m88rs2000.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919
  1. /*
  2. Driver for M88RS2000 demodulator and tuner
  3. Copyright (C) 2012 Malcolm Priestley (tvboxspy@gmail.com)
  4. Beta Driver
  5. Include various calculation code from DS3000 driver.
  6. Copyright (C) 2009 Konstantin Dimitrov.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/device.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/string.h>
  24. #include <linux/slab.h>
  25. #include <linux/types.h>
  26. #include "dvb_frontend.h"
  27. #include "m88rs2000.h"
  28. struct m88rs2000_state {
  29. struct i2c_adapter *i2c;
  30. const struct m88rs2000_config *config;
  31. struct dvb_frontend frontend;
  32. u8 no_lock_count;
  33. u32 tuner_frequency;
  34. u32 symbol_rate;
  35. fe_code_rate_t fec_inner;
  36. u8 tuner_level;
  37. int errmode;
  38. };
  39. static int m88rs2000_debug;
  40. module_param_named(debug, m88rs2000_debug, int, 0644);
  41. MODULE_PARM_DESC(debug, "set debugging level (1=info (or-able)).");
  42. #define dprintk(level, args...) do { \
  43. if (level & m88rs2000_debug) \
  44. printk(KERN_DEBUG "m88rs2000-fe: " args); \
  45. } while (0)
  46. #define deb_info(args...) dprintk(0x01, args)
  47. #define info(format, arg...) \
  48. printk(KERN_INFO "m88rs2000-fe: " format "\n" , ## arg)
  49. static int m88rs2000_writereg(struct m88rs2000_state *state, u8 tuner,
  50. u8 reg, u8 data)
  51. {
  52. int ret;
  53. u8 addr = (tuner == 0) ? state->config->tuner_addr :
  54. state->config->demod_addr;
  55. u8 buf[] = { reg, data };
  56. struct i2c_msg msg = {
  57. .addr = addr,
  58. .flags = 0,
  59. .buf = buf,
  60. .len = 2
  61. };
  62. ret = i2c_transfer(state->i2c, &msg, 1);
  63. if (ret != 1)
  64. deb_info("%s: writereg error (reg == 0x%02x, val == 0x%02x, "
  65. "ret == %i)\n", __func__, reg, data, ret);
  66. return (ret != 1) ? -EREMOTEIO : 0;
  67. }
  68. static int m88rs2000_demod_write(struct m88rs2000_state *state, u8 reg, u8 data)
  69. {
  70. return m88rs2000_writereg(state, 1, reg, data);
  71. }
  72. static int m88rs2000_tuner_write(struct m88rs2000_state *state, u8 reg, u8 data)
  73. {
  74. m88rs2000_demod_write(state, 0x81, 0x84);
  75. udelay(10);
  76. return m88rs2000_writereg(state, 0, reg, data);
  77. }
  78. static int m88rs2000_write(struct dvb_frontend *fe, const u8 buf[], int len)
  79. {
  80. struct m88rs2000_state *state = fe->demodulator_priv;
  81. if (len != 2)
  82. return -EINVAL;
  83. return m88rs2000_writereg(state, 1, buf[0], buf[1]);
  84. }
  85. static u8 m88rs2000_readreg(struct m88rs2000_state *state, u8 tuner, u8 reg)
  86. {
  87. int ret;
  88. u8 b0[] = { reg };
  89. u8 b1[] = { 0 };
  90. u8 addr = (tuner == 0) ? state->config->tuner_addr :
  91. state->config->demod_addr;
  92. struct i2c_msg msg[] = {
  93. {
  94. .addr = addr,
  95. .flags = 0,
  96. .buf = b0,
  97. .len = 1
  98. }, {
  99. .addr = addr,
  100. .flags = I2C_M_RD,
  101. .buf = b1,
  102. .len = 1
  103. }
  104. };
  105. ret = i2c_transfer(state->i2c, msg, 2);
  106. if (ret != 2)
  107. deb_info("%s: readreg error (reg == 0x%02x, ret == %i)\n",
  108. __func__, reg, ret);
  109. return b1[0];
  110. }
  111. static u8 m88rs2000_demod_read(struct m88rs2000_state *state, u8 reg)
  112. {
  113. return m88rs2000_readreg(state, 1, reg);
  114. }
  115. static u8 m88rs2000_tuner_read(struct m88rs2000_state *state, u8 reg)
  116. {
  117. m88rs2000_demod_write(state, 0x81, 0x85);
  118. udelay(10);
  119. return m88rs2000_readreg(state, 0, reg);
  120. }
  121. static int m88rs2000_set_symbolrate(struct dvb_frontend *fe, u32 srate)
  122. {
  123. struct m88rs2000_state *state = fe->demodulator_priv;
  124. int ret;
  125. u32 temp;
  126. u8 b[3];
  127. if ((srate < 1000000) || (srate > 45000000))
  128. return -EINVAL;
  129. temp = srate / 1000;
  130. temp *= 11831;
  131. temp /= 68;
  132. temp -= 3;
  133. b[0] = (u8) (temp >> 16) & 0xff;
  134. b[1] = (u8) (temp >> 8) & 0xff;
  135. b[2] = (u8) temp & 0xff;
  136. ret = m88rs2000_demod_write(state, 0x93, b[2]);
  137. ret |= m88rs2000_demod_write(state, 0x94, b[1]);
  138. ret |= m88rs2000_demod_write(state, 0x95, b[0]);
  139. deb_info("m88rs2000: m88rs2000_set_symbolrate\n");
  140. return ret;
  141. }
  142. static int m88rs2000_send_diseqc_msg(struct dvb_frontend *fe,
  143. struct dvb_diseqc_master_cmd *m)
  144. {
  145. struct m88rs2000_state *state = fe->demodulator_priv;
  146. int i;
  147. u8 reg;
  148. deb_info("%s\n", __func__);
  149. m88rs2000_demod_write(state, 0x9a, 0x30);
  150. reg = m88rs2000_demod_read(state, 0xb2);
  151. reg &= 0x3f;
  152. m88rs2000_demod_write(state, 0xb2, reg);
  153. for (i = 0; i < m->msg_len; i++)
  154. m88rs2000_demod_write(state, 0xb3 + i, m->msg[i]);
  155. reg = m88rs2000_demod_read(state, 0xb1);
  156. reg &= 0x87;
  157. reg |= ((m->msg_len - 1) << 3) | 0x07;
  158. reg &= 0x7f;
  159. m88rs2000_demod_write(state, 0xb1, reg);
  160. for (i = 0; i < 15; i++) {
  161. if ((m88rs2000_demod_read(state, 0xb1) & 0x40) == 0x0)
  162. break;
  163. msleep(20);
  164. }
  165. reg = m88rs2000_demod_read(state, 0xb1);
  166. if ((reg & 0x40) > 0x0) {
  167. reg &= 0x7f;
  168. reg |= 0x40;
  169. m88rs2000_demod_write(state, 0xb1, reg);
  170. }
  171. reg = m88rs2000_demod_read(state, 0xb2);
  172. reg &= 0x3f;
  173. reg |= 0x80;
  174. m88rs2000_demod_write(state, 0xb2, reg);
  175. m88rs2000_demod_write(state, 0x9a, 0xb0);
  176. return 0;
  177. }
  178. static int m88rs2000_send_diseqc_burst(struct dvb_frontend *fe,
  179. fe_sec_mini_cmd_t burst)
  180. {
  181. struct m88rs2000_state *state = fe->demodulator_priv;
  182. u8 reg0, reg1;
  183. deb_info("%s\n", __func__);
  184. m88rs2000_demod_write(state, 0x9a, 0x30);
  185. msleep(50);
  186. reg0 = m88rs2000_demod_read(state, 0xb1);
  187. reg1 = m88rs2000_demod_read(state, 0xb2);
  188. /* TODO complete this section */
  189. m88rs2000_demod_write(state, 0xb2, reg1);
  190. m88rs2000_demod_write(state, 0xb1, reg0);
  191. m88rs2000_demod_write(state, 0x9a, 0xb0);
  192. return 0;
  193. }
  194. static int m88rs2000_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
  195. {
  196. struct m88rs2000_state *state = fe->demodulator_priv;
  197. u8 reg0, reg1;
  198. m88rs2000_demod_write(state, 0x9a, 0x30);
  199. reg0 = m88rs2000_demod_read(state, 0xb1);
  200. reg1 = m88rs2000_demod_read(state, 0xb2);
  201. reg1 &= 0x3f;
  202. switch (tone) {
  203. case SEC_TONE_ON:
  204. reg0 |= 0x4;
  205. reg0 &= 0xbc;
  206. break;
  207. case SEC_TONE_OFF:
  208. reg1 |= 0x80;
  209. break;
  210. default:
  211. break;
  212. }
  213. m88rs2000_demod_write(state, 0xb2, reg1);
  214. m88rs2000_demod_write(state, 0xb1, reg0);
  215. m88rs2000_demod_write(state, 0x9a, 0xb0);
  216. return 0;
  217. }
  218. struct inittab {
  219. u8 cmd;
  220. u8 reg;
  221. u8 val;
  222. };
  223. struct inittab m88rs2000_setup[] = {
  224. {DEMOD_WRITE, 0x9a, 0x30},
  225. {DEMOD_WRITE, 0x00, 0x01},
  226. {WRITE_DELAY, 0x19, 0x00},
  227. {DEMOD_WRITE, 0x00, 0x00},
  228. {DEMOD_WRITE, 0x9a, 0xb0},
  229. {DEMOD_WRITE, 0x81, 0xc1},
  230. {TUNER_WRITE, 0x42, 0x73},
  231. {TUNER_WRITE, 0x05, 0x07},
  232. {TUNER_WRITE, 0x20, 0x27},
  233. {TUNER_WRITE, 0x07, 0x02},
  234. {TUNER_WRITE, 0x11, 0xff},
  235. {TUNER_WRITE, 0x60, 0xf9},
  236. {TUNER_WRITE, 0x08, 0x01},
  237. {TUNER_WRITE, 0x00, 0x41},
  238. {DEMOD_WRITE, 0x81, 0x81},
  239. {DEMOD_WRITE, 0x86, 0xc6},
  240. {DEMOD_WRITE, 0x9a, 0x30},
  241. {DEMOD_WRITE, 0xf0, 0x22},
  242. {DEMOD_WRITE, 0xf1, 0xbf},
  243. {DEMOD_WRITE, 0xb0, 0x45},
  244. {DEMOD_WRITE, 0xb2, 0x01}, /* set voltage pin always set 1*/
  245. {DEMOD_WRITE, 0x9a, 0xb0},
  246. {0xff, 0xaa, 0xff}
  247. };
  248. struct inittab m88rs2000_shutdown[] = {
  249. {DEMOD_WRITE, 0x9a, 0x30},
  250. {DEMOD_WRITE, 0xb0, 0x00},
  251. {DEMOD_WRITE, 0xf1, 0x89},
  252. {DEMOD_WRITE, 0x00, 0x01},
  253. {DEMOD_WRITE, 0x9a, 0xb0},
  254. {TUNER_WRITE, 0x00, 0x40},
  255. {DEMOD_WRITE, 0x81, 0x81},
  256. {0xff, 0xaa, 0xff}
  257. };
  258. struct inittab tuner_reset[] = {
  259. {TUNER_WRITE, 0x42, 0x73},
  260. {TUNER_WRITE, 0x05, 0x07},
  261. {TUNER_WRITE, 0x20, 0x27},
  262. {TUNER_WRITE, 0x07, 0x02},
  263. {TUNER_WRITE, 0x11, 0xff},
  264. {TUNER_WRITE, 0x60, 0xf9},
  265. {TUNER_WRITE, 0x08, 0x01},
  266. {TUNER_WRITE, 0x00, 0x41},
  267. {0xff, 0xaa, 0xff}
  268. };
  269. struct inittab fe_reset[] = {
  270. {DEMOD_WRITE, 0x00, 0x01},
  271. {DEMOD_WRITE, 0xf1, 0xbf},
  272. {DEMOD_WRITE, 0x00, 0x01},
  273. {DEMOD_WRITE, 0x20, 0x81},
  274. {DEMOD_WRITE, 0x21, 0x80},
  275. {DEMOD_WRITE, 0x10, 0x33},
  276. {DEMOD_WRITE, 0x11, 0x44},
  277. {DEMOD_WRITE, 0x12, 0x07},
  278. {DEMOD_WRITE, 0x18, 0x20},
  279. {DEMOD_WRITE, 0x28, 0x04},
  280. {DEMOD_WRITE, 0x29, 0x8e},
  281. {DEMOD_WRITE, 0x3b, 0xff},
  282. {DEMOD_WRITE, 0x32, 0x10},
  283. {DEMOD_WRITE, 0x33, 0x02},
  284. {DEMOD_WRITE, 0x34, 0x30},
  285. {DEMOD_WRITE, 0x35, 0xff},
  286. {DEMOD_WRITE, 0x38, 0x50},
  287. {DEMOD_WRITE, 0x39, 0x68},
  288. {DEMOD_WRITE, 0x3c, 0x7f},
  289. {DEMOD_WRITE, 0x3d, 0x0f},
  290. {DEMOD_WRITE, 0x45, 0x20},
  291. {DEMOD_WRITE, 0x46, 0x24},
  292. {DEMOD_WRITE, 0x47, 0x7c},
  293. {DEMOD_WRITE, 0x48, 0x16},
  294. {DEMOD_WRITE, 0x49, 0x04},
  295. {DEMOD_WRITE, 0x4a, 0x01},
  296. {DEMOD_WRITE, 0x4b, 0x78},
  297. {DEMOD_WRITE, 0X4d, 0xd2},
  298. {DEMOD_WRITE, 0x4e, 0x6d},
  299. {DEMOD_WRITE, 0x50, 0x30},
  300. {DEMOD_WRITE, 0x51, 0x30},
  301. {DEMOD_WRITE, 0x54, 0x7b},
  302. {DEMOD_WRITE, 0x56, 0x09},
  303. {DEMOD_WRITE, 0x58, 0x59},
  304. {DEMOD_WRITE, 0x59, 0x37},
  305. {DEMOD_WRITE, 0x63, 0xfa},
  306. {0xff, 0xaa, 0xff}
  307. };
  308. struct inittab fe_trigger[] = {
  309. {DEMOD_WRITE, 0x97, 0x04},
  310. {DEMOD_WRITE, 0x99, 0x77},
  311. {DEMOD_WRITE, 0x9b, 0x64},
  312. {DEMOD_WRITE, 0x9e, 0x00},
  313. {DEMOD_WRITE, 0x9f, 0xf8},
  314. {DEMOD_WRITE, 0xa0, 0x20},
  315. {DEMOD_WRITE, 0xa1, 0xe0},
  316. {DEMOD_WRITE, 0xa3, 0x38},
  317. {DEMOD_WRITE, 0x98, 0xff},
  318. {DEMOD_WRITE, 0xc0, 0x0f},
  319. {DEMOD_WRITE, 0x89, 0x01},
  320. {DEMOD_WRITE, 0x00, 0x00},
  321. {WRITE_DELAY, 0x0a, 0x00},
  322. {DEMOD_WRITE, 0x00, 0x01},
  323. {DEMOD_WRITE, 0x00, 0x00},
  324. {DEMOD_WRITE, 0x9a, 0xb0},
  325. {0xff, 0xaa, 0xff}
  326. };
  327. static int m88rs2000_tab_set(struct m88rs2000_state *state,
  328. struct inittab *tab)
  329. {
  330. int ret = 0;
  331. u8 i;
  332. if (tab == NULL)
  333. return -EINVAL;
  334. for (i = 0; i < 255; i++) {
  335. switch (tab[i].cmd) {
  336. case 0x01:
  337. ret = m88rs2000_demod_write(state, tab[i].reg,
  338. tab[i].val);
  339. break;
  340. case 0x02:
  341. ret = m88rs2000_tuner_write(state, tab[i].reg,
  342. tab[i].val);
  343. break;
  344. case 0x10:
  345. if (tab[i].reg > 0)
  346. mdelay(tab[i].reg);
  347. break;
  348. case 0xff:
  349. if (tab[i].reg == 0xaa && tab[i].val == 0xff)
  350. return 0;
  351. case 0x00:
  352. break;
  353. default:
  354. return -EINVAL;
  355. }
  356. if (ret < 0)
  357. return -ENODEV;
  358. }
  359. return 0;
  360. }
  361. static int m88rs2000_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t volt)
  362. {
  363. struct m88rs2000_state *state = fe->demodulator_priv;
  364. u8 data;
  365. data = m88rs2000_demod_read(state, 0xb2);
  366. data |= 0x03; /* bit0 V/H, bit1 off/on */
  367. switch (volt) {
  368. case SEC_VOLTAGE_18:
  369. data &= ~0x03;
  370. break;
  371. case SEC_VOLTAGE_13:
  372. data &= ~0x03;
  373. data |= 0x01;
  374. break;
  375. case SEC_VOLTAGE_OFF:
  376. break;
  377. }
  378. m88rs2000_demod_write(state, 0xb2, data);
  379. return 0;
  380. }
  381. static int m88rs2000_startup(struct m88rs2000_state *state)
  382. {
  383. int ret = 0;
  384. u8 reg;
  385. reg = m88rs2000_tuner_read(state, 0x00);
  386. if ((reg & 0x40) == 0)
  387. ret = -ENODEV;
  388. return ret;
  389. }
  390. static int m88rs2000_init(struct dvb_frontend *fe)
  391. {
  392. struct m88rs2000_state *state = fe->demodulator_priv;
  393. int ret;
  394. deb_info("m88rs2000: init chip\n");
  395. /* Setup frontend from shutdown/cold */
  396. ret = m88rs2000_tab_set(state, m88rs2000_setup);
  397. return ret;
  398. }
  399. static int m88rs2000_sleep(struct dvb_frontend *fe)
  400. {
  401. struct m88rs2000_state *state = fe->demodulator_priv;
  402. int ret;
  403. /* Shutdown the frondend */
  404. ret = m88rs2000_tab_set(state, m88rs2000_shutdown);
  405. return ret;
  406. }
  407. static int m88rs2000_read_status(struct dvb_frontend *fe, fe_status_t *status)
  408. {
  409. struct m88rs2000_state *state = fe->demodulator_priv;
  410. u8 reg = m88rs2000_demod_read(state, 0x8c);
  411. *status = 0;
  412. if ((reg & 0x7) == 0x7) {
  413. *status = FE_HAS_CARRIER | FE_HAS_SIGNAL | FE_HAS_VITERBI
  414. | FE_HAS_LOCK;
  415. if (state->config->set_ts_params)
  416. state->config->set_ts_params(fe, CALL_IS_READ);
  417. }
  418. return 0;
  419. }
  420. /* Extact code for these unknown but lmedm04 driver uses interupt callbacks */
  421. static int m88rs2000_read_ber(struct dvb_frontend *fe, u32 *ber)
  422. {
  423. deb_info("m88rs2000_read_ber %d\n", *ber);
  424. *ber = 0;
  425. return 0;
  426. }
  427. static int m88rs2000_read_signal_strength(struct dvb_frontend *fe,
  428. u16 *strength)
  429. {
  430. *strength = 0;
  431. return 0;
  432. }
  433. static int m88rs2000_read_snr(struct dvb_frontend *fe, u16 *snr)
  434. {
  435. deb_info("m88rs2000_read_snr %d\n", *snr);
  436. *snr = 0;
  437. return 0;
  438. }
  439. static int m88rs2000_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  440. {
  441. deb_info("m88rs2000_read_ber %d\n", *ucblocks);
  442. *ucblocks = 0;
  443. return 0;
  444. }
  445. static int m88rs2000_tuner_gate_ctrl(struct m88rs2000_state *state, u8 offset)
  446. {
  447. int ret;
  448. ret = m88rs2000_tuner_write(state, 0x51, 0x1f - offset);
  449. ret |= m88rs2000_tuner_write(state, 0x51, 0x1f);
  450. ret |= m88rs2000_tuner_write(state, 0x50, offset);
  451. ret |= m88rs2000_tuner_write(state, 0x50, 0x00);
  452. msleep(20);
  453. return ret;
  454. }
  455. static int m88rs2000_set_tuner_rf(struct dvb_frontend *fe)
  456. {
  457. struct m88rs2000_state *state = fe->demodulator_priv;
  458. int reg;
  459. reg = m88rs2000_tuner_read(state, 0x3d);
  460. reg &= 0x7f;
  461. if (reg < 0x16)
  462. reg = 0xa1;
  463. else if (reg == 0x16)
  464. reg = 0x99;
  465. else
  466. reg = 0xf9;
  467. m88rs2000_tuner_write(state, 0x60, reg);
  468. reg = m88rs2000_tuner_gate_ctrl(state, 0x08);
  469. if (fe->ops.i2c_gate_ctrl)
  470. fe->ops.i2c_gate_ctrl(fe, 0);
  471. return reg;
  472. }
  473. static int m88rs2000_set_tuner(struct dvb_frontend *fe, u16 *offset)
  474. {
  475. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  476. struct m88rs2000_state *state = fe->demodulator_priv;
  477. int ret;
  478. u32 frequency = c->frequency;
  479. s32 offset_khz;
  480. s32 tmp;
  481. u32 symbol_rate = (c->symbol_rate / 1000);
  482. u32 f3db, gdiv28;
  483. u16 value, ndiv, lpf_coeff;
  484. u8 lpf_mxdiv, mlpf_max, mlpf_min, nlpf;
  485. u8 lo = 0x01, div4 = 0x0;
  486. /* Reset Tuner */
  487. ret = m88rs2000_tab_set(state, tuner_reset);
  488. /* Calculate frequency divider */
  489. if (frequency < 1060000) {
  490. lo |= 0x10;
  491. div4 = 0x1;
  492. ndiv = (frequency * 14 * 4) / FE_CRYSTAL_KHZ;
  493. } else
  494. ndiv = (frequency * 14 * 2) / FE_CRYSTAL_KHZ;
  495. ndiv = ndiv + ndiv % 2;
  496. ndiv = ndiv - 1024;
  497. ret = m88rs2000_tuner_write(state, 0x10, 0x80 | lo);
  498. /* Set frequency divider */
  499. ret |= m88rs2000_tuner_write(state, 0x01, (ndiv >> 8) & 0xf);
  500. ret |= m88rs2000_tuner_write(state, 0x02, ndiv & 0xff);
  501. ret |= m88rs2000_tuner_write(state, 0x03, 0x06);
  502. ret |= m88rs2000_tuner_gate_ctrl(state, 0x10);
  503. if (ret < 0)
  504. return -ENODEV;
  505. /* Tuner Frequency Range */
  506. ret = m88rs2000_tuner_write(state, 0x10, lo);
  507. ret |= m88rs2000_tuner_gate_ctrl(state, 0x08);
  508. /* Tuner RF */
  509. ret |= m88rs2000_set_tuner_rf(fe);
  510. gdiv28 = (FE_CRYSTAL_KHZ / 1000 * 1694 + 500) / 1000;
  511. ret |= m88rs2000_tuner_write(state, 0x04, gdiv28 & 0xff);
  512. ret |= m88rs2000_tuner_gate_ctrl(state, 0x04);
  513. if (ret < 0)
  514. return -ENODEV;
  515. value = m88rs2000_tuner_read(state, 0x26);
  516. f3db = (symbol_rate * 135) / 200 + 2000;
  517. f3db += FREQ_OFFSET_LOW_SYM_RATE;
  518. if (f3db < 7000)
  519. f3db = 7000;
  520. if (f3db > 40000)
  521. f3db = 40000;
  522. gdiv28 = gdiv28 * 207 / (value * 2 + 151);
  523. mlpf_max = gdiv28 * 135 / 100;
  524. mlpf_min = gdiv28 * 78 / 100;
  525. if (mlpf_max > 63)
  526. mlpf_max = 63;
  527. lpf_coeff = 2766;
  528. nlpf = (f3db * gdiv28 * 2 / lpf_coeff /
  529. (FE_CRYSTAL_KHZ / 1000) + 1) / 2;
  530. if (nlpf > 23)
  531. nlpf = 23;
  532. if (nlpf < 1)
  533. nlpf = 1;
  534. lpf_mxdiv = (nlpf * (FE_CRYSTAL_KHZ / 1000)
  535. * lpf_coeff * 2 / f3db + 1) / 2;
  536. if (lpf_mxdiv < mlpf_min) {
  537. nlpf++;
  538. lpf_mxdiv = (nlpf * (FE_CRYSTAL_KHZ / 1000)
  539. * lpf_coeff * 2 / f3db + 1) / 2;
  540. }
  541. if (lpf_mxdiv > mlpf_max)
  542. lpf_mxdiv = mlpf_max;
  543. ret = m88rs2000_tuner_write(state, 0x04, lpf_mxdiv);
  544. ret |= m88rs2000_tuner_write(state, 0x06, nlpf);
  545. ret |= m88rs2000_tuner_gate_ctrl(state, 0x04);
  546. ret |= m88rs2000_tuner_gate_ctrl(state, 0x01);
  547. msleep(80);
  548. /* calculate offset assuming 96000kHz*/
  549. offset_khz = (ndiv - ndiv % 2 + 1024) * FE_CRYSTAL_KHZ
  550. / 14 / (div4 + 1) / 2;
  551. offset_khz -= frequency;
  552. tmp = offset_khz;
  553. tmp *= 65536;
  554. tmp = (2 * tmp + 96000) / (2 * 96000);
  555. if (tmp < 0)
  556. tmp += 65536;
  557. *offset = tmp & 0xffff;
  558. if (fe->ops.i2c_gate_ctrl)
  559. fe->ops.i2c_gate_ctrl(fe, 0);
  560. return (ret < 0) ? -EINVAL : 0;
  561. }
  562. static int m88rs2000_set_fec(struct m88rs2000_state *state,
  563. fe_code_rate_t fec)
  564. {
  565. u16 fec_set;
  566. switch (fec) {
  567. /* This is not confirmed kept for reference */
  568. /* case FEC_1_2:
  569. fec_set = 0x88;
  570. break;
  571. case FEC_2_3:
  572. fec_set = 0x68;
  573. break;
  574. case FEC_3_4:
  575. fec_set = 0x48;
  576. break;
  577. case FEC_5_6:
  578. fec_set = 0x28;
  579. break;
  580. case FEC_7_8:
  581. fec_set = 0x18;
  582. break; */
  583. case FEC_AUTO:
  584. default:
  585. fec_set = 0x08;
  586. }
  587. m88rs2000_demod_write(state, 0x76, fec_set);
  588. return 0;
  589. }
  590. static fe_code_rate_t m88rs2000_get_fec(struct m88rs2000_state *state)
  591. {
  592. u8 reg;
  593. m88rs2000_demod_write(state, 0x9a, 0x30);
  594. reg = m88rs2000_demod_read(state, 0x76);
  595. m88rs2000_demod_write(state, 0x9a, 0xb0);
  596. switch (reg) {
  597. case 0x88:
  598. return FEC_1_2;
  599. case 0x68:
  600. return FEC_2_3;
  601. case 0x48:
  602. return FEC_3_4;
  603. case 0x28:
  604. return FEC_5_6;
  605. case 0x18:
  606. return FEC_7_8;
  607. case 0x08:
  608. default:
  609. break;
  610. }
  611. return FEC_AUTO;
  612. }
  613. static int m88rs2000_set_frontend(struct dvb_frontend *fe)
  614. {
  615. struct m88rs2000_state *state = fe->demodulator_priv;
  616. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  617. fe_status_t status;
  618. int i, ret;
  619. u16 offset = 0;
  620. u8 reg;
  621. state->no_lock_count = 0;
  622. if (c->delivery_system != SYS_DVBS) {
  623. deb_info("%s: unsupported delivery "
  624. "system selected (%d)\n",
  625. __func__, c->delivery_system);
  626. return -EOPNOTSUPP;
  627. }
  628. /* Set Tuner */
  629. ret = m88rs2000_set_tuner(fe, &offset);
  630. if (ret < 0)
  631. return -ENODEV;
  632. ret = m88rs2000_demod_write(state, 0x9a, 0x30);
  633. /* Unknown usually 0xc6 sometimes 0xc1 */
  634. reg = m88rs2000_demod_read(state, 0x86);
  635. ret |= m88rs2000_demod_write(state, 0x86, reg);
  636. /* Offset lower nibble always 0 */
  637. ret |= m88rs2000_demod_write(state, 0x9c, (offset >> 8));
  638. ret |= m88rs2000_demod_write(state, 0x9d, offset & 0xf0);
  639. /* Reset Demod */
  640. ret = m88rs2000_tab_set(state, fe_reset);
  641. if (ret < 0)
  642. return -ENODEV;
  643. /* Unknown */
  644. reg = m88rs2000_demod_read(state, 0x70);
  645. ret = m88rs2000_demod_write(state, 0x70, reg);
  646. /* Set FEC */
  647. ret |= m88rs2000_set_fec(state, c->fec_inner);
  648. ret |= m88rs2000_demod_write(state, 0x85, 0x1);
  649. ret |= m88rs2000_demod_write(state, 0x8a, 0xbf);
  650. ret |= m88rs2000_demod_write(state, 0x8d, 0x1e);
  651. ret |= m88rs2000_demod_write(state, 0x90, 0xf1);
  652. ret |= m88rs2000_demod_write(state, 0x91, 0x08);
  653. if (ret < 0)
  654. return -ENODEV;
  655. /* Set Symbol Rate */
  656. ret = m88rs2000_set_symbolrate(fe, c->symbol_rate);
  657. if (ret < 0)
  658. return -ENODEV;
  659. /* Set up Demod */
  660. ret = m88rs2000_tab_set(state, fe_trigger);
  661. if (ret < 0)
  662. return -ENODEV;
  663. for (i = 0; i < 25; i++) {
  664. reg = m88rs2000_demod_read(state, 0x8c);
  665. if ((reg & 0x7) == 0x7) {
  666. status = FE_HAS_LOCK;
  667. break;
  668. }
  669. state->no_lock_count++;
  670. if (state->no_lock_count == 15) {
  671. reg = m88rs2000_demod_read(state, 0x70);
  672. reg ^= 0x4;
  673. m88rs2000_demod_write(state, 0x70, reg);
  674. state->no_lock_count = 0;
  675. }
  676. if (state->no_lock_count == 20)
  677. m88rs2000_set_tuner_rf(fe);
  678. msleep(20);
  679. }
  680. if (status & FE_HAS_LOCK) {
  681. state->fec_inner = m88rs2000_get_fec(state);
  682. /* Uknown suspect SNR level */
  683. reg = m88rs2000_demod_read(state, 0x65);
  684. }
  685. state->tuner_frequency = c->frequency;
  686. state->symbol_rate = c->symbol_rate;
  687. return 0;
  688. }
  689. static int m88rs2000_get_frontend(struct dvb_frontend *fe)
  690. {
  691. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  692. struct m88rs2000_state *state = fe->demodulator_priv;
  693. c->fec_inner = state->fec_inner;
  694. c->frequency = state->tuner_frequency;
  695. c->symbol_rate = state->symbol_rate;
  696. return 0;
  697. }
  698. static int m88rs2000_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  699. {
  700. struct m88rs2000_state *state = fe->demodulator_priv;
  701. if (enable)
  702. m88rs2000_demod_write(state, 0x81, 0x84);
  703. else
  704. m88rs2000_demod_write(state, 0x81, 0x81);
  705. udelay(10);
  706. return 0;
  707. }
  708. static void m88rs2000_release(struct dvb_frontend *fe)
  709. {
  710. struct m88rs2000_state *state = fe->demodulator_priv;
  711. kfree(state);
  712. }
  713. static struct dvb_frontend_ops m88rs2000_ops = {
  714. .delsys = { SYS_DVBS },
  715. .info = {
  716. .name = "M88RS2000 DVB-S",
  717. .frequency_min = 950000,
  718. .frequency_max = 2150000,
  719. .frequency_stepsize = 1000, /* kHz for QPSK frontends */
  720. .frequency_tolerance = 5000,
  721. .symbol_rate_min = 1000000,
  722. .symbol_rate_max = 45000000,
  723. .symbol_rate_tolerance = 500, /* ppm */
  724. .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  725. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
  726. FE_CAN_QPSK |
  727. FE_CAN_FEC_AUTO
  728. },
  729. .release = m88rs2000_release,
  730. .init = m88rs2000_init,
  731. .sleep = m88rs2000_sleep,
  732. .write = m88rs2000_write,
  733. .i2c_gate_ctrl = m88rs2000_i2c_gate_ctrl,
  734. .read_status = m88rs2000_read_status,
  735. .read_ber = m88rs2000_read_ber,
  736. .read_signal_strength = m88rs2000_read_signal_strength,
  737. .read_snr = m88rs2000_read_snr,
  738. .read_ucblocks = m88rs2000_read_ucblocks,
  739. .diseqc_send_master_cmd = m88rs2000_send_diseqc_msg,
  740. .diseqc_send_burst = m88rs2000_send_diseqc_burst,
  741. .set_tone = m88rs2000_set_tone,
  742. .set_voltage = m88rs2000_set_voltage,
  743. .set_frontend = m88rs2000_set_frontend,
  744. .get_frontend = m88rs2000_get_frontend,
  745. };
  746. struct dvb_frontend *m88rs2000_attach(const struct m88rs2000_config *config,
  747. struct i2c_adapter *i2c)
  748. {
  749. struct m88rs2000_state *state = NULL;
  750. /* allocate memory for the internal state */
  751. state = kzalloc(sizeof(struct m88rs2000_state), GFP_KERNEL);
  752. if (state == NULL)
  753. goto error;
  754. /* setup the state */
  755. state->config = config;
  756. state->i2c = i2c;
  757. state->tuner_frequency = 0;
  758. state->symbol_rate = 0;
  759. state->fec_inner = 0;
  760. if (m88rs2000_startup(state) < 0)
  761. goto error;
  762. /* create dvb_frontend */
  763. memcpy(&state->frontend.ops, &m88rs2000_ops,
  764. sizeof(struct dvb_frontend_ops));
  765. state->frontend.demodulator_priv = state;
  766. return &state->frontend;
  767. error:
  768. kfree(state);
  769. return NULL;
  770. }
  771. EXPORT_SYMBOL(m88rs2000_attach);
  772. MODULE_DESCRIPTION("M88RS2000 DVB-S Demodulator driver");
  773. MODULE_AUTHOR("Malcolm Priestley tvboxspy@gmail.com");
  774. MODULE_LICENSE("GPL");
  775. MODULE_VERSION("1.13");