label % EFX_TXQ_TYPES);
  705. netif_tx_lock(efx->net_dev);
  706. efx_notify_tx_desc(tx_queue);
  707. netif_tx_unlock(efx->net_dev);
  708. } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
  709. EFX_WORKAROUND_10727(efx)) {
  710. efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
  711. } else {
  712. netif_err(efx, tx_err, efx->net_dev,
  713. "channel %d unexpected TX event "
  714. EFX_QWORD_FMT"\n", channel->channel,
  715. EFX_QWORD_VAL(*event));
  716. }
  717. return tx_packets;
  718. }
  719. /* Detect errors included in the rx_evt_pkt_ok bit. */
  720. static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
  721. const efx_qword_t *event)
  722. {
  723. struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
  724. struct efx_nic *efx = rx_queue->efx;
  725. bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
  726. bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
  727. bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
  728. bool rx_ev_other_err, rx_ev_pause_frm;
  729. bool rx_ev_hdr_type, rx_ev_mcast_pkt;
  730. unsigned rx_ev_pkt_type;
  731. rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
  732. rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
  733. rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
  734. rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
  735. rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
  736. FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
  737. rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
  738. FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
  739. rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
  740. FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
  741. rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
  742. rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
  743. rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
  744. 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
  745. rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
  746. /* Every error apart from tobe_disc and pause_frm */
  747. rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
  748. rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
  749. rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
  750. /* Count errors that are not in MAC stats. Ignore expected
  751. * checksum errors during self-test. */
  752. if (rx_ev_frm_trunc)
  753. ++channel->n_rx_frm_trunc;
  754. else if (rx_ev_tobe_disc)
  755. ++channel->n_rx_tobe_disc;
  756. else if (!efx->loopback_selftest) {
  757. if (rx_ev_ip_hdr_chksum_err)
  758. ++channel->n_rx_ip_hdr_chksum_err;
  759. else if (rx_ev_tcp_udp_chksum_err)
  760. ++channel->n_rx_tcp_udp_chksum_err;
  761. }
  762. /* TOBE_DISC is expected on unicast mismatches; don't print out an
  763. * error message. FRM_TRUNC indicates RXDP dropped the packet due
  764. * to a FIFO overflow.
  765. */
  766. #ifdef DEBUG
  767. if (rx_ev_other_err && net_ratelimit()) {
  768. netif_dbg(efx, rx_err, efx->net_dev,
  769. " RX queue %d unexpected RX event "
  770. EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
  771. efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
  772. rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
  773. rx_ev_ip_hdr_chksum_err ?
  774. " [IP_HDR_CHKSUM_ERR]" : "",
  775. rx_ev_tcp_udp_chksum_err ?
  776. " [TCP_UDP_CHKSUM_ERR]" : "",
  777. rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
  778. rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
  779. rx_ev_drib_nib ? " [DRIB_NIB]" : "",
  780. rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
  781. rx_ev_pause_frm ? " [PAUSE]" : "");
  782. }
  783. #endif
  784. /* The frame must be discarded if any of these are true. */
  785. return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
  786. rx_ev_tobe_disc | rx_ev_pause_frm) ?
  787. EFX_RX_PKT_DISCARD : 0;
  788. }
  789. /* Handle receive events that are not in-order. */
  790. static void
  791. efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
  792. {
  793. struct efx_nic *efx = rx_queue->efx;
  794. unsigned expected, dropped;
  795. expected = rx_queue->removed_count & rx_queue->ptr_mask;
  796. dropped = (index - expected) & rx_queue->ptr_mask;
  797. netif_info(efx, rx_err, efx->net_dev,
  798. "dropped %d events (index=%d expected=%d)\n",
  799. dropped, index, expected);
  800. efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
  801. RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
  802. }
  803. /* Handle a packet received event
  804. *
  805. * The NIC gives a "discard" flag if it's a unicast packet with the
  806. * wrong destination address
  807. * Also "is multicast" and "matches multicast filter" flags can be used to
  808. * discard non-matching multicast packets.
  809. */
  810. static void
  811. efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
  812. {
  813. unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
  814. unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
  815. unsigned expected_ptr;
  816. bool rx_ev_pkt_ok;
  817. u16 flags;
  818. struct efx_rx_queue *rx_queue;
  819. struct efx_nic *efx = channel->efx;
  820. if (unlikely(ACCESS_ONCE(efx->reset_pending)))
  821. return;
  822. /* Basic packet information */
  823. rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
  824. rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
  825. rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
  826. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
  827. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
  828. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
  829. channel->channel);
  830. rx_queue = efx_channel_get_rx_queue(channel);
  831. rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
  832. expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
  833. if (unlikely(rx_ev_desc_ptr != expected_ptr))
  834. efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
  835. if (likely(rx_ev_pkt_ok)) {
  836. /* If packet is marked as OK and packet type is TCP/IP or
  837. * UDP/IP, then we can rely on the hardware checksum.
  838. */
  839. flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
  840. rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
  841. EFX_RX_PKT_CSUMMED : 0;
  842. } else {
  843. flags = efx_handle_rx_not_ok(rx_queue, event);
  844. }
  845. /* Detect multicast packets that didn't match the filter */
  846. rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
  847. if (rx_ev_mcast_pkt) {
  848. unsigned int rx_ev_mcast_hash_match =
  849. EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
  850. if (unlikely(!rx_ev_mcast_hash_match)) {
  851. ++channel->n_rx_mcast_mismatch;
  852. flags |= EFX_RX_PKT_DISCARD;
  853. }
  854. }
  855. channel->irq_mod_score += 2;
  856. /* Handle received packet */
  857. efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
  858. }
  859. /* If this flush done event corresponds to a &struct efx_tx_queue, then
  860. * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
  861. * of all transmit completions.
  862. */
  863. static void
  864. efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
  865. {
  866. struct efx_tx_queue *tx_queue;
  867. int qid;
  868. qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
  869. if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
  870. tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
  871. qid % EFX_TXQ_TYPES);
  872. efx_magic_event(tx_queue->channel,
  873. EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
  874. }
  875. }
  876. /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
  877. * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
  878. * the RX queue back to the mask of RX queues in need of flushing.
  879. */
  880. static void
  881. efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
  882. {
  883. struct efx_channel *channel;
  884. struct efx_rx_queue *rx_queue;
  885. int qid;
  886. bool failed;
  887. qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
  888. failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
  889. if (qid >= efx->n_channels)
  890. return;
  891. channel = efx_get_channel(efx, qid);
  892. if (!efx_channel_has_rx_queue(channel))
  893. return;
  894. rx_queue = efx_channel_get_rx_queue(channel);
  895. if (failed) {
  896. netif_info(efx, hw, efx->net_dev,
  897. "RXQ %d flush retry\n", qid);
  898. rx_queue->flush_pending = true;
  899. atomic_inc(&efx->rxq_flush_pending);
  900. } else {
  901. efx_magic_event(efx_rx_queue_channel(rx_queue),
  902. EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
  903. }
  904. atomic_dec(&efx->rxq_flush_outstanding);
  905. if (efx_flush_wake(efx))
  906. wake_up(&efx->flush_wq);
  907. }
  908. static void
  909. efx_handle_drain_event(struct efx_channel *channel)
  910. {
  911. struct efx_nic *efx = channel->efx;
  912. WARN_ON(atomic_read(&efx->drain_pending) == 0);
  913. atomic_dec(&efx->drain_pending);
  914. if (efx_flush_wake(efx))
  915. wake_up(&efx->flush_wq);
  916. }
  917. static void
  918. efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
  919. {
  920. struct efx_nic *efx = channel->efx;
  921. struct efx_rx_queue *rx_queue =
  922. efx_channel_has_rx_queue(channel) ?
  923. efx_channel_get_rx_queue(channel) : NULL;
  924. unsigned magic, code;
  925. magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
  926. code = _EFX_CHANNEL_MAGIC_CODE(magic);
  927. if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
  928. channel->event_test_cpu = raw_smp_processor_id();
  929. } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
  930. /* The queue must be empty, so we won't receive any rx
  931. * events, so efx_process_channel() won't refill the
  932. * queue. Refill it here */
  933. efx_fast_push_rx_descriptors(rx_queue);
  934. } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
  935. rx_queue->enabled = false;
  936. efx_handle_drain_event(channel);
  937. } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
  938. efx_handle_drain_event(channel);
  939. } else {
  940. netif_dbg(efx, hw, efx->net_dev, "channel %d received "
  941. "generated event "EFX_QWORD_FMT"\n",
  942. channel->channel, EFX_QWORD_VAL(*event));
  943. }
  944. }
  945. static void
  946. efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
  947. {
  948. struct efx_nic *efx = channel->efx;
  949. unsigned int ev_sub_code;
  950. unsigned int ev_sub_data;
  951. ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
  952. ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
  953. switch (ev_sub_code) {
  954. case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
  955. netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
  956. channel->channel, ev_sub_data);
  957. efx_handle_tx_flush_done(efx, event);
  958. efx_sriov_tx_flush_done(efx, event);
  959. break;
  960. case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
  961. netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
  962. channel->channel, ev_sub_data);
  963. efx_handle_rx_flush_done(efx, event);
  964. efx_sriov_rx_flush_done(efx, event);
  965. break;
  966. case FSE_AZ_EVQ_INIT_DONE_EV:
  967. netif_dbg(efx, hw, efx->net_dev,
  968. "channel %d EVQ %d initialised\n",
  969. channel->channel, ev_sub_data);
  970. break;
  971. case FSE_AZ_SRM_UPD_DONE_EV:
  972. netif_vdbg(efx, hw, efx->net_dev,
  973. "channel %d SRAM update done\n", channel->channel);
  974. break;
  975. case FSE_AZ_WAKE_UP_EV:
  976. netif_vdbg(efx, hw, efx->net_dev,
  977. "channel %d RXQ %d wakeup event\n",
  978. channel->channel, ev_sub_data);
  979. break;
  980. case FSE_AZ_TIMER_EV:
  981. netif_vdbg(efx, hw, efx->net_dev,
  982. "channel %d RX queue %d timer expired\n",
  983. channel->channel, ev_sub_data);
  984. break;
  985. case FSE_AA_RX_RECOVER_EV:
  986. netif_err(efx, rx_err, efx->net_dev,
  987. "channel %d seen DRIVER RX_RESET event. "
  988. "Resetting.\n", channel->channel);
  989. atomic_inc(&efx->rx_reset);
  990. efx_schedule_reset(efx,
  991. EFX_WORKAROUND_6555(efx) ?
  992. RESET_TYPE_RX_RECOVERY :
  993. RESET_TYPE_DISABLE);
  994. break;
  995. case FSE_BZ_RX_DSC_ERROR_EV:
  996. if (ev_sub_data < EFX_VI_BASE) {
  997. netif_err(efx, rx_err, efx->net_dev,
  998. "RX DMA Q %d reports descriptor fetch error."
  999. " RX Q %d is disabled.\n", ev_sub_data,
  1000. ev_sub_data);
  1001. efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
  1002. } else
  1003. efx_sriov_desc_fetch_err(efx, ev_sub_data);
  1004. break;
  1005. case FSE_BZ_TX_DSC_ERROR_EV:
  1006. if (ev_sub_data < EFX_VI_BASE) {
  1007. netif_err(efx, tx_err, efx->net_dev,
  1008. "TX DMA Q %d reports descriptor fetch error."
  1009. " TX Q %d is disabled.\n", ev_sub_data,
  1010. ev_sub_data);
  1011. efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
  1012. } else
  1013. efx_sriov_desc_fetch_err(efx, ev_sub_data);
  1014. break;
  1015. default:
  1016. netif_vdbg(efx, hw, efx->net_dev,
  1017. "channel %d unknown driver event code %d "
  1018. "data %04x\n", channel->channel, ev_sub_code,
  1019. ev_sub_data);
  1020. break;
  1021. }
  1022. }
  1023. int efx_nic_process_eventq(struct efx_channel *channel, int budget)
  1024. {
  1025. struct efx_nic *efx = channel->efx;
  1026. unsigned int read_ptr;
  1027. efx_qword_t event, *p_event;
  1028. int ev_code;
  1029. int tx_packets = 0;
  1030. int spent = 0;
  1031. read_ptr = channel->eventq_read_ptr;
  1032. for (;;) {
  1033. p_event = efx_event(channel, read_ptr);
  1034. event = *p_event;
  1035. if (!efx_event_present(&event))
  1036. /* End of events */
  1037. break;
  1038. netif_vdbg(channel->efx, intr, channel->efx->net_dev,
  1039. "channel %d event is "EFX_QWORD_FMT"\n",
  1040. channel->channel, EFX_QWORD_VAL(event));
  1041. /* Clear this event by marking it all ones */
  1042. EFX_SET_QWORD(*p_event);
  1043. ++read_ptr;
  1044. ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
  1045. switch (ev_code) {
  1046. case FSE_AZ_EV_CODE_RX_EV:
  1047. efx_handle_rx_event(channel, &event);
  1048. if (++spent == budget)
  1049. goto out;
  1050. break;
  1051. case FSE_AZ_EV_CODE_TX_EV:
  1052. tx_packets += efx_handle_tx_event(channel, &event);
  1053. if (tx_packets > efx->txq_entries) {
  1054. spent = budget;
  1055. goto out;
  1056. }
  1057. break;
  1058. case FSE_AZ_EV_CODE_DRV_GEN_EV:
  1059. efx_handle_generated_event(channel, &event);
  1060. break;
  1061. case FSE_AZ_EV_CODE_DRIVER_EV:
  1062. efx_handle_driver_event(channel, &event);
  1063. break;
  1064. case FSE_CZ_EV_CODE_USER_EV:
  1065. efx_sriov_event(channel, &event);
  1066. break;
  1067. case FSE_CZ_EV_CODE_MCDI_EV:
  1068. efx_mcdi_process_event(channel, &event);
  1069. break;
  1070. case FSE_AZ_EV_CODE_GLOBAL_EV:
  1071. if (efx->type->handle_global_event &&
  1072. efx->type->handle_global_event(channel, &event))
  1073. break;
  1074. /* else fall through */
  1075. default:
  1076. netif_err(channel->efx, hw, channel->efx->net_dev,
  1077. "channel %d unknown event type %d (data "
  1078. EFX_QWORD_FMT ")\n", channel->channel,
  1079. ev_code, EFX_QWORD_VAL(event));
  1080. }
  1081. }
  1082. out:
  1083. channel->eventq_read_ptr = read_ptr;
  1084. return spent;
  1085. }
  1086. /* Check whether an event is present in the eventq at the current
  1087. * read pointer. Only useful for self-test.
  1088. */
  1089. bool efx_nic_event_present(struct efx_channel *channel)
  1090. {
  1091. return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
  1092. }
  1093. /* Allocate buffer table entries for event queue */
  1094. int efx_nic_probe_eventq(struct efx_channel *channel)
  1095. {
  1096. struct efx_nic *efx = channel->efx;
  1097. unsigned entries;
  1098. entries = channel->eventq_mask + 1;
  1099. return efx_alloc_special_buffer(efx, &channel->eventq,
  1100. entries * sizeof(efx_qword_t));
  1101. }
  1102. void efx_nic_init_eventq(struct efx_channel *channel)
  1103. {
  1104. efx_oword_t reg;
  1105. struct efx_nic *efx = channel->efx;
  1106. netif_dbg(efx, hw, efx->net_dev,
  1107. "channel %d event queue in special buffers %d-%d\n",
  1108. channel->channel, channel->eventq.index,
  1109. channel->eventq.index + channel->eventq.entries - 1);
  1110. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
  1111. EFX_POPULATE_OWORD_3(reg,
  1112. FRF_CZ_TIMER_Q_EN, 1,
  1113. FRF_CZ_HOST_NOTIFY_MODE, 0,
  1114. FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
  1115. efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
  1116. }
  1117. /* Pin event queue buffer */
  1118. efx_init_special_buffer(efx, &channel->eventq);
  1119. /* Fill event queue with all ones (i.e. empty events) */
  1120. memset(channel->eventq.addr, 0xff, channel->eventq.len);
  1121. /* Push event queue to card */
  1122. EFX_POPULATE_OWORD_3(reg,
  1123. FRF_AZ_EVQ_EN, 1,
  1124. FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
  1125. FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
  1126. efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
  1127. channel->channel);
  1128. efx->type->push_irq_moderation(channel);
  1129. }
  1130. void efx_nic_fini_eventq(struct efx_channel *channel)
  1131. {
  1132. efx_oword_t reg;
  1133. struct efx_nic *efx = channel->efx;
  1134. /* Remove event queue from card */
  1135. EFX_ZERO_OWORD(reg);
  1136. efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
  1137. channel->channel);
  1138. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
  1139. efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
  1140. /* Unpin event queue */
  1141. efx_fini_special_buffer(efx, &channel->eventq);
  1142. }
  1143. /* Free buffers backing event queue */
  1144. void efx_nic_remove_eventq(struct efx_channel *channel)
  1145. {
  1146. efx_free_special_buffer(channel->efx, &channel->eventq);
  1147. }
  1148. void efx_nic_event_test_start(struct efx_channel *channel)
  1149. {
  1150. channel->event_test_cpu = -1;
  1151. smp_wmb();
  1152. efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
  1153. }
  1154. void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
  1155. {
  1156. efx_magic_event(efx_rx_queue_channel(rx_queue),
  1157. EFX_CHANNEL_MAGIC_FILL(rx_queue));
  1158. }
  1159. /**************************************************************************
  1160. *
  1161. * Hardware interrupts
  1162. * The hardware interrupt handler does very little work; all the event
  1163. * queue processing is carried out by per-channel tasklets.
  1164. *
  1165. **************************************************************************/
  1166. /* Enable/disable/generate interrupts */
  1167. static inline void efx_nic_interrupts(struct efx_nic *efx,
  1168. bool enabled, bool force)
  1169. {
  1170. efx_oword_t int_en_reg_ker;
  1171. EFX_POPULATE_OWORD_3(int_en_reg_ker,
  1172. FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
  1173. FRF_AZ_KER_INT_KER, force,
  1174. FRF_AZ_DRV_INT_EN_KER, enabled);
  1175. efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
  1176. }
  1177. void efx_nic_enable_interrupts(struct efx_nic *efx)
  1178. {
  1179. EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
  1180. wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
  1181. efx_nic_interrupts(efx, true, false);
  1182. }
  1183. void efx_nic_disable_interrupts(struct efx_nic *efx)
  1184. {
  1185. /* Disable interrupts */
  1186. efx_nic_interrupts(efx, false, false);
  1187. }
  1188. /* Generate a test interrupt
  1189. * Interrupt must already have been enabled, otherwise nasty things
  1190. * may happen.
  1191. */
  1192. void efx_nic_irq_test_start(struct efx_nic *efx)
  1193. {
  1194. efx->last_irq_cpu = -1;
  1195. smp_wmb();
  1196. efx_nic_interrupts(efx, true, true);
  1197. }
  1198. /* Process a fatal interrupt
  1199. * Disable bus mastering ASAP and schedule a reset
  1200. */
  1201. irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
  1202. {
  1203. struct falcon_nic_data *nic_data = efx->nic_data;
  1204. efx_oword_t *int_ker = efx->irq_status.addr;
  1205. efx_oword_t fatal_intr;
  1206. int error, mem_perr;
  1207. efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
  1208. error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
  1209. netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
  1210. EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
  1211. EFX_OWORD_VAL(fatal_intr),
  1212. error ? "disabling bus mastering" : "no recognised error");
  1213. /* If this is a memory parity error dump which blocks are offending */
  1214. mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
  1215. EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
  1216. if (mem_perr) {
  1217. efx_oword_t reg;
  1218. efx_reado(efx, &reg, FR_AZ_MEM_STAT);
  1219. netif_err(efx, hw, efx->net_dev,
  1220. "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
  1221. EFX_OWORD_VAL(reg));
  1222. }
  1223. /* Disable both devices */
  1224. pci_clear_master(efx->pci_dev);
  1225. if (efx_nic_is_dual_func(efx))
  1226. pci_clear_master(nic_data->pci_dev2);
  1227. efx_nic_disable_interrupts(efx);
  1228. /* Count errors and reset or disable the NIC accordingly */
  1229. if (efx->int_error_count == 0 ||
  1230. time_after(jiffies, efx->int_error_expire)) {
  1231. efx->int_error_count = 0;
  1232. efx->int_error_expire =
  1233. jiffies + EFX_INT_ERROR_EXPIRE * HZ;
  1234. }
  1235. if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
  1236. netif_err(efx, hw, efx->net_dev,
  1237. "SYSTEM ERROR - reset scheduled\n");
  1238. efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
  1239. } else {
  1240. netif_err(efx, hw, efx->net_dev,
  1241. "SYSTEM ERROR - max number of errors seen."
  1242. "NIC will be disabled\n");
  1243. efx_schedule_reset(efx, RESET_TYPE_DISABLE);
  1244. }
  1245. return IRQ_HANDLED;
  1246. }
  1247. /* Handle a legacy interrupt
  1248. * Acknowledges the interrupt and schedule event queue processing.
  1249. */
  1250. static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
  1251. {
  1252. struct efx_nic *efx = dev_id;
  1253. efx_oword_t *int_ker = efx->irq_status.addr;
  1254. irqreturn_t result = IRQ_NONE;
  1255. struct efx_channel *channel;
  1256. efx_dword_t reg;
  1257. u32 queues;
  1258. int syserr;
  1259. /* Could this be ours? If interrupts are disabled then the
  1260. * channel state may not be valid.
  1261. */
  1262. if (!efx->legacy_irq_enabled)
  1263. return result;
  1264. /* Read the ISR which also ACKs the interrupts */
  1265. efx_readd(efx, &reg, FR_BZ_INT_ISR0);
  1266. queues = EFX_EXTRACT_DWORD(reg, 0, 31);
  1267. /* Handle non-event-queue sources */
  1268. if (queues & (1U << efx->irq_level)) {
  1269. syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
  1270. if (unlikely(syserr))
  1271. return efx_nic_fatal_interrupt(efx);
  1272. efx->last_irq_cpu = raw_smp_processor_id();
  1273. }
  1274. if (queues != 0) {
  1275. if (EFX_WORKAROUND_15783(efx))
  1276. efx->irq_zero_count = 0;
  1277. /* Schedule processing of any interrupting queues */
  1278. efx_for_each_channel(channel, efx) {
  1279. if (queues & 1)
  1280. efx_schedule_channel_irq(channel);
  1281. queues >>= 1;
  1282. }
  1283. result = IRQ_HANDLED;
  1284. } else if (EFX_WORKAROUND_15783(efx)) {
  1285. efx_qword_t *event;
  1286. /* We can't return IRQ_HANDLED more than once on seeing ISR=0
  1287. * because this might be a shared interrupt. */
  1288. if (efx->irq_zero_count++ == 0)
  1289. result = IRQ_HANDLED;
  1290. /* Ensure we schedule or rearm all event queues */
  1291. efx_for_each_channel(channel, efx) {
  1292. event = efx_event(channel, channel->eventq_read_ptr);
  1293. if (efx_event_present(event))
  1294. efx_schedule_channel_irq(channel);
  1295. else
  1296. efx_nic_eventq_read_ack(channel);
  1297. }
  1298. }
  1299. if (result == IRQ_HANDLED)
  1300. netif_vdbg(efx, intr, efx->net_dev,
  1301. "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
  1302. irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
  1303. return result;
  1304. }
  1305. /* Handle an MSI interrupt
  1306. *
  1307. * Handle an MSI hardware interrupt. This routine schedules event
  1308. * queue processing. No interrupt acknowledgement cycle is necessary.
  1309. * Also, we never need to check that the interrupt is for us, since
  1310. * MSI interrupts cannot be shared.
  1311. */
  1312. static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
  1313. {
  1314. struct efx_channel *channel = *(struct efx_channel **)dev_id;
  1315. struct efx_nic *efx = channel->efx;
  1316. efx_oword_t *int_ker = efx->irq_status.addr;
  1317. int syserr;
  1318. netif_vdbg(efx, intr, efx->net_dev,
  1319. "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
  1320. irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
  1321. /* Handle non-event-queue sources */
  1322. if (channel->channel == efx->irq_level) {
  1323. syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
  1324. if (unlikely(syserr))
  1325. return efx_nic_fatal_interrupt(efx);
  1326. efx->last_irq_cpu = raw_smp_processor_id();
  1327. }
  1328. /* Schedule processing of the channel */
  1329. efx_schedule_channel_irq(channel);
  1330. return IRQ_HANDLED;
  1331. }
  1332. /* Setup RSS indirection table.
  1333. * This maps from the hash value of the packet to RXQ
  1334. */
  1335. void efx_nic_push_rx_indir_table(struct efx_nic *efx)
  1336. {
  1337. size_t i = 0;
  1338. efx_dword_t dword;
  1339. if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
  1340. return;
  1341. BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
  1342. FR_BZ_RX_INDIRECTION_TBL_ROWS);
  1343. for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
  1344. EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
  1345. efx->rx_indir_table[i]);
  1346. efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
  1347. }
  1348. }
  1349. /* Hook interrupt handler(s)
  1350. * Try MSI and then legacy interrupts.
  1351. */
  1352. int efx_nic_init_interrupt(struct efx_nic *efx)
  1353. {
  1354. struct efx_channel *channel;
  1355. int rc;
  1356. if (!EFX_INT_MODE_USE_MSI(efx)) {
  1357. irq_handler_t handler;
  1358. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1359. handler = efx_legacy_interrupt;
  1360. else
  1361. handler = falcon_legacy_interrupt_a1;
  1362. rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
  1363. efx->name, efx);
  1364. if (rc) {
  1365. netif_err(efx, drv, efx->net_dev,
  1366. "failed to hook legacy IRQ %d\n",
  1367. efx->pci_dev->irq);
  1368. goto fail1;
  1369. }
  1370. return 0;
  1371. }
  1372. /* Hook MSI or MSI-X interrupt */
  1373. efx_for_each_channel(channel, efx) {
  1374. rc = request_irq(channel->irq, efx_msi_interrupt,
  1375. IRQF_PROBE_SHARED, /* Not shared */
  1376. efx->channel_name[channel->channel],
  1377. &efx->channel[channel->channel]);
  1378. if (rc) {
  1379. netif_err(efx, drv, efx->net_dev,
  1380. "failed to hook IRQ %d\n", channel->irq);
  1381. goto fail2;
  1382. }
  1383. }
  1384. return 0;
  1385. fail2:
  1386. efx_for_each_channel(channel, efx)
  1387. free_irq(channel->irq, &efx->channel[channel->channel]);
  1388. fail1:
  1389. return rc;
  1390. }
  1391. void efx_nic_fini_interrupt(struct efx_nic *efx)
  1392. {
  1393. struct efx_channel *channel;
  1394. efx_oword_t reg;
  1395. /* Disable MSI/MSI-X interrupts */
  1396. efx_for_each_channel(channel, efx) {
  1397. if (channel->irq)
  1398. free_irq(channel->irq, &efx->channel[channel->channel]);
  1399. }
  1400. /* ACK legacy interrupt */
  1401. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1402. efx_reado(efx, &reg, FR_BZ_INT_ISR0);
  1403. else
  1404. falcon_irq_ack_a1(efx);
  1405. /* Disable legacy interrupt */
  1406. if (efx->legacy_irq)
  1407. free_irq(efx->legacy_irq, efx);
  1408. }
  1409. /* Looks at available SRAM resources and works out how many queues we
  1410. * can support, and where things like descriptor caches should live.
  1411. *
  1412. * SRAM is split up as follows:
  1413. * 0 buftbl entries for channels
  1414. * efx->vf_buftbl_base buftbl entries for SR-IOV
  1415. * efx->rx_dc_base RX descriptor caches
  1416. * efx->tx_dc_base TX descriptor caches
  1417. */
  1418. void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
  1419. {
  1420. unsigned vi_count, buftbl_min;
  1421. /* Account for the buffer table entries backing the datapath channels
  1422. * and the descriptor caches for those channels.
  1423. */
  1424. buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
  1425. efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
  1426. efx->n_channels * EFX_MAX_EVQ_SIZE)
  1427. * sizeof(efx_qword_t) / EFX_BUF_SIZE);
  1428. vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
  1429. #ifdef CONFIG_SFC_SRIOV
  1430. if (efx_sriov_wanted(efx)) {
  1431. unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
  1432. efx->vf_buftbl_base = buftbl_min;
  1433. vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
  1434. vi_count = max(vi_count, EFX_VI_BASE);
  1435. buftbl_free = (sram_lim_qw - buftbl_min -
  1436. vi_count * vi_dc_entries);
  1437. entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
  1438. efx_vf_size(efx));
  1439. vf_limit = min(buftbl_free / entries_per_vf,
  1440. (1024U - EFX_VI_BASE) >> efx->vi_scale);
  1441. if (efx->vf_count > vf_limit) {
  1442. netif_err(efx, probe, efx->net_dev,
  1443. "Reducing VF count from from %d to %d\n",
  1444. efx->vf_count, vf_limit);
  1445. efx->vf_count = vf_limit;
  1446. }
  1447. vi_count += efx->vf_count * efx_vf_size(efx);
  1448. }
  1449. #endif
  1450. efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
  1451. efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
  1452. }
  1453. u32 efx_nic_fpga_ver(struct efx_nic *efx)
  1454. {
  1455. efx_oword_t altera_build;
  1456. efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
  1457. return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
  1458. }
  1459. void efx_nic_init_common(struct efx_nic *efx)
  1460. {
  1461. efx_oword_t temp;
  1462. /* Set positions of descriptor caches in SRAM. */
  1463. EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
  1464. efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
  1465. EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
  1466. efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
  1467. /* Set TX descriptor cache size. */
  1468. BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
  1469. EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
  1470. efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
  1471. /* Set RX descriptor cache size. Set low watermark to size-8, as
  1472. * this allows most efficient prefetching.
  1473. */
  1474. BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
  1475. EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
  1476. efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
  1477. EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
  1478. efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
  1479. /* Program INT_KER address */
  1480. EFX_POPULATE_OWORD_2(temp,
  1481. FRF_AZ_NORM_INT_VEC_DIS_KER,
  1482. EFX_INT_MODE_USE_MSI(efx),
  1483. FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
  1484. efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
  1485. if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
  1486. /* Use an interrupt level unused by event queues */
  1487. efx->irq_level = 0x1f;
  1488. else
  1489. /* Use a valid MSI-X vector */
  1490. efx->irq_level = 0;
  1491. /* Enable all the genuinely fatal interrupts. (They are still
  1492. * masked by the overall interrupt mask, controlled by
  1493. * falcon_interrupts()).
  1494. *
  1495. * Note: All other fatal interrupts are enabled
  1496. */
  1497. EFX_POPULATE_OWORD_3(temp,
  1498. FRF_AZ_ILL_ADR_INT_KER_EN, 1,
  1499. FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
  1500. FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
  1501. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
  1502. EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
  1503. EFX_INVERT_OWORD(temp);
  1504. efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
  1505. efx_nic_push_rx_indir_table(efx);
  1506. /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
  1507. * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
  1508. */
  1509. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  1510. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
  1511. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
  1512. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
  1513. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
  1514. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
  1515. /* Enable SW_EV to inherit in char driver - assume harmless here */
  1516. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
  1517. /* Prefetch threshold 2 => fetch when descriptor cache half empty */
  1518. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
  1519. /* Disable hardware watchdog which can misfire */
  1520. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
  1521. /* Squash TX of packets of 16 bytes or less */
  1522. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1523. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  1524. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  1525. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  1526. EFX_POPULATE_OWORD_4(temp,
  1527. /* Default values */
  1528. FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
  1529. FRF_BZ_TX_PACE_SB_AF, 0xb,
  1530. FRF_BZ_TX_PACE_FB_BASE, 0,
  1531. /* Allow large pace values in the
  1532. * fast bin. */
  1533. FRF_BZ_TX_PACE_BIN_TH,
  1534. FFE_BZ_TX_PACE_RESERVED);
  1535. efx_writeo(efx, &temp, FR_BZ_TX_PACE);
  1536. }
  1537. }
  1538. /* Register dump */
  1539. #define REGISTER_REVISION_A 1
  1540. #define REGISTER_REVISION_B 2
  1541. #define REGISTER_REVISION_C 3
  1542. #define REGISTER_REVISION_Z 3 /* latest revision */
  1543. struct efx_nic_reg {
  1544. u32 offset:24;
  1545. u32 min_revision:2, max_revision:2;
  1546. };
  1547. #define REGISTER(name, min_rev, max_rev) { \
  1548. FR_ ## min_rev ## max_rev ## _ ## name, \
  1549. REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
  1550. }
  1551. #define REGISTER_AA(name) REGISTER(name, A, A)
  1552. #define REGISTER_AB(name) REGISTER(name, A, B)
  1553. #define REGISTER_AZ(name) REGISTER(name, A, Z)
  1554. #define REGISTER_BB(name) REGISTER(name, B, B)
  1555. #define REGISTER_BZ(name) REGISTER(name, B, Z)
  1556. #define REGISTER_CZ(name) REGISTER(name, C, Z)
  1557. static const struct efx_nic_reg efx_nic_regs[] = {
  1558. REGISTER_AZ(ADR_REGION),
  1559. REGISTER_AZ(INT_EN_KER),
  1560. REGISTER_BZ(INT_EN_CHAR),
  1561. REGISTER_AZ(INT_ADR_KER),
  1562. REGISTER_BZ(INT_ADR_CHAR),
  1563. /* INT_ACK_KER is WO */
  1564. /* INT_ISR0 is RC */
  1565. REGISTER_AZ(HW_INIT),
  1566. REGISTER_CZ(USR_EV_CFG),
  1567. REGISTER_AB(EE_SPI_HCMD),
  1568. REGISTER_AB(EE_SPI_HADR),
  1569. REGISTER_AB(EE_SPI_HDATA),
  1570. REGISTER_AB(EE_BASE_PAGE),
  1571. REGISTER_AB(EE_VPD_CFG0),
  1572. /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
  1573. /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
  1574. /* PCIE_CORE_INDIRECT is indirect */
  1575. REGISTER_AB(NIC_STAT),
  1576. REGISTER_AB(GPIO_CTL),
  1577. REGISTER_AB(GLB_CTL),
  1578. /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
  1579. REGISTER_BZ(DP_CTRL),
  1580. REGISTER_AZ(MEM_STAT),
  1581. REGISTER_AZ(CS_DEBUG),
  1582. REGISTER_AZ(ALTERA_BUILD),
  1583. REGISTER_AZ(CSR_SPARE),
  1584. REGISTER_AB(PCIE_SD_CTL0123),
  1585. REGISTER_AB(PCIE_SD_CTL45),
  1586. REGISTER_AB(PCIE_PCS_CTL_STAT),
  1587. /* DEBUG_DATA_OUT is not used */
  1588. /* DRV_EV is WO */
  1589. REGISTER_AZ(EVQ_CTL),
  1590. REGISTER_AZ(EVQ_CNT1),
  1591. REGISTER_AZ(EVQ_CNT2),
  1592. REGISTER_AZ(BUF_TBL_CFG),
  1593. REGISTER_AZ(SRM_RX_DC_CFG),
  1594. REGISTER_AZ(SRM_TX_DC_CFG),
  1595. REGISTER_AZ(SRM_CFG),
  1596. /* BUF_TBL_UPD is WO */
  1597. REGISTER_AZ(SRM_UPD_EVQ),
  1598. REGISTER_AZ(SRAM_PARITY),
  1599. REGISTER_AZ(RX_CFG),
  1600. REGISTER_BZ(RX_FILTER_CTL),
  1601. /* RX_FLUSH_DESCQ is WO */
  1602. REGISTER_AZ(RX_DC_CFG),
  1603. REGISTER_AZ(RX_DC_PF_WM),
  1604. REGISTER_BZ(RX_RSS_TKEY),
  1605. /* RX_NODESC_DROP is RC */
  1606. REGISTER_AA(RX_SELF_RST),
  1607. /* RX_DEBUG, RX_PUSH_DROP are not used */
  1608. REGISTER_CZ(RX_RSS_IPV6_REG1),
  1609. REGISTER_CZ(RX_RSS_IPV6_REG2),
  1610. REGISTER_CZ(RX_RSS_IPV6_REG3),
  1611. /* TX_FLUSH_DESCQ is WO */
  1612. REGISTER_AZ(TX_DC_CFG),
  1613. REGISTER_AA(TX_CHKSM_CFG),
  1614. REGISTER_AZ(TX_CFG),
  1615. /* TX_PUSH_DROP is not used */
  1616. REGISTER_AZ(TX_RESERVED),
  1617. REGISTER_BZ(TX_PACE),
  1618. /* TX_PACE_DROP_QID is RC */
  1619. REGISTER_BB(TX_VLAN),
  1620. REGISTER_BZ(TX_IPFIL_PORTEN),
  1621. REGISTER_AB(MD_TXD),
  1622. REGISTER_AB(MD_RXD),
  1623. REGISTER_AB(MD_CS),
  1624. REGISTER_AB(MD_PHY_ADR),
  1625. REGISTER_AB(MD_ID),
  1626. /* MD_STAT is RC */
  1627. REGISTER_AB(MAC_STAT_DMA),
  1628. REGISTER_AB(MAC_CTRL),
  1629. REGISTER_BB(GEN_MODE),
  1630. REGISTER_AB(MAC_MC_HASH_REG0),
  1631. REGISTER_AB(MAC_MC_HASH_REG1),
  1632. REGISTER_AB(GM_CFG1),
  1633. REGISTER_AB(GM_CFG2),
  1634. /* GM_IPG and GM_HD are not used */
  1635. REGISTER_AB(GM_MAX_FLEN),
  1636. /* GM_TEST is not used */
  1637. REGISTER_AB(GM_ADR1),
  1638. REGISTER_AB(GM_ADR2),
  1639. REGISTER_AB(GMF_CFG0),
  1640. REGISTER_AB(GMF_CFG1),
  1641. REGISTER_AB(GMF_CFG2),
  1642. REGISTER_AB(GMF_CFG3),
  1643. REGISTER_AB(GMF_CFG4),
  1644. REGISTER_AB(GMF_CFG5),
  1645. REGISTER_BB(TX_SRC_MAC_CTL),
  1646. REGISTER_AB(XM_ADR_LO),
  1647. REGISTER_AB(XM_ADR_HI),
  1648. REGISTER_AB(XM_GLB_CFG),
  1649. REGISTER_AB(XM_TX_CFG),
  1650. REGISTER_AB(XM_RX_CFG),
  1651. REGISTER_AB(XM_MGT_INT_MASK),
  1652. REGISTER_AB(XM_FC),
  1653. REGISTER_AB(XM_PAUSE_TIME),
  1654. REGISTER_AB(XM_TX_PARAM),
  1655. REGISTER_AB(XM_RX_PARAM),
  1656. /* XM_MGT_INT_MSK (note no 'A') is RC */
  1657. REGISTER_AB(XX_PWR_RST),
  1658. REGISTER_AB(XX_SD_CTL),
  1659. REGISTER_AB(XX_TXDRV_CTL),
  1660. /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
  1661. /* XX_CORE_STAT is partly RC */
  1662. };
  1663. struct efx_nic_reg_table {
  1664. u32 offset:24;
  1665. u32 min_revision:2, max_revision:2;
  1666. u32 step:6, rows:21;
  1667. };
  1668. #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
  1669. offset, \
  1670. REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
  1671. step, rows \
  1672. }
  1673. #define REGISTER_TABLE(name, min_rev, max_rev) \
  1674. REGISTER_TABLE_DIMENSIONS( \
  1675. name, FR_ ## min_rev ## max_rev ## _ ## name, \
  1676. min_rev, max_rev, \
  1677. FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
  1678. FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
  1679. #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
  1680. #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
  1681. #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
  1682. #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
  1683. #define REGISTER_TABLE_BB_CZ(name) \
  1684. REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
  1685. FR_BZ_ ## name ## _STEP, \
  1686. FR_BB_ ## name ## _ROWS), \
  1687. REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
  1688. FR_BZ_ ## name ## _STEP, \
  1689. FR_CZ_ ## name ## _ROWS)
  1690. #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
  1691. static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
  1692. /* DRIVER is not used */
  1693. /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
  1694. REGISTER_TABLE_BB(TX_IPFIL_TBL),
  1695. REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
  1696. REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
  1697. REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
  1698. REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
  1699. REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
  1700. REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
  1701. REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
  1702. /* We can't reasonably read all of the buffer table (up to 8MB!).
  1703. * However this driver will only use a few entries. Reading
  1704. * 1K entries allows for some expansion of queue count and
  1705. * size before we need to change the version. */
  1706. REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
  1707. A, A, 8, 1024),
  1708. REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
  1709. B, Z, 8, 1024),
  1710. REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
  1711. REGISTER_TABLE_BB_CZ(TIMER_TBL),
  1712. REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
  1713. REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
  1714. /* TX_FILTER_TBL0 is huge and not used by this driver */
  1715. REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
  1716. REGISTER_TABLE_CZ(MC_TREG_SMEM),
  1717. /* MSIX_PBA_TABLE is not mapped */
  1718. /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
  1719. REGISTER_TABLE_BZ(RX_FILTER_TBL0),
  1720. };
  1721. size_t efx_nic_get_regs_len(struct efx_nic *efx)
  1722. {
  1723. const struct efx_nic_reg *reg;
  1724. const struct efx_nic_reg_table *table;
  1725. size_t len = 0;
  1726. for (reg = efx_nic_regs;
  1727. reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
  1728. reg++)
  1729. if (efx->type->revision >= reg->min_revision &&
  1730. efx->type->revision <= reg->max_revision)
  1731. len += sizeof(efx_oword_t);
  1732. for (table = efx_nic_reg_tables;
  1733. table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
  1734. table++)
  1735. if (efx->type->revision >= table->min_revision &&
  1736. efx->type->revision <= table->max_revision)
  1737. len += table->rows * min_t(size_t, table->step, 16);
  1738. return len;
  1739. }
  1740. void efx_nic_get_regs(struct efx_nic *efx, void *buf)
  1741. {
  1742. const struct efx_nic_reg *reg;
  1743. const struct efx_nic_reg_table *table;
  1744. for (reg = efx_nic_regs;
  1745. reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
  1746. reg++) {
  1747. if (efx->type->revision >= reg->min_revision &&
  1748. efx->type->revision <= reg->max_revision) {
  1749. efx_reado(efx, (efx_oword_t *)buf, reg->offset);
  1750. buf += sizeof(efx_oword_t);
  1751. }
  1752. }
  1753. for (table = efx_nic_reg_tables;
  1754. table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
  1755. table++) {
  1756. size_t size, i;
  1757. if (!(efx->type->revision >= table->min_revision &&
  1758. efx->type->revision <= table->max_revision))
  1759. continue;
  1760. size = min_t(size_t, table->step, 16);
  1761. for (i = 0; i < table->rows; i++) {
  1762. switch (table->step) {
  1763. case 4: /* 32-bit register or SRAM */
  1764. efx_readd_table(efx, buf, table->offset, i);
  1765. break;
  1766. case 8: /* 64-bit SRAM */
  1767. efx_sram_readq(efx,
  1768. efx->membase + table->offset,
  1769. buf, i);
  1770. break;
  1771. case 16: /* 128-bit register */
  1772. efx_reado_table(efx, buf, table->offset, i);
  1773. break;
  1774. case 32: /* 128-bit register, interleaved */
  1775. efx_reado_table(efx, buf, table->offset, 2 * i);
  1776. break;
  1777. default:
  1778. WARN_ON(1);
  1779. return;
  1780. }
  1781. buf += size;
  1782. }
  1783. }
  1784. }