af9013.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524
  1. /*
  2. * Afatech AF9013 demodulator driver
  3. *
  4. * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
  6. *
  7. * Thanks to Afatech who kindly provided information.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22. *
  23. */
  24. #include "af9013_priv.h"
  25. int af9013_debug;
  26. module_param_named(debug, af9013_debug, int, 0644);
  27. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  28. struct af9013_state {
  29. struct i2c_adapter *i2c;
  30. struct dvb_frontend fe;
  31. struct af9013_config config;
  32. /* tuner/demod RF and IF AGC limits used for signal strength calc */
  33. u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
  34. u16 signal_strength;
  35. u32 ber;
  36. u32 ucblocks;
  37. u16 snr;
  38. u32 bandwidth_hz;
  39. fe_status_t fe_status;
  40. unsigned long set_frontend_jiffies;
  41. unsigned long read_status_jiffies;
  42. bool first_tune;
  43. bool i2c_gate_state;
  44. unsigned int statistics_step:3;
  45. struct delayed_work statistics_work;
  46. };
  47. /* write multiple registers */
  48. static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
  49. const u8 *val, int len)
  50. {
  51. int ret;
  52. u8 buf[3+len];
  53. struct i2c_msg msg[1] = {
  54. {
  55. .addr = priv->config.i2c_addr,
  56. .flags = 0,
  57. .len = sizeof(buf),
  58. .buf = buf,
  59. }
  60. };
  61. buf[0] = (reg >> 8) & 0xff;
  62. buf[1] = (reg >> 0) & 0xff;
  63. buf[2] = mbox;
  64. memcpy(&buf[3], val, len);
  65. ret = i2c_transfer(priv->i2c, msg, 1);
  66. if (ret == 1) {
  67. ret = 0;
  68. } else {
  69. warn("i2c wr failed=%d reg=%04x len=%d", ret, reg, len);
  70. ret = -EREMOTEIO;
  71. }
  72. return ret;
  73. }
  74. /* read multiple registers */
  75. static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
  76. u8 *val, int len)
  77. {
  78. int ret;
  79. u8 buf[3];
  80. struct i2c_msg msg[2] = {
  81. {
  82. .addr = priv->config.i2c_addr,
  83. .flags = 0,
  84. .len = 3,
  85. .buf = buf,
  86. }, {
  87. .addr = priv->config.i2c_addr,
  88. .flags = I2C_M_RD,
  89. .len = len,
  90. .buf = val,
  91. }
  92. };
  93. buf[0] = (reg >> 8) & 0xff;
  94. buf[1] = (reg >> 0) & 0xff;
  95. buf[2] = mbox;
  96. ret = i2c_transfer(priv->i2c, msg, 2);
  97. if (ret == 2) {
  98. ret = 0;
  99. } else {
  100. warn("i2c rd failed=%d reg=%04x len=%d", ret, reg, len);
  101. ret = -EREMOTEIO;
  102. }
  103. return ret;
  104. }
  105. /* write multiple registers */
  106. static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
  107. int len)
  108. {
  109. int ret, i;
  110. u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
  111. if ((priv->config.ts_mode == AF9013_TS_USB) &&
  112. ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
  113. mbox |= ((len - 1) << 2);
  114. ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
  115. } else {
  116. for (i = 0; i < len; i++) {
  117. ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
  118. if (ret)
  119. goto err;
  120. }
  121. }
  122. err:
  123. return 0;
  124. }
  125. /* read multiple registers */
  126. static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
  127. {
  128. int ret, i;
  129. u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
  130. if ((priv->config.ts_mode == AF9013_TS_USB) &&
  131. ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
  132. mbox |= ((len - 1) << 2);
  133. ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
  134. } else {
  135. for (i = 0; i < len; i++) {
  136. ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
  137. if (ret)
  138. goto err;
  139. }
  140. }
  141. err:
  142. return 0;
  143. }
  144. /* write single register */
  145. static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
  146. {
  147. return af9013_wr_regs(priv, reg, &val, 1);
  148. }
  149. /* read single register */
  150. static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
  151. {
  152. return af9013_rd_regs(priv, reg, val, 1);
  153. }
  154. static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
  155. u8 len)
  156. {
  157. u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
  158. return af9013_wr_regs_i2c(state, mbox, reg, val, len);
  159. }
  160. static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
  161. int len, u8 val)
  162. {
  163. int ret;
  164. u8 tmp, mask;
  165. /* no need for read if whole reg is written */
  166. if (len != 8) {
  167. ret = af9013_rd_reg(state, reg, &tmp);
  168. if (ret)
  169. return ret;
  170. mask = (0xff >> (8 - len)) << pos;
  171. val <<= pos;
  172. tmp &= ~mask;
  173. val |= tmp;
  174. }
  175. return af9013_wr_reg(state, reg, val);
  176. }
  177. static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
  178. int len, u8 *val)
  179. {
  180. int ret;
  181. u8 tmp;
  182. ret = af9013_rd_reg(state, reg, &tmp);
  183. if (ret)
  184. return ret;
  185. *val = (tmp >> pos);
  186. *val &= (0xff >> (8 - len));
  187. return 0;
  188. }
  189. static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
  190. {
  191. int ret;
  192. u8 pos;
  193. u16 addr;
  194. dbg("%s: gpio=%d gpioval=%02x", __func__, gpio, gpioval);
  195. /*
  196. * GPIO0 & GPIO1 0xd735
  197. * GPIO2 & GPIO3 0xd736
  198. */
  199. switch (gpio) {
  200. case 0:
  201. case 1:
  202. addr = 0xd735;
  203. break;
  204. case 2:
  205. case 3:
  206. addr = 0xd736;
  207. break;
  208. default:
  209. err("invalid gpio:%d\n", gpio);
  210. ret = -EINVAL;
  211. goto err;
  212. };
  213. switch (gpio) {
  214. case 0:
  215. case 2:
  216. pos = 0;
  217. break;
  218. case 1:
  219. case 3:
  220. default:
  221. pos = 4;
  222. break;
  223. };
  224. ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
  225. if (ret)
  226. goto err;
  227. return ret;
  228. err:
  229. dbg("%s: failed=%d", __func__, ret);
  230. return ret;
  231. }
  232. static u32 af913_div(u32 a, u32 b, u32 x)
  233. {
  234. u32 r = 0, c = 0, i;
  235. dbg("%s: a=%d b=%d x=%d", __func__, a, b, x);
  236. if (a > b) {
  237. c = a / b;
  238. a = a - c * b;
  239. }
  240. for (i = 0; i < x; i++) {
  241. if (a >= b) {
  242. r += 1;
  243. a -= b;
  244. }
  245. a <<= 1;
  246. r <<= 1;
  247. }
  248. r = (c << (u32)x) + r;
  249. dbg("%s: a=%d b=%d x=%d r=%x", __func__, a, b, x, r);
  250. return r;
  251. }
  252. static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
  253. {
  254. int ret, i;
  255. u8 tmp;
  256. dbg("%s: onoff=%d", __func__, onoff);
  257. /* enable reset */
  258. ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
  259. if (ret)
  260. goto err;
  261. /* start reset mechanism */
  262. ret = af9013_wr_reg(state, 0xaeff, 1);
  263. if (ret)
  264. goto err;
  265. /* wait reset performs */
  266. for (i = 0; i < 150; i++) {
  267. ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
  268. if (ret)
  269. goto err;
  270. if (tmp)
  271. break; /* reset done */
  272. usleep_range(5000, 25000);
  273. }
  274. if (!tmp)
  275. return -ETIMEDOUT;
  276. if (onoff) {
  277. /* clear reset */
  278. ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
  279. if (ret)
  280. goto err;
  281. /* disable reset */
  282. ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
  283. /* power on */
  284. ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
  285. } else {
  286. /* power off */
  287. ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
  288. }
  289. return ret;
  290. err:
  291. dbg("%s: failed=%d", __func__, ret);
  292. return ret;
  293. }
  294. static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
  295. {
  296. struct af9013_state *state = fe->demodulator_priv;
  297. int ret;
  298. dbg("%s", __func__);
  299. /* reset and start BER counter */
  300. ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
  301. if (ret)
  302. goto err;
  303. return ret;
  304. err:
  305. dbg("%s: failed=%d", __func__, ret);
  306. return ret;
  307. }
  308. static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
  309. {
  310. struct af9013_state *state = fe->demodulator_priv;
  311. int ret;
  312. u8 buf[5];
  313. dbg("%s", __func__);
  314. /* check if error bit count is ready */
  315. ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
  316. if (ret)
  317. goto err;
  318. if (!buf[0]) {
  319. dbg("%s: not ready", __func__);
  320. return 0;
  321. }
  322. ret = af9013_rd_regs(state, 0xd387, buf, 5);
  323. if (ret)
  324. goto err;
  325. state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  326. state->ucblocks += (buf[4] << 8) | buf[3];
  327. return ret;
  328. err:
  329. dbg("%s: failed=%d", __func__, ret);
  330. return ret;
  331. }
  332. static int af9013_statistics_snr_start(struct dvb_frontend *fe)
  333. {
  334. struct af9013_state *state = fe->demodulator_priv;
  335. int ret;
  336. dbg("%s", __func__);
  337. /* start SNR meas */
  338. ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
  339. if (ret)
  340. goto err;
  341. return ret;
  342. err:
  343. dbg("%s: failed=%d", __func__, ret);
  344. return ret;
  345. }
  346. static int af9013_statistics_snr_result(struct dvb_frontend *fe)
  347. {
  348. struct af9013_state *state = fe->demodulator_priv;
  349. int ret, i, len;
  350. u8 buf[3], tmp;
  351. u32 snr_val;
  352. const struct af9013_snr *uninitialized_var(snr_lut);
  353. dbg("%s", __func__);
  354. /* check if SNR ready */
  355. ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
  356. if (ret)
  357. goto err;
  358. if (!tmp) {
  359. dbg("%s: not ready", __func__);
  360. return 0;
  361. }
  362. /* read value */
  363. ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
  364. if (ret)
  365. goto err;
  366. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  367. /* read current modulation */
  368. ret = af9013_rd_reg(state, 0xd3c1, &tmp);
  369. if (ret)
  370. goto err;
  371. switch ((tmp >> 6) & 3) {
  372. case 0:
  373. len = ARRAY_SIZE(qpsk_snr_lut);
  374. snr_lut = qpsk_snr_lut;
  375. break;
  376. case 1:
  377. len = ARRAY_SIZE(qam16_snr_lut);
  378. snr_lut = qam16_snr_lut;
  379. break;
  380. case 2:
  381. len = ARRAY_SIZE(qam64_snr_lut);
  382. snr_lut = qam64_snr_lut;
  383. break;
  384. default:
  385. goto err;
  386. break;
  387. }
  388. for (i = 0; i < len; i++) {
  389. tmp = snr_lut[i].snr;
  390. if (snr_val < snr_lut[i].val)
  391. break;
  392. }
  393. state->snr = tmp * 10; /* dB/10 */
  394. return ret;
  395. err:
  396. dbg("%s: failed=%d", __func__, ret);
  397. return ret;
  398. }
  399. static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
  400. {
  401. struct af9013_state *state = fe->demodulator_priv;
  402. int ret = 0;
  403. u8 buf[2], rf_gain, if_gain;
  404. int signal_strength;
  405. dbg("%s", __func__);
  406. if (!state->signal_strength_en)
  407. return 0;
  408. ret = af9013_rd_regs(state, 0xd07c, buf, 2);
  409. if (ret)
  410. goto err;
  411. rf_gain = buf[0];
  412. if_gain = buf[1];
  413. signal_strength = (0xffff / \
  414. (9 * (state->rf_50 + state->if_50) - \
  415. 11 * (state->rf_80 + state->if_80))) * \
  416. (10 * (rf_gain + if_gain) - \
  417. 11 * (state->rf_80 + state->if_80));
  418. if (signal_strength < 0)
  419. signal_strength = 0;
  420. else if (signal_strength > 0xffff)
  421. signal_strength = 0xffff;
  422. state->signal_strength = signal_strength;
  423. return ret;
  424. err:
  425. dbg("%s: failed=%d", __func__, ret);
  426. return ret;
  427. }
  428. static void af9013_statistics_work(struct work_struct *work)
  429. {
  430. struct af9013_state *state = container_of(work,
  431. struct af9013_state, statistics_work.work);
  432. unsigned int next_msec;
  433. /* update only signal strength when demod is not locked */
  434. if (!(state->fe_status & FE_HAS_LOCK)) {
  435. state->statistics_step = 0;
  436. state->ber = 0;
  437. state->snr = 0;
  438. }
  439. switch (state->statistics_step) {
  440. default:
  441. state->statistics_step = 0;
  442. case 0:
  443. af9013_statistics_signal_strength(&state->fe);
  444. state->statistics_step++;
  445. next_msec = 300;
  446. break;
  447. case 1:
  448. af9013_statistics_snr_start(&state->fe);
  449. state->statistics_step++;
  450. next_msec = 200;
  451. break;
  452. case 2:
  453. af9013_statistics_ber_unc_start(&state->fe);
  454. state->statistics_step++;
  455. next_msec = 1000;
  456. break;
  457. case 3:
  458. af9013_statistics_snr_result(&state->fe);
  459. state->statistics_step++;
  460. next_msec = 400;
  461. break;
  462. case 4:
  463. af9013_statistics_ber_unc_result(&state->fe);
  464. state->statistics_step++;
  465. next_msec = 100;
  466. break;
  467. }
  468. schedule_delayed_work(&state->statistics_work,
  469. msecs_to_jiffies(next_msec));
  470. }
  471. static int af9013_get_tune_settings(struct dvb_frontend *fe,
  472. struct dvb_frontend_tune_settings *fesettings)
  473. {
  474. fesettings->min_delay_ms = 800;
  475. fesettings->step_size = 0;
  476. fesettings->max_drift = 0;
  477. return 0;
  478. }
  479. static int af9013_set_frontend(struct dvb_frontend *fe)
  480. {
  481. struct af9013_state *state = fe->demodulator_priv;
  482. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  483. int ret, i, sampling_freq;
  484. bool auto_mode, spec_inv;
  485. u8 buf[6];
  486. u32 if_frequency, freq_cw;
  487. dbg("%s: frequency=%d bandwidth_hz=%d", __func__,
  488. c->frequency, c->bandwidth_hz);
  489. /* program tuner */
  490. if (fe->ops.tuner_ops.set_params)
  491. fe->ops.tuner_ops.set_params(fe);
  492. /* program CFOE coefficients */
  493. if (c->bandwidth_hz != state->bandwidth_hz) {
  494. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  495. if (coeff_lut[i].clock == state->config.clock &&
  496. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  497. break;
  498. }
  499. }
  500. ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
  501. sizeof(coeff_lut[i].val));
  502. }
  503. /* program frequency control */
  504. if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
  505. /* get used IF frequency */
  506. if (fe->ops.tuner_ops.get_if_frequency)
  507. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  508. else
  509. if_frequency = state->config.if_frequency;
  510. sampling_freq = if_frequency;
  511. while (sampling_freq > (state->config.clock / 2))
  512. sampling_freq -= state->config.clock;
  513. if (sampling_freq < 0) {
  514. sampling_freq *= -1;
  515. spec_inv = state->config.spec_inv;
  516. } else {
  517. spec_inv = !state->config.spec_inv;
  518. }
  519. freq_cw = af913_div(sampling_freq, state->config.clock, 23);
  520. if (spec_inv)
  521. freq_cw = 0x800000 - freq_cw;
  522. buf[0] = (freq_cw >> 0) & 0xff;
  523. buf[1] = (freq_cw >> 8) & 0xff;
  524. buf[2] = (freq_cw >> 16) & 0x7f;
  525. freq_cw = 0x800000 - freq_cw;
  526. buf[3] = (freq_cw >> 0) & 0xff;
  527. buf[4] = (freq_cw >> 8) & 0xff;
  528. buf[5] = (freq_cw >> 16) & 0x7f;
  529. ret = af9013_wr_regs(state, 0xd140, buf, 3);
  530. if (ret)
  531. goto err;
  532. ret = af9013_wr_regs(state, 0x9be7, buf, 6);
  533. if (ret)
  534. goto err;
  535. }
  536. /* clear TPS lock flag */
  537. ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
  538. if (ret)
  539. goto err;
  540. /* clear MPEG2 lock flag */
  541. ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
  542. if (ret)
  543. goto err;
  544. /* empty channel function */
  545. ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
  546. if (ret)
  547. goto err;
  548. /* empty DVB-T channel function */
  549. ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
  550. if (ret)
  551. goto err;
  552. /* transmission parameters */
  553. auto_mode = false;
  554. memset(buf, 0, 3);
  555. switch (c->transmission_mode) {
  556. case TRANSMISSION_MODE_AUTO:
  557. auto_mode = 1;
  558. break;
  559. case TRANSMISSION_MODE_2K:
  560. break;
  561. case TRANSMISSION_MODE_8K:
  562. buf[0] |= (1 << 0);
  563. break;
  564. default:
  565. dbg("%s: invalid transmission_mode", __func__);
  566. auto_mode = 1;
  567. }
  568. switch (c->guard_interval) {
  569. case GUARD_INTERVAL_AUTO:
  570. auto_mode = 1;
  571. break;
  572. case GUARD_INTERVAL_1_32:
  573. break;
  574. case GUARD_INTERVAL_1_16:
  575. buf[0] |= (1 << 2);
  576. break;
  577. case GUARD_INTERVAL_1_8:
  578. buf[0] |= (2 << 2);
  579. break;
  580. case GUARD_INTERVAL_1_4:
  581. buf[0] |= (3 << 2);
  582. break;
  583. default:
  584. dbg("%s: invalid guard_interval", __func__);
  585. auto_mode = 1;
  586. }
  587. switch (c->hierarchy) {
  588. case HIERARCHY_AUTO:
  589. auto_mode = 1;
  590. break;
  591. case HIERARCHY_NONE:
  592. break;
  593. case HIERARCHY_1:
  594. buf[0] |= (1 << 4);
  595. break;
  596. case HIERARCHY_2:
  597. buf[0] |= (2 << 4);
  598. break;
  599. case HIERARCHY_4:
  600. buf[0] |= (3 << 4);
  601. break;
  602. default:
  603. dbg("%s: invalid hierarchy", __func__);
  604. auto_mode = 1;
  605. };
  606. switch (c->modulation) {
  607. case QAM_AUTO:
  608. auto_mode = 1;
  609. break;
  610. case QPSK:
  611. break;
  612. case QAM_16:
  613. buf[1] |= (1 << 6);
  614. break;
  615. case QAM_64:
  616. buf[1] |= (2 << 6);
  617. break;
  618. default:
  619. dbg("%s: invalid modulation", __func__);
  620. auto_mode = 1;
  621. }
  622. /* Use HP. How and which case we can switch to LP? */
  623. buf[1] |= (1 << 4);
  624. switch (c->code_rate_HP) {
  625. case FEC_AUTO:
  626. auto_mode = 1;
  627. break;
  628. case FEC_1_2:
  629. break;
  630. case FEC_2_3:
  631. buf[2] |= (1 << 0);
  632. break;
  633. case FEC_3_4:
  634. buf[2] |= (2 << 0);
  635. break;
  636. case FEC_5_6:
  637. buf[2] |= (3 << 0);
  638. break;
  639. case FEC_7_8:
  640. buf[2] |= (4 << 0);
  641. break;
  642. default:
  643. dbg("%s: invalid code_rate_HP", __func__);
  644. auto_mode = 1;
  645. }
  646. switch (c->code_rate_LP) {
  647. case FEC_AUTO:
  648. auto_mode = 1;
  649. break;
  650. case FEC_1_2:
  651. break;
  652. case FEC_2_3:
  653. buf[2] |= (1 << 3);
  654. break;
  655. case FEC_3_4:
  656. buf[2] |= (2 << 3);
  657. break;
  658. case FEC_5_6:
  659. buf[2] |= (3 << 3);
  660. break;
  661. case FEC_7_8:
  662. buf[2] |= (4 << 3);
  663. break;
  664. case FEC_NONE:
  665. break;
  666. default:
  667. dbg("%s: invalid code_rate_LP", __func__);
  668. auto_mode = 1;
  669. }
  670. switch (c->bandwidth_hz) {
  671. case 6000000:
  672. break;
  673. case 7000000:
  674. buf[1] |= (1 << 2);
  675. break;
  676. case 8000000:
  677. buf[1] |= (2 << 2);
  678. break;
  679. default:
  680. dbg("%s: invalid bandwidth_hz", __func__);
  681. ret = -EINVAL;
  682. goto err;
  683. }
  684. ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
  685. if (ret)
  686. goto err;
  687. if (auto_mode) {
  688. /* clear easy mode flag */
  689. ret = af9013_wr_reg(state, 0xaefd, 0);
  690. if (ret)
  691. goto err;
  692. dbg("%s: auto params", __func__);
  693. } else {
  694. /* set easy mode flag */
  695. ret = af9013_wr_reg(state, 0xaefd, 1);
  696. if (ret)
  697. goto err;
  698. ret = af9013_wr_reg(state, 0xaefe, 0);
  699. if (ret)
  700. goto err;
  701. dbg("%s: manual params", __func__);
  702. }
  703. /* tune */
  704. ret = af9013_wr_reg(state, 0xffff, 0);
  705. if (ret)
  706. goto err;
  707. state->bandwidth_hz = c->bandwidth_hz;
  708. state->set_frontend_jiffies = jiffies;
  709. state->first_tune = false;
  710. return ret;
  711. err:
  712. dbg("%s: failed=%d", __func__, ret);
  713. return ret;
  714. }
  715. static int af9013_get_frontend(struct dvb_frontend *fe)
  716. {
  717. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  718. struct af9013_state *state = fe->demodulator_priv;
  719. int ret;
  720. u8 buf[3];
  721. dbg("%s", __func__);
  722. ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
  723. if (ret)
  724. goto err;
  725. switch ((buf[1] >> 6) & 3) {
  726. case 0:
  727. c->modulation = QPSK;
  728. break;
  729. case 1:
  730. c->modulation = QAM_16;
  731. break;
  732. case 2:
  733. c->modulation = QAM_64;
  734. break;
  735. }
  736. switch ((buf[0] >> 0) & 3) {
  737. case 0:
  738. c->transmission_mode = TRANSMISSION_MODE_2K;
  739. break;
  740. case 1:
  741. c->transmission_mode = TRANSMISSION_MODE_8K;
  742. }
  743. switch ((buf[0] >> 2) & 3) {
  744. case 0:
  745. c->guard_interval = GUARD_INTERVAL_1_32;
  746. break;
  747. case 1:
  748. c->guard_interval = GUARD_INTERVAL_1_16;
  749. break;
  750. case 2:
  751. c->guard_interval = GUARD_INTERVAL_1_8;
  752. break;
  753. case 3:
  754. c->guard_interval = GUARD_INTERVAL_1_4;
  755. break;
  756. }
  757. switch ((buf[0] >> 4) & 7) {
  758. case 0:
  759. c->hierarchy = HIERARCHY_NONE;
  760. break;
  761. case 1:
  762. c->hierarchy = HIERARCHY_1;
  763. break;
  764. case 2:
  765. c->hierarchy = HIERARCHY_2;
  766. break;
  767. case 3:
  768. c->hierarchy = HIERARCHY_4;
  769. break;
  770. }
  771. switch ((buf[2] >> 0) & 7) {
  772. case 0:
  773. c->code_rate_HP = FEC_1_2;
  774. break;
  775. case 1:
  776. c->code_rate_HP = FEC_2_3;
  777. break;
  778. case 2:
  779. c->code_rate_HP = FEC_3_4;
  780. break;
  781. case 3:
  782. c->code_rate_HP = FEC_5_6;
  783. break;
  784. case 4:
  785. c->code_rate_HP = FEC_7_8;
  786. break;
  787. }
  788. switch ((buf[2] >> 3) & 7) {
  789. case 0:
  790. c->code_rate_LP = FEC_1_2;
  791. break;
  792. case 1:
  793. c->code_rate_LP = FEC_2_3;
  794. break;
  795. case 2:
  796. c->code_rate_LP = FEC_3_4;
  797. break;
  798. case 3:
  799. c->code_rate_LP = FEC_5_6;
  800. break;
  801. case 4:
  802. c->code_rate_LP = FEC_7_8;
  803. break;
  804. }
  805. switch ((buf[1] >> 2) & 3) {
  806. case 0:
  807. c->bandwidth_hz = 6000000;
  808. break;
  809. case 1:
  810. c->bandwidth_hz = 7000000;
  811. break;
  812. case 2:
  813. c->bandwidth_hz = 8000000;
  814. break;
  815. }
  816. return ret;
  817. err:
  818. dbg("%s: failed=%d", __func__, ret);
  819. return ret;
  820. }
  821. static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
  822. {
  823. struct af9013_state *state = fe->demodulator_priv;
  824. int ret;
  825. u8 tmp;
  826. /*
  827. * Return status from the cache if it is younger than 2000ms with the
  828. * exception of last tune is done during 4000ms.
  829. */
  830. if (time_is_after_jiffies(
  831. state->read_status_jiffies + msecs_to_jiffies(2000)) &&
  832. time_is_before_jiffies(
  833. state->set_frontend_jiffies + msecs_to_jiffies(4000))
  834. ) {
  835. *status = state->fe_status;
  836. return 0;
  837. } else {
  838. *status = 0;
  839. }
  840. /* MPEG2 lock */
  841. ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
  842. if (ret)
  843. goto err;
  844. if (tmp)
  845. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
  846. FE_HAS_SYNC | FE_HAS_LOCK;
  847. if (!*status) {
  848. /* TPS lock */
  849. ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
  850. if (ret)
  851. goto err;
  852. if (tmp)
  853. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  854. FE_HAS_VITERBI;
  855. }
  856. state->fe_status = *status;
  857. state->read_status_jiffies = jiffies;
  858. return ret;
  859. err:
  860. dbg("%s: failed=%d", __func__, ret);
  861. return ret;
  862. }
  863. static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
  864. {
  865. struct af9013_state *state = fe->demodulator_priv;
  866. *snr = state->snr;
  867. return 0;
  868. }
  869. static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  870. {
  871. struct af9013_state *state = fe->demodulator_priv;
  872. *strength = state->signal_strength;
  873. return 0;
  874. }
  875. static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
  876. {
  877. struct af9013_state *state = fe->demodulator_priv;
  878. *ber = state->ber;
  879. return 0;
  880. }
  881. static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  882. {
  883. struct af9013_state *state = fe->demodulator_priv;
  884. *ucblocks = state->ucblocks;
  885. return 0;
  886. }
  887. static int af9013_init(struct dvb_frontend *fe)
  888. {
  889. struct af9013_state *state = fe->demodulator_priv;
  890. int ret, i, len;
  891. u8 buf[3], tmp;
  892. u32 adc_cw;
  893. const struct af9013_reg_bit *init;
  894. dbg("%s", __func__);
  895. /* power on */
  896. ret = af9013_power_ctrl(state, 1);
  897. if (ret)
  898. goto err;
  899. /* enable ADC */
  900. ret = af9013_wr_reg(state, 0xd73a, 0xa4);
  901. if (ret)
  902. goto err;
  903. /* write API version to firmware */
  904. ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
  905. if (ret)
  906. goto err;
  907. /* program ADC control */
  908. switch (state->config.clock) {
  909. case 28800000: /* 28.800 MHz */
  910. tmp = 0;
  911. break;
  912. case 20480000: /* 20.480 MHz */
  913. tmp = 1;
  914. break;
  915. case 28000000: /* 28.000 MHz */
  916. tmp = 2;
  917. break;
  918. case 25000000: /* 25.000 MHz */
  919. tmp = 3;
  920. break;
  921. default:
  922. err("invalid clock");
  923. return -EINVAL;
  924. }
  925. adc_cw = af913_div(state->config.clock, 1000000ul, 19);
  926. buf[0] = (adc_cw >> 0) & 0xff;
  927. buf[1] = (adc_cw >> 8) & 0xff;
  928. buf[2] = (adc_cw >> 16) & 0xff;
  929. ret = af9013_wr_regs(state, 0xd180, buf, 3);
  930. if (ret)
  931. goto err;
  932. ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
  933. if (ret)
  934. goto err;
  935. /* set I2C master clock */
  936. ret = af9013_wr_reg(state, 0xd416, 0x14);
  937. if (ret)
  938. goto err;
  939. /* set 16 embx */
  940. ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
  941. if (ret)
  942. goto err;
  943. /* set no trigger */
  944. ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
  945. if (ret)
  946. goto err;
  947. /* set read-update bit for constellation */
  948. ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
  949. if (ret)
  950. goto err;
  951. /* settings for mp2if */
  952. if (state->config.ts_mode == AF9013_TS_USB) {
  953. /* AF9015 split PSB to 1.5k + 0.5k */
  954. ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
  955. if (ret)
  956. goto err;
  957. } else {
  958. /* AF9013 change the output bit to data7 */
  959. ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
  960. if (ret)
  961. goto err;
  962. /* AF9013 set mpeg to full speed */
  963. ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
  964. if (ret)
  965. goto err;
  966. }
  967. ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
  968. if (ret)
  969. goto err;
  970. /* load OFSM settings */
  971. dbg("%s: load ofsm settings", __func__);
  972. len = ARRAY_SIZE(ofsm_init);
  973. init = ofsm_init;
  974. for (i = 0; i < len; i++) {
  975. ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
  976. init[i].len, init[i].val);
  977. if (ret)
  978. goto err;
  979. }
  980. /* load tuner specific settings */
  981. dbg("%s: load tuner specific settings", __func__);
  982. switch (state->config.tuner) {
  983. case AF9013_TUNER_MXL5003D:
  984. len = ARRAY_SIZE(tuner_init_mxl5003d);
  985. init = tuner_init_mxl5003d;
  986. break;
  987. case AF9013_TUNER_MXL5005D:
  988. case AF9013_TUNER_MXL5005R:
  989. case AF9013_TUNER_MXL5007T:
  990. len = ARRAY_SIZE(tuner_init_mxl5005);
  991. init = tuner_init_mxl5005;
  992. break;
  993. case AF9013_TUNER_ENV77H11D5:
  994. len = ARRAY_SIZE(tuner_init_env77h11d5);
  995. init = tuner_init_env77h11d5;
  996. break;
  997. case AF9013_TUNER_MT2060:
  998. len = ARRAY_SIZE(tuner_init_mt2060);
  999. init = tuner_init_mt2060;
  1000. break;
  1001. case AF9013_TUNER_MC44S803:
  1002. len = ARRAY_SIZE(tuner_init_mc44s803);
  1003. init = tuner_init_mc44s803;
  1004. break;
  1005. case AF9013_TUNER_QT1010:
  1006. case AF9013_TUNER_QT1010A:
  1007. len = ARRAY_SIZE(tuner_init_qt1010);
  1008. init = tuner_init_qt1010;
  1009. break;
  1010. case AF9013_TUNER_MT2060_2:
  1011. len = ARRAY_SIZE(tuner_init_mt2060_2);
  1012. init = tuner_init_mt2060_2;
  1013. break;
  1014. case AF9013_TUNER_TDA18271:
  1015. case AF9013_TUNER_TDA18218:
  1016. len = ARRAY_SIZE(tuner_init_tda18271);
  1017. init = tuner_init_tda18271;
  1018. break;
  1019. case AF9013_TUNER_UNKNOWN:
  1020. default:
  1021. len = ARRAY_SIZE(tuner_init_unknown);
  1022. init = tuner_init_unknown;
  1023. break;
  1024. }
  1025. for (i = 0; i < len; i++) {
  1026. ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
  1027. init[i].len, init[i].val);
  1028. if (ret)
  1029. goto err;
  1030. }
  1031. /* TS mode */
  1032. ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
  1033. if (ret)
  1034. goto err;
  1035. /* enable lock led */
  1036. ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
  1037. if (ret)
  1038. goto err;
  1039. /* check if we support signal strength */
  1040. if (!state->signal_strength_en) {
  1041. ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
  1042. &state->signal_strength_en);
  1043. if (ret)
  1044. goto err;
  1045. }
  1046. /* read values needed for signal strength calculation */
  1047. if (state->signal_strength_en && !state->rf_50) {
  1048. ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
  1049. if (ret)
  1050. goto err;
  1051. ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
  1052. if (ret)
  1053. goto err;
  1054. ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
  1055. if (ret)
  1056. goto err;
  1057. ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
  1058. if (ret)
  1059. goto err;
  1060. }
  1061. /* SNR */
  1062. ret = af9013_wr_reg(state, 0xd2e2, 1);
  1063. if (ret)
  1064. goto err;
  1065. /* BER / UCB */
  1066. buf[0] = (10000 >> 0) & 0xff;
  1067. buf[1] = (10000 >> 8) & 0xff;
  1068. ret = af9013_wr_regs(state, 0xd385, buf, 2);
  1069. if (ret)
  1070. goto err;
  1071. /* enable FEC monitor */
  1072. ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
  1073. if (ret)
  1074. goto err;
  1075. state->first_tune = true;
  1076. schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
  1077. return ret;
  1078. err:
  1079. dbg("%s: failed=%d", __func__, ret);
  1080. return ret;
  1081. }
  1082. static int af9013_sleep(struct dvb_frontend *fe)
  1083. {
  1084. struct af9013_state *state = fe->demodulator_priv;
  1085. int ret;
  1086. dbg("%s", __func__);
  1087. /* stop statistics polling */
  1088. cancel_delayed_work_sync(&state->statistics_work);
  1089. /* disable lock led */
  1090. ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
  1091. if (ret)
  1092. goto err;
  1093. /* power off */
  1094. ret = af9013_power_ctrl(state, 0);
  1095. if (ret)
  1096. goto err;
  1097. return ret;
  1098. err:
  1099. dbg("%s: failed=%d", __func__, ret);
  1100. return ret;
  1101. }
  1102. static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  1103. {
  1104. int ret;
  1105. struct af9013_state *state = fe->demodulator_priv;
  1106. dbg("%s: enable=%d", __func__, enable);
  1107. /* gate already open or close */
  1108. if (state->i2c_gate_state == enable)
  1109. return 0;
  1110. if (state->config.ts_mode == AF9013_TS_USB)
  1111. ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
  1112. else
  1113. ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
  1114. if (ret)
  1115. goto err;
  1116. state->i2c_gate_state = enable;
  1117. return ret;
  1118. err:
  1119. dbg("%s: failed=%d", __func__, ret);
  1120. return ret;
  1121. }
  1122. static void af9013_release(struct dvb_frontend *fe)
  1123. {
  1124. struct af9013_state *state = fe->demodulator_priv;
  1125. kfree(state);
  1126. }
  1127. static struct dvb_frontend_ops af9013_ops;
  1128. static int af9013_download_firmware(struct af9013_state *state)
  1129. {
  1130. int i, len, remaining, ret;
  1131. const struct firmware *fw;
  1132. u16 checksum = 0;
  1133. u8 val;
  1134. u8 fw_params[4];
  1135. u8 *fw_file = AF9013_DEFAULT_FIRMWARE;
  1136. msleep(100);
  1137. /* check whether firmware is already running */
  1138. ret = af9013_rd_reg(state, 0x98be, &val);
  1139. if (ret)
  1140. goto err;
  1141. else
  1142. dbg("%s: firmware status=%02x", __func__, val);
  1143. if (val == 0x0c) /* fw is running, no need for download */
  1144. goto exit;
  1145. info("found a '%s' in cold state, will try to load a firmware",
  1146. af9013_ops.info.name);
  1147. /* request the firmware, this will block and timeout */
  1148. ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
  1149. if (ret) {
  1150. err("did not find the firmware file. (%s) "
  1151. "Please see linux/Documentation/dvb/ for more details" \
  1152. " on firmware-problems. (%d)",
  1153. fw_file, ret);
  1154. goto err;
  1155. }
  1156. info("downloading firmware from file '%s'", fw_file);
  1157. /* calc checksum */
  1158. for (i = 0; i < fw->size; i++)
  1159. checksum += fw->data[i];
  1160. fw_params[0] = checksum >> 8;
  1161. fw_params[1] = checksum & 0xff;
  1162. fw_params[2] = fw->size >> 8;
  1163. fw_params[3] = fw->size & 0xff;
  1164. /* write fw checksum & size */
  1165. ret = af9013_write_ofsm_regs(state, 0x50fc,
  1166. fw_params, sizeof(fw_params));
  1167. if (ret)
  1168. goto err_release;
  1169. #define FW_ADDR 0x5100 /* firmware start address */
  1170. #define LEN_MAX 16 /* max packet size */
  1171. for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
  1172. len = remaining;
  1173. if (len > LEN_MAX)
  1174. len = LEN_MAX;
  1175. ret = af9013_write_ofsm_regs(state,
  1176. FW_ADDR + fw->size - remaining,
  1177. (u8 *) &fw->data[fw->size - remaining], len);
  1178. if (ret) {
  1179. err("firmware download failed:%d", ret);
  1180. goto err_release;
  1181. }
  1182. }
  1183. /* request boot firmware */
  1184. ret = af9013_wr_reg(state, 0xe205, 1);
  1185. if (ret)
  1186. goto err_release;
  1187. for (i = 0; i < 15; i++) {
  1188. msleep(100);
  1189. /* check firmware status */
  1190. ret = af9013_rd_reg(state, 0x98be, &val);
  1191. if (ret)
  1192. goto err_release;
  1193. dbg("%s: firmware status=%02x", __func__, val);
  1194. if (val == 0x0c || val == 0x04) /* success or fail */
  1195. break;
  1196. }
  1197. if (val == 0x04) {
  1198. err("firmware did not run");
  1199. ret = -ENODEV;
  1200. } else if (val != 0x0c) {
  1201. err("firmware boot timeout");
  1202. ret = -ENODEV;
  1203. }
  1204. err_release:
  1205. release_firmware(fw);
  1206. err:
  1207. exit:
  1208. if (!ret)
  1209. info("found a '%s' in warm state.", af9013_ops.info.name);
  1210. return ret;
  1211. }
  1212. struct dvb_frontend *af9013_attach(const struct af9013_config *config,
  1213. struct i2c_adapter *i2c)
  1214. {
  1215. int ret;
  1216. struct af9013_state *state = NULL;
  1217. u8 buf[4], i;
  1218. /* allocate memory for the internal state */
  1219. state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
  1220. if (state == NULL)
  1221. goto err;
  1222. /* setup the state */
  1223. state->i2c = i2c;
  1224. memcpy(&state->config, config, sizeof(struct af9013_config));
  1225. /* download firmware */
  1226. if (state->config.ts_mode != AF9013_TS_USB) {
  1227. ret = af9013_download_firmware(state);
  1228. if (ret)
  1229. goto err;
  1230. }
  1231. /* firmware version */
  1232. ret = af9013_rd_regs(state, 0x5103, buf, 4);
  1233. if (ret)
  1234. goto err;
  1235. info("firmware version %d.%d.%d.%d", buf[0], buf[1], buf[2], buf[3]);
  1236. /* set GPIOs */
  1237. for (i = 0; i < sizeof(state->config.gpio); i++) {
  1238. ret = af9013_set_gpio(state, i, state->config.gpio[i]);
  1239. if (ret)
  1240. goto err;
  1241. }
  1242. /* create dvb_frontend */
  1243. memcpy(&state->fe.ops, &af9013_ops,
  1244. sizeof(struct dvb_frontend_ops));
  1245. state->fe.demodulator_priv = state;
  1246. INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
  1247. return &state->fe;
  1248. err:
  1249. kfree(state);
  1250. return NULL;
  1251. }
  1252. EXPORT_SYMBOL(af9013_attach);
  1253. static struct dvb_frontend_ops af9013_ops = {
  1254. .delsys = { SYS_DVBT },
  1255. .info = {
  1256. .name = "Afatech AF9013",
  1257. .frequency_min = 174000000,
  1258. .frequency_max = 862000000,
  1259. .frequency_stepsize = 250000,
  1260. .frequency_tolerance = 0,
  1261. .caps = FE_CAN_FEC_1_2 |
  1262. FE_CAN_FEC_2_3 |
  1263. FE_CAN_FEC_3_4 |
  1264. FE_CAN_FEC_5_6 |
  1265. FE_CAN_FEC_7_8 |
  1266. FE_CAN_FEC_AUTO |
  1267. FE_CAN_QPSK |
  1268. FE_CAN_QAM_16 |
  1269. FE_CAN_QAM_64 |
  1270. FE_CAN_QAM_AUTO |
  1271. FE_CAN_TRANSMISSION_MODE_AUTO |
  1272. FE_CAN_GUARD_INTERVAL_AUTO |
  1273. FE_CAN_HIERARCHY_AUTO |
  1274. FE_CAN_RECOVER |
  1275. FE_CAN_MUTE_TS
  1276. },
  1277. .release = af9013_release,
  1278. .init = af9013_init,
  1279. .sleep = af9013_sleep,
  1280. .get_tune_settings = af9013_get_tune_settings,
  1281. .set_frontend = af9013_set_frontend,
  1282. .get_frontend = af9013_get_frontend,
  1283. .read_status = af9013_read_status,
  1284. .read_snr = af9013_read_snr,
  1285. .read_signal_strength = af9013_read_signal_strength,
  1286. .read_ber = af9013_read_ber,
  1287. .read_ucblocks = af9013_read_ucblocks,
  1288. .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
  1289. };
  1290. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  1291. MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
  1292. MODULE_LICENSE("GPL");