af9033.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /*
  2. * Afatech AF9033 demodulator driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9033_priv.h"
  22. struct af9033_state {
  23. struct i2c_adapter *i2c;
  24. struct dvb_frontend fe;
  25. struct af9033_config cfg;
  26. u32 bandwidth_hz;
  27. bool ts_mode_parallel;
  28. bool ts_mode_serial;
  29. u32 ber;
  30. u32 ucb;
  31. unsigned long last_stat_check;
  32. };
  33. /* write multiple registers */
  34. static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
  35. int len)
  36. {
  37. int ret;
  38. u8 buf[3 + len];
  39. struct i2c_msg msg[1] = {
  40. {
  41. .addr = state->cfg.i2c_addr,
  42. .flags = 0,
  43. .len = sizeof(buf),
  44. .buf = buf,
  45. }
  46. };
  47. buf[0] = (reg >> 16) & 0xff;
  48. buf[1] = (reg >> 8) & 0xff;
  49. buf[2] = (reg >> 0) & 0xff;
  50. memcpy(&buf[3], val, len);
  51. ret = i2c_transfer(state->i2c, msg, 1);
  52. if (ret == 1) {
  53. ret = 0;
  54. } else {
  55. printk(KERN_WARNING "%s: i2c wr failed=%d reg=%06x len=%d\n",
  56. __func__, ret, reg, len);
  57. ret = -EREMOTEIO;
  58. }
  59. return ret;
  60. }
  61. /* read multiple registers */
  62. static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
  63. {
  64. int ret;
  65. u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
  66. (reg >> 0) & 0xff };
  67. struct i2c_msg msg[2] = {
  68. {
  69. .addr = state->cfg.i2c_addr,
  70. .flags = 0,
  71. .len = sizeof(buf),
  72. .buf = buf
  73. }, {
  74. .addr = state->cfg.i2c_addr,
  75. .flags = I2C_M_RD,
  76. .len = len,
  77. .buf = val
  78. }
  79. };
  80. ret = i2c_transfer(state->i2c, msg, 2);
  81. if (ret == 2) {
  82. ret = 0;
  83. } else {
  84. printk(KERN_WARNING "%s: i2c rd failed=%d reg=%06x len=%d\n",
  85. __func__, ret, reg, len);
  86. ret = -EREMOTEIO;
  87. }
  88. return ret;
  89. }
  90. /* write single register */
  91. static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
  92. {
  93. return af9033_wr_regs(state, reg, &val, 1);
  94. }
  95. /* read single register */
  96. static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
  97. {
  98. return af9033_rd_regs(state, reg, val, 1);
  99. }
  100. /* write single register with mask */
  101. static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
  102. u8 mask)
  103. {
  104. int ret;
  105. u8 tmp;
  106. /* no need for read if whole reg is written */
  107. if (mask != 0xff) {
  108. ret = af9033_rd_regs(state, reg, &tmp, 1);
  109. if (ret)
  110. return ret;
  111. val &= mask;
  112. tmp &= ~mask;
  113. val |= tmp;
  114. }
  115. return af9033_wr_regs(state, reg, &val, 1);
  116. }
  117. /* read single register with mask */
  118. static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
  119. u8 mask)
  120. {
  121. int ret, i;
  122. u8 tmp;
  123. ret = af9033_rd_regs(state, reg, &tmp, 1);
  124. if (ret)
  125. return ret;
  126. tmp &= mask;
  127. /* find position of the first bit */
  128. for (i = 0; i < 8; i++) {
  129. if ((mask >> i) & 0x01)
  130. break;
  131. }
  132. *val = tmp >> i;
  133. return 0;
  134. }
  135. static u32 af9033_div(u32 a, u32 b, u32 x)
  136. {
  137. u32 r = 0, c = 0, i;
  138. pr_debug("%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  139. if (a > b) {
  140. c = a / b;
  141. a = a - c * b;
  142. }
  143. for (i = 0; i < x; i++) {
  144. if (a >= b) {
  145. r += 1;
  146. a -= b;
  147. }
  148. a <<= 1;
  149. r <<= 1;
  150. }
  151. r = (c << (u32)x) + r;
  152. pr_debug("%s: a=%d b=%d x=%d r=%d r=%x\n", __func__, a, b, x, r, r);
  153. return r;
  154. }
  155. static void af9033_release(struct dvb_frontend *fe)
  156. {
  157. struct af9033_state *state = fe->demodulator_priv;
  158. kfree(state);
  159. }
  160. static int af9033_init(struct dvb_frontend *fe)
  161. {
  162. struct af9033_state *state = fe->demodulator_priv;
  163. int ret, i, len;
  164. const struct reg_val *init;
  165. u8 buf[4];
  166. u32 adc_cw, clock_cw;
  167. struct reg_val_mask tab[] = {
  168. { 0x80fb24, 0x00, 0x08 },
  169. { 0x80004c, 0x00, 0xff },
  170. { 0x00f641, state->cfg.tuner, 0xff },
  171. { 0x80f5ca, 0x01, 0x01 },
  172. { 0x80f715, 0x01, 0x01 },
  173. { 0x00f41f, 0x04, 0x04 },
  174. { 0x00f41a, 0x01, 0x01 },
  175. { 0x80f731, 0x00, 0x01 },
  176. { 0x00d91e, 0x00, 0x01 },
  177. { 0x00d919, 0x00, 0x01 },
  178. { 0x80f732, 0x00, 0x01 },
  179. { 0x00d91f, 0x00, 0x01 },
  180. { 0x00d91a, 0x00, 0x01 },
  181. { 0x80f730, 0x00, 0x01 },
  182. { 0x80f778, 0x00, 0xff },
  183. { 0x80f73c, 0x01, 0x01 },
  184. { 0x80f776, 0x00, 0x01 },
  185. { 0x00d8fd, 0x01, 0xff },
  186. { 0x00d830, 0x01, 0xff },
  187. { 0x00d831, 0x00, 0xff },
  188. { 0x00d832, 0x00, 0xff },
  189. { 0x80f985, state->ts_mode_serial, 0x01 },
  190. { 0x80f986, state->ts_mode_parallel, 0x01 },
  191. { 0x00d827, 0x00, 0xff },
  192. { 0x00d829, 0x00, 0xff },
  193. };
  194. /* program clock control */
  195. clock_cw = af9033_div(state->cfg.clock, 1000000ul, 19ul);
  196. buf[0] = (clock_cw >> 0) & 0xff;
  197. buf[1] = (clock_cw >> 8) & 0xff;
  198. buf[2] = (clock_cw >> 16) & 0xff;
  199. buf[3] = (clock_cw >> 24) & 0xff;
  200. pr_debug("%s: clock=%d clock_cw=%08x\n", __func__, state->cfg.clock,
  201. clock_cw);
  202. ret = af9033_wr_regs(state, 0x800025, buf, 4);
  203. if (ret < 0)
  204. goto err;
  205. /* program ADC control */
  206. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  207. if (clock_adc_lut[i].clock == state->cfg.clock)
  208. break;
  209. }
  210. adc_cw = af9033_div(clock_adc_lut[i].adc, 1000000ul, 19ul);
  211. buf[0] = (adc_cw >> 0) & 0xff;
  212. buf[1] = (adc_cw >> 8) & 0xff;
  213. buf[2] = (adc_cw >> 16) & 0xff;
  214. pr_debug("%s: adc=%d adc_cw=%06x\n", __func__, clock_adc_lut[i].adc,
  215. adc_cw);
  216. ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
  217. if (ret < 0)
  218. goto err;
  219. /* program register table */
  220. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  221. ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
  222. tab[i].mask);
  223. if (ret < 0)
  224. goto err;
  225. }
  226. /* settings for TS interface */
  227. if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
  228. ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
  229. if (ret < 0)
  230. goto err;
  231. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
  232. if (ret < 0)
  233. goto err;
  234. } else {
  235. ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
  236. if (ret < 0)
  237. goto err;
  238. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
  239. if (ret < 0)
  240. goto err;
  241. }
  242. /* load OFSM settings */
  243. pr_debug("%s: load ofsm settings\n", __func__);
  244. len = ARRAY_SIZE(ofsm_init);
  245. init = ofsm_init;
  246. for (i = 0; i < len; i++) {
  247. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  248. if (ret < 0)
  249. goto err;
  250. }
  251. /* load tuner specific settings */
  252. pr_debug("%s: load tuner specific settings\n",
  253. __func__);
  254. switch (state->cfg.tuner) {
  255. case AF9033_TUNER_TUA9001:
  256. len = ARRAY_SIZE(tuner_init_tua9001);
  257. init = tuner_init_tua9001;
  258. break;
  259. case AF9033_TUNER_FC0011:
  260. len = ARRAY_SIZE(tuner_init_fc0011);
  261. init = tuner_init_fc0011;
  262. break;
  263. case AF9033_TUNER_MXL5007T:
  264. len = ARRAY_SIZE(tuner_init_mxl5007t);
  265. init = tuner_init_mxl5007t;
  266. break;
  267. case AF9033_TUNER_TDA18218:
  268. len = ARRAY_SIZE(tuner_init_tda18218);
  269. init = tuner_init_tda18218;
  270. break;
  271. default:
  272. pr_debug("%s: unsupported tuner ID=%d\n", __func__,
  273. state->cfg.tuner);
  274. ret = -ENODEV;
  275. goto err;
  276. }
  277. for (i = 0; i < len; i++) {
  278. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  279. if (ret < 0)
  280. goto err;
  281. }
  282. state->bandwidth_hz = 0; /* force to program all parameters */
  283. return 0;
  284. err:
  285. pr_debug("%s: failed=%d\n", __func__, ret);
  286. return ret;
  287. }
  288. static int af9033_sleep(struct dvb_frontend *fe)
  289. {
  290. struct af9033_state *state = fe->demodulator_priv;
  291. int ret, i;
  292. u8 tmp;
  293. ret = af9033_wr_reg(state, 0x80004c, 1);
  294. if (ret < 0)
  295. goto err;
  296. ret = af9033_wr_reg(state, 0x800000, 0);
  297. if (ret < 0)
  298. goto err;
  299. for (i = 100, tmp = 1; i && tmp; i--) {
  300. ret = af9033_rd_reg(state, 0x80004c, &tmp);
  301. if (ret < 0)
  302. goto err;
  303. usleep_range(200, 10000);
  304. }
  305. pr_debug("%s: loop=%d\n", __func__, i);
  306. if (i == 0) {
  307. ret = -ETIMEDOUT;
  308. goto err;
  309. }
  310. ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
  311. if (ret < 0)
  312. goto err;
  313. /* prevent current leak (?) */
  314. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  315. /* enable parallel TS */
  316. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  317. if (ret < 0)
  318. goto err;
  319. ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
  320. if (ret < 0)
  321. goto err;
  322. }
  323. return 0;
  324. err:
  325. pr_debug("%s: failed=%d\n", __func__, ret);
  326. return ret;
  327. }
  328. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  329. struct dvb_frontend_tune_settings *fesettings)
  330. {
  331. fesettings->min_delay_ms = 800;
  332. fesettings->step_size = 0;
  333. fesettings->max_drift = 0;
  334. return 0;
  335. }
  336. static int af9033_set_frontend(struct dvb_frontend *fe)
  337. {
  338. struct af9033_state *state = fe->demodulator_priv;
  339. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  340. int ret, i, spec_inv;
  341. u8 tmp, buf[3], bandwidth_reg_val;
  342. u32 if_frequency, freq_cw, adc_freq;
  343. pr_debug("%s: frequency=%d bandwidth_hz=%d\n", __func__, c->frequency,
  344. c->bandwidth_hz);
  345. /* check bandwidth */
  346. switch (c->bandwidth_hz) {
  347. case 6000000:
  348. bandwidth_reg_val = 0x00;
  349. break;
  350. case 7000000:
  351. bandwidth_reg_val = 0x01;
  352. break;
  353. case 8000000:
  354. bandwidth_reg_val = 0x02;
  355. break;
  356. default:
  357. pr_debug("%s: invalid bandwidth_hz\n", __func__);
  358. ret = -EINVAL;
  359. goto err;
  360. }
  361. /* program tuner */
  362. if (fe->ops.tuner_ops.set_params)
  363. fe->ops.tuner_ops.set_params(fe);
  364. /* program CFOE coefficients */
  365. if (c->bandwidth_hz != state->bandwidth_hz) {
  366. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  367. if (coeff_lut[i].clock == state->cfg.clock &&
  368. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  369. break;
  370. }
  371. }
  372. ret = af9033_wr_regs(state, 0x800001,
  373. coeff_lut[i].val, sizeof(coeff_lut[i].val));
  374. }
  375. /* program frequency control */
  376. if (c->bandwidth_hz != state->bandwidth_hz) {
  377. spec_inv = state->cfg.spec_inv ? -1 : 1;
  378. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  379. if (clock_adc_lut[i].clock == state->cfg.clock)
  380. break;
  381. }
  382. adc_freq = clock_adc_lut[i].adc;
  383. /* get used IF frequency */
  384. if (fe->ops.tuner_ops.get_if_frequency)
  385. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  386. else
  387. if_frequency = 0;
  388. while (if_frequency > (adc_freq / 2))
  389. if_frequency -= adc_freq;
  390. if (if_frequency >= 0)
  391. spec_inv *= -1;
  392. else
  393. if_frequency *= -1;
  394. freq_cw = af9033_div(if_frequency, adc_freq, 23ul);
  395. if (spec_inv == -1)
  396. freq_cw *= -1;
  397. /* get adc multiplies */
  398. ret = af9033_rd_reg(state, 0x800045, &tmp);
  399. if (ret < 0)
  400. goto err;
  401. if (tmp == 1)
  402. freq_cw /= 2;
  403. buf[0] = (freq_cw >> 0) & 0xff;
  404. buf[1] = (freq_cw >> 8) & 0xff;
  405. buf[2] = (freq_cw >> 16) & 0x7f;
  406. ret = af9033_wr_regs(state, 0x800029, buf, 3);
  407. if (ret < 0)
  408. goto err;
  409. state->bandwidth_hz = c->bandwidth_hz;
  410. }
  411. ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
  412. if (ret < 0)
  413. goto err;
  414. ret = af9033_wr_reg(state, 0x800040, 0x00);
  415. if (ret < 0)
  416. goto err;
  417. ret = af9033_wr_reg(state, 0x800047, 0x00);
  418. if (ret < 0)
  419. goto err;
  420. ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
  421. if (ret < 0)
  422. goto err;
  423. if (c->frequency <= 230000000)
  424. tmp = 0x00; /* VHF */
  425. else
  426. tmp = 0x01; /* UHF */
  427. ret = af9033_wr_reg(state, 0x80004b, tmp);
  428. if (ret < 0)
  429. goto err;
  430. ret = af9033_wr_reg(state, 0x800000, 0x00);
  431. if (ret < 0)
  432. goto err;
  433. return 0;
  434. err:
  435. pr_debug("%s: failed=%d\n", __func__, ret);
  436. return ret;
  437. }
  438. static int af9033_get_frontend(struct dvb_frontend *fe)
  439. {
  440. struct af9033_state *state = fe->demodulator_priv;
  441. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  442. int ret;
  443. u8 buf[8];
  444. pr_debug("%s\n", __func__);
  445. /* read all needed registers */
  446. ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
  447. if (ret < 0)
  448. goto err;
  449. switch ((buf[0] >> 0) & 3) {
  450. case 0:
  451. c->transmission_mode = TRANSMISSION_MODE_2K;
  452. break;
  453. case 1:
  454. c->transmission_mode = TRANSMISSION_MODE_8K;
  455. break;
  456. }
  457. switch ((buf[1] >> 0) & 3) {
  458. case 0:
  459. c->guard_interval = GUARD_INTERVAL_1_32;
  460. break;
  461. case 1:
  462. c->guard_interval = GUARD_INTERVAL_1_16;
  463. break;
  464. case 2:
  465. c->guard_interval = GUARD_INTERVAL_1_8;
  466. break;
  467. case 3:
  468. c->guard_interval = GUARD_INTERVAL_1_4;
  469. break;
  470. }
  471. switch ((buf[2] >> 0) & 7) {
  472. case 0:
  473. c->hierarchy = HIERARCHY_NONE;
  474. break;
  475. case 1:
  476. c->hierarchy = HIERARCHY_1;
  477. break;
  478. case 2:
  479. c->hierarchy = HIERARCHY_2;
  480. break;
  481. case 3:
  482. c->hierarchy = HIERARCHY_4;
  483. break;
  484. }
  485. switch ((buf[3] >> 0) & 3) {
  486. case 0:
  487. c->modulation = QPSK;
  488. break;
  489. case 1:
  490. c->modulation = QAM_16;
  491. break;
  492. case 2:
  493. c->modulation = QAM_64;
  494. break;
  495. }
  496. switch ((buf[4] >> 0) & 3) {
  497. case 0:
  498. c->bandwidth_hz = 6000000;
  499. break;
  500. case 1:
  501. c->bandwidth_hz = 7000000;
  502. break;
  503. case 2:
  504. c->bandwidth_hz = 8000000;
  505. break;
  506. }
  507. switch ((buf[6] >> 0) & 7) {
  508. case 0:
  509. c->code_rate_HP = FEC_1_2;
  510. break;
  511. case 1:
  512. c->code_rate_HP = FEC_2_3;
  513. break;
  514. case 2:
  515. c->code_rate_HP = FEC_3_4;
  516. break;
  517. case 3:
  518. c->code_rate_HP = FEC_5_6;
  519. break;
  520. case 4:
  521. c->code_rate_HP = FEC_7_8;
  522. break;
  523. case 5:
  524. c->code_rate_HP = FEC_NONE;
  525. break;
  526. }
  527. switch ((buf[7] >> 0) & 7) {
  528. case 0:
  529. c->code_rate_LP = FEC_1_2;
  530. break;
  531. case 1:
  532. c->code_rate_LP = FEC_2_3;
  533. break;
  534. case 2:
  535. c->code_rate_LP = FEC_3_4;
  536. break;
  537. case 3:
  538. c->code_rate_LP = FEC_5_6;
  539. break;
  540. case 4:
  541. c->code_rate_LP = FEC_7_8;
  542. break;
  543. case 5:
  544. c->code_rate_LP = FEC_NONE;
  545. break;
  546. }
  547. return 0;
  548. err:
  549. pr_debug("%s: failed=%d\n", __func__, ret);
  550. return ret;
  551. }
  552. static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
  553. {
  554. struct af9033_state *state = fe->demodulator_priv;
  555. int ret;
  556. u8 tmp;
  557. *status = 0;
  558. /* radio channel status, 0=no result, 1=has signal, 2=no signal */
  559. ret = af9033_rd_reg(state, 0x800047, &tmp);
  560. if (ret < 0)
  561. goto err;
  562. /* has signal */
  563. if (tmp == 0x01)
  564. *status |= FE_HAS_SIGNAL;
  565. if (tmp != 0x02) {
  566. /* TPS lock */
  567. ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
  568. if (ret < 0)
  569. goto err;
  570. if (tmp)
  571. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  572. FE_HAS_VITERBI;
  573. /* full lock */
  574. ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
  575. if (ret < 0)
  576. goto err;
  577. if (tmp)
  578. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  579. FE_HAS_VITERBI | FE_HAS_SYNC |
  580. FE_HAS_LOCK;
  581. }
  582. return 0;
  583. err:
  584. pr_debug("%s: failed=%d\n", __func__, ret);
  585. return ret;
  586. }
  587. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  588. {
  589. struct af9033_state *state = fe->demodulator_priv;
  590. int ret, i, len;
  591. u8 buf[3], tmp;
  592. u32 snr_val;
  593. const struct val_snr *uninitialized_var(snr_lut);
  594. /* read value */
  595. ret = af9033_rd_regs(state, 0x80002c, buf, 3);
  596. if (ret < 0)
  597. goto err;
  598. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  599. /* read current modulation */
  600. ret = af9033_rd_reg(state, 0x80f903, &tmp);
  601. if (ret < 0)
  602. goto err;
  603. switch ((tmp >> 0) & 3) {
  604. case 0:
  605. len = ARRAY_SIZE(qpsk_snr_lut);
  606. snr_lut = qpsk_snr_lut;
  607. break;
  608. case 1:
  609. len = ARRAY_SIZE(qam16_snr_lut);
  610. snr_lut = qam16_snr_lut;
  611. break;
  612. case 2:
  613. len = ARRAY_SIZE(qam64_snr_lut);
  614. snr_lut = qam64_snr_lut;
  615. break;
  616. default:
  617. goto err;
  618. }
  619. for (i = 0; i < len; i++) {
  620. tmp = snr_lut[i].snr;
  621. if (snr_val < snr_lut[i].val)
  622. break;
  623. }
  624. *snr = tmp * 10; /* dB/10 */
  625. return 0;
  626. err:
  627. pr_debug("%s: failed=%d\n", __func__, ret);
  628. return ret;
  629. }
  630. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  631. {
  632. struct af9033_state *state = fe->demodulator_priv;
  633. int ret;
  634. u8 strength2;
  635. /* read signal strength of 0-100 scale */
  636. ret = af9033_rd_reg(state, 0x800048, &strength2);
  637. if (ret < 0)
  638. goto err;
  639. /* scale value to 0x0000-0xffff */
  640. *strength = strength2 * 0xffff / 100;
  641. return 0;
  642. err:
  643. pr_debug("%s: failed=%d\n", __func__, ret);
  644. return ret;
  645. }
  646. static int af9033_update_ch_stat(struct af9033_state *state)
  647. {
  648. int ret = 0;
  649. u32 err_cnt, bit_cnt;
  650. u16 abort_cnt;
  651. u8 buf[7];
  652. /* only update data every half second */
  653. if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
  654. ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
  655. if (ret < 0)
  656. goto err;
  657. /* in 8 byte packets? */
  658. abort_cnt = (buf[1] << 8) + buf[0];
  659. /* in bits */
  660. err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
  661. /* in 8 byte packets? always(?) 0x2710 = 10000 */
  662. bit_cnt = (buf[6] << 8) + buf[5];
  663. if (bit_cnt < abort_cnt) {
  664. abort_cnt = 1000;
  665. state->ber = 0xffffffff;
  666. } else {
  667. /* 8 byte packets, that have not been rejected already */
  668. bit_cnt -= (u32)abort_cnt;
  669. if (bit_cnt == 0) {
  670. state->ber = 0xffffffff;
  671. } else {
  672. err_cnt -= (u32)abort_cnt * 8 * 8;
  673. bit_cnt *= 8 * 8;
  674. state->ber = err_cnt * (0xffffffff / bit_cnt);
  675. }
  676. }
  677. state->ucb += abort_cnt;
  678. state->last_stat_check = jiffies;
  679. }
  680. return 0;
  681. err:
  682. pr_debug("%s: failed=%d\n", __func__, ret);
  683. return ret;
  684. }
  685. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  686. {
  687. struct af9033_state *state = fe->demodulator_priv;
  688. int ret;
  689. ret = af9033_update_ch_stat(state);
  690. if (ret < 0)
  691. return ret;
  692. *ber = state->ber;
  693. return 0;
  694. }
  695. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  696. {
  697. struct af9033_state *state = fe->demodulator_priv;
  698. int ret;
  699. ret = af9033_update_ch_stat(state);
  700. if (ret < 0)
  701. return ret;
  702. *ucblocks = state->ucb;
  703. return 0;
  704. }
  705. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  706. {
  707. struct af9033_state *state = fe->demodulator_priv;
  708. int ret;
  709. pr_debug("%s: enable=%d\n", __func__, enable);
  710. ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
  711. if (ret < 0)
  712. goto err;
  713. return 0;
  714. err:
  715. pr_debug("%s: failed=%d\n", __func__, ret);
  716. return ret;
  717. }
  718. static struct dvb_frontend_ops af9033_ops;
  719. struct dvb_frontend *af9033_attach(const struct af9033_config *config,
  720. struct i2c_adapter *i2c)
  721. {
  722. int ret;
  723. struct af9033_state *state;
  724. u8 buf[8];
  725. pr_debug("%s:\n", __func__);
  726. /* allocate memory for the internal state */
  727. state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
  728. if (state == NULL)
  729. goto err;
  730. /* setup the state */
  731. state->i2c = i2c;
  732. memcpy(&state->cfg, config, sizeof(struct af9033_config));
  733. if (state->cfg.clock != 12000000) {
  734. printk(KERN_INFO "af9033: unsupported clock=%d, only " \
  735. "12000000 Hz is supported currently\n",
  736. state->cfg.clock);
  737. goto err;
  738. }
  739. /* firmware version */
  740. ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
  741. if (ret < 0)
  742. goto err;
  743. ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
  744. if (ret < 0)
  745. goto err;
  746. printk(KERN_INFO "af9033: firmware version: LINK=%d.%d.%d.%d " \
  747. "OFDM=%d.%d.%d.%d\n", buf[0], buf[1], buf[2], buf[3],
  748. buf[4], buf[5], buf[6], buf[7]);
  749. /* configure internal TS mode */
  750. switch (state->cfg.ts_mode) {
  751. case AF9033_TS_MODE_PARALLEL:
  752. state->ts_mode_parallel = true;
  753. break;
  754. case AF9033_TS_MODE_SERIAL:
  755. state->ts_mode_serial = true;
  756. break;
  757. case AF9033_TS_MODE_USB:
  758. /* usb mode for AF9035 */
  759. default:
  760. break;
  761. }
  762. /* create dvb_frontend */
  763. memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
  764. state->fe.demodulator_priv = state;
  765. return &state->fe;
  766. err:
  767. kfree(state);
  768. return NULL;
  769. }
  770. EXPORT_SYMBOL(af9033_attach);
  771. static struct dvb_frontend_ops af9033_ops = {
  772. .delsys = { SYS_DVBT },
  773. .info = {
  774. .name = "Afatech AF9033 (DVB-T)",
  775. .frequency_min = 174000000,
  776. .frequency_max = 862000000,
  777. .frequency_stepsize = 250000,
  778. .frequency_tolerance = 0,
  779. .caps = FE_CAN_FEC_1_2 |
  780. FE_CAN_FEC_2_3 |
  781. FE_CAN_FEC_3_4 |
  782. FE_CAN_FEC_5_6 |
  783. FE_CAN_FEC_7_8 |
  784. FE_CAN_FEC_AUTO |
  785. FE_CAN_QPSK |
  786. FE_CAN_QAM_16 |
  787. FE_CAN_QAM_64 |
  788. FE_CAN_QAM_AUTO |
  789. FE_CAN_TRANSMISSION_MODE_AUTO |
  790. FE_CAN_GUARD_INTERVAL_AUTO |
  791. FE_CAN_HIERARCHY_AUTO |
  792. FE_CAN_RECOVER |
  793. FE_CAN_MUTE_TS
  794. },
  795. .release = af9033_release,
  796. .init = af9033_init,
  797. .sleep = af9033_sleep,
  798. .get_tune_settings = af9033_get_tune_settings,
  799. .set_frontend = af9033_set_frontend,
  800. .get_frontend = af9033_get_frontend,
  801. .read_status = af9033_read_status,
  802. .read_snr = af9033_read_snr,
  803. .read_signal_strength = af9033_read_signal_strength,
  804. .read_ber = af9033_read_ber,
  805. .read_ucblocks = af9033_read_ucblocks,
  806. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  807. };
  808. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  809. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  810. MODULE_LICENSE("GPL");