sh_eth.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2012 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/delay.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/mdio-bitbang.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/phy.h>
  34. #include <linux/cache.h>
  35. #include <linux/io.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/slab.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/clk.h>
  41. #include <linux/sh_eth.h>
  42. #include "sh_eth.h"
  43. #define SH_ETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_LINK | \
  45. NETIF_MSG_TIMER | \
  46. NETIF_MSG_RX_ERR| \
  47. NETIF_MSG_TX_ERR)
  48. #if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
  49. defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  50. defined(CONFIG_ARCH_R8A7740)
  51. static void sh_eth_select_mii(struct net_device *ndev)
  52. {
  53. u32 value = 0x0;
  54. struct sh_eth_private *mdp = netdev_priv(ndev);
  55. switch (mdp->phy_interface) {
  56. case PHY_INTERFACE_MODE_GMII:
  57. value = 0x2;
  58. break;
  59. case PHY_INTERFACE_MODE_MII:
  60. value = 0x1;
  61. break;
  62. case PHY_INTERFACE_MODE_RMII:
  63. value = 0x0;
  64. break;
  65. default:
  66. pr_warn("PHY interface mode was not setup. Set to MII.\n");
  67. value = 0x1;
  68. break;
  69. }
  70. sh_eth_write(ndev, value, RMII_MII);
  71. }
  72. #endif
  73. /* There is CPU dependent code */
  74. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  75. #define SH_ETH_RESET_DEFAULT 1
  76. static void sh_eth_set_duplex(struct net_device *ndev)
  77. {
  78. struct sh_eth_private *mdp = netdev_priv(ndev);
  79. if (mdp->duplex) /* Full */
  80. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  81. else /* Half */
  82. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  83. }
  84. static void sh_eth_set_rate(struct net_device *ndev)
  85. {
  86. struct sh_eth_private *mdp = netdev_priv(ndev);
  87. switch (mdp->speed) {
  88. case 10: /* 10BASE */
  89. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  90. break;
  91. case 100:/* 100BASE */
  92. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  93. break;
  94. default:
  95. break;
  96. }
  97. }
  98. /* SH7724 */
  99. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  100. .set_duplex = sh_eth_set_duplex,
  101. .set_rate = sh_eth_set_rate,
  102. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  103. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  104. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  105. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  106. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  107. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  108. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  109. .apr = 1,
  110. .mpr = 1,
  111. .tpauser = 1,
  112. .hw_swap = 1,
  113. .rpadir = 1,
  114. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  115. };
  116. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  117. #define SH_ETH_HAS_BOTH_MODULES 1
  118. #define SH_ETH_HAS_TSU 1
  119. static int sh_eth_check_reset(struct net_device *ndev);
  120. static void sh_eth_set_duplex(struct net_device *ndev)
  121. {
  122. struct sh_eth_private *mdp = netdev_priv(ndev);
  123. if (mdp->duplex) /* Full */
  124. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  125. else /* Half */
  126. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  127. }
  128. static void sh_eth_set_rate(struct net_device *ndev)
  129. {
  130. struct sh_eth_private *mdp = netdev_priv(ndev);
  131. switch (mdp->speed) {
  132. case 10: /* 10BASE */
  133. sh_eth_write(ndev, 0, RTRATE);
  134. break;
  135. case 100:/* 100BASE */
  136. sh_eth_write(ndev, 1, RTRATE);
  137. break;
  138. default:
  139. break;
  140. }
  141. }
  142. /* SH7757 */
  143. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  144. .set_duplex = sh_eth_set_duplex,
  145. .set_rate = sh_eth_set_rate,
  146. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  147. .rmcr_value = 0x00000001,
  148. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  149. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  150. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  151. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  152. .apr = 1,
  153. .mpr = 1,
  154. .tpauser = 1,
  155. .hw_swap = 1,
  156. .no_ade = 1,
  157. .rpadir = 1,
  158. .rpadir_value = 2 << 16,
  159. };
  160. #define SH_GIGA_ETH_BASE 0xfee00000
  161. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  162. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  163. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  164. {
  165. int i;
  166. unsigned long mahr[2], malr[2];
  167. /* save MAHR and MALR */
  168. for (i = 0; i < 2; i++) {
  169. malr[i] = ioread32((void *)GIGA_MALR(i));
  170. mahr[i] = ioread32((void *)GIGA_MAHR(i));
  171. }
  172. /* reset device */
  173. iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
  174. mdelay(1);
  175. /* restore MAHR and MALR */
  176. for (i = 0; i < 2; i++) {
  177. iowrite32(malr[i], (void *)GIGA_MALR(i));
  178. iowrite32(mahr[i], (void *)GIGA_MAHR(i));
  179. }
  180. }
  181. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  182. static int sh_eth_reset(struct net_device *ndev)
  183. {
  184. struct sh_eth_private *mdp = netdev_priv(ndev);
  185. int ret = 0;
  186. if (sh_eth_is_gether(mdp)) {
  187. sh_eth_write(ndev, 0x03, EDSR);
  188. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  189. EDMR);
  190. ret = sh_eth_check_reset(ndev);
  191. if (ret)
  192. goto out;
  193. /* Table Init */
  194. sh_eth_write(ndev, 0x0, TDLAR);
  195. sh_eth_write(ndev, 0x0, TDFAR);
  196. sh_eth_write(ndev, 0x0, TDFXR);
  197. sh_eth_write(ndev, 0x0, TDFFR);
  198. sh_eth_write(ndev, 0x0, RDLAR);
  199. sh_eth_write(ndev, 0x0, RDFAR);
  200. sh_eth_write(ndev, 0x0, RDFXR);
  201. sh_eth_write(ndev, 0x0, RDFFR);
  202. } else {
  203. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  204. EDMR);
  205. mdelay(3);
  206. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  207. EDMR);
  208. }
  209. out:
  210. return ret;
  211. }
  212. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  213. {
  214. struct sh_eth_private *mdp = netdev_priv(ndev);
  215. if (mdp->duplex) /* Full */
  216. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  217. else /* Half */
  218. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  219. }
  220. static void sh_eth_set_rate_giga(struct net_device *ndev)
  221. {
  222. struct sh_eth_private *mdp = netdev_priv(ndev);
  223. switch (mdp->speed) {
  224. case 10: /* 10BASE */
  225. sh_eth_write(ndev, 0x00000000, GECMR);
  226. break;
  227. case 100:/* 100BASE */
  228. sh_eth_write(ndev, 0x00000010, GECMR);
  229. break;
  230. case 1000: /* 1000BASE */
  231. sh_eth_write(ndev, 0x00000020, GECMR);
  232. break;
  233. default:
  234. break;
  235. }
  236. }
  237. /* SH7757(GETHERC) */
  238. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  239. .chip_reset = sh_eth_chip_reset_giga,
  240. .set_duplex = sh_eth_set_duplex_giga,
  241. .set_rate = sh_eth_set_rate_giga,
  242. .ecsr_value = ECSR_ICD | ECSR_MPD,
  243. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  244. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  245. .tx_check = EESR_TC1 | EESR_FTC,
  246. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  247. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  248. EESR_ECI,
  249. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  250. EESR_TFE,
  251. .fdr_value = 0x0000072f,
  252. .rmcr_value = 0x00000001,
  253. .apr = 1,
  254. .mpr = 1,
  255. .tpauser = 1,
  256. .bculr = 1,
  257. .hw_swap = 1,
  258. .rpadir = 1,
  259. .rpadir_value = 2 << 16,
  260. .no_trimd = 1,
  261. .no_ade = 1,
  262. .tsu = 1,
  263. };
  264. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  265. {
  266. if (sh_eth_is_gether(mdp))
  267. return &sh_eth_my_cpu_data_giga;
  268. else
  269. return &sh_eth_my_cpu_data;
  270. }
  271. #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
  272. #define SH_ETH_HAS_TSU 1
  273. static int sh_eth_check_reset(struct net_device *ndev);
  274. static void sh_eth_reset_hw_crc(struct net_device *ndev);
  275. static void sh_eth_chip_reset(struct net_device *ndev)
  276. {
  277. struct sh_eth_private *mdp = netdev_priv(ndev);
  278. /* reset device */
  279. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  280. mdelay(1);
  281. }
  282. static void sh_eth_set_duplex(struct net_device *ndev)
  283. {
  284. struct sh_eth_private *mdp = netdev_priv(ndev);
  285. if (mdp->duplex) /* Full */
  286. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  287. else /* Half */
  288. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  289. }
  290. static void sh_eth_set_rate(struct net_device *ndev)
  291. {
  292. struct sh_eth_private *mdp = netdev_priv(ndev);
  293. switch (mdp->speed) {
  294. case 10: /* 10BASE */
  295. sh_eth_write(ndev, GECMR_10, GECMR);
  296. break;
  297. case 100:/* 100BASE */
  298. sh_eth_write(ndev, GECMR_100, GECMR);
  299. break;
  300. case 1000: /* 1000BASE */
  301. sh_eth_write(ndev, GECMR_1000, GECMR);
  302. break;
  303. default:
  304. break;
  305. }
  306. }
  307. /* sh7763 */
  308. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  309. .chip_reset = sh_eth_chip_reset,
  310. .set_duplex = sh_eth_set_duplex,
  311. .set_rate = sh_eth_set_rate,
  312. .ecsr_value = ECSR_ICD | ECSR_MPD,
  313. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  314. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  315. .tx_check = EESR_TC1 | EESR_FTC,
  316. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  317. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  318. EESR_ECI,
  319. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  320. EESR_TFE,
  321. .apr = 1,
  322. .mpr = 1,
  323. .tpauser = 1,
  324. .bculr = 1,
  325. .hw_swap = 1,
  326. .no_trimd = 1,
  327. .no_ade = 1,
  328. .tsu = 1,
  329. #if defined(CONFIG_CPU_SUBTYPE_SH7734)
  330. .hw_crc = 1,
  331. .select_mii = 1,
  332. #endif
  333. };
  334. static int sh_eth_reset(struct net_device *ndev)
  335. {
  336. int ret = 0;
  337. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  338. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  339. ret = sh_eth_check_reset(ndev);
  340. if (ret)
  341. goto out;
  342. /* Table Init */
  343. sh_eth_write(ndev, 0x0, TDLAR);
  344. sh_eth_write(ndev, 0x0, TDFAR);
  345. sh_eth_write(ndev, 0x0, TDFXR);
  346. sh_eth_write(ndev, 0x0, TDFFR);
  347. sh_eth_write(ndev, 0x0, RDLAR);
  348. sh_eth_write(ndev, 0x0, RDFAR);
  349. sh_eth_write(ndev, 0x0, RDFXR);
  350. sh_eth_write(ndev, 0x0, RDFFR);
  351. /* Reset HW CRC register */
  352. sh_eth_reset_hw_crc(ndev);
  353. /* Select MII mode */
  354. if (sh_eth_my_cpu_data.select_mii)
  355. sh_eth_select_mii(ndev);
  356. out:
  357. return ret;
  358. }
  359. static void sh_eth_reset_hw_crc(struct net_device *ndev)
  360. {
  361. if (sh_eth_my_cpu_data.hw_crc)
  362. sh_eth_write(ndev, 0x0, CSMR);
  363. }
  364. #elif defined(CONFIG_ARCH_R8A7740)
  365. #define SH_ETH_HAS_TSU 1
  366. static int sh_eth_check_reset(struct net_device *ndev);
  367. static void sh_eth_chip_reset(struct net_device *ndev)
  368. {
  369. struct sh_eth_private *mdp = netdev_priv(ndev);
  370. /* reset device */
  371. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  372. mdelay(1);
  373. sh_eth_select_mii(ndev);
  374. }
  375. static int sh_eth_reset(struct net_device *ndev)
  376. {
  377. int ret = 0;
  378. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  379. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  380. ret = sh_eth_check_reset(ndev);
  381. if (ret)
  382. goto out;
  383. /* Table Init */
  384. sh_eth_write(ndev, 0x0, TDLAR);
  385. sh_eth_write(ndev, 0x0, TDFAR);
  386. sh_eth_write(ndev, 0x0, TDFXR);
  387. sh_eth_write(ndev, 0x0, TDFFR);
  388. sh_eth_write(ndev, 0x0, RDLAR);
  389. sh_eth_write(ndev, 0x0, RDFAR);
  390. sh_eth_write(ndev, 0x0, RDFXR);
  391. sh_eth_write(ndev, 0x0, RDFFR);
  392. out:
  393. return ret;
  394. }
  395. static void sh_eth_set_duplex(struct net_device *ndev)
  396. {
  397. struct sh_eth_private *mdp = netdev_priv(ndev);
  398. if (mdp->duplex) /* Full */
  399. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  400. else /* Half */
  401. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  402. }
  403. static void sh_eth_set_rate(struct net_device *ndev)
  404. {
  405. struct sh_eth_private *mdp = netdev_priv(ndev);
  406. switch (mdp->speed) {
  407. case 10: /* 10BASE */
  408. sh_eth_write(ndev, GECMR_10, GECMR);
  409. break;
  410. case 100:/* 100BASE */
  411. sh_eth_write(ndev, GECMR_100, GECMR);
  412. break;
  413. case 1000: /* 1000BASE */
  414. sh_eth_write(ndev, GECMR_1000, GECMR);
  415. break;
  416. default:
  417. break;
  418. }
  419. }
  420. /* R8A7740 */
  421. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  422. .chip_reset = sh_eth_chip_reset,
  423. .set_duplex = sh_eth_set_duplex,
  424. .set_rate = sh_eth_set_rate,
  425. .ecsr_value = ECSR_ICD | ECSR_MPD,
  426. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  427. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  428. .tx_check = EESR_TC1 | EESR_FTC,
  429. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  430. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  431. EESR_ECI,
  432. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  433. EESR_TFE,
  434. .apr = 1,
  435. .mpr = 1,
  436. .tpauser = 1,
  437. .bculr = 1,
  438. .hw_swap = 1,
  439. .no_trimd = 1,
  440. .no_ade = 1,
  441. .tsu = 1,
  442. .select_mii = 1,
  443. };
  444. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  445. #define SH_ETH_RESET_DEFAULT 1
  446. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  447. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  448. .apr = 1,
  449. .mpr = 1,
  450. .tpauser = 1,
  451. .hw_swap = 1,
  452. };
  453. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  454. #define SH_ETH_RESET_DEFAULT 1
  455. #define SH_ETH_HAS_TSU 1
  456. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  457. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  458. .tsu = 1,
  459. };
  460. #endif
  461. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  462. {
  463. if (!cd->ecsr_value)
  464. cd->ecsr_value = DEFAULT_ECSR_INIT;
  465. if (!cd->ecsipr_value)
  466. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  467. if (!cd->fcftr_value)
  468. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  469. DEFAULT_FIFO_F_D_RFD;
  470. if (!cd->fdr_value)
  471. cd->fdr_value = DEFAULT_FDR_INIT;
  472. if (!cd->rmcr_value)
  473. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  474. if (!cd->tx_check)
  475. cd->tx_check = DEFAULT_TX_CHECK;
  476. if (!cd->eesr_err_check)
  477. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  478. if (!cd->tx_error_check)
  479. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  480. }
  481. #if defined(SH_ETH_RESET_DEFAULT)
  482. /* Chip Reset */
  483. static int sh_eth_reset(struct net_device *ndev)
  484. {
  485. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  486. mdelay(3);
  487. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  488. return 0;
  489. }
  490. #else
  491. static int sh_eth_check_reset(struct net_device *ndev)
  492. {
  493. int ret = 0;
  494. int cnt = 100;
  495. while (cnt > 0) {
  496. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  497. break;
  498. mdelay(1);
  499. cnt--;
  500. }
  501. if (cnt < 0) {
  502. printk(KERN_ERR "Device reset fail\n");
  503. ret = -ETIMEDOUT;
  504. }
  505. return ret;
  506. }
  507. #endif
  508. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  509. static void sh_eth_set_receive_align(struct sk_buff *skb)
  510. {
  511. int reserve;
  512. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  513. if (reserve)
  514. skb_reserve(skb, reserve);
  515. }
  516. #else
  517. static void sh_eth_set_receive_align(struct sk_buff *skb)
  518. {
  519. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  520. }
  521. #endif
  522. /* CPU <-> EDMAC endian convert */
  523. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  524. {
  525. switch (mdp->edmac_endian) {
  526. case EDMAC_LITTLE_ENDIAN:
  527. return cpu_to_le32(x);
  528. case EDMAC_BIG_ENDIAN:
  529. return cpu_to_be32(x);
  530. }
  531. return x;
  532. }
  533. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  534. {
  535. switch (mdp->edmac_endian) {
  536. case EDMAC_LITTLE_ENDIAN:
  537. return le32_to_cpu(x);
  538. case EDMAC_BIG_ENDIAN:
  539. return be32_to_cpu(x);
  540. }
  541. return x;
  542. }
  543. /*
  544. * Program the hardware MAC address from dev->dev_addr.
  545. */
  546. static void update_mac_address(struct net_device *ndev)
  547. {
  548. sh_eth_write(ndev,
  549. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  550. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  551. sh_eth_write(ndev,
  552. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  553. }
  554. /*
  555. * Get MAC address from SuperH MAC address register
  556. *
  557. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  558. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  559. * When you want use this device, you must set MAC address in bootloader.
  560. *
  561. */
  562. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  563. {
  564. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  565. memcpy(ndev->dev_addr, mac, 6);
  566. } else {
  567. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  568. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  569. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  570. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  571. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  572. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  573. }
  574. }
  575. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  576. {
  577. if (mdp->reg_offset == sh_eth_offset_gigabit)
  578. return 1;
  579. else
  580. return 0;
  581. }
  582. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  583. {
  584. if (sh_eth_is_gether(mdp))
  585. return EDTRR_TRNS_GETHER;
  586. else
  587. return EDTRR_TRNS_ETHER;
  588. }
  589. struct bb_info {
  590. void (*set_gate)(void *addr);
  591. struct mdiobb_ctrl ctrl;
  592. void *addr;
  593. u32 mmd_msk;/* MMD */
  594. u32 mdo_msk;
  595. u32 mdi_msk;
  596. u32 mdc_msk;
  597. };
  598. /* PHY bit set */
  599. static void bb_set(void *addr, u32 msk)
  600. {
  601. iowrite32(ioread32(addr) | msk, addr);
  602. }
  603. /* PHY bit clear */
  604. static void bb_clr(void *addr, u32 msk)
  605. {
  606. iowrite32((ioread32(addr) & ~msk), addr);
  607. }
  608. /* PHY bit read */
  609. static int bb_read(void *addr, u32 msk)
  610. {
  611. return (ioread32(addr) & msk) != 0;
  612. }
  613. /* Data I/O pin control */
  614. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  615. {
  616. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  617. if (bitbang->set_gate)
  618. bitbang->set_gate(bitbang->addr);
  619. if (bit)
  620. bb_set(bitbang->addr, bitbang->mmd_msk);
  621. else
  622. bb_clr(bitbang->addr, bitbang->mmd_msk);
  623. }
  624. /* Set bit data*/
  625. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  626. {
  627. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  628. if (bitbang->set_gate)
  629. bitbang->set_gate(bitbang->addr);
  630. if (bit)
  631. bb_set(bitbang->addr, bitbang->mdo_msk);
  632. else
  633. bb_clr(bitbang->addr, bitbang->mdo_msk);
  634. }
  635. /* Get bit data*/
  636. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  637. {
  638. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  639. if (bitbang->set_gate)
  640. bitbang->set_gate(bitbang->addr);
  641. return bb_read(bitbang->addr, bitbang->mdi_msk);
  642. }
  643. /* MDC pin control */
  644. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  645. {
  646. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  647. if (bitbang->set_gate)
  648. bitbang->set_gate(bitbang->addr);
  649. if (bit)
  650. bb_set(bitbang->addr, bitbang->mdc_msk);
  651. else
  652. bb_clr(bitbang->addr, bitbang->mdc_msk);
  653. }
  654. /* mdio bus control struct */
  655. static struct mdiobb_ops bb_ops = {
  656. .owner = THIS_MODULE,
  657. .set_mdc = sh_mdc_ctrl,
  658. .set_mdio_dir = sh_mmd_ctrl,
  659. .set_mdio_data = sh_set_mdio,
  660. .get_mdio_data = sh_get_mdio,
  661. };
  662. /* free skb and descriptor buffer */
  663. static void sh_eth_ring_free(struct net_device *ndev)
  664. {
  665. struct sh_eth_private *mdp = netdev_priv(ndev);
  666. int i;
  667. /* Free Rx skb ringbuffer */
  668. if (mdp->rx_skbuff) {
  669. for (i = 0; i < mdp->num_rx_ring; i++) {
  670. if (mdp->rx_skbuff[i])
  671. dev_kfree_skb(mdp->rx_skbuff[i]);
  672. }
  673. }
  674. kfree(mdp->rx_skbuff);
  675. mdp->rx_skbuff = NULL;
  676. /* Free Tx skb ringbuffer */
  677. if (mdp->tx_skbuff) {
  678. for (i = 0; i < mdp->num_tx_ring; i++) {
  679. if (mdp->tx_skbuff[i])
  680. dev_kfree_skb(mdp->tx_skbuff[i]);
  681. }
  682. }
  683. kfree(mdp->tx_skbuff);
  684. mdp->tx_skbuff = NULL;
  685. }
  686. /* format skb and descriptor buffer */
  687. static void sh_eth_ring_format(struct net_device *ndev)
  688. {
  689. struct sh_eth_private *mdp = netdev_priv(ndev);
  690. int i;
  691. struct sk_buff *skb;
  692. struct sh_eth_rxdesc *rxdesc = NULL;
  693. struct sh_eth_txdesc *txdesc = NULL;
  694. int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
  695. int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
  696. mdp->cur_rx = mdp->cur_tx = 0;
  697. mdp->dirty_rx = mdp->dirty_tx = 0;
  698. memset(mdp->rx_ring, 0, rx_ringsize);
  699. /* build Rx ring buffer */
  700. for (i = 0; i < mdp->num_rx_ring; i++) {
  701. /* skb */
  702. mdp->rx_skbuff[i] = NULL;
  703. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  704. mdp->rx_skbuff[i] = skb;
  705. if (skb == NULL)
  706. break;
  707. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  708. DMA_FROM_DEVICE);
  709. sh_eth_set_receive_align(skb);
  710. /* RX descriptor */
  711. rxdesc = &mdp->rx_ring[i];
  712. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  713. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  714. /* The size of the buffer is 16 byte boundary. */
  715. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  716. /* Rx descriptor address set */
  717. if (i == 0) {
  718. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  719. if (sh_eth_is_gether(mdp))
  720. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  721. }
  722. }
  723. mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
  724. /* Mark the last entry as wrapping the ring. */
  725. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  726. memset(mdp->tx_ring, 0, tx_ringsize);
  727. /* build Tx ring buffer */
  728. for (i = 0; i < mdp->num_tx_ring; i++) {
  729. mdp->tx_skbuff[i] = NULL;
  730. txdesc = &mdp->tx_ring[i];
  731. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  732. txdesc->buffer_length = 0;
  733. if (i == 0) {
  734. /* Tx descriptor address set */
  735. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  736. if (sh_eth_is_gether(mdp))
  737. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  738. }
  739. }
  740. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  741. }
  742. /* Get skb and descriptor buffer */
  743. static int sh_eth_ring_init(struct net_device *ndev)
  744. {
  745. struct sh_eth_private *mdp = netdev_priv(ndev);
  746. int rx_ringsize, tx_ringsize, ret = 0;
  747. /*
  748. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  749. * card needs room to do 8 byte alignment, +2 so we can reserve
  750. * the first 2 bytes, and +16 gets room for the status word from the
  751. * card.
  752. */
  753. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  754. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  755. if (mdp->cd->rpadir)
  756. mdp->rx_buf_sz += NET_IP_ALIGN;
  757. /* Allocate RX and TX skb rings */
  758. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * mdp->num_rx_ring,
  759. GFP_KERNEL);
  760. if (!mdp->rx_skbuff) {
  761. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  762. ret = -ENOMEM;
  763. return ret;
  764. }
  765. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * mdp->num_tx_ring,
  766. GFP_KERNEL);
  767. if (!mdp->tx_skbuff) {
  768. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  769. ret = -ENOMEM;
  770. goto skb_ring_free;
  771. }
  772. /* Allocate all Rx descriptors. */
  773. rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
  774. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  775. GFP_KERNEL);
  776. if (!mdp->rx_ring) {
  777. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  778. rx_ringsize);
  779. ret = -ENOMEM;
  780. goto desc_ring_free;
  781. }
  782. mdp->dirty_rx = 0;
  783. /* Allocate all Tx descriptors. */
  784. tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
  785. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  786. GFP_KERNEL);
  787. if (!mdp->tx_ring) {
  788. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  789. tx_ringsize);
  790. ret = -ENOMEM;
  791. goto desc_ring_free;
  792. }
  793. return ret;
  794. desc_ring_free:
  795. /* free DMA buffer */
  796. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  797. skb_ring_free:
  798. /* Free Rx and Tx skb ring buffer */
  799. sh_eth_ring_free(ndev);
  800. mdp->tx_ring = NULL;
  801. mdp->rx_ring = NULL;
  802. return ret;
  803. }
  804. static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
  805. {
  806. int ringsize;
  807. if (mdp->rx_ring) {
  808. ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
  809. dma_free_coherent(NULL, ringsize, mdp->rx_ring,
  810. mdp->rx_desc_dma);
  811. mdp->rx_ring = NULL;
  812. }
  813. if (mdp->tx_ring) {
  814. ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
  815. dma_free_coherent(NULL, ringsize, mdp->tx_ring,
  816. mdp->tx_desc_dma);
  817. mdp->tx_ring = NULL;
  818. }
  819. }
  820. static int sh_eth_dev_init(struct net_device *ndev, bool start)
  821. {
  822. int ret = 0;
  823. struct sh_eth_private *mdp = netdev_priv(ndev);
  824. u32 val;
  825. /* Soft Reset */
  826. ret = sh_eth_reset(ndev);
  827. if (ret)
  828. goto out;
  829. /* Descriptor format */
  830. sh_eth_ring_format(ndev);
  831. if (mdp->cd->rpadir)
  832. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  833. /* all sh_eth int mask */
  834. sh_eth_write(ndev, 0, EESIPR);
  835. #if defined(__LITTLE_ENDIAN)
  836. if (mdp->cd->hw_swap)
  837. sh_eth_write(ndev, EDMR_EL, EDMR);
  838. else
  839. #endif
  840. sh_eth_write(ndev, 0, EDMR);
  841. /* FIFO size set */
  842. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  843. sh_eth_write(ndev, 0, TFTR);
  844. /* Frame recv control */
  845. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  846. sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
  847. if (mdp->cd->bculr)
  848. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  849. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  850. if (!mdp->cd->no_trimd)
  851. sh_eth_write(ndev, 0, TRIMD);
  852. /* Recv frame limit set register */
  853. sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
  854. RFLR);
  855. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  856. if (start)
  857. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  858. /* PAUSE Prohibition */
  859. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  860. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  861. sh_eth_write(ndev, val, ECMR);
  862. if (mdp->cd->set_rate)
  863. mdp->cd->set_rate(ndev);
  864. /* E-MAC Status Register clear */
  865. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  866. /* E-MAC Interrupt Enable register */
  867. if (start)
  868. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  869. /* Set MAC address */
  870. update_mac_address(ndev);
  871. /* mask reset */
  872. if (mdp->cd->apr)
  873. sh_eth_write(ndev, APR_AP, APR);
  874. if (mdp->cd->mpr)
  875. sh_eth_write(ndev, MPR_MP, MPR);
  876. if (mdp->cd->tpauser)
  877. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  878. if (start) {
  879. /* Setting the Rx mode will start the Rx process. */
  880. sh_eth_write(ndev, EDRRR_R, EDRRR);
  881. netif_start_queue(ndev);
  882. }
  883. out:
  884. return ret;
  885. }
  886. /* free Tx skb function */
  887. static int sh_eth_txfree(struct net_device *ndev)
  888. {
  889. struct sh_eth_private *mdp = netdev_priv(ndev);
  890. struct sh_eth_txdesc *txdesc;
  891. int freeNum = 0;
  892. int entry = 0;
  893. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  894. entry = mdp->dirty_tx % mdp->num_tx_ring;
  895. txdesc = &mdp->tx_ring[entry];
  896. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  897. break;
  898. /* Free the original skb. */
  899. if (mdp->tx_skbuff[entry]) {
  900. dma_unmap_single(&ndev->dev, txdesc->addr,
  901. txdesc->buffer_length, DMA_TO_DEVICE);
  902. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  903. mdp->tx_skbuff[entry] = NULL;
  904. freeNum++;
  905. }
  906. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  907. if (entry >= mdp->num_tx_ring - 1)
  908. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  909. ndev->stats.tx_packets++;
  910. ndev->stats.tx_bytes += txdesc->buffer_length;
  911. }
  912. return freeNum;
  913. }
  914. /* Packet receive function */
  915. static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
  916. {
  917. struct sh_eth_private *mdp = netdev_priv(ndev);
  918. struct sh_eth_rxdesc *rxdesc;
  919. int entry = mdp->cur_rx % mdp->num_rx_ring;
  920. int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
  921. struct sk_buff *skb;
  922. u16 pkt_len = 0;
  923. u32 desc_status;
  924. rxdesc = &mdp->rx_ring[entry];
  925. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  926. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  927. pkt_len = rxdesc->frame_length;
  928. #if defined(CONFIG_ARCH_R8A7740)
  929. desc_status >>= 16;
  930. #endif
  931. if (--boguscnt < 0)
  932. break;
  933. if (!(desc_status & RDFEND))
  934. ndev->stats.rx_length_errors++;
  935. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  936. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  937. ndev->stats.rx_errors++;
  938. if (desc_status & RD_RFS1)
  939. ndev->stats.rx_crc_errors++;
  940. if (desc_status & RD_RFS2)
  941. ndev->stats.rx_frame_errors++;
  942. if (desc_status & RD_RFS3)
  943. ndev->stats.rx_length_errors++;
  944. if (desc_status & RD_RFS4)
  945. ndev->stats.rx_length_errors++;
  946. if (desc_status & RD_RFS6)
  947. ndev->stats.rx_missed_errors++;
  948. if (desc_status & RD_RFS10)
  949. ndev->stats.rx_over_errors++;
  950. } else {
  951. if (!mdp->cd->hw_swap)
  952. sh_eth_soft_swap(
  953. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  954. pkt_len + 2);
  955. skb = mdp->rx_skbuff[entry];
  956. mdp->rx_skbuff[entry] = NULL;
  957. if (mdp->cd->rpadir)
  958. skb_reserve(skb, NET_IP_ALIGN);
  959. skb_put(skb, pkt_len);
  960. skb->protocol = eth_type_trans(skb, ndev);
  961. netif_rx(skb);
  962. ndev->stats.rx_packets++;
  963. ndev->stats.rx_bytes += pkt_len;
  964. }
  965. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  966. entry = (++mdp->cur_rx) % mdp->num_rx_ring;
  967. rxdesc = &mdp->rx_ring[entry];
  968. }
  969. /* Refill the Rx ring buffers. */
  970. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  971. entry = mdp->dirty_rx % mdp->num_rx_ring;
  972. rxdesc = &mdp->rx_ring[entry];
  973. /* The size of the buffer is 16 byte boundary. */
  974. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  975. if (mdp->rx_skbuff[entry] == NULL) {
  976. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  977. mdp->rx_skbuff[entry] = skb;
  978. if (skb == NULL)
  979. break; /* Better luck next round. */
  980. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  981. DMA_FROM_DEVICE);
  982. sh_eth_set_receive_align(skb);
  983. skb_checksum_none_assert(skb);
  984. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  985. }
  986. if (entry >= mdp->num_rx_ring - 1)
  987. rxdesc->status |=
  988. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  989. else
  990. rxdesc->status |=
  991. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  992. }
  993. /* Restart Rx engine if stopped. */
  994. /* If we don't need to check status, don't. -KDU */
  995. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
  996. /* fix the values for the next receiving if RDE is set */
  997. if (intr_status & EESR_RDE)
  998. mdp->cur_rx = mdp->dirty_rx =
  999. (sh_eth_read(ndev, RDFAR) -
  1000. sh_eth_read(ndev, RDLAR)) >> 4;
  1001. sh_eth_write(ndev, EDRRR_R, EDRRR);
  1002. }
  1003. return 0;
  1004. }
  1005. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  1006. {
  1007. /* disable tx and rx */
  1008. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  1009. ~(ECMR_RE | ECMR_TE), ECMR);
  1010. }
  1011. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  1012. {
  1013. /* enable tx and rx */
  1014. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  1015. (ECMR_RE | ECMR_TE), ECMR);
  1016. }
  1017. /* error control function */
  1018. static void sh_eth_error(struct net_device *ndev, int intr_status)
  1019. {
  1020. struct sh_eth_private *mdp = netdev_priv(ndev);
  1021. u32 felic_stat;
  1022. u32 link_stat;
  1023. u32 mask;
  1024. if (intr_status & EESR_ECI) {
  1025. felic_stat = sh_eth_read(ndev, ECSR);
  1026. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  1027. if (felic_stat & ECSR_ICD)
  1028. ndev->stats.tx_carrier_errors++;
  1029. if (felic_stat & ECSR_LCHNG) {
  1030. /* Link Changed */
  1031. if (mdp->cd->no_psr || mdp->no_ether_link) {
  1032. if (mdp->link == PHY_DOWN)
  1033. link_stat = 0;
  1034. else
  1035. link_stat = PHY_ST_LINK;
  1036. } else {
  1037. link_stat = (sh_eth_read(ndev, PSR));
  1038. if (mdp->ether_link_active_low)
  1039. link_stat = ~link_stat;
  1040. }
  1041. if (!(link_stat & PHY_ST_LINK))
  1042. sh_eth_rcv_snd_disable(ndev);
  1043. else {
  1044. /* Link Up */
  1045. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  1046. ~DMAC_M_ECI, EESIPR);
  1047. /*clear int */
  1048. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  1049. ECSR);
  1050. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  1051. DMAC_M_ECI, EESIPR);
  1052. /* enable tx and rx */
  1053. sh_eth_rcv_snd_enable(ndev);
  1054. }
  1055. }
  1056. }
  1057. if (intr_status & EESR_TWB) {
  1058. /* Write buck end. unused write back interrupt */
  1059. if (intr_status & EESR_TABT) /* Transmit Abort int */
  1060. ndev->stats.tx_aborted_errors++;
  1061. if (netif_msg_tx_err(mdp))
  1062. dev_err(&ndev->dev, "Transmit Abort\n");
  1063. }
  1064. if (intr_status & EESR_RABT) {
  1065. /* Receive Abort int */
  1066. if (intr_status & EESR_RFRMER) {
  1067. /* Receive Frame Overflow int */
  1068. ndev->stats.rx_frame_errors++;
  1069. if (netif_msg_rx_err(mdp))
  1070. dev_err(&ndev->dev, "Receive Abort\n");
  1071. }
  1072. }
  1073. if (intr_status & EESR_TDE) {
  1074. /* Transmit Descriptor Empty int */
  1075. ndev->stats.tx_fifo_errors++;
  1076. if (netif_msg_tx_err(mdp))
  1077. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  1078. }
  1079. if (intr_status & EESR_TFE) {
  1080. /* FIFO under flow */
  1081. ndev->stats.tx_fifo_errors++;
  1082. if (netif_msg_tx_err(mdp))
  1083. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  1084. }
  1085. if (intr_status & EESR_RDE) {
  1086. /* Receive Descriptor Empty int */
  1087. ndev->stats.rx_over_errors++;
  1088. if (netif_msg_rx_err(mdp))
  1089. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  1090. }
  1091. if (intr_status & EESR_RFE) {
  1092. /* Receive FIFO Overflow int */
  1093. ndev->stats.rx_fifo_errors++;
  1094. if (netif_msg_rx_err(mdp))
  1095. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  1096. }
  1097. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  1098. /* Address Error */
  1099. ndev->stats.tx_fifo_errors++;
  1100. if (netif_msg_tx_err(mdp))
  1101. dev_err(&ndev->dev, "Address Error\n");
  1102. }
  1103. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  1104. if (mdp->cd->no_ade)
  1105. mask &= ~EESR_ADE;
  1106. if (intr_status & mask) {
  1107. /* Tx error */
  1108. u32 edtrr = sh_eth_read(ndev, EDTRR);
  1109. /* dmesg */
  1110. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  1111. intr_status, mdp->cur_tx);
  1112. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  1113. mdp->dirty_tx, (u32) ndev->state, edtrr);
  1114. /* dirty buffer free */
  1115. sh_eth_txfree(ndev);
  1116. /* SH7712 BUG */
  1117. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  1118. /* tx dma start */
  1119. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1120. }
  1121. /* wakeup */
  1122. netif_wake_queue(ndev);
  1123. }
  1124. }
  1125. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  1126. {
  1127. struct net_device *ndev = netdev;
  1128. struct sh_eth_private *mdp = netdev_priv(ndev);
  1129. struct sh_eth_cpu_data *cd = mdp->cd;
  1130. irqreturn_t ret = IRQ_NONE;
  1131. u32 intr_status = 0;
  1132. spin_lock(&mdp->lock);
  1133. /* Get interrpt stat */
  1134. intr_status = sh_eth_read(ndev, EESR);
  1135. /* Clear interrupt */
  1136. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  1137. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  1138. cd->tx_check | cd->eesr_err_check)) {
  1139. sh_eth_write(ndev, intr_status, EESR);
  1140. ret = IRQ_HANDLED;
  1141. } else
  1142. goto other_irq;
  1143. if (intr_status & (EESR_FRC | /* Frame recv*/
  1144. EESR_RMAF | /* Multi cast address recv*/
  1145. EESR_RRF | /* Bit frame recv */
  1146. EESR_RTLF | /* Long frame recv*/
  1147. EESR_RTSF | /* short frame recv */
  1148. EESR_PRE | /* PHY-LSI recv error */
  1149. EESR_CERF)){ /* recv frame CRC error */
  1150. sh_eth_rx(ndev, intr_status);
  1151. }
  1152. /* Tx Check */
  1153. if (intr_status & cd->tx_check) {
  1154. sh_eth_txfree(ndev);
  1155. netif_wake_queue(ndev);
  1156. }
  1157. if (intr_status & cd->eesr_err_check)
  1158. sh_eth_error(ndev, intr_status);
  1159. other_irq:
  1160. spin_unlock(&mdp->lock);
  1161. return ret;
  1162. }
  1163. /* PHY state control function */
  1164. static void sh_eth_adjust_link(struct net_device *ndev)
  1165. {
  1166. struct sh_eth_private *mdp = netdev_priv(ndev);
  1167. struct phy_device *phydev = mdp->phydev;
  1168. int new_state = 0;
  1169. if (phydev->link != PHY_DOWN) {
  1170. if (phydev->duplex != mdp->duplex) {
  1171. new_state = 1;
  1172. mdp->duplex = phydev->duplex;
  1173. if (mdp->cd->set_duplex)
  1174. mdp->cd->set_duplex(ndev);
  1175. }
  1176. if (phydev->speed != mdp->speed) {
  1177. new_state = 1;
  1178. mdp->speed = phydev->speed;
  1179. if (mdp->cd->set_rate)
  1180. mdp->cd->set_rate(ndev);
  1181. }
  1182. if (mdp->link == PHY_DOWN) {
  1183. sh_eth_write(ndev,
  1184. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1185. new_state = 1;
  1186. mdp->link = phydev->link;
  1187. }
  1188. } else if (mdp->link) {
  1189. new_state = 1;
  1190. mdp->link = PHY_DOWN;
  1191. mdp->speed = 0;
  1192. mdp->duplex = -1;
  1193. }
  1194. if (new_state && netif_msg_link(mdp))
  1195. phy_print_status(phydev);
  1196. }
  1197. /* PHY init function */
  1198. static int sh_eth_phy_init(struct net_device *ndev)
  1199. {
  1200. struct sh_eth_private *mdp = netdev_priv(ndev);
  1201. char phy_id[MII_BUS_ID_SIZE + 3];
  1202. struct phy_device *phydev = NULL;
  1203. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1204. mdp->mii_bus->id , mdp->phy_id);
  1205. mdp->link = PHY_DOWN;
  1206. mdp->speed = 0;
  1207. mdp->duplex = -1;
  1208. /* Try connect to PHY */
  1209. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1210. 0, mdp->phy_interface);
  1211. if (IS_ERR(phydev)) {
  1212. dev_err(&ndev->dev, "phy_connect failed\n");
  1213. return PTR_ERR(phydev);
  1214. }
  1215. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1216. phydev->addr, phydev->drv->name);
  1217. mdp->phydev = phydev;
  1218. return 0;
  1219. }
  1220. /* PHY control start function */
  1221. static int sh_eth_phy_start(struct net_device *ndev)
  1222. {
  1223. struct sh_eth_private *mdp = netdev_priv(ndev);
  1224. int ret;
  1225. ret = sh_eth_phy_init(ndev);
  1226. if (ret)
  1227. return ret;
  1228. /* reset phy - this also wakes it from PDOWN */
  1229. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1230. phy_start(mdp->phydev);
  1231. return 0;
  1232. }
  1233. static int sh_eth_get_settings(struct net_device *ndev,
  1234. struct ethtool_cmd *ecmd)
  1235. {
  1236. struct sh_eth_private *mdp = netdev_priv(ndev);
  1237. unsigned long flags;
  1238. int ret;
  1239. spin_lock_irqsave(&mdp->lock, flags);
  1240. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1241. spin_unlock_irqrestore(&mdp->lock, flags);
  1242. return ret;
  1243. }
  1244. static int sh_eth_set_settings(struct net_device *ndev,
  1245. struct ethtool_cmd *ecmd)
  1246. {
  1247. struct sh_eth_private *mdp = netdev_priv(ndev);
  1248. unsigned long flags;
  1249. int ret;
  1250. spin_lock_irqsave(&mdp->lock, flags);
  1251. /* disable tx and rx */
  1252. sh_eth_rcv_snd_disable(ndev);
  1253. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1254. if (ret)
  1255. goto error_exit;
  1256. if (ecmd->duplex == DUPLEX_FULL)
  1257. mdp->duplex = 1;
  1258. else
  1259. mdp->duplex = 0;
  1260. if (mdp->cd->set_duplex)
  1261. mdp->cd->set_duplex(ndev);
  1262. error_exit:
  1263. mdelay(1);
  1264. /* enable tx and rx */
  1265. sh_eth_rcv_snd_enable(ndev);
  1266. spin_unlock_irqrestore(&mdp->lock, flags);
  1267. return ret;
  1268. }
  1269. static int sh_eth_nway_reset(struct net_device *ndev)
  1270. {
  1271. struct sh_eth_private *mdp = netdev_priv(ndev);
  1272. unsigned long flags;
  1273. int ret;
  1274. spin_lock_irqsave(&mdp->lock, flags);
  1275. ret = phy_start_aneg(mdp->phydev);
  1276. spin_unlock_irqrestore(&mdp->lock, flags);
  1277. return ret;
  1278. }
  1279. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1280. {
  1281. struct sh_eth_private *mdp = netdev_priv(ndev);
  1282. return mdp->msg_enable;
  1283. }
  1284. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1285. {
  1286. struct sh_eth_private *mdp = netdev_priv(ndev);
  1287. mdp->msg_enable = value;
  1288. }
  1289. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1290. "rx_current", "tx_current",
  1291. "rx_dirty", "tx_dirty",
  1292. };
  1293. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1294. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1295. {
  1296. switch (sset) {
  1297. case ETH_SS_STATS:
  1298. return SH_ETH_STATS_LEN;
  1299. default:
  1300. return -EOPNOTSUPP;
  1301. }
  1302. }
  1303. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1304. struct ethtool_stats *stats, u64 *data)
  1305. {
  1306. struct sh_eth_private *mdp = netdev_priv(ndev);
  1307. int i = 0;
  1308. /* device-specific stats */
  1309. data[i++] = mdp->cur_rx;
  1310. data[i++] = mdp->cur_tx;
  1311. data[i++] = mdp->dirty_rx;
  1312. data[i++] = mdp->dirty_tx;
  1313. }
  1314. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1315. {
  1316. switch (stringset) {
  1317. case ETH_SS_STATS:
  1318. memcpy(data, *sh_eth_gstrings_stats,
  1319. sizeof(sh_eth_gstrings_stats));
  1320. break;
  1321. }
  1322. }
  1323. static void sh_eth_get_ringparam(struct net_device *ndev,
  1324. struct ethtool_ringparam *ring)
  1325. {
  1326. struct sh_eth_private *mdp = netdev_priv(ndev);
  1327. ring->rx_max_pending = RX_RING_MAX;
  1328. ring->tx_max_pending = TX_RING_MAX;
  1329. ring->rx_pending = mdp->num_rx_ring;
  1330. ring->tx_pending = mdp->num_tx_ring;
  1331. }
  1332. static int sh_eth_set_ringparam(struct net_device *ndev,
  1333. struct ethtool_ringparam *ring)
  1334. {
  1335. struct sh_eth_private *mdp = netdev_priv(ndev);
  1336. int ret;
  1337. if (ring->tx_pending > TX_RING_MAX ||
  1338. ring->rx_pending > RX_RING_MAX ||
  1339. ring->tx_pending < TX_RING_MIN ||
  1340. ring->rx_pending < RX_RING_MIN)
  1341. return -EINVAL;
  1342. if (ring->rx_mini_pending || ring->rx_jumbo_pending)
  1343. return -EINVAL;
  1344. if (netif_running(ndev)) {
  1345. netif_tx_disable(ndev);
  1346. /* Disable interrupts by clearing the interrupt mask. */
  1347. sh_eth_write(ndev, 0x0000, EESIPR);
  1348. /* Stop the chip's Tx and Rx processes. */
  1349. sh_eth_write(ndev, 0, EDTRR);
  1350. sh_eth_write(ndev, 0, EDRRR);
  1351. synchronize_irq(ndev->irq);
  1352. }
  1353. /* Free all the skbuffs in the Rx queue. */
  1354. sh_eth_ring_free(ndev);
  1355. /* Free DMA buffer */
  1356. sh_eth_free_dma_buffer(mdp);
  1357. /* Set new parameters */
  1358. mdp->num_rx_ring = ring->rx_pending;
  1359. mdp->num_tx_ring = ring->tx_pending;
  1360. ret = sh_eth_ring_init(ndev);
  1361. if (ret < 0) {
  1362. dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
  1363. return ret;
  1364. }
  1365. ret = sh_eth_dev_init(ndev, false);
  1366. if (ret < 0) {
  1367. dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
  1368. return ret;
  1369. }
  1370. if (netif_running(ndev)) {
  1371. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  1372. /* Setting the Rx mode will start the Rx process. */
  1373. sh_eth_write(ndev, EDRRR_R, EDRRR);
  1374. netif_wake_queue(ndev);
  1375. }
  1376. return 0;
  1377. }
  1378. static const struct ethtool_ops sh_eth_ethtool_ops = {
  1379. .get_settings = sh_eth_get_settings,
  1380. .set_settings = sh_eth_set_settings,
  1381. .nway_reset = sh_eth_nway_reset,
  1382. .get_msglevel = sh_eth_get_msglevel,
  1383. .set_msglevel = sh_eth_set_msglevel,
  1384. .get_link = ethtool_op_get_link,
  1385. .get_strings = sh_eth_get_strings,
  1386. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1387. .get_sset_count = sh_eth_get_sset_count,
  1388. .get_ringparam = sh_eth_get_ringparam,
  1389. .set_ringparam = sh_eth_set_ringparam,
  1390. };
  1391. /* network device open function */
  1392. static int sh_eth_open(struct net_device *ndev)
  1393. {
  1394. int ret = 0;
  1395. struct sh_eth_private *mdp = netdev_priv(ndev);
  1396. pm_runtime_get_sync(&mdp->pdev->dev);
  1397. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1398. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1399. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1400. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1401. IRQF_SHARED,
  1402. #else
  1403. 0,
  1404. #endif
  1405. ndev->name, ndev);
  1406. if (ret) {
  1407. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1408. return ret;
  1409. }
  1410. /* Descriptor set */
  1411. ret = sh_eth_ring_init(ndev);
  1412. if (ret)
  1413. goto out_free_irq;
  1414. /* device init */
  1415. ret = sh_eth_dev_init(ndev, true);
  1416. if (ret)
  1417. goto out_free_irq;
  1418. /* PHY control start*/
  1419. ret = sh_eth_phy_start(ndev);
  1420. if (ret)
  1421. goto out_free_irq;
  1422. return ret;
  1423. out_free_irq:
  1424. free_irq(ndev->irq, ndev);
  1425. pm_runtime_put_sync(&mdp->pdev->dev);
  1426. return ret;
  1427. }
  1428. /* Timeout function */
  1429. static void sh_eth_tx_timeout(struct net_device *ndev)
  1430. {
  1431. struct sh_eth_private *mdp = netdev_priv(ndev);
  1432. struct sh_eth_rxdesc *rxdesc;
  1433. int i;
  1434. netif_stop_queue(ndev);
  1435. if (netif_msg_timer(mdp))
  1436. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1437. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1438. /* tx_errors count up */
  1439. ndev->stats.tx_errors++;
  1440. /* Free all the skbuffs in the Rx queue. */
  1441. for (i = 0; i < mdp->num_rx_ring; i++) {
  1442. rxdesc = &mdp->rx_ring[i];
  1443. rxdesc->status = 0;
  1444. rxdesc->addr = 0xBADF00D0;
  1445. if (mdp->rx_skbuff[i])
  1446. dev_kfree_skb(mdp->rx_skbuff[i]);
  1447. mdp->rx_skbuff[i] = NULL;
  1448. }
  1449. for (i = 0; i < mdp->num_tx_ring; i++) {
  1450. if (mdp->tx_skbuff[i])
  1451. dev_kfree_skb(mdp->tx_skbuff[i]);
  1452. mdp->tx_skbuff[i] = NULL;
  1453. }
  1454. /* device init */
  1455. sh_eth_dev_init(ndev, true);
  1456. }
  1457. /* Packet transmit function */
  1458. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1459. {
  1460. struct sh_eth_private *mdp = netdev_priv(ndev);
  1461. struct sh_eth_txdesc *txdesc;
  1462. u32 entry;
  1463. unsigned long flags;
  1464. spin_lock_irqsave(&mdp->lock, flags);
  1465. if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
  1466. if (!sh_eth_txfree(ndev)) {
  1467. if (netif_msg_tx_queued(mdp))
  1468. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1469. netif_stop_queue(ndev);
  1470. spin_unlock_irqrestore(&mdp->lock, flags);
  1471. return NETDEV_TX_BUSY;
  1472. }
  1473. }
  1474. spin_unlock_irqrestore(&mdp->lock, flags);
  1475. entry = mdp->cur_tx % mdp->num_tx_ring;
  1476. mdp->tx_skbuff[entry] = skb;
  1477. txdesc = &mdp->tx_ring[entry];
  1478. /* soft swap. */
  1479. if (!mdp->cd->hw_swap)
  1480. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1481. skb->len + 2);
  1482. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1483. DMA_TO_DEVICE);
  1484. if (skb->len < ETHERSMALL)
  1485. txdesc->buffer_length = ETHERSMALL;
  1486. else
  1487. txdesc->buffer_length = skb->len;
  1488. if (entry >= mdp->num_tx_ring - 1)
  1489. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1490. else
  1491. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1492. mdp->cur_tx++;
  1493. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1494. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1495. return NETDEV_TX_OK;
  1496. }
  1497. /* device close function */
  1498. static int sh_eth_close(struct net_device *ndev)
  1499. {
  1500. struct sh_eth_private *mdp = netdev_priv(ndev);
  1501. netif_stop_queue(ndev);
  1502. /* Disable interrupts by clearing the interrupt mask. */
  1503. sh_eth_write(ndev, 0x0000, EESIPR);
  1504. /* Stop the chip's Tx and Rx processes. */
  1505. sh_eth_write(ndev, 0, EDTRR);
  1506. sh_eth_write(ndev, 0, EDRRR);
  1507. /* PHY Disconnect */
  1508. if (mdp->phydev) {
  1509. phy_stop(mdp->phydev);
  1510. phy_disconnect(mdp->phydev);
  1511. }
  1512. free_irq(ndev->irq, ndev);
  1513. /* Free all the skbuffs in the Rx queue. */
  1514. sh_eth_ring_free(ndev);
  1515. /* free DMA buffer */
  1516. sh_eth_free_dma_buffer(mdp);
  1517. pm_runtime_put_sync(&mdp->pdev->dev);
  1518. return 0;
  1519. }
  1520. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1521. {
  1522. struct sh_eth_private *mdp = netdev_priv(ndev);
  1523. pm_runtime_get_sync(&mdp->pdev->dev);
  1524. ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1525. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1526. ndev->stats.collisions += sh_eth_read(ndev, CDCR);
  1527. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1528. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1529. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1530. if (sh_eth_is_gether(mdp)) {
  1531. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1532. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1533. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1534. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1535. } else {
  1536. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1537. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1538. }
  1539. pm_runtime_put_sync(&mdp->pdev->dev);
  1540. return &ndev->stats;
  1541. }
  1542. /* ioctl to device function */
  1543. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1544. int cmd)
  1545. {
  1546. struct sh_eth_private *mdp = netdev_priv(ndev);
  1547. struct phy_device *phydev = mdp->phydev;
  1548. if (!netif_running(ndev))
  1549. return -EINVAL;
  1550. if (!phydev)
  1551. return -ENODEV;
  1552. return phy_mii_ioctl(phydev, rq, cmd);
  1553. }
  1554. #if defined(SH_ETH_HAS_TSU)
  1555. /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
  1556. static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
  1557. int entry)
  1558. {
  1559. return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
  1560. }
  1561. static u32 sh_eth_tsu_get_post_mask(int entry)
  1562. {
  1563. return 0x0f << (28 - ((entry % 8) * 4));
  1564. }
  1565. static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
  1566. {
  1567. return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
  1568. }
  1569. static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
  1570. int entry)
  1571. {
  1572. struct sh_eth_private *mdp = netdev_priv(ndev);
  1573. u32 tmp;
  1574. void *reg_offset;
  1575. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1576. tmp = ioread32(reg_offset);
  1577. iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
  1578. }
  1579. static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
  1580. int entry)
  1581. {
  1582. struct sh_eth_private *mdp = netdev_priv(ndev);
  1583. u32 post_mask, ref_mask, tmp;
  1584. void *reg_offset;
  1585. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1586. post_mask = sh_eth_tsu_get_post_mask(entry);
  1587. ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
  1588. tmp = ioread32(reg_offset);
  1589. iowrite32(tmp & ~post_mask, reg_offset);
  1590. /* If other port enables, the function returns "true" */
  1591. return tmp & ref_mask;
  1592. }
  1593. static int sh_eth_tsu_busy(struct net_device *ndev)
  1594. {
  1595. int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
  1596. struct sh_eth_private *mdp = netdev_priv(ndev);
  1597. while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
  1598. udelay(10);
  1599. timeout--;
  1600. if (timeout <= 0) {
  1601. dev_err(&ndev->dev, "%s: timeout\n", __func__);
  1602. return -ETIMEDOUT;
  1603. }
  1604. }
  1605. return 0;
  1606. }
  1607. static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
  1608. const u8 *addr)
  1609. {
  1610. u32 val;
  1611. val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
  1612. iowrite32(val, reg);
  1613. if (sh_eth_tsu_busy(ndev) < 0)
  1614. return -EBUSY;
  1615. val = addr[4] << 8 | addr[5];
  1616. iowrite32(val, reg + 4);
  1617. if (sh_eth_tsu_busy(ndev) < 0)
  1618. return -EBUSY;
  1619. return 0;
  1620. }
  1621. static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
  1622. {
  1623. u32 val;
  1624. val = ioread32(reg);
  1625. addr[0] = (val >> 24) & 0xff;
  1626. addr[1] = (val >> 16) & 0xff;
  1627. addr[2] = (val >> 8) & 0xff;
  1628. addr[3] = val & 0xff;
  1629. val = ioread32(reg + 4);
  1630. addr[4] = (val >> 8) & 0xff;
  1631. addr[5] = val & 0xff;
  1632. }
  1633. static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
  1634. {
  1635. struct sh_eth_private *mdp = netdev_priv(ndev);
  1636. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1637. int i;
  1638. u8 c_addr[ETH_ALEN];
  1639. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1640. sh_eth_tsu_read_entry(reg_offset, c_addr);
  1641. if (memcmp(addr, c_addr, ETH_ALEN) == 0)
  1642. return i;
  1643. }
  1644. return -ENOENT;
  1645. }
  1646. static int sh_eth_tsu_find_empty(struct net_device *ndev)
  1647. {
  1648. u8 blank[ETH_ALEN];
  1649. int entry;
  1650. memset(blank, 0, sizeof(blank));
  1651. entry = sh_eth_tsu_find_entry(ndev, blank);
  1652. return (entry < 0) ? -ENOMEM : entry;
  1653. }
  1654. static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
  1655. int entry)
  1656. {
  1657. struct sh_eth_private *mdp = netdev_priv(ndev);
  1658. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1659. int ret;
  1660. u8 blank[ETH_ALEN];
  1661. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
  1662. ~(1 << (31 - entry)), TSU_TEN);
  1663. memset(blank, 0, sizeof(blank));
  1664. ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
  1665. if (ret < 0)
  1666. return ret;
  1667. return 0;
  1668. }
  1669. static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
  1670. {
  1671. struct sh_eth_private *mdp = netdev_priv(ndev);
  1672. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1673. int i, ret;
  1674. if (!mdp->cd->tsu)
  1675. return 0;
  1676. i = sh_eth_tsu_find_entry(ndev, addr);
  1677. if (i < 0) {
  1678. /* No entry found, create one */
  1679. i = sh_eth_tsu_find_empty(ndev);
  1680. if (i < 0)
  1681. return -ENOMEM;
  1682. ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
  1683. if (ret < 0)
  1684. return ret;
  1685. /* Enable the entry */
  1686. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
  1687. (1 << (31 - i)), TSU_TEN);
  1688. }
  1689. /* Entry found or created, enable POST */
  1690. sh_eth_tsu_enable_cam_entry_post(ndev, i);
  1691. return 0;
  1692. }
  1693. static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
  1694. {
  1695. struct sh_eth_private *mdp = netdev_priv(ndev);
  1696. int i, ret;
  1697. if (!mdp->cd->tsu)
  1698. return 0;
  1699. i = sh_eth_tsu_find_entry(ndev, addr);
  1700. if (i) {
  1701. /* Entry found */
  1702. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1703. goto done;
  1704. /* Disable the entry if both ports was disabled */
  1705. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1706. if (ret < 0)
  1707. return ret;
  1708. }
  1709. done:
  1710. return 0;
  1711. }
  1712. static int sh_eth_tsu_purge_all(struct net_device *ndev)
  1713. {
  1714. struct sh_eth_private *mdp = netdev_priv(ndev);
  1715. int i, ret;
  1716. if (unlikely(!mdp->cd->tsu))
  1717. return 0;
  1718. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
  1719. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1720. continue;
  1721. /* Disable the entry if both ports was disabled */
  1722. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1723. if (ret < 0)
  1724. return ret;
  1725. }
  1726. return 0;
  1727. }
  1728. static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
  1729. {
  1730. struct sh_eth_private *mdp = netdev_priv(ndev);
  1731. u8 addr[ETH_ALEN];
  1732. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1733. int i;
  1734. if (unlikely(!mdp->cd->tsu))
  1735. return;
  1736. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1737. sh_eth_tsu_read_entry(reg_offset, addr);
  1738. if (is_multicast_ether_addr(addr))
  1739. sh_eth_tsu_del_entry(ndev, addr);
  1740. }
  1741. }
  1742. /* Multicast reception directions set */
  1743. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1744. {
  1745. struct sh_eth_private *mdp = netdev_priv(ndev);
  1746. u32 ecmr_bits;
  1747. int mcast_all = 0;
  1748. unsigned long flags;
  1749. spin_lock_irqsave(&mdp->lock, flags);
  1750. /*
  1751. * Initial condition is MCT = 1, PRM = 0.
  1752. * Depending on ndev->flags, set PRM or clear MCT
  1753. */
  1754. ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
  1755. if (!(ndev->flags & IFF_MULTICAST)) {
  1756. sh_eth_tsu_purge_mcast(ndev);
  1757. mcast_all = 1;
  1758. }
  1759. if (ndev->flags & IFF_ALLMULTI) {
  1760. sh_eth_tsu_purge_mcast(ndev);
  1761. ecmr_bits &= ~ECMR_MCT;
  1762. mcast_all = 1;
  1763. }
  1764. if (ndev->flags & IFF_PROMISC) {
  1765. sh_eth_tsu_purge_all(ndev);
  1766. ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
  1767. } else if (mdp->cd->tsu) {
  1768. struct netdev_hw_addr *ha;
  1769. netdev_for_each_mc_addr(ha, ndev) {
  1770. if (mcast_all && is_multicast_ether_addr(ha->addr))
  1771. continue;
  1772. if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
  1773. if (!mcast_all) {
  1774. sh_eth_tsu_purge_mcast(ndev);
  1775. ecmr_bits &= ~ECMR_MCT;
  1776. mcast_all = 1;
  1777. }
  1778. }
  1779. }
  1780. } else {
  1781. /* Normal, unicast/broadcast-only mode. */
  1782. ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
  1783. }
  1784. /* update the ethernet mode */
  1785. sh_eth_write(ndev, ecmr_bits, ECMR);
  1786. spin_unlock_irqrestore(&mdp->lock, flags);
  1787. }
  1788. static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
  1789. {
  1790. if (!mdp->port)
  1791. return TSU_VTAG0;
  1792. else
  1793. return TSU_VTAG1;
  1794. }
  1795. static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1796. {
  1797. struct sh_eth_private *mdp = netdev_priv(ndev);
  1798. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1799. if (unlikely(!mdp->cd->tsu))
  1800. return -EPERM;
  1801. /* No filtering if vid = 0 */
  1802. if (!vid)
  1803. return 0;
  1804. mdp->vlan_num_ids++;
  1805. /*
  1806. * The controller has one VLAN tag HW filter. So, if the filter is
  1807. * already enabled, the driver disables it and the filte
  1808. */
  1809. if (mdp->vlan_num_ids > 1) {
  1810. /* disable VLAN filter */
  1811. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1812. return 0;
  1813. }
  1814. sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
  1815. vtag_reg_index);
  1816. return 0;
  1817. }
  1818. static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1819. {
  1820. struct sh_eth_private *mdp = netdev_priv(ndev);
  1821. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1822. if (unlikely(!mdp->cd->tsu))
  1823. return -EPERM;
  1824. /* No filtering if vid = 0 */
  1825. if (!vid)
  1826. return 0;
  1827. mdp->vlan_num_ids--;
  1828. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1829. return 0;
  1830. }
  1831. #endif /* SH_ETH_HAS_TSU */
  1832. /* SuperH's TSU register init function */
  1833. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1834. {
  1835. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1836. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1837. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1838. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1839. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1840. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1841. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1842. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1843. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1844. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1845. if (sh_eth_is_gether(mdp)) {
  1846. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1847. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1848. } else {
  1849. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1850. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1851. }
  1852. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1853. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1854. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1855. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1856. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1857. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1858. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1859. }
  1860. /* MDIO bus release function */
  1861. static int sh_mdio_release(struct net_device *ndev)
  1862. {
  1863. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1864. /* unregister mdio bus */
  1865. mdiobus_unregister(bus);
  1866. /* remove mdio bus info from net_device */
  1867. dev_set_drvdata(&ndev->dev, NULL);
  1868. /* free interrupts memory */
  1869. kfree(bus->irq);
  1870. /* free bitbang info */
  1871. free_mdio_bitbang(bus);
  1872. return 0;
  1873. }
  1874. /* MDIO bus init function */
  1875. static int sh_mdio_init(struct net_device *ndev, int id,
  1876. struct sh_eth_plat_data *pd)
  1877. {
  1878. int ret, i;
  1879. struct bb_info *bitbang;
  1880. struct sh_eth_private *mdp = netdev_priv(ndev);
  1881. /* create bit control struct for PHY */
  1882. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1883. if (!bitbang) {
  1884. ret = -ENOMEM;
  1885. goto out;
  1886. }
  1887. /* bitbang init */
  1888. bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
  1889. bitbang->set_gate = pd->set_mdio_gate;
  1890. bitbang->mdi_msk = 0x08;
  1891. bitbang->mdo_msk = 0x04;
  1892. bitbang->mmd_msk = 0x02;/* MMD */
  1893. bitbang->mdc_msk = 0x01;
  1894. bitbang->ctrl.ops = &bb_ops;
  1895. /* MII controller setting */
  1896. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1897. if (!mdp->mii_bus) {
  1898. ret = -ENOMEM;
  1899. goto out_free_bitbang;
  1900. }
  1901. /* Hook up MII support for ethtool */
  1902. mdp->mii_bus->name = "sh_mii";
  1903. mdp->mii_bus->parent = &ndev->dev;
  1904. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1905. mdp->pdev->name, id);
  1906. /* PHY IRQ */
  1907. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1908. if (!mdp->mii_bus->irq) {
  1909. ret = -ENOMEM;
  1910. goto out_free_bus;
  1911. }
  1912. for (i = 0; i < PHY_MAX_ADDR; i++)
  1913. mdp->mii_bus->irq[i] = PHY_POLL;
  1914. /* regist mdio bus */
  1915. ret = mdiobus_register(mdp->mii_bus);
  1916. if (ret)
  1917. goto out_free_irq;
  1918. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1919. return 0;
  1920. out_free_irq:
  1921. kfree(mdp->mii_bus->irq);
  1922. out_free_bus:
  1923. free_mdio_bitbang(mdp->mii_bus);
  1924. out_free_bitbang:
  1925. kfree(bitbang);
  1926. out:
  1927. return ret;
  1928. }
  1929. static const u16 *sh_eth_get_register_offset(int register_type)
  1930. {
  1931. const u16 *reg_offset = NULL;
  1932. switch (register_type) {
  1933. case SH_ETH_REG_GIGABIT:
  1934. reg_offset = sh_eth_offset_gigabit;
  1935. break;
  1936. case SH_ETH_REG_FAST_SH4:
  1937. reg_offset = sh_eth_offset_fast_sh4;
  1938. break;
  1939. case SH_ETH_REG_FAST_SH3_SH2:
  1940. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1941. break;
  1942. default:
  1943. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1944. break;
  1945. }
  1946. return reg_offset;
  1947. }
  1948. static const struct net_device_ops sh_eth_netdev_ops = {
  1949. .ndo_open = sh_eth_open,
  1950. .ndo_stop = sh_eth_close,
  1951. .ndo_start_xmit = sh_eth_start_xmit,
  1952. .ndo_get_stats = sh_eth_get_stats,
  1953. #if defined(SH_ETH_HAS_TSU)
  1954. .ndo_set_rx_mode = sh_eth_set_multicast_list,
  1955. .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
  1956. .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
  1957. #endif
  1958. .ndo_tx_timeout = sh_eth_tx_timeout,
  1959. .ndo_do_ioctl = sh_eth_do_ioctl,
  1960. .ndo_validate_addr = eth_validate_addr,
  1961. .ndo_set_mac_address = eth_mac_addr,
  1962. .ndo_change_mtu = eth_change_mtu,
  1963. };
  1964. static int sh_eth_drv_probe(struct platform_device *pdev)
  1965. {
  1966. int ret, devno = 0;
  1967. struct resource *res;
  1968. struct net_device *ndev = NULL;
  1969. struct sh_eth_private *mdp = NULL;
  1970. struct sh_eth_plat_data *pd;
  1971. /* get base addr */
  1972. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1973. if (unlikely(res == NULL)) {
  1974. dev_err(&pdev->dev, "invalid resource\n");
  1975. ret = -EINVAL;
  1976. goto out;
  1977. }
  1978. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1979. if (!ndev) {
  1980. ret = -ENOMEM;
  1981. goto out;
  1982. }
  1983. /* The sh Ether-specific entries in the device structure. */
  1984. ndev->base_addr = res->start;
  1985. devno = pdev->id;
  1986. if (devno < 0)
  1987. devno = 0;
  1988. ndev->dma = -1;
  1989. ret = platform_get_irq(pdev, 0);
  1990. if (ret < 0) {
  1991. ret = -ENODEV;
  1992. goto out_release;
  1993. }
  1994. ndev->irq = ret;
  1995. SET_NETDEV_DEV(ndev, &pdev->dev);
  1996. /* Fill in the fields of the device structure with ethernet values. */
  1997. ether_setup(ndev);
  1998. mdp = netdev_priv(ndev);
  1999. mdp->num_tx_ring = TX_RING_SIZE;
  2000. mdp->num_rx_ring = RX_RING_SIZE;
  2001. mdp->addr = ioremap(res->start, resource_size(res));
  2002. if (mdp->addr == NULL) {
  2003. ret = -ENOMEM;
  2004. dev_err(&pdev->dev, "ioremap failed.\n");
  2005. goto out_release;
  2006. }
  2007. spin_lock_init(&mdp->lock);
  2008. mdp->pdev = pdev;
  2009. pm_runtime_enable(&pdev->dev);
  2010. pm_runtime_resume(&pdev->dev);
  2011. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  2012. /* get PHY ID */
  2013. mdp->phy_id = pd->phy;
  2014. mdp->phy_interface = pd->phy_interface;
  2015. /* EDMAC endian */
  2016. mdp->edmac_endian = pd->edmac_endian;
  2017. mdp->no_ether_link = pd->no_ether_link;
  2018. mdp->ether_link_active_low = pd->ether_link_active_low;
  2019. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  2020. /* set cpu data */
  2021. #if defined(SH_ETH_HAS_BOTH_MODULES)
  2022. mdp->cd = sh_eth_get_cpu_data(mdp);
  2023. #else
  2024. mdp->cd = &sh_eth_my_cpu_data;
  2025. #endif
  2026. sh_eth_set_default_cpu_data(mdp->cd);
  2027. /* set function */
  2028. ndev->netdev_ops = &sh_eth_netdev_ops;
  2029. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  2030. ndev->watchdog_timeo = TX_TIMEOUT;
  2031. /* debug message level */
  2032. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  2033. /* read and set MAC address */
  2034. read_mac_address(ndev, pd->mac_addr);
  2035. /* ioremap the TSU registers */
  2036. if (mdp->cd->tsu) {
  2037. struct resource *rtsu;
  2038. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  2039. if (!rtsu) {
  2040. dev_err(&pdev->dev, "Not found TSU resource\n");
  2041. goto out_release;
  2042. }
  2043. mdp->tsu_addr = ioremap(rtsu->start,
  2044. resource_size(rtsu));
  2045. mdp->port = devno % 2;
  2046. ndev->features = NETIF_F_HW_VLAN_FILTER;
  2047. }
  2048. /* initialize first or needed device */
  2049. if (!devno || pd->needs_init) {
  2050. if (mdp->cd->chip_reset)
  2051. mdp->cd->chip_reset(ndev);
  2052. if (mdp->cd->tsu) {
  2053. /* TSU init (Init only)*/
  2054. sh_eth_tsu_init(mdp);
  2055. }
  2056. }
  2057. /* network device register */
  2058. ret = register_netdev(ndev);
  2059. if (ret)
  2060. goto out_release;
  2061. /* mdio bus init */
  2062. ret = sh_mdio_init(ndev, pdev->id, pd);
  2063. if (ret)
  2064. goto out_unregister;
  2065. /* print device information */
  2066. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  2067. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  2068. platform_set_drvdata(pdev, ndev);
  2069. return ret;
  2070. out_unregister:
  2071. unregister_netdev(ndev);
  2072. out_release:
  2073. /* net_dev free */
  2074. if (mdp && mdp->addr)
  2075. iounmap(mdp->addr);
  2076. if (mdp && mdp->tsu_addr)
  2077. iounmap(mdp->tsu_addr);
  2078. if (ndev)
  2079. free_netdev(ndev);
  2080. out:
  2081. return ret;
  2082. }
  2083. static int sh_eth_drv_remove(struct platform_device *pdev)
  2084. {
  2085. struct net_device *ndev = platform_get_drvdata(pdev);
  2086. struct sh_eth_private *mdp = netdev_priv(ndev);
  2087. if (mdp->cd->tsu)
  2088. iounmap(mdp->tsu_addr);
  2089. sh_mdio_release(ndev);
  2090. unregister_netdev(ndev);
  2091. pm_runtime_disable(&pdev->dev);
  2092. iounmap(mdp->addr);
  2093. free_netdev(ndev);
  2094. platform_set_drvdata(pdev, NULL);
  2095. return 0;
  2096. }
  2097. static int sh_eth_runtime_nop(struct device *dev)
  2098. {
  2099. /*
  2100. * Runtime PM callback shared between ->runtime_suspend()
  2101. * and ->runtime_resume(). Simply returns success.
  2102. *
  2103. * This driver re-initializes all registers after
  2104. * pm_runtime_get_sync() anyway so there is no need
  2105. * to save and restore registers here.
  2106. */
  2107. return 0;
  2108. }
  2109. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  2110. .runtime_suspend = sh_eth_runtime_nop,
  2111. .runtime_resume = sh_eth_runtime_nop,
  2112. };
  2113. static struct platform_driver sh_eth_driver = {
  2114. .probe = sh_eth_drv_probe,
  2115. .remove = sh_eth_drv_remove,
  2116. .driver = {
  2117. .name = CARDNAME,
  2118. .pm = &sh_eth_dev_pm_ops,
  2119. },
  2120. };
  2121. module_platform_driver(sh_eth_driver);
  2122. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  2123. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  2124. MODULE_LICENSE("GPL v2");