mxs-mmc.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928
  1. /*
  2. * Portions copyright (C) 2003 Russell King, PXA MMCI Driver
  3. * Portions copyright (C) 2004-2005 Pierre Ossman, W83L51xD SD/MMC driver
  4. *
  5. * Copyright 2008 Embedded Alley Solutions, Inc.
  6. * Copyright 2009-2011 Freescale Semiconductor, Inc.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along
  19. * with this program; if not, write to the Free Software Foundation, Inc.,
  20. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  21. */
  22. #include <linux/kernel.h>
  23. #include <linux/init.h>
  24. #include <linux/ioport.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include <linux/of_gpio.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/delay.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/dma-mapping.h>
  32. #include <linux/dmaengine.h>
  33. #include <linux/highmem.h>
  34. #include <linux/clk.h>
  35. #include <linux/err.h>
  36. #include <linux/completion.h>
  37. #include <linux/mmc/host.h>
  38. #include <linux/mmc/mmc.h>
  39. #include <linux/mmc/sdio.h>
  40. #include <linux/gpio.h>
  41. #include <linux/regulator/consumer.h>
  42. #include <linux/module.h>
  43. #include <linux/fsl/mxs-dma.h>
  44. #include <linux/pinctrl/consumer.h>
  45. #include <linux/stmp_device.h>
  46. #include <linux/mmc/mxs-mmc.h>
  47. #define DRIVER_NAME "mxs-mmc"
  48. /* card detect polling timeout */
  49. #define MXS_MMC_DETECT_TIMEOUT (HZ/2)
  50. #define ssp_is_old(host) ((host)->devid == IMX23_MMC)
  51. /* SSP registers */
  52. #define HW_SSP_CTRL0 0x000
  53. #define BM_SSP_CTRL0_RUN (1 << 29)
  54. #define BM_SSP_CTRL0_SDIO_IRQ_CHECK (1 << 28)
  55. #define BM_SSP_CTRL0_IGNORE_CRC (1 << 26)
  56. #define BM_SSP_CTRL0_READ (1 << 25)
  57. #define BM_SSP_CTRL0_DATA_XFER (1 << 24)
  58. #define BP_SSP_CTRL0_BUS_WIDTH (22)
  59. #define BM_SSP_CTRL0_BUS_WIDTH (0x3 << 22)
  60. #define BM_SSP_CTRL0_WAIT_FOR_IRQ (1 << 21)
  61. #define BM_SSP_CTRL0_LONG_RESP (1 << 19)
  62. #define BM_SSP_CTRL0_GET_RESP (1 << 17)
  63. #define BM_SSP_CTRL0_ENABLE (1 << 16)
  64. #define BP_SSP_CTRL0_XFER_COUNT (0)
  65. #define BM_SSP_CTRL0_XFER_COUNT (0xffff)
  66. #define HW_SSP_CMD0 0x010
  67. #define BM_SSP_CMD0_DBL_DATA_RATE_EN (1 << 25)
  68. #define BM_SSP_CMD0_SLOW_CLKING_EN (1 << 22)
  69. #define BM_SSP_CMD0_CONT_CLKING_EN (1 << 21)
  70. #define BM_SSP_CMD0_APPEND_8CYC (1 << 20)
  71. #define BP_SSP_CMD0_BLOCK_SIZE (16)
  72. #define BM_SSP_CMD0_BLOCK_SIZE (0xf << 16)
  73. #define BP_SSP_CMD0_BLOCK_COUNT (8)
  74. #define BM_SSP_CMD0_BLOCK_COUNT (0xff << 8)
  75. #define BP_SSP_CMD0_CMD (0)
  76. #define BM_SSP_CMD0_CMD (0xff)
  77. #define HW_SSP_CMD1 0x020
  78. #define HW_SSP_XFER_SIZE 0x030
  79. #define HW_SSP_BLOCK_SIZE 0x040
  80. #define BP_SSP_BLOCK_SIZE_BLOCK_COUNT (4)
  81. #define BM_SSP_BLOCK_SIZE_BLOCK_COUNT (0xffffff << 4)
  82. #define BP_SSP_BLOCK_SIZE_BLOCK_SIZE (0)
  83. #define BM_SSP_BLOCK_SIZE_BLOCK_SIZE (0xf)
  84. #define HW_SSP_TIMING(h) (ssp_is_old(h) ? 0x050 : 0x070)
  85. #define BP_SSP_TIMING_TIMEOUT (16)
  86. #define BM_SSP_TIMING_TIMEOUT (0xffff << 16)
  87. #define BP_SSP_TIMING_CLOCK_DIVIDE (8)
  88. #define BM_SSP_TIMING_CLOCK_DIVIDE (0xff << 8)
  89. #define BP_SSP_TIMING_CLOCK_RATE (0)
  90. #define BM_SSP_TIMING_CLOCK_RATE (0xff)
  91. #define HW_SSP_CTRL1(h) (ssp_is_old(h) ? 0x060 : 0x080)
  92. #define BM_SSP_CTRL1_SDIO_IRQ (1 << 31)
  93. #define BM_SSP_CTRL1_SDIO_IRQ_EN (1 << 30)
  94. #define BM_SSP_CTRL1_RESP_ERR_IRQ (1 << 29)
  95. #define BM_SSP_CTRL1_RESP_ERR_IRQ_EN (1 << 28)
  96. #define BM_SSP_CTRL1_RESP_TIMEOUT_IRQ (1 << 27)
  97. #define BM_SSP_CTRL1_RESP_TIMEOUT_IRQ_EN (1 << 26)
  98. #define BM_SSP_CTRL1_DATA_TIMEOUT_IRQ (1 << 25)
  99. #define BM_SSP_CTRL1_DATA_TIMEOUT_IRQ_EN (1 << 24)
  100. #define BM_SSP_CTRL1_DATA_CRC_IRQ (1 << 23)
  101. #define BM_SSP_CTRL1_DATA_CRC_IRQ_EN (1 << 22)
  102. #define BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ (1 << 21)
  103. #define BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ_EN (1 << 20)
  104. #define BM_SSP_CTRL1_RECV_TIMEOUT_IRQ (1 << 17)
  105. #define BM_SSP_CTRL1_RECV_TIMEOUT_IRQ_EN (1 << 16)
  106. #define BM_SSP_CTRL1_FIFO_OVERRUN_IRQ (1 << 15)
  107. #define BM_SSP_CTRL1_FIFO_OVERRUN_IRQ_EN (1 << 14)
  108. #define BM_SSP_CTRL1_DMA_ENABLE (1 << 13)
  109. #define BM_SSP_CTRL1_POLARITY (1 << 9)
  110. #define BP_SSP_CTRL1_WORD_LENGTH (4)
  111. #define BM_SSP_CTRL1_WORD_LENGTH (0xf << 4)
  112. #define BP_SSP_CTRL1_SSP_MODE (0)
  113. #define BM_SSP_CTRL1_SSP_MODE (0xf)
  114. #define HW_SSP_SDRESP0(h) (ssp_is_old(h) ? 0x080 : 0x0a0)
  115. #define HW_SSP_SDRESP1(h) (ssp_is_old(h) ? 0x090 : 0x0b0)
  116. #define HW_SSP_SDRESP2(h) (ssp_is_old(h) ? 0x0a0 : 0x0c0)
  117. #define HW_SSP_SDRESP3(h) (ssp_is_old(h) ? 0x0b0 : 0x0d0)
  118. #define HW_SSP_STATUS(h) (ssp_is_old(h) ? 0x0c0 : 0x100)
  119. #define BM_SSP_STATUS_CARD_DETECT (1 << 28)
  120. #define BM_SSP_STATUS_SDIO_IRQ (1 << 17)
  121. #define BF_SSP(value, field) (((value) << BP_SSP_##field) & BM_SSP_##field)
  122. #define MXS_MMC_IRQ_BITS (BM_SSP_CTRL1_SDIO_IRQ | \
  123. BM_SSP_CTRL1_RESP_ERR_IRQ | \
  124. BM_SSP_CTRL1_RESP_TIMEOUT_IRQ | \
  125. BM_SSP_CTRL1_DATA_TIMEOUT_IRQ | \
  126. BM_SSP_CTRL1_DATA_CRC_IRQ | \
  127. BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ | \
  128. BM_SSP_CTRL1_RECV_TIMEOUT_IRQ | \
  129. BM_SSP_CTRL1_FIFO_OVERRUN_IRQ)
  130. #define SSP_PIO_NUM 3
  131. enum mxs_mmc_id {
  132. IMX23_MMC,
  133. IMX28_MMC,
  134. };
  135. struct mxs_mmc_host {
  136. struct mmc_host *mmc;
  137. struct mmc_request *mrq;
  138. struct mmc_command *cmd;
  139. struct mmc_data *data;
  140. void __iomem *base;
  141. int dma_channel;
  142. struct clk *clk;
  143. unsigned int clk_rate;
  144. struct dma_chan *dmach;
  145. struct mxs_dma_data dma_data;
  146. unsigned int dma_dir;
  147. enum dma_transfer_direction slave_dirn;
  148. u32 ssp_pio_words[SSP_PIO_NUM];
  149. enum mxs_mmc_id devid;
  150. unsigned char bus_width;
  151. spinlock_t lock;
  152. int sdio_irq_en;
  153. int wp_gpio;
  154. bool wp_inverted;
  155. };
  156. static int mxs_mmc_get_ro(struct mmc_host *mmc)
  157. {
  158. struct mxs_mmc_host *host = mmc_priv(mmc);
  159. int ret;
  160. if (!gpio_is_valid(host->wp_gpio))
  161. return -EINVAL;
  162. ret = gpio_get_value(host->wp_gpio);
  163. if (host->wp_inverted)
  164. ret = !ret;
  165. return ret;
  166. }
  167. static int mxs_mmc_get_cd(struct mmc_host *mmc)
  168. {
  169. struct mxs_mmc_host *host = mmc_priv(mmc);
  170. return !(readl(host->base + HW_SSP_STATUS(host)) &
  171. BM_SSP_STATUS_CARD_DETECT);
  172. }
  173. static void mxs_mmc_reset(struct mxs_mmc_host *host)
  174. {
  175. u32 ctrl0, ctrl1;
  176. stmp_reset_block(host->base);
  177. ctrl0 = BM_SSP_CTRL0_IGNORE_CRC;
  178. ctrl1 = BF_SSP(0x3, CTRL1_SSP_MODE) |
  179. BF_SSP(0x7, CTRL1_WORD_LENGTH) |
  180. BM_SSP_CTRL1_DMA_ENABLE |
  181. BM_SSP_CTRL1_POLARITY |
  182. BM_SSP_CTRL1_RECV_TIMEOUT_IRQ_EN |
  183. BM_SSP_CTRL1_DATA_CRC_IRQ_EN |
  184. BM_SSP_CTRL1_DATA_TIMEOUT_IRQ_EN |
  185. BM_SSP_CTRL1_RESP_TIMEOUT_IRQ_EN |
  186. BM_SSP_CTRL1_RESP_ERR_IRQ_EN;
  187. writel(BF_SSP(0xffff, TIMING_TIMEOUT) |
  188. BF_SSP(2, TIMING_CLOCK_DIVIDE) |
  189. BF_SSP(0, TIMING_CLOCK_RATE),
  190. host->base + HW_SSP_TIMING(host));
  191. if (host->sdio_irq_en) {
  192. ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
  193. ctrl1 |= BM_SSP_CTRL1_SDIO_IRQ_EN;
  194. }
  195. writel(ctrl0, host->base + HW_SSP_CTRL0);
  196. writel(ctrl1, host->base + HW_SSP_CTRL1(host));
  197. }
  198. static void mxs_mmc_start_cmd(struct mxs_mmc_host *host,
  199. struct mmc_command *cmd);
  200. static void mxs_mmc_request_done(struct mxs_mmc_host *host)
  201. {
  202. struct mmc_command *cmd = host->cmd;
  203. struct mmc_data *data = host->data;
  204. struct mmc_request *mrq = host->mrq;
  205. if (mmc_resp_type(cmd) & MMC_RSP_PRESENT) {
  206. if (mmc_resp_type(cmd) & MMC_RSP_136) {
  207. cmd->resp[3] = readl(host->base + HW_SSP_SDRESP0(host));
  208. cmd->resp[2] = readl(host->base + HW_SSP_SDRESP1(host));
  209. cmd->resp[1] = readl(host->base + HW_SSP_SDRESP2(host));
  210. cmd->resp[0] = readl(host->base + HW_SSP_SDRESP3(host));
  211. } else {
  212. cmd->resp[0] = readl(host->base + HW_SSP_SDRESP0(host));
  213. }
  214. }
  215. if (data) {
  216. dma_unmap_sg(mmc_dev(host->mmc), data->sg,
  217. data->sg_len, host->dma_dir);
  218. /*
  219. * If there was an error on any block, we mark all
  220. * data blocks as being in error.
  221. */
  222. if (!data->error)
  223. data->bytes_xfered = data->blocks * data->blksz;
  224. else
  225. data->bytes_xfered = 0;
  226. host->data = NULL;
  227. if (mrq->stop) {
  228. mxs_mmc_start_cmd(host, mrq->stop);
  229. return;
  230. }
  231. }
  232. host->mrq = NULL;
  233. mmc_request_done(host->mmc, mrq);
  234. }
  235. static void mxs_mmc_dma_irq_callback(void *param)
  236. {
  237. struct mxs_mmc_host *host = param;
  238. mxs_mmc_request_done(host);
  239. }
  240. static irqreturn_t mxs_mmc_irq_handler(int irq, void *dev_id)
  241. {
  242. struct mxs_mmc_host *host = dev_id;
  243. struct mmc_command *cmd = host->cmd;
  244. struct mmc_data *data = host->data;
  245. u32 stat;
  246. spin_lock(&host->lock);
  247. stat = readl(host->base + HW_SSP_CTRL1(host));
  248. writel(stat & MXS_MMC_IRQ_BITS,
  249. host->base + HW_SSP_CTRL1(host) + STMP_OFFSET_REG_CLR);
  250. if ((stat & BM_SSP_CTRL1_SDIO_IRQ) && (stat & BM_SSP_CTRL1_SDIO_IRQ_EN))
  251. mmc_signal_sdio_irq(host->mmc);
  252. spin_unlock(&host->lock);
  253. if (stat & BM_SSP_CTRL1_RESP_TIMEOUT_IRQ)
  254. cmd->error = -ETIMEDOUT;
  255. else if (stat & BM_SSP_CTRL1_RESP_ERR_IRQ)
  256. cmd->error = -EIO;
  257. if (data) {
  258. if (stat & (BM_SSP_CTRL1_DATA_TIMEOUT_IRQ |
  259. BM_SSP_CTRL1_RECV_TIMEOUT_IRQ))
  260. data->error = -ETIMEDOUT;
  261. else if (stat & BM_SSP_CTRL1_DATA_CRC_IRQ)
  262. data->error = -EILSEQ;
  263. else if (stat & (BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ |
  264. BM_SSP_CTRL1_FIFO_OVERRUN_IRQ))
  265. data->error = -EIO;
  266. }
  267. return IRQ_HANDLED;
  268. }
  269. static struct dma_async_tx_descriptor *mxs_mmc_prep_dma(
  270. struct mxs_mmc_host *host, unsigned long flags)
  271. {
  272. struct dma_async_tx_descriptor *desc;
  273. struct mmc_data *data = host->data;
  274. struct scatterlist * sgl;
  275. unsigned int sg_len;
  276. if (data) {
  277. /* data */
  278. dma_map_sg(mmc_dev(host->mmc), data->sg,
  279. data->sg_len, host->dma_dir);
  280. sgl = data->sg;
  281. sg_len = data->sg_len;
  282. } else {
  283. /* pio */
  284. sgl = (struct scatterlist *) host->ssp_pio_words;
  285. sg_len = SSP_PIO_NUM;
  286. }
  287. desc = dmaengine_prep_slave_sg(host->dmach,
  288. sgl, sg_len, host->slave_dirn, flags);
  289. if (desc) {
  290. desc->callback = mxs_mmc_dma_irq_callback;
  291. desc->callback_param = host;
  292. } else {
  293. if (data)
  294. dma_unmap_sg(mmc_dev(host->mmc), data->sg,
  295. data->sg_len, host->dma_dir);
  296. }
  297. return desc;
  298. }
  299. static void mxs_mmc_bc(struct mxs_mmc_host *host)
  300. {
  301. struct mmc_command *cmd = host->cmd;
  302. struct dma_async_tx_descriptor *desc;
  303. u32 ctrl0, cmd0, cmd1;
  304. ctrl0 = BM_SSP_CTRL0_ENABLE | BM_SSP_CTRL0_IGNORE_CRC;
  305. cmd0 = BF_SSP(cmd->opcode, CMD0_CMD) | BM_SSP_CMD0_APPEND_8CYC;
  306. cmd1 = cmd->arg;
  307. if (host->sdio_irq_en) {
  308. ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
  309. cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN;
  310. }
  311. host->ssp_pio_words[0] = ctrl0;
  312. host->ssp_pio_words[1] = cmd0;
  313. host->ssp_pio_words[2] = cmd1;
  314. host->dma_dir = DMA_NONE;
  315. host->slave_dirn = DMA_TRANS_NONE;
  316. desc = mxs_mmc_prep_dma(host, DMA_CTRL_ACK);
  317. if (!desc)
  318. goto out;
  319. dmaengine_submit(desc);
  320. dma_async_issue_pending(host->dmach);
  321. return;
  322. out:
  323. dev_warn(mmc_dev(host->mmc),
  324. "%s: failed to prep dma\n", __func__);
  325. }
  326. static void mxs_mmc_ac(struct mxs_mmc_host *host)
  327. {
  328. struct mmc_command *cmd = host->cmd;
  329. struct dma_async_tx_descriptor *desc;
  330. u32 ignore_crc, get_resp, long_resp;
  331. u32 ctrl0, cmd0, cmd1;
  332. ignore_crc = (mmc_resp_type(cmd) & MMC_RSP_CRC) ?
  333. 0 : BM_SSP_CTRL0_IGNORE_CRC;
  334. get_resp = (mmc_resp_type(cmd) & MMC_RSP_PRESENT) ?
  335. BM_SSP_CTRL0_GET_RESP : 0;
  336. long_resp = (mmc_resp_type(cmd) & MMC_RSP_136) ?
  337. BM_SSP_CTRL0_LONG_RESP : 0;
  338. ctrl0 = BM_SSP_CTRL0_ENABLE | ignore_crc | get_resp | long_resp;
  339. cmd0 = BF_SSP(cmd->opcode, CMD0_CMD);
  340. cmd1 = cmd->arg;
  341. if (host->sdio_irq_en) {
  342. ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
  343. cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN;
  344. }
  345. host->ssp_pio_words[0] = ctrl0;
  346. host->ssp_pio_words[1] = cmd0;
  347. host->ssp_pio_words[2] = cmd1;
  348. host->dma_dir = DMA_NONE;
  349. host->slave_dirn = DMA_TRANS_NONE;
  350. desc = mxs_mmc_prep_dma(host, DMA_CTRL_ACK);
  351. if (!desc)
  352. goto out;
  353. dmaengine_submit(desc);
  354. dma_async_issue_pending(host->dmach);
  355. return;
  356. out:
  357. dev_warn(mmc_dev(host->mmc),
  358. "%s: failed to prep dma\n", __func__);
  359. }
  360. static unsigned short mxs_ns_to_ssp_ticks(unsigned clock_rate, unsigned ns)
  361. {
  362. const unsigned int ssp_timeout_mul = 4096;
  363. /*
  364. * Calculate ticks in ms since ns are large numbers
  365. * and might overflow
  366. */
  367. const unsigned int clock_per_ms = clock_rate / 1000;
  368. const unsigned int ms = ns / 1000;
  369. const unsigned int ticks = ms * clock_per_ms;
  370. const unsigned int ssp_ticks = ticks / ssp_timeout_mul;
  371. WARN_ON(ssp_ticks == 0);
  372. return ssp_ticks;
  373. }
  374. static void mxs_mmc_adtc(struct mxs_mmc_host *host)
  375. {
  376. struct mmc_command *cmd = host->cmd;
  377. struct mmc_data *data = cmd->data;
  378. struct dma_async_tx_descriptor *desc;
  379. struct scatterlist *sgl = data->sg, *sg;
  380. unsigned int sg_len = data->sg_len;
  381. int i;
  382. unsigned short dma_data_dir, timeout;
  383. enum dma_transfer_direction slave_dirn;
  384. unsigned int data_size = 0, log2_blksz;
  385. unsigned int blocks = data->blocks;
  386. u32 ignore_crc, get_resp, long_resp, read;
  387. u32 ctrl0, cmd0, cmd1, val;
  388. ignore_crc = (mmc_resp_type(cmd) & MMC_RSP_CRC) ?
  389. 0 : BM_SSP_CTRL0_IGNORE_CRC;
  390. get_resp = (mmc_resp_type(cmd) & MMC_RSP_PRESENT) ?
  391. BM_SSP_CTRL0_GET_RESP : 0;
  392. long_resp = (mmc_resp_type(cmd) & MMC_RSP_136) ?
  393. BM_SSP_CTRL0_LONG_RESP : 0;
  394. if (data->flags & MMC_DATA_WRITE) {
  395. dma_data_dir = DMA_TO_DEVICE;
  396. slave_dirn = DMA_MEM_TO_DEV;
  397. read = 0;
  398. } else {
  399. dma_data_dir = DMA_FROM_DEVICE;
  400. slave_dirn = DMA_DEV_TO_MEM;
  401. read = BM_SSP_CTRL0_READ;
  402. }
  403. ctrl0 = BF_SSP(host->bus_width, CTRL0_BUS_WIDTH) |
  404. ignore_crc | get_resp | long_resp |
  405. BM_SSP_CTRL0_DATA_XFER | read |
  406. BM_SSP_CTRL0_WAIT_FOR_IRQ |
  407. BM_SSP_CTRL0_ENABLE;
  408. cmd0 = BF_SSP(cmd->opcode, CMD0_CMD);
  409. /* get logarithm to base 2 of block size for setting register */
  410. log2_blksz = ilog2(data->blksz);
  411. /*
  412. * take special care of the case that data size from data->sg
  413. * is not equal to blocks x blksz
  414. */
  415. for_each_sg(sgl, sg, sg_len, i)
  416. data_size += sg->length;
  417. if (data_size != data->blocks * data->blksz)
  418. blocks = 1;
  419. /* xfer count, block size and count need to be set differently */
  420. if (ssp_is_old(host)) {
  421. ctrl0 |= BF_SSP(data_size, CTRL0_XFER_COUNT);
  422. cmd0 |= BF_SSP(log2_blksz, CMD0_BLOCK_SIZE) |
  423. BF_SSP(blocks - 1, CMD0_BLOCK_COUNT);
  424. } else {
  425. writel(data_size, host->base + HW_SSP_XFER_SIZE);
  426. writel(BF_SSP(log2_blksz, BLOCK_SIZE_BLOCK_SIZE) |
  427. BF_SSP(blocks - 1, BLOCK_SIZE_BLOCK_COUNT),
  428. host->base + HW_SSP_BLOCK_SIZE);
  429. }
  430. if ((cmd->opcode == MMC_STOP_TRANSMISSION) ||
  431. (cmd->opcode == SD_IO_RW_EXTENDED))
  432. cmd0 |= BM_SSP_CMD0_APPEND_8CYC;
  433. cmd1 = cmd->arg;
  434. if (host->sdio_irq_en) {
  435. ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
  436. cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN;
  437. }
  438. /* set the timeout count */
  439. timeout = mxs_ns_to_ssp_ticks(host->clk_rate, data->timeout_ns);
  440. val = readl(host->base + HW_SSP_TIMING(host));
  441. val &= ~(BM_SSP_TIMING_TIMEOUT);
  442. val |= BF_SSP(timeout, TIMING_TIMEOUT);
  443. writel(val, host->base + HW_SSP_TIMING(host));
  444. /* pio */
  445. host->ssp_pio_words[0] = ctrl0;
  446. host->ssp_pio_words[1] = cmd0;
  447. host->ssp_pio_words[2] = cmd1;
  448. host->dma_dir = DMA_NONE;
  449. host->slave_dirn = DMA_TRANS_NONE;
  450. desc = mxs_mmc_prep_dma(host, 0);
  451. if (!desc)
  452. goto out;
  453. /* append data sg */
  454. WARN_ON(host->data != NULL);
  455. host->data = data;
  456. host->dma_dir = dma_data_dir;
  457. host->slave_dirn = slave_dirn;
  458. desc = mxs_mmc_prep_dma(host, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  459. if (!desc)
  460. goto out;
  461. dmaengine_submit(desc);
  462. dma_async_issue_pending(host->dmach);
  463. return;
  464. out:
  465. dev_warn(mmc_dev(host->mmc),
  466. "%s: failed to prep dma\n", __func__);
  467. }
  468. static void mxs_mmc_start_cmd(struct mxs_mmc_host *host,
  469. struct mmc_command *cmd)
  470. {
  471. host->cmd = cmd;
  472. switch (mmc_cmd_type(cmd)) {
  473. case MMC_CMD_BC:
  474. mxs_mmc_bc(host);
  475. break;
  476. case MMC_CMD_BCR:
  477. mxs_mmc_ac(host);
  478. break;
  479. case MMC_CMD_AC:
  480. mxs_mmc_ac(host);
  481. break;
  482. case MMC_CMD_ADTC:
  483. mxs_mmc_adtc(host);
  484. break;
  485. default:
  486. dev_warn(mmc_dev(host->mmc),
  487. "%s: unknown MMC command\n", __func__);
  488. break;
  489. }
  490. }
  491. static void mxs_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
  492. {
  493. struct mxs_mmc_host *host = mmc_priv(mmc);
  494. WARN_ON(host->mrq != NULL);
  495. host->mrq = mrq;
  496. mxs_mmc_start_cmd(host, mrq->cmd);
  497. }
  498. static void mxs_mmc_set_clk_rate(struct mxs_mmc_host *host, unsigned int rate)
  499. {
  500. unsigned int ssp_clk, ssp_sck;
  501. u32 clock_divide, clock_rate;
  502. u32 val;
  503. ssp_clk = clk_get_rate(host->clk);
  504. for (clock_divide = 2; clock_divide <= 254; clock_divide += 2) {
  505. clock_rate = DIV_ROUND_UP(ssp_clk, rate * clock_divide);
  506. clock_rate = (clock_rate > 0) ? clock_rate - 1 : 0;
  507. if (clock_rate <= 255)
  508. break;
  509. }
  510. if (clock_divide > 254) {
  511. dev_err(mmc_dev(host->mmc),
  512. "%s: cannot set clock to %d\n", __func__, rate);
  513. return;
  514. }
  515. ssp_sck = ssp_clk / clock_divide / (1 + clock_rate);
  516. val = readl(host->base + HW_SSP_TIMING(host));
  517. val &= ~(BM_SSP_TIMING_CLOCK_DIVIDE | BM_SSP_TIMING_CLOCK_RATE);
  518. val |= BF_SSP(clock_divide, TIMING_CLOCK_DIVIDE);
  519. val |= BF_SSP(clock_rate, TIMING_CLOCK_RATE);
  520. writel(val, host->base + HW_SSP_TIMING(host));
  521. host->clk_rate = ssp_sck;
  522. dev_dbg(mmc_dev(host->mmc),
  523. "%s: clock_divide %d, clock_rate %d, ssp_clk %d, rate_actual %d, rate_requested %d\n",
  524. __func__, clock_divide, clock_rate, ssp_clk, ssp_sck, rate);
  525. }
  526. static void mxs_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  527. {
  528. struct mxs_mmc_host *host = mmc_priv(mmc);
  529. if (ios->bus_width == MMC_BUS_WIDTH_8)
  530. host->bus_width = 2;
  531. else if (ios->bus_width == MMC_BUS_WIDTH_4)
  532. host->bus_width = 1;
  533. else
  534. host->bus_width = 0;
  535. if (ios->clock)
  536. mxs_mmc_set_clk_rate(host, ios->clock);
  537. }
  538. static void mxs_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
  539. {
  540. struct mxs_mmc_host *host = mmc_priv(mmc);
  541. unsigned long flags;
  542. spin_lock_irqsave(&host->lock, flags);
  543. host->sdio_irq_en = enable;
  544. if (enable) {
  545. writel(BM_SSP_CTRL0_SDIO_IRQ_CHECK,
  546. host->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  547. writel(BM_SSP_CTRL1_SDIO_IRQ_EN,
  548. host->base + HW_SSP_CTRL1(host) + STMP_OFFSET_REG_SET);
  549. if (readl(host->base + HW_SSP_STATUS(host)) &
  550. BM_SSP_STATUS_SDIO_IRQ)
  551. mmc_signal_sdio_irq(host->mmc);
  552. } else {
  553. writel(BM_SSP_CTRL0_SDIO_IRQ_CHECK,
  554. host->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  555. writel(BM_SSP_CTRL1_SDIO_IRQ_EN,
  556. host->base + HW_SSP_CTRL1(host) + STMP_OFFSET_REG_CLR);
  557. }
  558. spin_unlock_irqrestore(&host->lock, flags);
  559. }
  560. static const struct mmc_host_ops mxs_mmc_ops = {
  561. .request = mxs_mmc_request,
  562. .get_ro = mxs_mmc_get_ro,
  563. .get_cd = mxs_mmc_get_cd,
  564. .set_ios = mxs_mmc_set_ios,
  565. .enable_sdio_irq = mxs_mmc_enable_sdio_irq,
  566. };
  567. static bool mxs_mmc_dma_filter(struct dma_chan *chan, void *param)
  568. {
  569. struct mxs_mmc_host *host = param;
  570. if (!mxs_dma_is_apbh(chan))
  571. return false;
  572. if (chan->chan_id != host->dma_channel)
  573. return false;
  574. chan->private = &host->dma_data;
  575. return true;
  576. }
  577. static struct platform_device_id mxs_mmc_ids[] = {
  578. {
  579. .name = "imx23-mmc",
  580. .driver_data = IMX23_MMC,
  581. }, {
  582. .name = "imx28-mmc",
  583. .driver_data = IMX28_MMC,
  584. }, {
  585. /* sentinel */
  586. }
  587. };
  588. MODULE_DEVICE_TABLE(platform, mxs_mmc_ids);
  589. static const struct of_device_id mxs_mmc_dt_ids[] = {
  590. { .compatible = "fsl,imx23-mmc", .data = (void *) IMX23_MMC, },
  591. { .compatible = "fsl,imx28-mmc", .data = (void *) IMX28_MMC, },
  592. { /* sentinel */ }
  593. };
  594. MODULE_DEVICE_TABLE(of, mxs_mmc_dt_ids);
  595. static int mxs_mmc_probe(struct platform_device *pdev)
  596. {
  597. const struct of_device_id *of_id =
  598. of_match_device(mxs_mmc_dt_ids, &pdev->dev);
  599. struct device_node *np = pdev->dev.of_node;
  600. struct mxs_mmc_host *host;
  601. struct mmc_host *mmc;
  602. struct resource *iores, *dmares;
  603. struct mxs_mmc_platform_data *pdata;
  604. struct pinctrl *pinctrl;
  605. int ret = 0, irq_err, irq_dma;
  606. dma_cap_mask_t mask;
  607. struct regulator *reg_vmmc;
  608. enum of_gpio_flags flags;
  609. iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  610. dmares = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  611. irq_err = platform_get_irq(pdev, 0);
  612. irq_dma = platform_get_irq(pdev, 1);
  613. if (!iores || irq_err < 0 || irq_dma < 0)
  614. return -EINVAL;
  615. mmc = mmc_alloc_host(sizeof(struct mxs_mmc_host), &pdev->dev);
  616. if (!mmc)
  617. return -ENOMEM;
  618. host = mmc_priv(mmc);
  619. host->base = devm_request_and_ioremap(&pdev->dev, iores);
  620. if (!host->base) {
  621. ret = -EADDRNOTAVAIL;
  622. goto out_mmc_free;
  623. }
  624. if (np) {
  625. host->devid = (enum mxs_mmc_id) of_id->data;
  626. /*
  627. * TODO: This is a temporary solution and should be changed
  628. * to use generic DMA binding later when the helpers get in.
  629. */
  630. ret = of_property_read_u32(np, "fsl,ssp-dma-channel",
  631. &host->dma_channel);
  632. if (ret) {
  633. dev_err(mmc_dev(host->mmc),
  634. "failed to get dma channel\n");
  635. goto out_mmc_free;
  636. }
  637. } else {
  638. host->devid = pdev->id_entry->driver_data;
  639. host->dma_channel = dmares->start;
  640. }
  641. host->mmc = mmc;
  642. host->sdio_irq_en = 0;
  643. reg_vmmc = devm_regulator_get(&pdev->dev, "vmmc");
  644. if (!IS_ERR(reg_vmmc)) {
  645. ret = regulator_enable(reg_vmmc);
  646. if (ret) {
  647. dev_err(&pdev->dev,
  648. "Failed to enable vmmc regulator: %d\n", ret);
  649. goto out_mmc_free;
  650. }
  651. }
  652. pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
  653. if (IS_ERR(pinctrl)) {
  654. ret = PTR_ERR(pinctrl);
  655. goto out_mmc_free;
  656. }
  657. host->clk = clk_get(&pdev->dev, NULL);
  658. if (IS_ERR(host->clk)) {
  659. ret = PTR_ERR(host->clk);
  660. goto out_mmc_free;
  661. }
  662. clk_prepare_enable(host->clk);
  663. mxs_mmc_reset(host);
  664. dma_cap_zero(mask);
  665. dma_cap_set(DMA_SLAVE, mask);
  666. host->dma_data.chan_irq = irq_dma;
  667. host->dmach = dma_request_channel(mask, mxs_mmc_dma_filter, host);
  668. if (!host->dmach) {
  669. dev_err(mmc_dev(host->mmc),
  670. "%s: failed to request dma\n", __func__);
  671. goto out_clk_put;
  672. }
  673. /* set mmc core parameters */
  674. mmc->ops = &mxs_mmc_ops;
  675. mmc->caps = MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED |
  676. MMC_CAP_SDIO_IRQ | MMC_CAP_NEEDS_POLL;
  677. pdata = mmc_dev(host->mmc)->platform_data;
  678. if (!pdata) {
  679. u32 bus_width = 0;
  680. of_property_read_u32(np, "bus-width", &bus_width);
  681. if (bus_width == 4)
  682. mmc->caps |= MMC_CAP_4_BIT_DATA;
  683. else if (bus_width == 8)
  684. mmc->caps |= MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA;
  685. host->wp_gpio = of_get_named_gpio_flags(np, "wp-gpios", 0,
  686. &flags);
  687. if (flags & OF_GPIO_ACTIVE_LOW)
  688. host->wp_inverted = 1;
  689. } else {
  690. if (pdata->flags & SLOTF_8_BIT_CAPABLE)
  691. mmc->caps |= MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA;
  692. if (pdata->flags & SLOTF_4_BIT_CAPABLE)
  693. mmc->caps |= MMC_CAP_4_BIT_DATA;
  694. host->wp_gpio = pdata->wp_gpio;
  695. }
  696. mmc->f_min = 400000;
  697. mmc->f_max = 288000000;
  698. mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
  699. mmc->max_segs = 52;
  700. mmc->max_blk_size = 1 << 0xf;
  701. mmc->max_blk_count = (ssp_is_old(host)) ? 0xff : 0xffffff;
  702. mmc->max_req_size = (ssp_is_old(host)) ? 0xffff : 0xffffffff;
  703. mmc->max_seg_size = dma_get_max_seg_size(host->dmach->device->dev);
  704. platform_set_drvdata(pdev, mmc);
  705. ret = devm_request_irq(&pdev->dev, irq_err, mxs_mmc_irq_handler, 0,
  706. DRIVER_NAME, host);
  707. if (ret)
  708. goto out_free_dma;
  709. spin_lock_init(&host->lock);
  710. ret = mmc_add_host(mmc);
  711. if (ret)
  712. goto out_free_dma;
  713. dev_info(mmc_dev(host->mmc), "initialized\n");
  714. return 0;
  715. out_free_dma:
  716. if (host->dmach)
  717. dma_release_channel(host->dmach);
  718. out_clk_put:
  719. clk_disable_unprepare(host->clk);
  720. clk_put(host->clk);
  721. out_mmc_free:
  722. mmc_free_host(mmc);
  723. return ret;
  724. }
  725. static int mxs_mmc_remove(struct platform_device *pdev)
  726. {
  727. struct mmc_host *mmc = platform_get_drvdata(pdev);
  728. struct mxs_mmc_host *host = mmc_priv(mmc);
  729. mmc_remove_host(mmc);
  730. platform_set_drvdata(pdev, NULL);
  731. if (host->dmach)
  732. dma_release_channel(host->dmach);
  733. clk_disable_unprepare(host->clk);
  734. clk_put(host->clk);
  735. mmc_free_host(mmc);
  736. return 0;
  737. }
  738. #ifdef CONFIG_PM
  739. static int mxs_mmc_suspend(struct device *dev)
  740. {
  741. struct mmc_host *mmc = dev_get_drvdata(dev);
  742. struct mxs_mmc_host *host = mmc_priv(mmc);
  743. int ret = 0;
  744. ret = mmc_suspend_host(mmc);
  745. clk_disable_unprepare(host->clk);
  746. return ret;
  747. }
  748. static int mxs_mmc_resume(struct device *dev)
  749. {
  750. struct mmc_host *mmc = dev_get_drvdata(dev);
  751. struct mxs_mmc_host *host = mmc_priv(mmc);
  752. int ret = 0;
  753. clk_prepare_enable(host->clk);
  754. ret = mmc_resume_host(mmc);
  755. return ret;
  756. }
  757. static const struct dev_pm_ops mxs_mmc_pm_ops = {
  758. .suspend = mxs_mmc_suspend,
  759. .resume = mxs_mmc_resume,
  760. };
  761. #endif
  762. static struct platform_driver mxs_mmc_driver = {
  763. .probe = mxs_mmc_probe,
  764. .remove = mxs_mmc_remove,
  765. .id_table = mxs_mmc_ids,
  766. .driver = {
  767. .name = DRIVER_NAME,
  768. .owner = THIS_MODULE,
  769. #ifdef CONFIG_PM
  770. .pm = &mxs_mmc_pm_ops,
  771. #endif
  772. .of_match_table = mxs_mmc_dt_ids,
  773. },
  774. };
  775. module_platform_driver(mxs_mmc_driver);
  776. MODULE_DESCRIPTION("FREESCALE MXS MMC peripheral");
  777. MODULE_AUTHOR("Freescale Semiconductor");
  778. MODULE_LICENSE("GPL");