md.c 220 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. static void mddev_bio_destructor(struct bio *bio)
  134. {
  135. struct mddev *mddev, **mddevp;
  136. mddevp = (void*)bio;
  137. mddev = mddevp[-1];
  138. bio_free(bio, mddev->bio_set);
  139. }
  140. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  141. struct mddev *mddev)
  142. {
  143. struct bio *b;
  144. struct mddev **mddevp;
  145. if (!mddev || !mddev->bio_set)
  146. return bio_alloc(gfp_mask, nr_iovecs);
  147. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  148. mddev->bio_set);
  149. if (!b)
  150. return NULL;
  151. mddevp = (void*)b;
  152. mddevp[-1] = mddev;
  153. b->bi_destructor = mddev_bio_destructor;
  154. return b;
  155. }
  156. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  157. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  158. struct mddev *mddev)
  159. {
  160. struct bio *b;
  161. struct mddev **mddevp;
  162. if (!mddev || !mddev->bio_set)
  163. return bio_clone(bio, gfp_mask);
  164. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  165. mddev->bio_set);
  166. if (!b)
  167. return NULL;
  168. mddevp = (void*)b;
  169. mddevp[-1] = mddev;
  170. b->bi_destructor = mddev_bio_destructor;
  171. __bio_clone(b, bio);
  172. if (bio_integrity(bio)) {
  173. int ret;
  174. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  175. if (ret < 0) {
  176. bio_put(b);
  177. return NULL;
  178. }
  179. }
  180. return b;
  181. }
  182. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  183. void md_trim_bio(struct bio *bio, int offset, int size)
  184. {
  185. /* 'bio' is a cloned bio which we need to trim to match
  186. * the given offset and size.
  187. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  188. */
  189. int i;
  190. struct bio_vec *bvec;
  191. int sofar = 0;
  192. size <<= 9;
  193. if (offset == 0 && size == bio->bi_size)
  194. return;
  195. bio->bi_sector += offset;
  196. bio->bi_size = size;
  197. offset <<= 9;
  198. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  199. while (bio->bi_idx < bio->bi_vcnt &&
  200. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  201. /* remove this whole bio_vec */
  202. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  203. bio->bi_idx++;
  204. }
  205. if (bio->bi_idx < bio->bi_vcnt) {
  206. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  207. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  208. }
  209. /* avoid any complications with bi_idx being non-zero*/
  210. if (bio->bi_idx) {
  211. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  212. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  213. bio->bi_vcnt -= bio->bi_idx;
  214. bio->bi_idx = 0;
  215. }
  216. /* Make sure vcnt and last bv are not too big */
  217. bio_for_each_segment(bvec, bio, i) {
  218. if (sofar + bvec->bv_len > size)
  219. bvec->bv_len = size - sofar;
  220. if (bvec->bv_len == 0) {
  221. bio->bi_vcnt = i;
  222. break;
  223. }
  224. sofar += bvec->bv_len;
  225. }
  226. }
  227. EXPORT_SYMBOL_GPL(md_trim_bio);
  228. /*
  229. * We have a system wide 'event count' that is incremented
  230. * on any 'interesting' event, and readers of /proc/mdstat
  231. * can use 'poll' or 'select' to find out when the event
  232. * count increases.
  233. *
  234. * Events are:
  235. * start array, stop array, error, add device, remove device,
  236. * start build, activate spare
  237. */
  238. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  239. static atomic_t md_event_count;
  240. void md_new_event(struct mddev *mddev)
  241. {
  242. atomic_inc(&md_event_count);
  243. wake_up(&md_event_waiters);
  244. }
  245. EXPORT_SYMBOL_GPL(md_new_event);
  246. /* Alternate version that can be called from interrupts
  247. * when calling sysfs_notify isn't needed.
  248. */
  249. static void md_new_event_inintr(struct mddev *mddev)
  250. {
  251. atomic_inc(&md_event_count);
  252. wake_up(&md_event_waiters);
  253. }
  254. /*
  255. * Enables to iterate over all existing md arrays
  256. * all_mddevs_lock protects this list.
  257. */
  258. static LIST_HEAD(all_mddevs);
  259. static DEFINE_SPINLOCK(all_mddevs_lock);
  260. /*
  261. * iterates through all used mddevs in the system.
  262. * We take care to grab the all_mddevs_lock whenever navigating
  263. * the list, and to always hold a refcount when unlocked.
  264. * Any code which breaks out of this loop while own
  265. * a reference to the current mddev and must mddev_put it.
  266. */
  267. #define for_each_mddev(_mddev,_tmp) \
  268. \
  269. for (({ spin_lock(&all_mddevs_lock); \
  270. _tmp = all_mddevs.next; \
  271. _mddev = NULL;}); \
  272. ({ if (_tmp != &all_mddevs) \
  273. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  274. spin_unlock(&all_mddevs_lock); \
  275. if (_mddev) mddev_put(_mddev); \
  276. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  277. _tmp != &all_mddevs;}); \
  278. ({ spin_lock(&all_mddevs_lock); \
  279. _tmp = _tmp->next;}) \
  280. )
  281. /* Rather than calling directly into the personality make_request function,
  282. * IO requests come here first so that we can check if the device is
  283. * being suspended pending a reconfiguration.
  284. * We hold a refcount over the call to ->make_request. By the time that
  285. * call has finished, the bio has been linked into some internal structure
  286. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  287. */
  288. static void md_make_request(struct request_queue *q, struct bio *bio)
  289. {
  290. const int rw = bio_data_dir(bio);
  291. struct mddev *mddev = q->queuedata;
  292. int cpu;
  293. unsigned int sectors;
  294. if (mddev == NULL || mddev->pers == NULL
  295. || !mddev->ready) {
  296. bio_io_error(bio);
  297. return;
  298. }
  299. smp_rmb(); /* Ensure implications of 'active' are visible */
  300. rcu_read_lock();
  301. if (mddev->suspended) {
  302. DEFINE_WAIT(__wait);
  303. for (;;) {
  304. prepare_to_wait(&mddev->sb_wait, &__wait,
  305. TASK_UNINTERRUPTIBLE);
  306. if (!mddev->suspended)
  307. break;
  308. rcu_read_unlock();
  309. schedule();
  310. rcu_read_lock();
  311. }
  312. finish_wait(&mddev->sb_wait, &__wait);
  313. }
  314. atomic_inc(&mddev->active_io);
  315. rcu_read_unlock();
  316. /*
  317. * save the sectors now since our bio can
  318. * go away inside make_request
  319. */
  320. sectors = bio_sectors(bio);
  321. mddev->pers->make_request(mddev, bio);
  322. cpu = part_stat_lock();
  323. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  324. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  325. part_stat_unlock();
  326. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  327. wake_up(&mddev->sb_wait);
  328. }
  329. /* mddev_suspend makes sure no new requests are submitted
  330. * to the device, and that any requests that have been submitted
  331. * are completely handled.
  332. * Once ->stop is called and completes, the module will be completely
  333. * unused.
  334. */
  335. void mddev_suspend(struct mddev *mddev)
  336. {
  337. BUG_ON(mddev->suspended);
  338. mddev->suspended = 1;
  339. synchronize_rcu();
  340. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  341. mddev->pers->quiesce(mddev, 1);
  342. del_timer_sync(&mddev->safemode_timer);
  343. }
  344. EXPORT_SYMBOL_GPL(mddev_suspend);
  345. void mddev_resume(struct mddev *mddev)
  346. {
  347. mddev->suspended = 0;
  348. wake_up(&mddev->sb_wait);
  349. mddev->pers->quiesce(mddev, 0);
  350. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  351. md_wakeup_thread(mddev->thread);
  352. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  353. }
  354. EXPORT_SYMBOL_GPL(mddev_resume);
  355. int mddev_congested(struct mddev *mddev, int bits)
  356. {
  357. return mddev->suspended;
  358. }
  359. EXPORT_SYMBOL(mddev_congested);
  360. /*
  361. * Generic flush handling for md
  362. */
  363. static void md_end_flush(struct bio *bio, int err)
  364. {
  365. struct md_rdev *rdev = bio->bi_private;
  366. struct mddev *mddev = rdev->mddev;
  367. rdev_dec_pending(rdev, mddev);
  368. if (atomic_dec_and_test(&mddev->flush_pending)) {
  369. /* The pre-request flush has finished */
  370. queue_work(md_wq, &mddev->flush_work);
  371. }
  372. bio_put(bio);
  373. }
  374. static void md_submit_flush_data(struct work_struct *ws);
  375. static void submit_flushes(struct work_struct *ws)
  376. {
  377. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  378. struct md_rdev *rdev;
  379. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  380. atomic_set(&mddev->flush_pending, 1);
  381. rcu_read_lock();
  382. rdev_for_each_rcu(rdev, mddev)
  383. if (rdev->raid_disk >= 0 &&
  384. !test_bit(Faulty, &rdev->flags)) {
  385. /* Take two references, one is dropped
  386. * when request finishes, one after
  387. * we reclaim rcu_read_lock
  388. */
  389. struct bio *bi;
  390. atomic_inc(&rdev->nr_pending);
  391. atomic_inc(&rdev->nr_pending);
  392. rcu_read_unlock();
  393. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  394. bi->bi_end_io = md_end_flush;
  395. bi->bi_private = rdev;
  396. bi->bi_bdev = rdev->bdev;
  397. atomic_inc(&mddev->flush_pending);
  398. submit_bio(WRITE_FLUSH, bi);
  399. rcu_read_lock();
  400. rdev_dec_pending(rdev, mddev);
  401. }
  402. rcu_read_unlock();
  403. if (atomic_dec_and_test(&mddev->flush_pending))
  404. queue_work(md_wq, &mddev->flush_work);
  405. }
  406. static void md_submit_flush_data(struct work_struct *ws)
  407. {
  408. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  409. struct bio *bio = mddev->flush_bio;
  410. if (bio->bi_size == 0)
  411. /* an empty barrier - all done */
  412. bio_endio(bio, 0);
  413. else {
  414. bio->bi_rw &= ~REQ_FLUSH;
  415. mddev->pers->make_request(mddev, bio);
  416. }
  417. mddev->flush_bio = NULL;
  418. wake_up(&mddev->sb_wait);
  419. }
  420. void md_flush_request(struct mddev *mddev, struct bio *bio)
  421. {
  422. spin_lock_irq(&mddev->write_lock);
  423. wait_event_lock_irq(mddev->sb_wait,
  424. !mddev->flush_bio,
  425. mddev->write_lock, /*nothing*/);
  426. mddev->flush_bio = bio;
  427. spin_unlock_irq(&mddev->write_lock);
  428. INIT_WORK(&mddev->flush_work, submit_flushes);
  429. queue_work(md_wq, &mddev->flush_work);
  430. }
  431. EXPORT_SYMBOL(md_flush_request);
  432. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  433. {
  434. struct mddev *mddev = cb->data;
  435. md_wakeup_thread(mddev->thread);
  436. kfree(cb);
  437. }
  438. EXPORT_SYMBOL(md_unplug);
  439. static inline struct mddev *mddev_get(struct mddev *mddev)
  440. {
  441. atomic_inc(&mddev->active);
  442. return mddev;
  443. }
  444. static void mddev_delayed_delete(struct work_struct *ws);
  445. static void mddev_put(struct mddev *mddev)
  446. {
  447. struct bio_set *bs = NULL;
  448. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  449. return;
  450. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  451. mddev->ctime == 0 && !mddev->hold_active) {
  452. /* Array is not configured at all, and not held active,
  453. * so destroy it */
  454. list_del_init(&mddev->all_mddevs);
  455. bs = mddev->bio_set;
  456. mddev->bio_set = NULL;
  457. if (mddev->gendisk) {
  458. /* We did a probe so need to clean up. Call
  459. * queue_work inside the spinlock so that
  460. * flush_workqueue() after mddev_find will
  461. * succeed in waiting for the work to be done.
  462. */
  463. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  464. queue_work(md_misc_wq, &mddev->del_work);
  465. } else
  466. kfree(mddev);
  467. }
  468. spin_unlock(&all_mddevs_lock);
  469. if (bs)
  470. bioset_free(bs);
  471. }
  472. void mddev_init(struct mddev *mddev)
  473. {
  474. mutex_init(&mddev->open_mutex);
  475. mutex_init(&mddev->reconfig_mutex);
  476. mutex_init(&mddev->bitmap_info.mutex);
  477. INIT_LIST_HEAD(&mddev->disks);
  478. INIT_LIST_HEAD(&mddev->all_mddevs);
  479. init_timer(&mddev->safemode_timer);
  480. atomic_set(&mddev->active, 1);
  481. atomic_set(&mddev->openers, 0);
  482. atomic_set(&mddev->active_io, 0);
  483. spin_lock_init(&mddev->write_lock);
  484. atomic_set(&mddev->flush_pending, 0);
  485. init_waitqueue_head(&mddev->sb_wait);
  486. init_waitqueue_head(&mddev->recovery_wait);
  487. mddev->reshape_position = MaxSector;
  488. mddev->reshape_backwards = 0;
  489. mddev->resync_min = 0;
  490. mddev->resync_max = MaxSector;
  491. mddev->level = LEVEL_NONE;
  492. }
  493. EXPORT_SYMBOL_GPL(mddev_init);
  494. static struct mddev * mddev_find(dev_t unit)
  495. {
  496. struct mddev *mddev, *new = NULL;
  497. if (unit && MAJOR(unit) != MD_MAJOR)
  498. unit &= ~((1<<MdpMinorShift)-1);
  499. retry:
  500. spin_lock(&all_mddevs_lock);
  501. if (unit) {
  502. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  503. if (mddev->unit == unit) {
  504. mddev_get(mddev);
  505. spin_unlock(&all_mddevs_lock);
  506. kfree(new);
  507. return mddev;
  508. }
  509. if (new) {
  510. list_add(&new->all_mddevs, &all_mddevs);
  511. spin_unlock(&all_mddevs_lock);
  512. new->hold_active = UNTIL_IOCTL;
  513. return new;
  514. }
  515. } else if (new) {
  516. /* find an unused unit number */
  517. static int next_minor = 512;
  518. int start = next_minor;
  519. int is_free = 0;
  520. int dev = 0;
  521. while (!is_free) {
  522. dev = MKDEV(MD_MAJOR, next_minor);
  523. next_minor++;
  524. if (next_minor > MINORMASK)
  525. next_minor = 0;
  526. if (next_minor == start) {
  527. /* Oh dear, all in use. */
  528. spin_unlock(&all_mddevs_lock);
  529. kfree(new);
  530. return NULL;
  531. }
  532. is_free = 1;
  533. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  534. if (mddev->unit == dev) {
  535. is_free = 0;
  536. break;
  537. }
  538. }
  539. new->unit = dev;
  540. new->md_minor = MINOR(dev);
  541. new->hold_active = UNTIL_STOP;
  542. list_add(&new->all_mddevs, &all_mddevs);
  543. spin_unlock(&all_mddevs_lock);
  544. return new;
  545. }
  546. spin_unlock(&all_mddevs_lock);
  547. new = kzalloc(sizeof(*new), GFP_KERNEL);
  548. if (!new)
  549. return NULL;
  550. new->unit = unit;
  551. if (MAJOR(unit) == MD_MAJOR)
  552. new->md_minor = MINOR(unit);
  553. else
  554. new->md_minor = MINOR(unit) >> MdpMinorShift;
  555. mddev_init(new);
  556. goto retry;
  557. }
  558. static inline int mddev_lock(struct mddev * mddev)
  559. {
  560. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  561. }
  562. static inline int mddev_is_locked(struct mddev *mddev)
  563. {
  564. return mutex_is_locked(&mddev->reconfig_mutex);
  565. }
  566. static inline int mddev_trylock(struct mddev * mddev)
  567. {
  568. return mutex_trylock(&mddev->reconfig_mutex);
  569. }
  570. static struct attribute_group md_redundancy_group;
  571. static void mddev_unlock(struct mddev * mddev)
  572. {
  573. if (mddev->to_remove) {
  574. /* These cannot be removed under reconfig_mutex as
  575. * an access to the files will try to take reconfig_mutex
  576. * while holding the file unremovable, which leads to
  577. * a deadlock.
  578. * So hold set sysfs_active while the remove in happeing,
  579. * and anything else which might set ->to_remove or my
  580. * otherwise change the sysfs namespace will fail with
  581. * -EBUSY if sysfs_active is still set.
  582. * We set sysfs_active under reconfig_mutex and elsewhere
  583. * test it under the same mutex to ensure its correct value
  584. * is seen.
  585. */
  586. struct attribute_group *to_remove = mddev->to_remove;
  587. mddev->to_remove = NULL;
  588. mddev->sysfs_active = 1;
  589. mutex_unlock(&mddev->reconfig_mutex);
  590. if (mddev->kobj.sd) {
  591. if (to_remove != &md_redundancy_group)
  592. sysfs_remove_group(&mddev->kobj, to_remove);
  593. if (mddev->pers == NULL ||
  594. mddev->pers->sync_request == NULL) {
  595. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  596. if (mddev->sysfs_action)
  597. sysfs_put(mddev->sysfs_action);
  598. mddev->sysfs_action = NULL;
  599. }
  600. }
  601. mddev->sysfs_active = 0;
  602. } else
  603. mutex_unlock(&mddev->reconfig_mutex);
  604. /* As we've dropped the mutex we need a spinlock to
  605. * make sure the thread doesn't disappear
  606. */
  607. spin_lock(&pers_lock);
  608. md_wakeup_thread(mddev->thread);
  609. spin_unlock(&pers_lock);
  610. }
  611. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  612. {
  613. struct md_rdev *rdev;
  614. rdev_for_each(rdev, mddev)
  615. if (rdev->desc_nr == nr)
  616. return rdev;
  617. return NULL;
  618. }
  619. static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
  620. {
  621. struct md_rdev *rdev;
  622. rdev_for_each(rdev, mddev)
  623. if (rdev->bdev->bd_dev == dev)
  624. return rdev;
  625. return NULL;
  626. }
  627. static struct md_personality *find_pers(int level, char *clevel)
  628. {
  629. struct md_personality *pers;
  630. list_for_each_entry(pers, &pers_list, list) {
  631. if (level != LEVEL_NONE && pers->level == level)
  632. return pers;
  633. if (strcmp(pers->name, clevel)==0)
  634. return pers;
  635. }
  636. return NULL;
  637. }
  638. /* return the offset of the super block in 512byte sectors */
  639. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  640. {
  641. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  642. return MD_NEW_SIZE_SECTORS(num_sectors);
  643. }
  644. static int alloc_disk_sb(struct md_rdev * rdev)
  645. {
  646. if (rdev->sb_page)
  647. MD_BUG();
  648. rdev->sb_page = alloc_page(GFP_KERNEL);
  649. if (!rdev->sb_page) {
  650. printk(KERN_ALERT "md: out of memory.\n");
  651. return -ENOMEM;
  652. }
  653. return 0;
  654. }
  655. void md_rdev_clear(struct md_rdev *rdev)
  656. {
  657. if (rdev->sb_page) {
  658. put_page(rdev->sb_page);
  659. rdev->sb_loaded = 0;
  660. rdev->sb_page = NULL;
  661. rdev->sb_start = 0;
  662. rdev->sectors = 0;
  663. }
  664. if (rdev->bb_page) {
  665. put_page(rdev->bb_page);
  666. rdev->bb_page = NULL;
  667. }
  668. kfree(rdev->badblocks.page);
  669. rdev->badblocks.page = NULL;
  670. }
  671. EXPORT_SYMBOL_GPL(md_rdev_clear);
  672. static void super_written(struct bio *bio, int error)
  673. {
  674. struct md_rdev *rdev = bio->bi_private;
  675. struct mddev *mddev = rdev->mddev;
  676. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  677. printk("md: super_written gets error=%d, uptodate=%d\n",
  678. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  679. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  680. md_error(mddev, rdev);
  681. }
  682. if (atomic_dec_and_test(&mddev->pending_writes))
  683. wake_up(&mddev->sb_wait);
  684. bio_put(bio);
  685. }
  686. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  687. sector_t sector, int size, struct page *page)
  688. {
  689. /* write first size bytes of page to sector of rdev
  690. * Increment mddev->pending_writes before returning
  691. * and decrement it on completion, waking up sb_wait
  692. * if zero is reached.
  693. * If an error occurred, call md_error
  694. */
  695. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  696. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  697. bio->bi_sector = sector;
  698. bio_add_page(bio, page, size, 0);
  699. bio->bi_private = rdev;
  700. bio->bi_end_io = super_written;
  701. atomic_inc(&mddev->pending_writes);
  702. submit_bio(WRITE_FLUSH_FUA, bio);
  703. }
  704. void md_super_wait(struct mddev *mddev)
  705. {
  706. /* wait for all superblock writes that were scheduled to complete */
  707. DEFINE_WAIT(wq);
  708. for(;;) {
  709. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  710. if (atomic_read(&mddev->pending_writes)==0)
  711. break;
  712. schedule();
  713. }
  714. finish_wait(&mddev->sb_wait, &wq);
  715. }
  716. static void bi_complete(struct bio *bio, int error)
  717. {
  718. complete((struct completion*)bio->bi_private);
  719. }
  720. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  721. struct page *page, int rw, bool metadata_op)
  722. {
  723. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  724. struct completion event;
  725. int ret;
  726. rw |= REQ_SYNC;
  727. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  728. rdev->meta_bdev : rdev->bdev;
  729. if (metadata_op)
  730. bio->bi_sector = sector + rdev->sb_start;
  731. else if (rdev->mddev->reshape_position != MaxSector &&
  732. (rdev->mddev->reshape_backwards ==
  733. (sector >= rdev->mddev->reshape_position)))
  734. bio->bi_sector = sector + rdev->new_data_offset;
  735. else
  736. bio->bi_sector = sector + rdev->data_offset;
  737. bio_add_page(bio, page, size, 0);
  738. init_completion(&event);
  739. bio->bi_private = &event;
  740. bio->bi_end_io = bi_complete;
  741. submit_bio(rw, bio);
  742. wait_for_completion(&event);
  743. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  744. bio_put(bio);
  745. return ret;
  746. }
  747. EXPORT_SYMBOL_GPL(sync_page_io);
  748. static int read_disk_sb(struct md_rdev * rdev, int size)
  749. {
  750. char b[BDEVNAME_SIZE];
  751. if (!rdev->sb_page) {
  752. MD_BUG();
  753. return -EINVAL;
  754. }
  755. if (rdev->sb_loaded)
  756. return 0;
  757. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  758. goto fail;
  759. rdev->sb_loaded = 1;
  760. return 0;
  761. fail:
  762. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  763. bdevname(rdev->bdev,b));
  764. return -EINVAL;
  765. }
  766. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  767. {
  768. return sb1->set_uuid0 == sb2->set_uuid0 &&
  769. sb1->set_uuid1 == sb2->set_uuid1 &&
  770. sb1->set_uuid2 == sb2->set_uuid2 &&
  771. sb1->set_uuid3 == sb2->set_uuid3;
  772. }
  773. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  774. {
  775. int ret;
  776. mdp_super_t *tmp1, *tmp2;
  777. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  778. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  779. if (!tmp1 || !tmp2) {
  780. ret = 0;
  781. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  782. goto abort;
  783. }
  784. *tmp1 = *sb1;
  785. *tmp2 = *sb2;
  786. /*
  787. * nr_disks is not constant
  788. */
  789. tmp1->nr_disks = 0;
  790. tmp2->nr_disks = 0;
  791. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  792. abort:
  793. kfree(tmp1);
  794. kfree(tmp2);
  795. return ret;
  796. }
  797. static u32 md_csum_fold(u32 csum)
  798. {
  799. csum = (csum & 0xffff) + (csum >> 16);
  800. return (csum & 0xffff) + (csum >> 16);
  801. }
  802. static unsigned int calc_sb_csum(mdp_super_t * sb)
  803. {
  804. u64 newcsum = 0;
  805. u32 *sb32 = (u32*)sb;
  806. int i;
  807. unsigned int disk_csum, csum;
  808. disk_csum = sb->sb_csum;
  809. sb->sb_csum = 0;
  810. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  811. newcsum += sb32[i];
  812. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  813. #ifdef CONFIG_ALPHA
  814. /* This used to use csum_partial, which was wrong for several
  815. * reasons including that different results are returned on
  816. * different architectures. It isn't critical that we get exactly
  817. * the same return value as before (we always csum_fold before
  818. * testing, and that removes any differences). However as we
  819. * know that csum_partial always returned a 16bit value on
  820. * alphas, do a fold to maximise conformity to previous behaviour.
  821. */
  822. sb->sb_csum = md_csum_fold(disk_csum);
  823. #else
  824. sb->sb_csum = disk_csum;
  825. #endif
  826. return csum;
  827. }
  828. /*
  829. * Handle superblock details.
  830. * We want to be able to handle multiple superblock formats
  831. * so we have a common interface to them all, and an array of
  832. * different handlers.
  833. * We rely on user-space to write the initial superblock, and support
  834. * reading and updating of superblocks.
  835. * Interface methods are:
  836. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  837. * loads and validates a superblock on dev.
  838. * if refdev != NULL, compare superblocks on both devices
  839. * Return:
  840. * 0 - dev has a superblock that is compatible with refdev
  841. * 1 - dev has a superblock that is compatible and newer than refdev
  842. * so dev should be used as the refdev in future
  843. * -EINVAL superblock incompatible or invalid
  844. * -othererror e.g. -EIO
  845. *
  846. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  847. * Verify that dev is acceptable into mddev.
  848. * The first time, mddev->raid_disks will be 0, and data from
  849. * dev should be merged in. Subsequent calls check that dev
  850. * is new enough. Return 0 or -EINVAL
  851. *
  852. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  853. * Update the superblock for rdev with data in mddev
  854. * This does not write to disc.
  855. *
  856. */
  857. struct super_type {
  858. char *name;
  859. struct module *owner;
  860. int (*load_super)(struct md_rdev *rdev,
  861. struct md_rdev *refdev,
  862. int minor_version);
  863. int (*validate_super)(struct mddev *mddev,
  864. struct md_rdev *rdev);
  865. void (*sync_super)(struct mddev *mddev,
  866. struct md_rdev *rdev);
  867. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  868. sector_t num_sectors);
  869. int (*allow_new_offset)(struct md_rdev *rdev,
  870. unsigned long long new_offset);
  871. };
  872. /*
  873. * Check that the given mddev has no bitmap.
  874. *
  875. * This function is called from the run method of all personalities that do not
  876. * support bitmaps. It prints an error message and returns non-zero if mddev
  877. * has a bitmap. Otherwise, it returns 0.
  878. *
  879. */
  880. int md_check_no_bitmap(struct mddev *mddev)
  881. {
  882. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  883. return 0;
  884. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  885. mdname(mddev), mddev->pers->name);
  886. return 1;
  887. }
  888. EXPORT_SYMBOL(md_check_no_bitmap);
  889. /*
  890. * load_super for 0.90.0
  891. */
  892. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  893. {
  894. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  895. mdp_super_t *sb;
  896. int ret;
  897. /*
  898. * Calculate the position of the superblock (512byte sectors),
  899. * it's at the end of the disk.
  900. *
  901. * It also happens to be a multiple of 4Kb.
  902. */
  903. rdev->sb_start = calc_dev_sboffset(rdev);
  904. ret = read_disk_sb(rdev, MD_SB_BYTES);
  905. if (ret) return ret;
  906. ret = -EINVAL;
  907. bdevname(rdev->bdev, b);
  908. sb = page_address(rdev->sb_page);
  909. if (sb->md_magic != MD_SB_MAGIC) {
  910. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  911. b);
  912. goto abort;
  913. }
  914. if (sb->major_version != 0 ||
  915. sb->minor_version < 90 ||
  916. sb->minor_version > 91) {
  917. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  918. sb->major_version, sb->minor_version,
  919. b);
  920. goto abort;
  921. }
  922. if (sb->raid_disks <= 0)
  923. goto abort;
  924. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  925. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  926. b);
  927. goto abort;
  928. }
  929. rdev->preferred_minor = sb->md_minor;
  930. rdev->data_offset = 0;
  931. rdev->new_data_offset = 0;
  932. rdev->sb_size = MD_SB_BYTES;
  933. rdev->badblocks.shift = -1;
  934. if (sb->level == LEVEL_MULTIPATH)
  935. rdev->desc_nr = -1;
  936. else
  937. rdev->desc_nr = sb->this_disk.number;
  938. if (!refdev) {
  939. ret = 1;
  940. } else {
  941. __u64 ev1, ev2;
  942. mdp_super_t *refsb = page_address(refdev->sb_page);
  943. if (!uuid_equal(refsb, sb)) {
  944. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  945. b, bdevname(refdev->bdev,b2));
  946. goto abort;
  947. }
  948. if (!sb_equal(refsb, sb)) {
  949. printk(KERN_WARNING "md: %s has same UUID"
  950. " but different superblock to %s\n",
  951. b, bdevname(refdev->bdev, b2));
  952. goto abort;
  953. }
  954. ev1 = md_event(sb);
  955. ev2 = md_event(refsb);
  956. if (ev1 > ev2)
  957. ret = 1;
  958. else
  959. ret = 0;
  960. }
  961. rdev->sectors = rdev->sb_start;
  962. /* Limit to 4TB as metadata cannot record more than that */
  963. if (rdev->sectors >= (2ULL << 32))
  964. rdev->sectors = (2ULL << 32) - 2;
  965. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  966. /* "this cannot possibly happen" ... */
  967. ret = -EINVAL;
  968. abort:
  969. return ret;
  970. }
  971. /*
  972. * validate_super for 0.90.0
  973. */
  974. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  975. {
  976. mdp_disk_t *desc;
  977. mdp_super_t *sb = page_address(rdev->sb_page);
  978. __u64 ev1 = md_event(sb);
  979. rdev->raid_disk = -1;
  980. clear_bit(Faulty, &rdev->flags);
  981. clear_bit(In_sync, &rdev->flags);
  982. clear_bit(WriteMostly, &rdev->flags);
  983. if (mddev->raid_disks == 0) {
  984. mddev->major_version = 0;
  985. mddev->minor_version = sb->minor_version;
  986. mddev->patch_version = sb->patch_version;
  987. mddev->external = 0;
  988. mddev->chunk_sectors = sb->chunk_size >> 9;
  989. mddev->ctime = sb->ctime;
  990. mddev->utime = sb->utime;
  991. mddev->level = sb->level;
  992. mddev->clevel[0] = 0;
  993. mddev->layout = sb->layout;
  994. mddev->raid_disks = sb->raid_disks;
  995. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  996. mddev->events = ev1;
  997. mddev->bitmap_info.offset = 0;
  998. mddev->bitmap_info.space = 0;
  999. /* bitmap can use 60 K after the 4K superblocks */
  1000. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1001. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  1002. mddev->reshape_backwards = 0;
  1003. if (mddev->minor_version >= 91) {
  1004. mddev->reshape_position = sb->reshape_position;
  1005. mddev->delta_disks = sb->delta_disks;
  1006. mddev->new_level = sb->new_level;
  1007. mddev->new_layout = sb->new_layout;
  1008. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1009. if (mddev->delta_disks < 0)
  1010. mddev->reshape_backwards = 1;
  1011. } else {
  1012. mddev->reshape_position = MaxSector;
  1013. mddev->delta_disks = 0;
  1014. mddev->new_level = mddev->level;
  1015. mddev->new_layout = mddev->layout;
  1016. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1017. }
  1018. if (sb->state & (1<<MD_SB_CLEAN))
  1019. mddev->recovery_cp = MaxSector;
  1020. else {
  1021. if (sb->events_hi == sb->cp_events_hi &&
  1022. sb->events_lo == sb->cp_events_lo) {
  1023. mddev->recovery_cp = sb->recovery_cp;
  1024. } else
  1025. mddev->recovery_cp = 0;
  1026. }
  1027. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1028. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1029. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1030. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1031. mddev->max_disks = MD_SB_DISKS;
  1032. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1033. mddev->bitmap_info.file == NULL) {
  1034. mddev->bitmap_info.offset =
  1035. mddev->bitmap_info.default_offset;
  1036. mddev->bitmap_info.space =
  1037. mddev->bitmap_info.space;
  1038. }
  1039. } else if (mddev->pers == NULL) {
  1040. /* Insist on good event counter while assembling, except
  1041. * for spares (which don't need an event count) */
  1042. ++ev1;
  1043. if (sb->disks[rdev->desc_nr].state & (
  1044. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1045. if (ev1 < mddev->events)
  1046. return -EINVAL;
  1047. } else if (mddev->bitmap) {
  1048. /* if adding to array with a bitmap, then we can accept an
  1049. * older device ... but not too old.
  1050. */
  1051. if (ev1 < mddev->bitmap->events_cleared)
  1052. return 0;
  1053. } else {
  1054. if (ev1 < mddev->events)
  1055. /* just a hot-add of a new device, leave raid_disk at -1 */
  1056. return 0;
  1057. }
  1058. if (mddev->level != LEVEL_MULTIPATH) {
  1059. desc = sb->disks + rdev->desc_nr;
  1060. if (desc->state & (1<<MD_DISK_FAULTY))
  1061. set_bit(Faulty, &rdev->flags);
  1062. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1063. desc->raid_disk < mddev->raid_disks */) {
  1064. set_bit(In_sync, &rdev->flags);
  1065. rdev->raid_disk = desc->raid_disk;
  1066. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1067. /* active but not in sync implies recovery up to
  1068. * reshape position. We don't know exactly where
  1069. * that is, so set to zero for now */
  1070. if (mddev->minor_version >= 91) {
  1071. rdev->recovery_offset = 0;
  1072. rdev->raid_disk = desc->raid_disk;
  1073. }
  1074. }
  1075. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1076. set_bit(WriteMostly, &rdev->flags);
  1077. } else /* MULTIPATH are always insync */
  1078. set_bit(In_sync, &rdev->flags);
  1079. return 0;
  1080. }
  1081. /*
  1082. * sync_super for 0.90.0
  1083. */
  1084. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1085. {
  1086. mdp_super_t *sb;
  1087. struct md_rdev *rdev2;
  1088. int next_spare = mddev->raid_disks;
  1089. /* make rdev->sb match mddev data..
  1090. *
  1091. * 1/ zero out disks
  1092. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1093. * 3/ any empty disks < next_spare become removed
  1094. *
  1095. * disks[0] gets initialised to REMOVED because
  1096. * we cannot be sure from other fields if it has
  1097. * been initialised or not.
  1098. */
  1099. int i;
  1100. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1101. rdev->sb_size = MD_SB_BYTES;
  1102. sb = page_address(rdev->sb_page);
  1103. memset(sb, 0, sizeof(*sb));
  1104. sb->md_magic = MD_SB_MAGIC;
  1105. sb->major_version = mddev->major_version;
  1106. sb->patch_version = mddev->patch_version;
  1107. sb->gvalid_words = 0; /* ignored */
  1108. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1109. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1110. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1111. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1112. sb->ctime = mddev->ctime;
  1113. sb->level = mddev->level;
  1114. sb->size = mddev->dev_sectors / 2;
  1115. sb->raid_disks = mddev->raid_disks;
  1116. sb->md_minor = mddev->md_minor;
  1117. sb->not_persistent = 0;
  1118. sb->utime = mddev->utime;
  1119. sb->state = 0;
  1120. sb->events_hi = (mddev->events>>32);
  1121. sb->events_lo = (u32)mddev->events;
  1122. if (mddev->reshape_position == MaxSector)
  1123. sb->minor_version = 90;
  1124. else {
  1125. sb->minor_version = 91;
  1126. sb->reshape_position = mddev->reshape_position;
  1127. sb->new_level = mddev->new_level;
  1128. sb->delta_disks = mddev->delta_disks;
  1129. sb->new_layout = mddev->new_layout;
  1130. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1131. }
  1132. mddev->minor_version = sb->minor_version;
  1133. if (mddev->in_sync)
  1134. {
  1135. sb->recovery_cp = mddev->recovery_cp;
  1136. sb->cp_events_hi = (mddev->events>>32);
  1137. sb->cp_events_lo = (u32)mddev->events;
  1138. if (mddev->recovery_cp == MaxSector)
  1139. sb->state = (1<< MD_SB_CLEAN);
  1140. } else
  1141. sb->recovery_cp = 0;
  1142. sb->layout = mddev->layout;
  1143. sb->chunk_size = mddev->chunk_sectors << 9;
  1144. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1145. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1146. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1147. rdev_for_each(rdev2, mddev) {
  1148. mdp_disk_t *d;
  1149. int desc_nr;
  1150. int is_active = test_bit(In_sync, &rdev2->flags);
  1151. if (rdev2->raid_disk >= 0 &&
  1152. sb->minor_version >= 91)
  1153. /* we have nowhere to store the recovery_offset,
  1154. * but if it is not below the reshape_position,
  1155. * we can piggy-back on that.
  1156. */
  1157. is_active = 1;
  1158. if (rdev2->raid_disk < 0 ||
  1159. test_bit(Faulty, &rdev2->flags))
  1160. is_active = 0;
  1161. if (is_active)
  1162. desc_nr = rdev2->raid_disk;
  1163. else
  1164. desc_nr = next_spare++;
  1165. rdev2->desc_nr = desc_nr;
  1166. d = &sb->disks[rdev2->desc_nr];
  1167. nr_disks++;
  1168. d->number = rdev2->desc_nr;
  1169. d->major = MAJOR(rdev2->bdev->bd_dev);
  1170. d->minor = MINOR(rdev2->bdev->bd_dev);
  1171. if (is_active)
  1172. d->raid_disk = rdev2->raid_disk;
  1173. else
  1174. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1175. if (test_bit(Faulty, &rdev2->flags))
  1176. d->state = (1<<MD_DISK_FAULTY);
  1177. else if (is_active) {
  1178. d->state = (1<<MD_DISK_ACTIVE);
  1179. if (test_bit(In_sync, &rdev2->flags))
  1180. d->state |= (1<<MD_DISK_SYNC);
  1181. active++;
  1182. working++;
  1183. } else {
  1184. d->state = 0;
  1185. spare++;
  1186. working++;
  1187. }
  1188. if (test_bit(WriteMostly, &rdev2->flags))
  1189. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1190. }
  1191. /* now set the "removed" and "faulty" bits on any missing devices */
  1192. for (i=0 ; i < mddev->raid_disks ; i++) {
  1193. mdp_disk_t *d = &sb->disks[i];
  1194. if (d->state == 0 && d->number == 0) {
  1195. d->number = i;
  1196. d->raid_disk = i;
  1197. d->state = (1<<MD_DISK_REMOVED);
  1198. d->state |= (1<<MD_DISK_FAULTY);
  1199. failed++;
  1200. }
  1201. }
  1202. sb->nr_disks = nr_disks;
  1203. sb->active_disks = active;
  1204. sb->working_disks = working;
  1205. sb->failed_disks = failed;
  1206. sb->spare_disks = spare;
  1207. sb->this_disk = sb->disks[rdev->desc_nr];
  1208. sb->sb_csum = calc_sb_csum(sb);
  1209. }
  1210. /*
  1211. * rdev_size_change for 0.90.0
  1212. */
  1213. static unsigned long long
  1214. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1215. {
  1216. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1217. return 0; /* component must fit device */
  1218. if (rdev->mddev->bitmap_info.offset)
  1219. return 0; /* can't move bitmap */
  1220. rdev->sb_start = calc_dev_sboffset(rdev);
  1221. if (!num_sectors || num_sectors > rdev->sb_start)
  1222. num_sectors = rdev->sb_start;
  1223. /* Limit to 4TB as metadata cannot record more than that.
  1224. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1225. */
  1226. if (num_sectors >= (2ULL << 32))
  1227. num_sectors = (2ULL << 32) - 2;
  1228. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1229. rdev->sb_page);
  1230. md_super_wait(rdev->mddev);
  1231. return num_sectors;
  1232. }
  1233. static int
  1234. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1235. {
  1236. /* non-zero offset changes not possible with v0.90 */
  1237. return new_offset == 0;
  1238. }
  1239. /*
  1240. * version 1 superblock
  1241. */
  1242. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1243. {
  1244. __le32 disk_csum;
  1245. u32 csum;
  1246. unsigned long long newcsum;
  1247. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1248. __le32 *isuper = (__le32*)sb;
  1249. int i;
  1250. disk_csum = sb->sb_csum;
  1251. sb->sb_csum = 0;
  1252. newcsum = 0;
  1253. for (i=0; size>=4; size -= 4 )
  1254. newcsum += le32_to_cpu(*isuper++);
  1255. if (size == 2)
  1256. newcsum += le16_to_cpu(*(__le16*) isuper);
  1257. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1258. sb->sb_csum = disk_csum;
  1259. return cpu_to_le32(csum);
  1260. }
  1261. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1262. int acknowledged);
  1263. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1264. {
  1265. struct mdp_superblock_1 *sb;
  1266. int ret;
  1267. sector_t sb_start;
  1268. sector_t sectors;
  1269. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1270. int bmask;
  1271. /*
  1272. * Calculate the position of the superblock in 512byte sectors.
  1273. * It is always aligned to a 4K boundary and
  1274. * depeding on minor_version, it can be:
  1275. * 0: At least 8K, but less than 12K, from end of device
  1276. * 1: At start of device
  1277. * 2: 4K from start of device.
  1278. */
  1279. switch(minor_version) {
  1280. case 0:
  1281. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1282. sb_start -= 8*2;
  1283. sb_start &= ~(sector_t)(4*2-1);
  1284. break;
  1285. case 1:
  1286. sb_start = 0;
  1287. break;
  1288. case 2:
  1289. sb_start = 8;
  1290. break;
  1291. default:
  1292. return -EINVAL;
  1293. }
  1294. rdev->sb_start = sb_start;
  1295. /* superblock is rarely larger than 1K, but it can be larger,
  1296. * and it is safe to read 4k, so we do that
  1297. */
  1298. ret = read_disk_sb(rdev, 4096);
  1299. if (ret) return ret;
  1300. sb = page_address(rdev->sb_page);
  1301. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1302. sb->major_version != cpu_to_le32(1) ||
  1303. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1304. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1305. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1306. return -EINVAL;
  1307. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1308. printk("md: invalid superblock checksum on %s\n",
  1309. bdevname(rdev->bdev,b));
  1310. return -EINVAL;
  1311. }
  1312. if (le64_to_cpu(sb->data_size) < 10) {
  1313. printk("md: data_size too small on %s\n",
  1314. bdevname(rdev->bdev,b));
  1315. return -EINVAL;
  1316. }
  1317. if (sb->pad0 ||
  1318. sb->pad3[0] ||
  1319. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1320. /* Some padding is non-zero, might be a new feature */
  1321. return -EINVAL;
  1322. rdev->preferred_minor = 0xffff;
  1323. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1324. rdev->new_data_offset = rdev->data_offset;
  1325. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1326. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1327. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1328. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1329. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1330. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1331. if (rdev->sb_size & bmask)
  1332. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1333. if (minor_version
  1334. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1335. return -EINVAL;
  1336. if (minor_version
  1337. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1338. return -EINVAL;
  1339. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1340. rdev->desc_nr = -1;
  1341. else
  1342. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1343. if (!rdev->bb_page) {
  1344. rdev->bb_page = alloc_page(GFP_KERNEL);
  1345. if (!rdev->bb_page)
  1346. return -ENOMEM;
  1347. }
  1348. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1349. rdev->badblocks.count == 0) {
  1350. /* need to load the bad block list.
  1351. * Currently we limit it to one page.
  1352. */
  1353. s32 offset;
  1354. sector_t bb_sector;
  1355. u64 *bbp;
  1356. int i;
  1357. int sectors = le16_to_cpu(sb->bblog_size);
  1358. if (sectors > (PAGE_SIZE / 512))
  1359. return -EINVAL;
  1360. offset = le32_to_cpu(sb->bblog_offset);
  1361. if (offset == 0)
  1362. return -EINVAL;
  1363. bb_sector = (long long)offset;
  1364. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1365. rdev->bb_page, READ, true))
  1366. return -EIO;
  1367. bbp = (u64 *)page_address(rdev->bb_page);
  1368. rdev->badblocks.shift = sb->bblog_shift;
  1369. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1370. u64 bb = le64_to_cpu(*bbp);
  1371. int count = bb & (0x3ff);
  1372. u64 sector = bb >> 10;
  1373. sector <<= sb->bblog_shift;
  1374. count <<= sb->bblog_shift;
  1375. if (bb + 1 == 0)
  1376. break;
  1377. if (md_set_badblocks(&rdev->badblocks,
  1378. sector, count, 1) == 0)
  1379. return -EINVAL;
  1380. }
  1381. } else if (sb->bblog_offset == 0)
  1382. rdev->badblocks.shift = -1;
  1383. if (!refdev) {
  1384. ret = 1;
  1385. } else {
  1386. __u64 ev1, ev2;
  1387. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1388. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1389. sb->level != refsb->level ||
  1390. sb->layout != refsb->layout ||
  1391. sb->chunksize != refsb->chunksize) {
  1392. printk(KERN_WARNING "md: %s has strangely different"
  1393. " superblock to %s\n",
  1394. bdevname(rdev->bdev,b),
  1395. bdevname(refdev->bdev,b2));
  1396. return -EINVAL;
  1397. }
  1398. ev1 = le64_to_cpu(sb->events);
  1399. ev2 = le64_to_cpu(refsb->events);
  1400. if (ev1 > ev2)
  1401. ret = 1;
  1402. else
  1403. ret = 0;
  1404. }
  1405. if (minor_version) {
  1406. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1407. sectors -= rdev->data_offset;
  1408. } else
  1409. sectors = rdev->sb_start;
  1410. if (sectors < le64_to_cpu(sb->data_size))
  1411. return -EINVAL;
  1412. rdev->sectors = le64_to_cpu(sb->data_size);
  1413. return ret;
  1414. }
  1415. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1416. {
  1417. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1418. __u64 ev1 = le64_to_cpu(sb->events);
  1419. rdev->raid_disk = -1;
  1420. clear_bit(Faulty, &rdev->flags);
  1421. clear_bit(In_sync, &rdev->flags);
  1422. clear_bit(WriteMostly, &rdev->flags);
  1423. if (mddev->raid_disks == 0) {
  1424. mddev->major_version = 1;
  1425. mddev->patch_version = 0;
  1426. mddev->external = 0;
  1427. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1428. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1429. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1430. mddev->level = le32_to_cpu(sb->level);
  1431. mddev->clevel[0] = 0;
  1432. mddev->layout = le32_to_cpu(sb->layout);
  1433. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1434. mddev->dev_sectors = le64_to_cpu(sb->size);
  1435. mddev->events = ev1;
  1436. mddev->bitmap_info.offset = 0;
  1437. mddev->bitmap_info.space = 0;
  1438. /* Default location for bitmap is 1K after superblock
  1439. * using 3K - total of 4K
  1440. */
  1441. mddev->bitmap_info.default_offset = 1024 >> 9;
  1442. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1443. mddev->reshape_backwards = 0;
  1444. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1445. memcpy(mddev->uuid, sb->set_uuid, 16);
  1446. mddev->max_disks = (4096-256)/2;
  1447. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1448. mddev->bitmap_info.file == NULL) {
  1449. mddev->bitmap_info.offset =
  1450. (__s32)le32_to_cpu(sb->bitmap_offset);
  1451. /* Metadata doesn't record how much space is available.
  1452. * For 1.0, we assume we can use up to the superblock
  1453. * if before, else to 4K beyond superblock.
  1454. * For others, assume no change is possible.
  1455. */
  1456. if (mddev->minor_version > 0)
  1457. mddev->bitmap_info.space = 0;
  1458. else if (mddev->bitmap_info.offset > 0)
  1459. mddev->bitmap_info.space =
  1460. 8 - mddev->bitmap_info.offset;
  1461. else
  1462. mddev->bitmap_info.space =
  1463. -mddev->bitmap_info.offset;
  1464. }
  1465. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1466. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1467. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1468. mddev->new_level = le32_to_cpu(sb->new_level);
  1469. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1470. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1471. if (mddev->delta_disks < 0 ||
  1472. (mddev->delta_disks == 0 &&
  1473. (le32_to_cpu(sb->feature_map)
  1474. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1475. mddev->reshape_backwards = 1;
  1476. } else {
  1477. mddev->reshape_position = MaxSector;
  1478. mddev->delta_disks = 0;
  1479. mddev->new_level = mddev->level;
  1480. mddev->new_layout = mddev->layout;
  1481. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1482. }
  1483. } else if (mddev->pers == NULL) {
  1484. /* Insist of good event counter while assembling, except for
  1485. * spares (which don't need an event count) */
  1486. ++ev1;
  1487. if (rdev->desc_nr >= 0 &&
  1488. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1489. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1490. if (ev1 < mddev->events)
  1491. return -EINVAL;
  1492. } else if (mddev->bitmap) {
  1493. /* If adding to array with a bitmap, then we can accept an
  1494. * older device, but not too old.
  1495. */
  1496. if (ev1 < mddev->bitmap->events_cleared)
  1497. return 0;
  1498. } else {
  1499. if (ev1 < mddev->events)
  1500. /* just a hot-add of a new device, leave raid_disk at -1 */
  1501. return 0;
  1502. }
  1503. if (mddev->level != LEVEL_MULTIPATH) {
  1504. int role;
  1505. if (rdev->desc_nr < 0 ||
  1506. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1507. role = 0xffff;
  1508. rdev->desc_nr = -1;
  1509. } else
  1510. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1511. switch(role) {
  1512. case 0xffff: /* spare */
  1513. break;
  1514. case 0xfffe: /* faulty */
  1515. set_bit(Faulty, &rdev->flags);
  1516. break;
  1517. default:
  1518. if ((le32_to_cpu(sb->feature_map) &
  1519. MD_FEATURE_RECOVERY_OFFSET))
  1520. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1521. else
  1522. set_bit(In_sync, &rdev->flags);
  1523. rdev->raid_disk = role;
  1524. break;
  1525. }
  1526. if (sb->devflags & WriteMostly1)
  1527. set_bit(WriteMostly, &rdev->flags);
  1528. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1529. set_bit(Replacement, &rdev->flags);
  1530. } else /* MULTIPATH are always insync */
  1531. set_bit(In_sync, &rdev->flags);
  1532. return 0;
  1533. }
  1534. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1535. {
  1536. struct mdp_superblock_1 *sb;
  1537. struct md_rdev *rdev2;
  1538. int max_dev, i;
  1539. /* make rdev->sb match mddev and rdev data. */
  1540. sb = page_address(rdev->sb_page);
  1541. sb->feature_map = 0;
  1542. sb->pad0 = 0;
  1543. sb->recovery_offset = cpu_to_le64(0);
  1544. memset(sb->pad3, 0, sizeof(sb->pad3));
  1545. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1546. sb->events = cpu_to_le64(mddev->events);
  1547. if (mddev->in_sync)
  1548. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1549. else
  1550. sb->resync_offset = cpu_to_le64(0);
  1551. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1552. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1553. sb->size = cpu_to_le64(mddev->dev_sectors);
  1554. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1555. sb->level = cpu_to_le32(mddev->level);
  1556. sb->layout = cpu_to_le32(mddev->layout);
  1557. if (test_bit(WriteMostly, &rdev->flags))
  1558. sb->devflags |= WriteMostly1;
  1559. else
  1560. sb->devflags &= ~WriteMostly1;
  1561. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1562. sb->data_size = cpu_to_le64(rdev->sectors);
  1563. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1564. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1565. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1566. }
  1567. if (rdev->raid_disk >= 0 &&
  1568. !test_bit(In_sync, &rdev->flags)) {
  1569. sb->feature_map |=
  1570. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1571. sb->recovery_offset =
  1572. cpu_to_le64(rdev->recovery_offset);
  1573. }
  1574. if (test_bit(Replacement, &rdev->flags))
  1575. sb->feature_map |=
  1576. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1577. if (mddev->reshape_position != MaxSector) {
  1578. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1579. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1580. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1581. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1582. sb->new_level = cpu_to_le32(mddev->new_level);
  1583. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1584. if (mddev->delta_disks == 0 &&
  1585. mddev->reshape_backwards)
  1586. sb->feature_map
  1587. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1588. if (rdev->new_data_offset != rdev->data_offset) {
  1589. sb->feature_map
  1590. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1591. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1592. - rdev->data_offset));
  1593. }
  1594. }
  1595. if (rdev->badblocks.count == 0)
  1596. /* Nothing to do for bad blocks*/ ;
  1597. else if (sb->bblog_offset == 0)
  1598. /* Cannot record bad blocks on this device */
  1599. md_error(mddev, rdev);
  1600. else {
  1601. struct badblocks *bb = &rdev->badblocks;
  1602. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1603. u64 *p = bb->page;
  1604. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1605. if (bb->changed) {
  1606. unsigned seq;
  1607. retry:
  1608. seq = read_seqbegin(&bb->lock);
  1609. memset(bbp, 0xff, PAGE_SIZE);
  1610. for (i = 0 ; i < bb->count ; i++) {
  1611. u64 internal_bb = *p++;
  1612. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1613. | BB_LEN(internal_bb));
  1614. *bbp++ = cpu_to_le64(store_bb);
  1615. }
  1616. bb->changed = 0;
  1617. if (read_seqretry(&bb->lock, seq))
  1618. goto retry;
  1619. bb->sector = (rdev->sb_start +
  1620. (int)le32_to_cpu(sb->bblog_offset));
  1621. bb->size = le16_to_cpu(sb->bblog_size);
  1622. }
  1623. }
  1624. max_dev = 0;
  1625. rdev_for_each(rdev2, mddev)
  1626. if (rdev2->desc_nr+1 > max_dev)
  1627. max_dev = rdev2->desc_nr+1;
  1628. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1629. int bmask;
  1630. sb->max_dev = cpu_to_le32(max_dev);
  1631. rdev->sb_size = max_dev * 2 + 256;
  1632. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1633. if (rdev->sb_size & bmask)
  1634. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1635. } else
  1636. max_dev = le32_to_cpu(sb->max_dev);
  1637. for (i=0; i<max_dev;i++)
  1638. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1639. rdev_for_each(rdev2, mddev) {
  1640. i = rdev2->desc_nr;
  1641. if (test_bit(Faulty, &rdev2->flags))
  1642. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1643. else if (test_bit(In_sync, &rdev2->flags))
  1644. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1645. else if (rdev2->raid_disk >= 0)
  1646. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1647. else
  1648. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1649. }
  1650. sb->sb_csum = calc_sb_1_csum(sb);
  1651. }
  1652. static unsigned long long
  1653. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1654. {
  1655. struct mdp_superblock_1 *sb;
  1656. sector_t max_sectors;
  1657. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1658. return 0; /* component must fit device */
  1659. if (rdev->data_offset != rdev->new_data_offset)
  1660. return 0; /* too confusing */
  1661. if (rdev->sb_start < rdev->data_offset) {
  1662. /* minor versions 1 and 2; superblock before data */
  1663. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1664. max_sectors -= rdev->data_offset;
  1665. if (!num_sectors || num_sectors > max_sectors)
  1666. num_sectors = max_sectors;
  1667. } else if (rdev->mddev->bitmap_info.offset) {
  1668. /* minor version 0 with bitmap we can't move */
  1669. return 0;
  1670. } else {
  1671. /* minor version 0; superblock after data */
  1672. sector_t sb_start;
  1673. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1674. sb_start &= ~(sector_t)(4*2 - 1);
  1675. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1676. if (!num_sectors || num_sectors > max_sectors)
  1677. num_sectors = max_sectors;
  1678. rdev->sb_start = sb_start;
  1679. }
  1680. sb = page_address(rdev->sb_page);
  1681. sb->data_size = cpu_to_le64(num_sectors);
  1682. sb->super_offset = rdev->sb_start;
  1683. sb->sb_csum = calc_sb_1_csum(sb);
  1684. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1685. rdev->sb_page);
  1686. md_super_wait(rdev->mddev);
  1687. return num_sectors;
  1688. }
  1689. static int
  1690. super_1_allow_new_offset(struct md_rdev *rdev,
  1691. unsigned long long new_offset)
  1692. {
  1693. /* All necessary checks on new >= old have been done */
  1694. struct bitmap *bitmap;
  1695. if (new_offset >= rdev->data_offset)
  1696. return 1;
  1697. /* with 1.0 metadata, there is no metadata to tread on
  1698. * so we can always move back */
  1699. if (rdev->mddev->minor_version == 0)
  1700. return 1;
  1701. /* otherwise we must be sure not to step on
  1702. * any metadata, so stay:
  1703. * 36K beyond start of superblock
  1704. * beyond end of badblocks
  1705. * beyond write-intent bitmap
  1706. */
  1707. if (rdev->sb_start + (32+4)*2 > new_offset)
  1708. return 0;
  1709. bitmap = rdev->mddev->bitmap;
  1710. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1711. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1712. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1713. return 0;
  1714. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1715. return 0;
  1716. return 1;
  1717. }
  1718. static struct super_type super_types[] = {
  1719. [0] = {
  1720. .name = "0.90.0",
  1721. .owner = THIS_MODULE,
  1722. .load_super = super_90_load,
  1723. .validate_super = super_90_validate,
  1724. .sync_super = super_90_sync,
  1725. .rdev_size_change = super_90_rdev_size_change,
  1726. .allow_new_offset = super_90_allow_new_offset,
  1727. },
  1728. [1] = {
  1729. .name = "md-1",
  1730. .owner = THIS_MODULE,
  1731. .load_super = super_1_load,
  1732. .validate_super = super_1_validate,
  1733. .sync_super = super_1_sync,
  1734. .rdev_size_change = super_1_rdev_size_change,
  1735. .allow_new_offset = super_1_allow_new_offset,
  1736. },
  1737. };
  1738. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1739. {
  1740. if (mddev->sync_super) {
  1741. mddev->sync_super(mddev, rdev);
  1742. return;
  1743. }
  1744. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1745. super_types[mddev->major_version].sync_super(mddev, rdev);
  1746. }
  1747. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1748. {
  1749. struct md_rdev *rdev, *rdev2;
  1750. rcu_read_lock();
  1751. rdev_for_each_rcu(rdev, mddev1)
  1752. rdev_for_each_rcu(rdev2, mddev2)
  1753. if (rdev->bdev->bd_contains ==
  1754. rdev2->bdev->bd_contains) {
  1755. rcu_read_unlock();
  1756. return 1;
  1757. }
  1758. rcu_read_unlock();
  1759. return 0;
  1760. }
  1761. static LIST_HEAD(pending_raid_disks);
  1762. /*
  1763. * Try to register data integrity profile for an mddev
  1764. *
  1765. * This is called when an array is started and after a disk has been kicked
  1766. * from the array. It only succeeds if all working and active component devices
  1767. * are integrity capable with matching profiles.
  1768. */
  1769. int md_integrity_register(struct mddev *mddev)
  1770. {
  1771. struct md_rdev *rdev, *reference = NULL;
  1772. if (list_empty(&mddev->disks))
  1773. return 0; /* nothing to do */
  1774. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1775. return 0; /* shouldn't register, or already is */
  1776. rdev_for_each(rdev, mddev) {
  1777. /* skip spares and non-functional disks */
  1778. if (test_bit(Faulty, &rdev->flags))
  1779. continue;
  1780. if (rdev->raid_disk < 0)
  1781. continue;
  1782. if (!reference) {
  1783. /* Use the first rdev as the reference */
  1784. reference = rdev;
  1785. continue;
  1786. }
  1787. /* does this rdev's profile match the reference profile? */
  1788. if (blk_integrity_compare(reference->bdev->bd_disk,
  1789. rdev->bdev->bd_disk) < 0)
  1790. return -EINVAL;
  1791. }
  1792. if (!reference || !bdev_get_integrity(reference->bdev))
  1793. return 0;
  1794. /*
  1795. * All component devices are integrity capable and have matching
  1796. * profiles, register the common profile for the md device.
  1797. */
  1798. if (blk_integrity_register(mddev->gendisk,
  1799. bdev_get_integrity(reference->bdev)) != 0) {
  1800. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1801. mdname(mddev));
  1802. return -EINVAL;
  1803. }
  1804. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1805. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1806. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1807. mdname(mddev));
  1808. return -EINVAL;
  1809. }
  1810. return 0;
  1811. }
  1812. EXPORT_SYMBOL(md_integrity_register);
  1813. /* Disable data integrity if non-capable/non-matching disk is being added */
  1814. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1815. {
  1816. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1817. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1818. if (!bi_mddev) /* nothing to do */
  1819. return;
  1820. if (rdev->raid_disk < 0) /* skip spares */
  1821. return;
  1822. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1823. rdev->bdev->bd_disk) >= 0)
  1824. return;
  1825. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1826. blk_integrity_unregister(mddev->gendisk);
  1827. }
  1828. EXPORT_SYMBOL(md_integrity_add_rdev);
  1829. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1830. {
  1831. char b[BDEVNAME_SIZE];
  1832. struct kobject *ko;
  1833. char *s;
  1834. int err;
  1835. if (rdev->mddev) {
  1836. MD_BUG();
  1837. return -EINVAL;
  1838. }
  1839. /* prevent duplicates */
  1840. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1841. return -EEXIST;
  1842. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1843. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1844. rdev->sectors < mddev->dev_sectors)) {
  1845. if (mddev->pers) {
  1846. /* Cannot change size, so fail
  1847. * If mddev->level <= 0, then we don't care
  1848. * about aligning sizes (e.g. linear)
  1849. */
  1850. if (mddev->level > 0)
  1851. return -ENOSPC;
  1852. } else
  1853. mddev->dev_sectors = rdev->sectors;
  1854. }
  1855. /* Verify rdev->desc_nr is unique.
  1856. * If it is -1, assign a free number, else
  1857. * check number is not in use
  1858. */
  1859. if (rdev->desc_nr < 0) {
  1860. int choice = 0;
  1861. if (mddev->pers) choice = mddev->raid_disks;
  1862. while (find_rdev_nr(mddev, choice))
  1863. choice++;
  1864. rdev->desc_nr = choice;
  1865. } else {
  1866. if (find_rdev_nr(mddev, rdev->desc_nr))
  1867. return -EBUSY;
  1868. }
  1869. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1870. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1871. mdname(mddev), mddev->max_disks);
  1872. return -EBUSY;
  1873. }
  1874. bdevname(rdev->bdev,b);
  1875. while ( (s=strchr(b, '/')) != NULL)
  1876. *s = '!';
  1877. rdev->mddev = mddev;
  1878. printk(KERN_INFO "md: bind<%s>\n", b);
  1879. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1880. goto fail;
  1881. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1882. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1883. /* failure here is OK */;
  1884. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1885. list_add_rcu(&rdev->same_set, &mddev->disks);
  1886. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1887. /* May as well allow recovery to be retried once */
  1888. mddev->recovery_disabled++;
  1889. return 0;
  1890. fail:
  1891. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1892. b, mdname(mddev));
  1893. return err;
  1894. }
  1895. static void md_delayed_delete(struct work_struct *ws)
  1896. {
  1897. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1898. kobject_del(&rdev->kobj);
  1899. kobject_put(&rdev->kobj);
  1900. }
  1901. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1902. {
  1903. char b[BDEVNAME_SIZE];
  1904. if (!rdev->mddev) {
  1905. MD_BUG();
  1906. return;
  1907. }
  1908. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1909. list_del_rcu(&rdev->same_set);
  1910. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1911. rdev->mddev = NULL;
  1912. sysfs_remove_link(&rdev->kobj, "block");
  1913. sysfs_put(rdev->sysfs_state);
  1914. rdev->sysfs_state = NULL;
  1915. rdev->badblocks.count = 0;
  1916. /* We need to delay this, otherwise we can deadlock when
  1917. * writing to 'remove' to "dev/state". We also need
  1918. * to delay it due to rcu usage.
  1919. */
  1920. synchronize_rcu();
  1921. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1922. kobject_get(&rdev->kobj);
  1923. queue_work(md_misc_wq, &rdev->del_work);
  1924. }
  1925. /*
  1926. * prevent the device from being mounted, repartitioned or
  1927. * otherwise reused by a RAID array (or any other kernel
  1928. * subsystem), by bd_claiming the device.
  1929. */
  1930. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1931. {
  1932. int err = 0;
  1933. struct block_device *bdev;
  1934. char b[BDEVNAME_SIZE];
  1935. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1936. shared ? (struct md_rdev *)lock_rdev : rdev);
  1937. if (IS_ERR(bdev)) {
  1938. printk(KERN_ERR "md: could not open %s.\n",
  1939. __bdevname(dev, b));
  1940. return PTR_ERR(bdev);
  1941. }
  1942. rdev->bdev = bdev;
  1943. return err;
  1944. }
  1945. static void unlock_rdev(struct md_rdev *rdev)
  1946. {
  1947. struct block_device *bdev = rdev->bdev;
  1948. rdev->bdev = NULL;
  1949. if (!bdev)
  1950. MD_BUG();
  1951. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1952. }
  1953. void md_autodetect_dev(dev_t dev);
  1954. static void export_rdev(struct md_rdev * rdev)
  1955. {
  1956. char b[BDEVNAME_SIZE];
  1957. printk(KERN_INFO "md: export_rdev(%s)\n",
  1958. bdevname(rdev->bdev,b));
  1959. if (rdev->mddev)
  1960. MD_BUG();
  1961. md_rdev_clear(rdev);
  1962. #ifndef MODULE
  1963. if (test_bit(AutoDetected, &rdev->flags))
  1964. md_autodetect_dev(rdev->bdev->bd_dev);
  1965. #endif
  1966. unlock_rdev(rdev);
  1967. kobject_put(&rdev->kobj);
  1968. }
  1969. static void kick_rdev_from_array(struct md_rdev * rdev)
  1970. {
  1971. unbind_rdev_from_array(rdev);
  1972. export_rdev(rdev);
  1973. }
  1974. static void export_array(struct mddev *mddev)
  1975. {
  1976. struct md_rdev *rdev, *tmp;
  1977. rdev_for_each_safe(rdev, tmp, mddev) {
  1978. if (!rdev->mddev) {
  1979. MD_BUG();
  1980. continue;
  1981. }
  1982. kick_rdev_from_array(rdev);
  1983. }
  1984. if (!list_empty(&mddev->disks))
  1985. MD_BUG();
  1986. mddev->raid_disks = 0;
  1987. mddev->major_version = 0;
  1988. }
  1989. static void print_desc(mdp_disk_t *desc)
  1990. {
  1991. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1992. desc->major,desc->minor,desc->raid_disk,desc->state);
  1993. }
  1994. static void print_sb_90(mdp_super_t *sb)
  1995. {
  1996. int i;
  1997. printk(KERN_INFO
  1998. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1999. sb->major_version, sb->minor_version, sb->patch_version,
  2000. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  2001. sb->ctime);
  2002. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  2003. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  2004. sb->md_minor, sb->layout, sb->chunk_size);
  2005. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  2006. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  2007. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  2008. sb->failed_disks, sb->spare_disks,
  2009. sb->sb_csum, (unsigned long)sb->events_lo);
  2010. printk(KERN_INFO);
  2011. for (i = 0; i < MD_SB_DISKS; i++) {
  2012. mdp_disk_t *desc;
  2013. desc = sb->disks + i;
  2014. if (desc->number || desc->major || desc->minor ||
  2015. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2016. printk(" D %2d: ", i);
  2017. print_desc(desc);
  2018. }
  2019. }
  2020. printk(KERN_INFO "md: THIS: ");
  2021. print_desc(&sb->this_disk);
  2022. }
  2023. static void print_sb_1(struct mdp_superblock_1 *sb)
  2024. {
  2025. __u8 *uuid;
  2026. uuid = sb->set_uuid;
  2027. printk(KERN_INFO
  2028. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2029. "md: Name: \"%s\" CT:%llu\n",
  2030. le32_to_cpu(sb->major_version),
  2031. le32_to_cpu(sb->feature_map),
  2032. uuid,
  2033. sb->set_name,
  2034. (unsigned long long)le64_to_cpu(sb->ctime)
  2035. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2036. uuid = sb->device_uuid;
  2037. printk(KERN_INFO
  2038. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2039. " RO:%llu\n"
  2040. "md: Dev:%08x UUID: %pU\n"
  2041. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2042. "md: (MaxDev:%u) \n",
  2043. le32_to_cpu(sb->level),
  2044. (unsigned long long)le64_to_cpu(sb->size),
  2045. le32_to_cpu(sb->raid_disks),
  2046. le32_to_cpu(sb->layout),
  2047. le32_to_cpu(sb->chunksize),
  2048. (unsigned long long)le64_to_cpu(sb->data_offset),
  2049. (unsigned long long)le64_to_cpu(sb->data_size),
  2050. (unsigned long long)le64_to_cpu(sb->super_offset),
  2051. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2052. le32_to_cpu(sb->dev_number),
  2053. uuid,
  2054. sb->devflags,
  2055. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2056. (unsigned long long)le64_to_cpu(sb->events),
  2057. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2058. le32_to_cpu(sb->sb_csum),
  2059. le32_to_cpu(sb->max_dev)
  2060. );
  2061. }
  2062. static void print_rdev(struct md_rdev *rdev, int major_version)
  2063. {
  2064. char b[BDEVNAME_SIZE];
  2065. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2066. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2067. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2068. rdev->desc_nr);
  2069. if (rdev->sb_loaded) {
  2070. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2071. switch (major_version) {
  2072. case 0:
  2073. print_sb_90(page_address(rdev->sb_page));
  2074. break;
  2075. case 1:
  2076. print_sb_1(page_address(rdev->sb_page));
  2077. break;
  2078. }
  2079. } else
  2080. printk(KERN_INFO "md: no rdev superblock!\n");
  2081. }
  2082. static void md_print_devices(void)
  2083. {
  2084. struct list_head *tmp;
  2085. struct md_rdev *rdev;
  2086. struct mddev *mddev;
  2087. char b[BDEVNAME_SIZE];
  2088. printk("\n");
  2089. printk("md: **********************************\n");
  2090. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2091. printk("md: **********************************\n");
  2092. for_each_mddev(mddev, tmp) {
  2093. if (mddev->bitmap)
  2094. bitmap_print_sb(mddev->bitmap);
  2095. else
  2096. printk("%s: ", mdname(mddev));
  2097. rdev_for_each(rdev, mddev)
  2098. printk("<%s>", bdevname(rdev->bdev,b));
  2099. printk("\n");
  2100. rdev_for_each(rdev, mddev)
  2101. print_rdev(rdev, mddev->major_version);
  2102. }
  2103. printk("md: **********************************\n");
  2104. printk("\n");
  2105. }
  2106. static void sync_sbs(struct mddev * mddev, int nospares)
  2107. {
  2108. /* Update each superblock (in-memory image), but
  2109. * if we are allowed to, skip spares which already
  2110. * have the right event counter, or have one earlier
  2111. * (which would mean they aren't being marked as dirty
  2112. * with the rest of the array)
  2113. */
  2114. struct md_rdev *rdev;
  2115. rdev_for_each(rdev, mddev) {
  2116. if (rdev->sb_events == mddev->events ||
  2117. (nospares &&
  2118. rdev->raid_disk < 0 &&
  2119. rdev->sb_events+1 == mddev->events)) {
  2120. /* Don't update this superblock */
  2121. rdev->sb_loaded = 2;
  2122. } else {
  2123. sync_super(mddev, rdev);
  2124. rdev->sb_loaded = 1;
  2125. }
  2126. }
  2127. }
  2128. static void md_update_sb(struct mddev * mddev, int force_change)
  2129. {
  2130. struct md_rdev *rdev;
  2131. int sync_req;
  2132. int nospares = 0;
  2133. int any_badblocks_changed = 0;
  2134. repeat:
  2135. /* First make sure individual recovery_offsets are correct */
  2136. rdev_for_each(rdev, mddev) {
  2137. if (rdev->raid_disk >= 0 &&
  2138. mddev->delta_disks >= 0 &&
  2139. !test_bit(In_sync, &rdev->flags) &&
  2140. mddev->curr_resync_completed > rdev->recovery_offset)
  2141. rdev->recovery_offset = mddev->curr_resync_completed;
  2142. }
  2143. if (!mddev->persistent) {
  2144. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2145. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2146. if (!mddev->external) {
  2147. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2148. rdev_for_each(rdev, mddev) {
  2149. if (rdev->badblocks.changed) {
  2150. rdev->badblocks.changed = 0;
  2151. md_ack_all_badblocks(&rdev->badblocks);
  2152. md_error(mddev, rdev);
  2153. }
  2154. clear_bit(Blocked, &rdev->flags);
  2155. clear_bit(BlockedBadBlocks, &rdev->flags);
  2156. wake_up(&rdev->blocked_wait);
  2157. }
  2158. }
  2159. wake_up(&mddev->sb_wait);
  2160. return;
  2161. }
  2162. spin_lock_irq(&mddev->write_lock);
  2163. mddev->utime = get_seconds();
  2164. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2165. force_change = 1;
  2166. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2167. /* just a clean<-> dirty transition, possibly leave spares alone,
  2168. * though if events isn't the right even/odd, we will have to do
  2169. * spares after all
  2170. */
  2171. nospares = 1;
  2172. if (force_change)
  2173. nospares = 0;
  2174. if (mddev->degraded)
  2175. /* If the array is degraded, then skipping spares is both
  2176. * dangerous and fairly pointless.
  2177. * Dangerous because a device that was removed from the array
  2178. * might have a event_count that still looks up-to-date,
  2179. * so it can be re-added without a resync.
  2180. * Pointless because if there are any spares to skip,
  2181. * then a recovery will happen and soon that array won't
  2182. * be degraded any more and the spare can go back to sleep then.
  2183. */
  2184. nospares = 0;
  2185. sync_req = mddev->in_sync;
  2186. /* If this is just a dirty<->clean transition, and the array is clean
  2187. * and 'events' is odd, we can roll back to the previous clean state */
  2188. if (nospares
  2189. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2190. && mddev->can_decrease_events
  2191. && mddev->events != 1) {
  2192. mddev->events--;
  2193. mddev->can_decrease_events = 0;
  2194. } else {
  2195. /* otherwise we have to go forward and ... */
  2196. mddev->events ++;
  2197. mddev->can_decrease_events = nospares;
  2198. }
  2199. if (!mddev->events) {
  2200. /*
  2201. * oops, this 64-bit counter should never wrap.
  2202. * Either we are in around ~1 trillion A.C., assuming
  2203. * 1 reboot per second, or we have a bug:
  2204. */
  2205. MD_BUG();
  2206. mddev->events --;
  2207. }
  2208. rdev_for_each(rdev, mddev) {
  2209. if (rdev->badblocks.changed)
  2210. any_badblocks_changed++;
  2211. if (test_bit(Faulty, &rdev->flags))
  2212. set_bit(FaultRecorded, &rdev->flags);
  2213. }
  2214. sync_sbs(mddev, nospares);
  2215. spin_unlock_irq(&mddev->write_lock);
  2216. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2217. mdname(mddev), mddev->in_sync);
  2218. bitmap_update_sb(mddev->bitmap);
  2219. rdev_for_each(rdev, mddev) {
  2220. char b[BDEVNAME_SIZE];
  2221. if (rdev->sb_loaded != 1)
  2222. continue; /* no noise on spare devices */
  2223. if (!test_bit(Faulty, &rdev->flags) &&
  2224. rdev->saved_raid_disk == -1) {
  2225. md_super_write(mddev,rdev,
  2226. rdev->sb_start, rdev->sb_size,
  2227. rdev->sb_page);
  2228. pr_debug("md: (write) %s's sb offset: %llu\n",
  2229. bdevname(rdev->bdev, b),
  2230. (unsigned long long)rdev->sb_start);
  2231. rdev->sb_events = mddev->events;
  2232. if (rdev->badblocks.size) {
  2233. md_super_write(mddev, rdev,
  2234. rdev->badblocks.sector,
  2235. rdev->badblocks.size << 9,
  2236. rdev->bb_page);
  2237. rdev->badblocks.size = 0;
  2238. }
  2239. } else if (test_bit(Faulty, &rdev->flags))
  2240. pr_debug("md: %s (skipping faulty)\n",
  2241. bdevname(rdev->bdev, b));
  2242. else
  2243. pr_debug("(skipping incremental s/r ");
  2244. if (mddev->level == LEVEL_MULTIPATH)
  2245. /* only need to write one superblock... */
  2246. break;
  2247. }
  2248. md_super_wait(mddev);
  2249. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2250. spin_lock_irq(&mddev->write_lock);
  2251. if (mddev->in_sync != sync_req ||
  2252. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2253. /* have to write it out again */
  2254. spin_unlock_irq(&mddev->write_lock);
  2255. goto repeat;
  2256. }
  2257. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2258. spin_unlock_irq(&mddev->write_lock);
  2259. wake_up(&mddev->sb_wait);
  2260. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2261. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2262. rdev_for_each(rdev, mddev) {
  2263. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2264. clear_bit(Blocked, &rdev->flags);
  2265. if (any_badblocks_changed)
  2266. md_ack_all_badblocks(&rdev->badblocks);
  2267. clear_bit(BlockedBadBlocks, &rdev->flags);
  2268. wake_up(&rdev->blocked_wait);
  2269. }
  2270. }
  2271. /* words written to sysfs files may, or may not, be \n terminated.
  2272. * We want to accept with case. For this we use cmd_match.
  2273. */
  2274. static int cmd_match(const char *cmd, const char *str)
  2275. {
  2276. /* See if cmd, written into a sysfs file, matches
  2277. * str. They must either be the same, or cmd can
  2278. * have a trailing newline
  2279. */
  2280. while (*cmd && *str && *cmd == *str) {
  2281. cmd++;
  2282. str++;
  2283. }
  2284. if (*cmd == '\n')
  2285. cmd++;
  2286. if (*str || *cmd)
  2287. return 0;
  2288. return 1;
  2289. }
  2290. struct rdev_sysfs_entry {
  2291. struct attribute attr;
  2292. ssize_t (*show)(struct md_rdev *, char *);
  2293. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2294. };
  2295. static ssize_t
  2296. state_show(struct md_rdev *rdev, char *page)
  2297. {
  2298. char *sep = "";
  2299. size_t len = 0;
  2300. if (test_bit(Faulty, &rdev->flags) ||
  2301. rdev->badblocks.unacked_exist) {
  2302. len+= sprintf(page+len, "%sfaulty",sep);
  2303. sep = ",";
  2304. }
  2305. if (test_bit(In_sync, &rdev->flags)) {
  2306. len += sprintf(page+len, "%sin_sync",sep);
  2307. sep = ",";
  2308. }
  2309. if (test_bit(WriteMostly, &rdev->flags)) {
  2310. len += sprintf(page+len, "%swrite_mostly",sep);
  2311. sep = ",";
  2312. }
  2313. if (test_bit(Blocked, &rdev->flags) ||
  2314. (rdev->badblocks.unacked_exist
  2315. && !test_bit(Faulty, &rdev->flags))) {
  2316. len += sprintf(page+len, "%sblocked", sep);
  2317. sep = ",";
  2318. }
  2319. if (!test_bit(Faulty, &rdev->flags) &&
  2320. !test_bit(In_sync, &rdev->flags)) {
  2321. len += sprintf(page+len, "%sspare", sep);
  2322. sep = ",";
  2323. }
  2324. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2325. len += sprintf(page+len, "%swrite_error", sep);
  2326. sep = ",";
  2327. }
  2328. if (test_bit(WantReplacement, &rdev->flags)) {
  2329. len += sprintf(page+len, "%swant_replacement", sep);
  2330. sep = ",";
  2331. }
  2332. if (test_bit(Replacement, &rdev->flags)) {
  2333. len += sprintf(page+len, "%sreplacement", sep);
  2334. sep = ",";
  2335. }
  2336. return len+sprintf(page+len, "\n");
  2337. }
  2338. static ssize_t
  2339. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2340. {
  2341. /* can write
  2342. * faulty - simulates an error
  2343. * remove - disconnects the device
  2344. * writemostly - sets write_mostly
  2345. * -writemostly - clears write_mostly
  2346. * blocked - sets the Blocked flags
  2347. * -blocked - clears the Blocked and possibly simulates an error
  2348. * insync - sets Insync providing device isn't active
  2349. * write_error - sets WriteErrorSeen
  2350. * -write_error - clears WriteErrorSeen
  2351. */
  2352. int err = -EINVAL;
  2353. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2354. md_error(rdev->mddev, rdev);
  2355. if (test_bit(Faulty, &rdev->flags))
  2356. err = 0;
  2357. else
  2358. err = -EBUSY;
  2359. } else if (cmd_match(buf, "remove")) {
  2360. if (rdev->raid_disk >= 0)
  2361. err = -EBUSY;
  2362. else {
  2363. struct mddev *mddev = rdev->mddev;
  2364. kick_rdev_from_array(rdev);
  2365. if (mddev->pers)
  2366. md_update_sb(mddev, 1);
  2367. md_new_event(mddev);
  2368. err = 0;
  2369. }
  2370. } else if (cmd_match(buf, "writemostly")) {
  2371. set_bit(WriteMostly, &rdev->flags);
  2372. err = 0;
  2373. } else if (cmd_match(buf, "-writemostly")) {
  2374. clear_bit(WriteMostly, &rdev->flags);
  2375. err = 0;
  2376. } else if (cmd_match(buf, "blocked")) {
  2377. set_bit(Blocked, &rdev->flags);
  2378. err = 0;
  2379. } else if (cmd_match(buf, "-blocked")) {
  2380. if (!test_bit(Faulty, &rdev->flags) &&
  2381. rdev->badblocks.unacked_exist) {
  2382. /* metadata handler doesn't understand badblocks,
  2383. * so we need to fail the device
  2384. */
  2385. md_error(rdev->mddev, rdev);
  2386. }
  2387. clear_bit(Blocked, &rdev->flags);
  2388. clear_bit(BlockedBadBlocks, &rdev->flags);
  2389. wake_up(&rdev->blocked_wait);
  2390. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2391. md_wakeup_thread(rdev->mddev->thread);
  2392. err = 0;
  2393. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2394. set_bit(In_sync, &rdev->flags);
  2395. err = 0;
  2396. } else if (cmd_match(buf, "write_error")) {
  2397. set_bit(WriteErrorSeen, &rdev->flags);
  2398. err = 0;
  2399. } else if (cmd_match(buf, "-write_error")) {
  2400. clear_bit(WriteErrorSeen, &rdev->flags);
  2401. err = 0;
  2402. } else if (cmd_match(buf, "want_replacement")) {
  2403. /* Any non-spare device that is not a replacement can
  2404. * become want_replacement at any time, but we then need to
  2405. * check if recovery is needed.
  2406. */
  2407. if (rdev->raid_disk >= 0 &&
  2408. !test_bit(Replacement, &rdev->flags))
  2409. set_bit(WantReplacement, &rdev->flags);
  2410. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2411. md_wakeup_thread(rdev->mddev->thread);
  2412. err = 0;
  2413. } else if (cmd_match(buf, "-want_replacement")) {
  2414. /* Clearing 'want_replacement' is always allowed.
  2415. * Once replacements starts it is too late though.
  2416. */
  2417. err = 0;
  2418. clear_bit(WantReplacement, &rdev->flags);
  2419. } else if (cmd_match(buf, "replacement")) {
  2420. /* Can only set a device as a replacement when array has not
  2421. * yet been started. Once running, replacement is automatic
  2422. * from spares, or by assigning 'slot'.
  2423. */
  2424. if (rdev->mddev->pers)
  2425. err = -EBUSY;
  2426. else {
  2427. set_bit(Replacement, &rdev->flags);
  2428. err = 0;
  2429. }
  2430. } else if (cmd_match(buf, "-replacement")) {
  2431. /* Similarly, can only clear Replacement before start */
  2432. if (rdev->mddev->pers)
  2433. err = -EBUSY;
  2434. else {
  2435. clear_bit(Replacement, &rdev->flags);
  2436. err = 0;
  2437. }
  2438. }
  2439. if (!err)
  2440. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2441. return err ? err : len;
  2442. }
  2443. static struct rdev_sysfs_entry rdev_state =
  2444. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2445. static ssize_t
  2446. errors_show(struct md_rdev *rdev, char *page)
  2447. {
  2448. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2449. }
  2450. static ssize_t
  2451. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2452. {
  2453. char *e;
  2454. unsigned long n = simple_strtoul(buf, &e, 10);
  2455. if (*buf && (*e == 0 || *e == '\n')) {
  2456. atomic_set(&rdev->corrected_errors, n);
  2457. return len;
  2458. }
  2459. return -EINVAL;
  2460. }
  2461. static struct rdev_sysfs_entry rdev_errors =
  2462. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2463. static ssize_t
  2464. slot_show(struct md_rdev *rdev, char *page)
  2465. {
  2466. if (rdev->raid_disk < 0)
  2467. return sprintf(page, "none\n");
  2468. else
  2469. return sprintf(page, "%d\n", rdev->raid_disk);
  2470. }
  2471. static ssize_t
  2472. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2473. {
  2474. char *e;
  2475. int err;
  2476. int slot = simple_strtoul(buf, &e, 10);
  2477. if (strncmp(buf, "none", 4)==0)
  2478. slot = -1;
  2479. else if (e==buf || (*e && *e!= '\n'))
  2480. return -EINVAL;
  2481. if (rdev->mddev->pers && slot == -1) {
  2482. /* Setting 'slot' on an active array requires also
  2483. * updating the 'rd%d' link, and communicating
  2484. * with the personality with ->hot_*_disk.
  2485. * For now we only support removing
  2486. * failed/spare devices. This normally happens automatically,
  2487. * but not when the metadata is externally managed.
  2488. */
  2489. if (rdev->raid_disk == -1)
  2490. return -EEXIST;
  2491. /* personality does all needed checks */
  2492. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2493. return -EINVAL;
  2494. err = rdev->mddev->pers->
  2495. hot_remove_disk(rdev->mddev, rdev);
  2496. if (err)
  2497. return err;
  2498. sysfs_unlink_rdev(rdev->mddev, rdev);
  2499. rdev->raid_disk = -1;
  2500. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2501. md_wakeup_thread(rdev->mddev->thread);
  2502. } else if (rdev->mddev->pers) {
  2503. /* Activating a spare .. or possibly reactivating
  2504. * if we ever get bitmaps working here.
  2505. */
  2506. if (rdev->raid_disk != -1)
  2507. return -EBUSY;
  2508. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2509. return -EBUSY;
  2510. if (rdev->mddev->pers->hot_add_disk == NULL)
  2511. return -EINVAL;
  2512. if (slot >= rdev->mddev->raid_disks &&
  2513. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2514. return -ENOSPC;
  2515. rdev->raid_disk = slot;
  2516. if (test_bit(In_sync, &rdev->flags))
  2517. rdev->saved_raid_disk = slot;
  2518. else
  2519. rdev->saved_raid_disk = -1;
  2520. clear_bit(In_sync, &rdev->flags);
  2521. err = rdev->mddev->pers->
  2522. hot_add_disk(rdev->mddev, rdev);
  2523. if (err) {
  2524. rdev->raid_disk = -1;
  2525. return err;
  2526. } else
  2527. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2528. if (sysfs_link_rdev(rdev->mddev, rdev))
  2529. /* failure here is OK */;
  2530. /* don't wakeup anyone, leave that to userspace. */
  2531. } else {
  2532. if (slot >= rdev->mddev->raid_disks &&
  2533. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2534. return -ENOSPC;
  2535. rdev->raid_disk = slot;
  2536. /* assume it is working */
  2537. clear_bit(Faulty, &rdev->flags);
  2538. clear_bit(WriteMostly, &rdev->flags);
  2539. set_bit(In_sync, &rdev->flags);
  2540. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2541. }
  2542. return len;
  2543. }
  2544. static struct rdev_sysfs_entry rdev_slot =
  2545. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2546. static ssize_t
  2547. offset_show(struct md_rdev *rdev, char *page)
  2548. {
  2549. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2550. }
  2551. static ssize_t
  2552. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2553. {
  2554. unsigned long long offset;
  2555. if (strict_strtoull(buf, 10, &offset) < 0)
  2556. return -EINVAL;
  2557. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2558. return -EBUSY;
  2559. if (rdev->sectors && rdev->mddev->external)
  2560. /* Must set offset before size, so overlap checks
  2561. * can be sane */
  2562. return -EBUSY;
  2563. rdev->data_offset = offset;
  2564. rdev->new_data_offset = offset;
  2565. return len;
  2566. }
  2567. static struct rdev_sysfs_entry rdev_offset =
  2568. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2569. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2570. {
  2571. return sprintf(page, "%llu\n",
  2572. (unsigned long long)rdev->new_data_offset);
  2573. }
  2574. static ssize_t new_offset_store(struct md_rdev *rdev,
  2575. const char *buf, size_t len)
  2576. {
  2577. unsigned long long new_offset;
  2578. struct mddev *mddev = rdev->mddev;
  2579. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2580. return -EINVAL;
  2581. if (mddev->sync_thread)
  2582. return -EBUSY;
  2583. if (new_offset == rdev->data_offset)
  2584. /* reset is always permitted */
  2585. ;
  2586. else if (new_offset > rdev->data_offset) {
  2587. /* must not push array size beyond rdev_sectors */
  2588. if (new_offset - rdev->data_offset
  2589. + mddev->dev_sectors > rdev->sectors)
  2590. return -E2BIG;
  2591. }
  2592. /* Metadata worries about other space details. */
  2593. /* decreasing the offset is inconsistent with a backwards
  2594. * reshape.
  2595. */
  2596. if (new_offset < rdev->data_offset &&
  2597. mddev->reshape_backwards)
  2598. return -EINVAL;
  2599. /* Increasing offset is inconsistent with forwards
  2600. * reshape. reshape_direction should be set to
  2601. * 'backwards' first.
  2602. */
  2603. if (new_offset > rdev->data_offset &&
  2604. !mddev->reshape_backwards)
  2605. return -EINVAL;
  2606. if (mddev->pers && mddev->persistent &&
  2607. !super_types[mddev->major_version]
  2608. .allow_new_offset(rdev, new_offset))
  2609. return -E2BIG;
  2610. rdev->new_data_offset = new_offset;
  2611. if (new_offset > rdev->data_offset)
  2612. mddev->reshape_backwards = 1;
  2613. else if (new_offset < rdev->data_offset)
  2614. mddev->reshape_backwards = 0;
  2615. return len;
  2616. }
  2617. static struct rdev_sysfs_entry rdev_new_offset =
  2618. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2619. static ssize_t
  2620. rdev_size_show(struct md_rdev *rdev, char *page)
  2621. {
  2622. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2623. }
  2624. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2625. {
  2626. /* check if two start/length pairs overlap */
  2627. if (s1+l1 <= s2)
  2628. return 0;
  2629. if (s2+l2 <= s1)
  2630. return 0;
  2631. return 1;
  2632. }
  2633. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2634. {
  2635. unsigned long long blocks;
  2636. sector_t new;
  2637. if (strict_strtoull(buf, 10, &blocks) < 0)
  2638. return -EINVAL;
  2639. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2640. return -EINVAL; /* sector conversion overflow */
  2641. new = blocks * 2;
  2642. if (new != blocks * 2)
  2643. return -EINVAL; /* unsigned long long to sector_t overflow */
  2644. *sectors = new;
  2645. return 0;
  2646. }
  2647. static ssize_t
  2648. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2649. {
  2650. struct mddev *my_mddev = rdev->mddev;
  2651. sector_t oldsectors = rdev->sectors;
  2652. sector_t sectors;
  2653. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2654. return -EINVAL;
  2655. if (rdev->data_offset != rdev->new_data_offset)
  2656. return -EINVAL; /* too confusing */
  2657. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2658. if (my_mddev->persistent) {
  2659. sectors = super_types[my_mddev->major_version].
  2660. rdev_size_change(rdev, sectors);
  2661. if (!sectors)
  2662. return -EBUSY;
  2663. } else if (!sectors)
  2664. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2665. rdev->data_offset;
  2666. }
  2667. if (sectors < my_mddev->dev_sectors)
  2668. return -EINVAL; /* component must fit device */
  2669. rdev->sectors = sectors;
  2670. if (sectors > oldsectors && my_mddev->external) {
  2671. /* need to check that all other rdevs with the same ->bdev
  2672. * do not overlap. We need to unlock the mddev to avoid
  2673. * a deadlock. We have already changed rdev->sectors, and if
  2674. * we have to change it back, we will have the lock again.
  2675. */
  2676. struct mddev *mddev;
  2677. int overlap = 0;
  2678. struct list_head *tmp;
  2679. mddev_unlock(my_mddev);
  2680. for_each_mddev(mddev, tmp) {
  2681. struct md_rdev *rdev2;
  2682. mddev_lock(mddev);
  2683. rdev_for_each(rdev2, mddev)
  2684. if (rdev->bdev == rdev2->bdev &&
  2685. rdev != rdev2 &&
  2686. overlaps(rdev->data_offset, rdev->sectors,
  2687. rdev2->data_offset,
  2688. rdev2->sectors)) {
  2689. overlap = 1;
  2690. break;
  2691. }
  2692. mddev_unlock(mddev);
  2693. if (overlap) {
  2694. mddev_put(mddev);
  2695. break;
  2696. }
  2697. }
  2698. mddev_lock(my_mddev);
  2699. if (overlap) {
  2700. /* Someone else could have slipped in a size
  2701. * change here, but doing so is just silly.
  2702. * We put oldsectors back because we *know* it is
  2703. * safe, and trust userspace not to race with
  2704. * itself
  2705. */
  2706. rdev->sectors = oldsectors;
  2707. return -EBUSY;
  2708. }
  2709. }
  2710. return len;
  2711. }
  2712. static struct rdev_sysfs_entry rdev_size =
  2713. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2714. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2715. {
  2716. unsigned long long recovery_start = rdev->recovery_offset;
  2717. if (test_bit(In_sync, &rdev->flags) ||
  2718. recovery_start == MaxSector)
  2719. return sprintf(page, "none\n");
  2720. return sprintf(page, "%llu\n", recovery_start);
  2721. }
  2722. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2723. {
  2724. unsigned long long recovery_start;
  2725. if (cmd_match(buf, "none"))
  2726. recovery_start = MaxSector;
  2727. else if (strict_strtoull(buf, 10, &recovery_start))
  2728. return -EINVAL;
  2729. if (rdev->mddev->pers &&
  2730. rdev->raid_disk >= 0)
  2731. return -EBUSY;
  2732. rdev->recovery_offset = recovery_start;
  2733. if (recovery_start == MaxSector)
  2734. set_bit(In_sync, &rdev->flags);
  2735. else
  2736. clear_bit(In_sync, &rdev->flags);
  2737. return len;
  2738. }
  2739. static struct rdev_sysfs_entry rdev_recovery_start =
  2740. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2741. static ssize_t
  2742. badblocks_show(struct badblocks *bb, char *page, int unack);
  2743. static ssize_t
  2744. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2745. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2746. {
  2747. return badblocks_show(&rdev->badblocks, page, 0);
  2748. }
  2749. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2750. {
  2751. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2752. /* Maybe that ack was all we needed */
  2753. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2754. wake_up(&rdev->blocked_wait);
  2755. return rv;
  2756. }
  2757. static struct rdev_sysfs_entry rdev_bad_blocks =
  2758. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2759. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2760. {
  2761. return badblocks_show(&rdev->badblocks, page, 1);
  2762. }
  2763. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2764. {
  2765. return badblocks_store(&rdev->badblocks, page, len, 1);
  2766. }
  2767. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2768. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2769. static struct attribute *rdev_default_attrs[] = {
  2770. &rdev_state.attr,
  2771. &rdev_errors.attr,
  2772. &rdev_slot.attr,
  2773. &rdev_offset.attr,
  2774. &rdev_new_offset.attr,
  2775. &rdev_size.attr,
  2776. &rdev_recovery_start.attr,
  2777. &rdev_bad_blocks.attr,
  2778. &rdev_unack_bad_blocks.attr,
  2779. NULL,
  2780. };
  2781. static ssize_t
  2782. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2783. {
  2784. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2785. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2786. struct mddev *mddev = rdev->mddev;
  2787. ssize_t rv;
  2788. if (!entry->show)
  2789. return -EIO;
  2790. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2791. if (!rv) {
  2792. if (rdev->mddev == NULL)
  2793. rv = -EBUSY;
  2794. else
  2795. rv = entry->show(rdev, page);
  2796. mddev_unlock(mddev);
  2797. }
  2798. return rv;
  2799. }
  2800. static ssize_t
  2801. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2802. const char *page, size_t length)
  2803. {
  2804. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2805. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2806. ssize_t rv;
  2807. struct mddev *mddev = rdev->mddev;
  2808. if (!entry->store)
  2809. return -EIO;
  2810. if (!capable(CAP_SYS_ADMIN))
  2811. return -EACCES;
  2812. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2813. if (!rv) {
  2814. if (rdev->mddev == NULL)
  2815. rv = -EBUSY;
  2816. else
  2817. rv = entry->store(rdev, page, length);
  2818. mddev_unlock(mddev);
  2819. }
  2820. return rv;
  2821. }
  2822. static void rdev_free(struct kobject *ko)
  2823. {
  2824. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2825. kfree(rdev);
  2826. }
  2827. static const struct sysfs_ops rdev_sysfs_ops = {
  2828. .show = rdev_attr_show,
  2829. .store = rdev_attr_store,
  2830. };
  2831. static struct kobj_type rdev_ktype = {
  2832. .release = rdev_free,
  2833. .sysfs_ops = &rdev_sysfs_ops,
  2834. .default_attrs = rdev_default_attrs,
  2835. };
  2836. int md_rdev_init(struct md_rdev *rdev)
  2837. {
  2838. rdev->desc_nr = -1;
  2839. rdev->saved_raid_disk = -1;
  2840. rdev->raid_disk = -1;
  2841. rdev->flags = 0;
  2842. rdev->data_offset = 0;
  2843. rdev->new_data_offset = 0;
  2844. rdev->sb_events = 0;
  2845. rdev->last_read_error.tv_sec = 0;
  2846. rdev->last_read_error.tv_nsec = 0;
  2847. rdev->sb_loaded = 0;
  2848. rdev->bb_page = NULL;
  2849. atomic_set(&rdev->nr_pending, 0);
  2850. atomic_set(&rdev->read_errors, 0);
  2851. atomic_set(&rdev->corrected_errors, 0);
  2852. INIT_LIST_HEAD(&rdev->same_set);
  2853. init_waitqueue_head(&rdev->blocked_wait);
  2854. /* Add space to store bad block list.
  2855. * This reserves the space even on arrays where it cannot
  2856. * be used - I wonder if that matters
  2857. */
  2858. rdev->badblocks.count = 0;
  2859. rdev->badblocks.shift = 0;
  2860. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2861. seqlock_init(&rdev->badblocks.lock);
  2862. if (rdev->badblocks.page == NULL)
  2863. return -ENOMEM;
  2864. return 0;
  2865. }
  2866. EXPORT_SYMBOL_GPL(md_rdev_init);
  2867. /*
  2868. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2869. *
  2870. * mark the device faulty if:
  2871. *
  2872. * - the device is nonexistent (zero size)
  2873. * - the device has no valid superblock
  2874. *
  2875. * a faulty rdev _never_ has rdev->sb set.
  2876. */
  2877. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2878. {
  2879. char b[BDEVNAME_SIZE];
  2880. int err;
  2881. struct md_rdev *rdev;
  2882. sector_t size;
  2883. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2884. if (!rdev) {
  2885. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2886. return ERR_PTR(-ENOMEM);
  2887. }
  2888. err = md_rdev_init(rdev);
  2889. if (err)
  2890. goto abort_free;
  2891. err = alloc_disk_sb(rdev);
  2892. if (err)
  2893. goto abort_free;
  2894. err = lock_rdev(rdev, newdev, super_format == -2);
  2895. if (err)
  2896. goto abort_free;
  2897. kobject_init(&rdev->kobj, &rdev_ktype);
  2898. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2899. if (!size) {
  2900. printk(KERN_WARNING
  2901. "md: %s has zero or unknown size, marking faulty!\n",
  2902. bdevname(rdev->bdev,b));
  2903. err = -EINVAL;
  2904. goto abort_free;
  2905. }
  2906. if (super_format >= 0) {
  2907. err = super_types[super_format].
  2908. load_super(rdev, NULL, super_minor);
  2909. if (err == -EINVAL) {
  2910. printk(KERN_WARNING
  2911. "md: %s does not have a valid v%d.%d "
  2912. "superblock, not importing!\n",
  2913. bdevname(rdev->bdev,b),
  2914. super_format, super_minor);
  2915. goto abort_free;
  2916. }
  2917. if (err < 0) {
  2918. printk(KERN_WARNING
  2919. "md: could not read %s's sb, not importing!\n",
  2920. bdevname(rdev->bdev,b));
  2921. goto abort_free;
  2922. }
  2923. }
  2924. if (super_format == -1)
  2925. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2926. rdev->badblocks.shift = -1;
  2927. return rdev;
  2928. abort_free:
  2929. if (rdev->bdev)
  2930. unlock_rdev(rdev);
  2931. md_rdev_clear(rdev);
  2932. kfree(rdev);
  2933. return ERR_PTR(err);
  2934. }
  2935. /*
  2936. * Check a full RAID array for plausibility
  2937. */
  2938. static void analyze_sbs(struct mddev * mddev)
  2939. {
  2940. int i;
  2941. struct md_rdev *rdev, *freshest, *tmp;
  2942. char b[BDEVNAME_SIZE];
  2943. freshest = NULL;
  2944. rdev_for_each_safe(rdev, tmp, mddev)
  2945. switch (super_types[mddev->major_version].
  2946. load_super(rdev, freshest, mddev->minor_version)) {
  2947. case 1:
  2948. freshest = rdev;
  2949. break;
  2950. case 0:
  2951. break;
  2952. default:
  2953. printk( KERN_ERR \
  2954. "md: fatal superblock inconsistency in %s"
  2955. " -- removing from array\n",
  2956. bdevname(rdev->bdev,b));
  2957. kick_rdev_from_array(rdev);
  2958. }
  2959. super_types[mddev->major_version].
  2960. validate_super(mddev, freshest);
  2961. i = 0;
  2962. rdev_for_each_safe(rdev, tmp, mddev) {
  2963. if (mddev->max_disks &&
  2964. (rdev->desc_nr >= mddev->max_disks ||
  2965. i > mddev->max_disks)) {
  2966. printk(KERN_WARNING
  2967. "md: %s: %s: only %d devices permitted\n",
  2968. mdname(mddev), bdevname(rdev->bdev, b),
  2969. mddev->max_disks);
  2970. kick_rdev_from_array(rdev);
  2971. continue;
  2972. }
  2973. if (rdev != freshest)
  2974. if (super_types[mddev->major_version].
  2975. validate_super(mddev, rdev)) {
  2976. printk(KERN_WARNING "md: kicking non-fresh %s"
  2977. " from array!\n",
  2978. bdevname(rdev->bdev,b));
  2979. kick_rdev_from_array(rdev);
  2980. continue;
  2981. }
  2982. if (mddev->level == LEVEL_MULTIPATH) {
  2983. rdev->desc_nr = i++;
  2984. rdev->raid_disk = rdev->desc_nr;
  2985. set_bit(In_sync, &rdev->flags);
  2986. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2987. rdev->raid_disk = -1;
  2988. clear_bit(In_sync, &rdev->flags);
  2989. }
  2990. }
  2991. }
  2992. /* Read a fixed-point number.
  2993. * Numbers in sysfs attributes should be in "standard" units where
  2994. * possible, so time should be in seconds.
  2995. * However we internally use a a much smaller unit such as
  2996. * milliseconds or jiffies.
  2997. * This function takes a decimal number with a possible fractional
  2998. * component, and produces an integer which is the result of
  2999. * multiplying that number by 10^'scale'.
  3000. * all without any floating-point arithmetic.
  3001. */
  3002. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  3003. {
  3004. unsigned long result = 0;
  3005. long decimals = -1;
  3006. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  3007. if (*cp == '.')
  3008. decimals = 0;
  3009. else if (decimals < scale) {
  3010. unsigned int value;
  3011. value = *cp - '0';
  3012. result = result * 10 + value;
  3013. if (decimals >= 0)
  3014. decimals++;
  3015. }
  3016. cp++;
  3017. }
  3018. if (*cp == '\n')
  3019. cp++;
  3020. if (*cp)
  3021. return -EINVAL;
  3022. if (decimals < 0)
  3023. decimals = 0;
  3024. while (decimals < scale) {
  3025. result *= 10;
  3026. decimals ++;
  3027. }
  3028. *res = result;
  3029. return 0;
  3030. }
  3031. static void md_safemode_timeout(unsigned long data);
  3032. static ssize_t
  3033. safe_delay_show(struct mddev *mddev, char *page)
  3034. {
  3035. int msec = (mddev->safemode_delay*1000)/HZ;
  3036. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3037. }
  3038. static ssize_t
  3039. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3040. {
  3041. unsigned long msec;
  3042. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3043. return -EINVAL;
  3044. if (msec == 0)
  3045. mddev->safemode_delay = 0;
  3046. else {
  3047. unsigned long old_delay = mddev->safemode_delay;
  3048. mddev->safemode_delay = (msec*HZ)/1000;
  3049. if (mddev->safemode_delay == 0)
  3050. mddev->safemode_delay = 1;
  3051. if (mddev->safemode_delay < old_delay)
  3052. md_safemode_timeout((unsigned long)mddev);
  3053. }
  3054. return len;
  3055. }
  3056. static struct md_sysfs_entry md_safe_delay =
  3057. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3058. static ssize_t
  3059. level_show(struct mddev *mddev, char *page)
  3060. {
  3061. struct md_personality *p = mddev->pers;
  3062. if (p)
  3063. return sprintf(page, "%s\n", p->name);
  3064. else if (mddev->clevel[0])
  3065. return sprintf(page, "%s\n", mddev->clevel);
  3066. else if (mddev->level != LEVEL_NONE)
  3067. return sprintf(page, "%d\n", mddev->level);
  3068. else
  3069. return 0;
  3070. }
  3071. static ssize_t
  3072. level_store(struct mddev *mddev, const char *buf, size_t len)
  3073. {
  3074. char clevel[16];
  3075. ssize_t rv = len;
  3076. struct md_personality *pers;
  3077. long level;
  3078. void *priv;
  3079. struct md_rdev *rdev;
  3080. if (mddev->pers == NULL) {
  3081. if (len == 0)
  3082. return 0;
  3083. if (len >= sizeof(mddev->clevel))
  3084. return -ENOSPC;
  3085. strncpy(mddev->clevel, buf, len);
  3086. if (mddev->clevel[len-1] == '\n')
  3087. len--;
  3088. mddev->clevel[len] = 0;
  3089. mddev->level = LEVEL_NONE;
  3090. return rv;
  3091. }
  3092. /* request to change the personality. Need to ensure:
  3093. * - array is not engaged in resync/recovery/reshape
  3094. * - old personality can be suspended
  3095. * - new personality will access other array.
  3096. */
  3097. if (mddev->sync_thread ||
  3098. mddev->reshape_position != MaxSector ||
  3099. mddev->sysfs_active)
  3100. return -EBUSY;
  3101. if (!mddev->pers->quiesce) {
  3102. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3103. mdname(mddev), mddev->pers->name);
  3104. return -EINVAL;
  3105. }
  3106. /* Now find the new personality */
  3107. if (len == 0 || len >= sizeof(clevel))
  3108. return -EINVAL;
  3109. strncpy(clevel, buf, len);
  3110. if (clevel[len-1] == '\n')
  3111. len--;
  3112. clevel[len] = 0;
  3113. if (strict_strtol(clevel, 10, &level))
  3114. level = LEVEL_NONE;
  3115. if (request_module("md-%s", clevel) != 0)
  3116. request_module("md-level-%s", clevel);
  3117. spin_lock(&pers_lock);
  3118. pers = find_pers(level, clevel);
  3119. if (!pers || !try_module_get(pers->owner)) {
  3120. spin_unlock(&pers_lock);
  3121. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3122. return -EINVAL;
  3123. }
  3124. spin_unlock(&pers_lock);
  3125. if (pers == mddev->pers) {
  3126. /* Nothing to do! */
  3127. module_put(pers->owner);
  3128. return rv;
  3129. }
  3130. if (!pers->takeover) {
  3131. module_put(pers->owner);
  3132. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3133. mdname(mddev), clevel);
  3134. return -EINVAL;
  3135. }
  3136. rdev_for_each(rdev, mddev)
  3137. rdev->new_raid_disk = rdev->raid_disk;
  3138. /* ->takeover must set new_* and/or delta_disks
  3139. * if it succeeds, and may set them when it fails.
  3140. */
  3141. priv = pers->takeover(mddev);
  3142. if (IS_ERR(priv)) {
  3143. mddev->new_level = mddev->level;
  3144. mddev->new_layout = mddev->layout;
  3145. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3146. mddev->raid_disks -= mddev->delta_disks;
  3147. mddev->delta_disks = 0;
  3148. mddev->reshape_backwards = 0;
  3149. module_put(pers->owner);
  3150. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3151. mdname(mddev), clevel);
  3152. return PTR_ERR(priv);
  3153. }
  3154. /* Looks like we have a winner */
  3155. mddev_suspend(mddev);
  3156. mddev->pers->stop(mddev);
  3157. if (mddev->pers->sync_request == NULL &&
  3158. pers->sync_request != NULL) {
  3159. /* need to add the md_redundancy_group */
  3160. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3161. printk(KERN_WARNING
  3162. "md: cannot register extra attributes for %s\n",
  3163. mdname(mddev));
  3164. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3165. }
  3166. if (mddev->pers->sync_request != NULL &&
  3167. pers->sync_request == NULL) {
  3168. /* need to remove the md_redundancy_group */
  3169. if (mddev->to_remove == NULL)
  3170. mddev->to_remove = &md_redundancy_group;
  3171. }
  3172. if (mddev->pers->sync_request == NULL &&
  3173. mddev->external) {
  3174. /* We are converting from a no-redundancy array
  3175. * to a redundancy array and metadata is managed
  3176. * externally so we need to be sure that writes
  3177. * won't block due to a need to transition
  3178. * clean->dirty
  3179. * until external management is started.
  3180. */
  3181. mddev->in_sync = 0;
  3182. mddev->safemode_delay = 0;
  3183. mddev->safemode = 0;
  3184. }
  3185. rdev_for_each(rdev, mddev) {
  3186. if (rdev->raid_disk < 0)
  3187. continue;
  3188. if (rdev->new_raid_disk >= mddev->raid_disks)
  3189. rdev->new_raid_disk = -1;
  3190. if (rdev->new_raid_disk == rdev->raid_disk)
  3191. continue;
  3192. sysfs_unlink_rdev(mddev, rdev);
  3193. }
  3194. rdev_for_each(rdev, mddev) {
  3195. if (rdev->raid_disk < 0)
  3196. continue;
  3197. if (rdev->new_raid_disk == rdev->raid_disk)
  3198. continue;
  3199. rdev->raid_disk = rdev->new_raid_disk;
  3200. if (rdev->raid_disk < 0)
  3201. clear_bit(In_sync, &rdev->flags);
  3202. else {
  3203. if (sysfs_link_rdev(mddev, rdev))
  3204. printk(KERN_WARNING "md: cannot register rd%d"
  3205. " for %s after level change\n",
  3206. rdev->raid_disk, mdname(mddev));
  3207. }
  3208. }
  3209. module_put(mddev->pers->owner);
  3210. mddev->pers = pers;
  3211. mddev->private = priv;
  3212. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3213. mddev->level = mddev->new_level;
  3214. mddev->layout = mddev->new_layout;
  3215. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3216. mddev->delta_disks = 0;
  3217. mddev->reshape_backwards = 0;
  3218. mddev->degraded = 0;
  3219. if (mddev->pers->sync_request == NULL) {
  3220. /* this is now an array without redundancy, so
  3221. * it must always be in_sync
  3222. */
  3223. mddev->in_sync = 1;
  3224. del_timer_sync(&mddev->safemode_timer);
  3225. }
  3226. pers->run(mddev);
  3227. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3228. mddev_resume(mddev);
  3229. sysfs_notify(&mddev->kobj, NULL, "level");
  3230. md_new_event(mddev);
  3231. return rv;
  3232. }
  3233. static struct md_sysfs_entry md_level =
  3234. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3235. static ssize_t
  3236. layout_show(struct mddev *mddev, char *page)
  3237. {
  3238. /* just a number, not meaningful for all levels */
  3239. if (mddev->reshape_position != MaxSector &&
  3240. mddev->layout != mddev->new_layout)
  3241. return sprintf(page, "%d (%d)\n",
  3242. mddev->new_layout, mddev->layout);
  3243. return sprintf(page, "%d\n", mddev->layout);
  3244. }
  3245. static ssize_t
  3246. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3247. {
  3248. char *e;
  3249. unsigned long n = simple_strtoul(buf, &e, 10);
  3250. if (!*buf || (*e && *e != '\n'))
  3251. return -EINVAL;
  3252. if (mddev->pers) {
  3253. int err;
  3254. if (mddev->pers->check_reshape == NULL)
  3255. return -EBUSY;
  3256. mddev->new_layout = n;
  3257. err = mddev->pers->check_reshape(mddev);
  3258. if (err) {
  3259. mddev->new_layout = mddev->layout;
  3260. return err;
  3261. }
  3262. } else {
  3263. mddev->new_layout = n;
  3264. if (mddev->reshape_position == MaxSector)
  3265. mddev->layout = n;
  3266. }
  3267. return len;
  3268. }
  3269. static struct md_sysfs_entry md_layout =
  3270. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3271. static ssize_t
  3272. raid_disks_show(struct mddev *mddev, char *page)
  3273. {
  3274. if (mddev->raid_disks == 0)
  3275. return 0;
  3276. if (mddev->reshape_position != MaxSector &&
  3277. mddev->delta_disks != 0)
  3278. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3279. mddev->raid_disks - mddev->delta_disks);
  3280. return sprintf(page, "%d\n", mddev->raid_disks);
  3281. }
  3282. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3283. static ssize_t
  3284. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3285. {
  3286. char *e;
  3287. int rv = 0;
  3288. unsigned long n = simple_strtoul(buf, &e, 10);
  3289. if (!*buf || (*e && *e != '\n'))
  3290. return -EINVAL;
  3291. if (mddev->pers)
  3292. rv = update_raid_disks(mddev, n);
  3293. else if (mddev->reshape_position != MaxSector) {
  3294. struct md_rdev *rdev;
  3295. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3296. rdev_for_each(rdev, mddev) {
  3297. if (olddisks < n &&
  3298. rdev->data_offset < rdev->new_data_offset)
  3299. return -EINVAL;
  3300. if (olddisks > n &&
  3301. rdev->data_offset > rdev->new_data_offset)
  3302. return -EINVAL;
  3303. }
  3304. mddev->delta_disks = n - olddisks;
  3305. mddev->raid_disks = n;
  3306. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3307. } else
  3308. mddev->raid_disks = n;
  3309. return rv ? rv : len;
  3310. }
  3311. static struct md_sysfs_entry md_raid_disks =
  3312. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3313. static ssize_t
  3314. chunk_size_show(struct mddev *mddev, char *page)
  3315. {
  3316. if (mddev->reshape_position != MaxSector &&
  3317. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3318. return sprintf(page, "%d (%d)\n",
  3319. mddev->new_chunk_sectors << 9,
  3320. mddev->chunk_sectors << 9);
  3321. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3322. }
  3323. static ssize_t
  3324. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3325. {
  3326. char *e;
  3327. unsigned long n = simple_strtoul(buf, &e, 10);
  3328. if (!*buf || (*e && *e != '\n'))
  3329. return -EINVAL;
  3330. if (mddev->pers) {
  3331. int err;
  3332. if (mddev->pers->check_reshape == NULL)
  3333. return -EBUSY;
  3334. mddev->new_chunk_sectors = n >> 9;
  3335. err = mddev->pers->check_reshape(mddev);
  3336. if (err) {
  3337. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3338. return err;
  3339. }
  3340. } else {
  3341. mddev->new_chunk_sectors = n >> 9;
  3342. if (mddev->reshape_position == MaxSector)
  3343. mddev->chunk_sectors = n >> 9;
  3344. }
  3345. return len;
  3346. }
  3347. static struct md_sysfs_entry md_chunk_size =
  3348. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3349. static ssize_t
  3350. resync_start_show(struct mddev *mddev, char *page)
  3351. {
  3352. if (mddev->recovery_cp == MaxSector)
  3353. return sprintf(page, "none\n");
  3354. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3355. }
  3356. static ssize_t
  3357. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3358. {
  3359. char *e;
  3360. unsigned long long n = simple_strtoull(buf, &e, 10);
  3361. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3362. return -EBUSY;
  3363. if (cmd_match(buf, "none"))
  3364. n = MaxSector;
  3365. else if (!*buf || (*e && *e != '\n'))
  3366. return -EINVAL;
  3367. mddev->recovery_cp = n;
  3368. return len;
  3369. }
  3370. static struct md_sysfs_entry md_resync_start =
  3371. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3372. /*
  3373. * The array state can be:
  3374. *
  3375. * clear
  3376. * No devices, no size, no level
  3377. * Equivalent to STOP_ARRAY ioctl
  3378. * inactive
  3379. * May have some settings, but array is not active
  3380. * all IO results in error
  3381. * When written, doesn't tear down array, but just stops it
  3382. * suspended (not supported yet)
  3383. * All IO requests will block. The array can be reconfigured.
  3384. * Writing this, if accepted, will block until array is quiescent
  3385. * readonly
  3386. * no resync can happen. no superblocks get written.
  3387. * write requests fail
  3388. * read-auto
  3389. * like readonly, but behaves like 'clean' on a write request.
  3390. *
  3391. * clean - no pending writes, but otherwise active.
  3392. * When written to inactive array, starts without resync
  3393. * If a write request arrives then
  3394. * if metadata is known, mark 'dirty' and switch to 'active'.
  3395. * if not known, block and switch to write-pending
  3396. * If written to an active array that has pending writes, then fails.
  3397. * active
  3398. * fully active: IO and resync can be happening.
  3399. * When written to inactive array, starts with resync
  3400. *
  3401. * write-pending
  3402. * clean, but writes are blocked waiting for 'active' to be written.
  3403. *
  3404. * active-idle
  3405. * like active, but no writes have been seen for a while (100msec).
  3406. *
  3407. */
  3408. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3409. write_pending, active_idle, bad_word};
  3410. static char *array_states[] = {
  3411. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3412. "write-pending", "active-idle", NULL };
  3413. static int match_word(const char *word, char **list)
  3414. {
  3415. int n;
  3416. for (n=0; list[n]; n++)
  3417. if (cmd_match(word, list[n]))
  3418. break;
  3419. return n;
  3420. }
  3421. static ssize_t
  3422. array_state_show(struct mddev *mddev, char *page)
  3423. {
  3424. enum array_state st = inactive;
  3425. if (mddev->pers)
  3426. switch(mddev->ro) {
  3427. case 1:
  3428. st = readonly;
  3429. break;
  3430. case 2:
  3431. st = read_auto;
  3432. break;
  3433. case 0:
  3434. if (mddev->in_sync)
  3435. st = clean;
  3436. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3437. st = write_pending;
  3438. else if (mddev->safemode)
  3439. st = active_idle;
  3440. else
  3441. st = active;
  3442. }
  3443. else {
  3444. if (list_empty(&mddev->disks) &&
  3445. mddev->raid_disks == 0 &&
  3446. mddev->dev_sectors == 0)
  3447. st = clear;
  3448. else
  3449. st = inactive;
  3450. }
  3451. return sprintf(page, "%s\n", array_states[st]);
  3452. }
  3453. static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
  3454. static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
  3455. static int do_md_run(struct mddev * mddev);
  3456. static int restart_array(struct mddev *mddev);
  3457. static ssize_t
  3458. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3459. {
  3460. int err = -EINVAL;
  3461. enum array_state st = match_word(buf, array_states);
  3462. switch(st) {
  3463. case bad_word:
  3464. break;
  3465. case clear:
  3466. /* stopping an active array */
  3467. err = do_md_stop(mddev, 0, NULL);
  3468. break;
  3469. case inactive:
  3470. /* stopping an active array */
  3471. if (mddev->pers)
  3472. err = do_md_stop(mddev, 2, NULL);
  3473. else
  3474. err = 0; /* already inactive */
  3475. break;
  3476. case suspended:
  3477. break; /* not supported yet */
  3478. case readonly:
  3479. if (mddev->pers)
  3480. err = md_set_readonly(mddev, NULL);
  3481. else {
  3482. mddev->ro = 1;
  3483. set_disk_ro(mddev->gendisk, 1);
  3484. err = do_md_run(mddev);
  3485. }
  3486. break;
  3487. case read_auto:
  3488. if (mddev->pers) {
  3489. if (mddev->ro == 0)
  3490. err = md_set_readonly(mddev, NULL);
  3491. else if (mddev->ro == 1)
  3492. err = restart_array(mddev);
  3493. if (err == 0) {
  3494. mddev->ro = 2;
  3495. set_disk_ro(mddev->gendisk, 0);
  3496. }
  3497. } else {
  3498. mddev->ro = 2;
  3499. err = do_md_run(mddev);
  3500. }
  3501. break;
  3502. case clean:
  3503. if (mddev->pers) {
  3504. restart_array(mddev);
  3505. spin_lock_irq(&mddev->write_lock);
  3506. if (atomic_read(&mddev->writes_pending) == 0) {
  3507. if (mddev->in_sync == 0) {
  3508. mddev->in_sync = 1;
  3509. if (mddev->safemode == 1)
  3510. mddev->safemode = 0;
  3511. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3512. }
  3513. err = 0;
  3514. } else
  3515. err = -EBUSY;
  3516. spin_unlock_irq(&mddev->write_lock);
  3517. } else
  3518. err = -EINVAL;
  3519. break;
  3520. case active:
  3521. if (mddev->pers) {
  3522. restart_array(mddev);
  3523. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3524. wake_up(&mddev->sb_wait);
  3525. err = 0;
  3526. } else {
  3527. mddev->ro = 0;
  3528. set_disk_ro(mddev->gendisk, 0);
  3529. err = do_md_run(mddev);
  3530. }
  3531. break;
  3532. case write_pending:
  3533. case active_idle:
  3534. /* these cannot be set */
  3535. break;
  3536. }
  3537. if (err)
  3538. return err;
  3539. else {
  3540. if (mddev->hold_active == UNTIL_IOCTL)
  3541. mddev->hold_active = 0;
  3542. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3543. return len;
  3544. }
  3545. }
  3546. static struct md_sysfs_entry md_array_state =
  3547. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3548. static ssize_t
  3549. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3550. return sprintf(page, "%d\n",
  3551. atomic_read(&mddev->max_corr_read_errors));
  3552. }
  3553. static ssize_t
  3554. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3555. {
  3556. char *e;
  3557. unsigned long n = simple_strtoul(buf, &e, 10);
  3558. if (*buf && (*e == 0 || *e == '\n')) {
  3559. atomic_set(&mddev->max_corr_read_errors, n);
  3560. return len;
  3561. }
  3562. return -EINVAL;
  3563. }
  3564. static struct md_sysfs_entry max_corr_read_errors =
  3565. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3566. max_corrected_read_errors_store);
  3567. static ssize_t
  3568. null_show(struct mddev *mddev, char *page)
  3569. {
  3570. return -EINVAL;
  3571. }
  3572. static ssize_t
  3573. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3574. {
  3575. /* buf must be %d:%d\n? giving major and minor numbers */
  3576. /* The new device is added to the array.
  3577. * If the array has a persistent superblock, we read the
  3578. * superblock to initialise info and check validity.
  3579. * Otherwise, only checking done is that in bind_rdev_to_array,
  3580. * which mainly checks size.
  3581. */
  3582. char *e;
  3583. int major = simple_strtoul(buf, &e, 10);
  3584. int minor;
  3585. dev_t dev;
  3586. struct md_rdev *rdev;
  3587. int err;
  3588. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3589. return -EINVAL;
  3590. minor = simple_strtoul(e+1, &e, 10);
  3591. if (*e && *e != '\n')
  3592. return -EINVAL;
  3593. dev = MKDEV(major, minor);
  3594. if (major != MAJOR(dev) ||
  3595. minor != MINOR(dev))
  3596. return -EOVERFLOW;
  3597. if (mddev->persistent) {
  3598. rdev = md_import_device(dev, mddev->major_version,
  3599. mddev->minor_version);
  3600. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3601. struct md_rdev *rdev0
  3602. = list_entry(mddev->disks.next,
  3603. struct md_rdev, same_set);
  3604. err = super_types[mddev->major_version]
  3605. .load_super(rdev, rdev0, mddev->minor_version);
  3606. if (err < 0)
  3607. goto out;
  3608. }
  3609. } else if (mddev->external)
  3610. rdev = md_import_device(dev, -2, -1);
  3611. else
  3612. rdev = md_import_device(dev, -1, -1);
  3613. if (IS_ERR(rdev))
  3614. return PTR_ERR(rdev);
  3615. err = bind_rdev_to_array(rdev, mddev);
  3616. out:
  3617. if (err)
  3618. export_rdev(rdev);
  3619. return err ? err : len;
  3620. }
  3621. static struct md_sysfs_entry md_new_device =
  3622. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3623. static ssize_t
  3624. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3625. {
  3626. char *end;
  3627. unsigned long chunk, end_chunk;
  3628. if (!mddev->bitmap)
  3629. goto out;
  3630. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3631. while (*buf) {
  3632. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3633. if (buf == end) break;
  3634. if (*end == '-') { /* range */
  3635. buf = end + 1;
  3636. end_chunk = simple_strtoul(buf, &end, 0);
  3637. if (buf == end) break;
  3638. }
  3639. if (*end && !isspace(*end)) break;
  3640. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3641. buf = skip_spaces(end);
  3642. }
  3643. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3644. out:
  3645. return len;
  3646. }
  3647. static struct md_sysfs_entry md_bitmap =
  3648. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3649. static ssize_t
  3650. size_show(struct mddev *mddev, char *page)
  3651. {
  3652. return sprintf(page, "%llu\n",
  3653. (unsigned long long)mddev->dev_sectors / 2);
  3654. }
  3655. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3656. static ssize_t
  3657. size_store(struct mddev *mddev, const char *buf, size_t len)
  3658. {
  3659. /* If array is inactive, we can reduce the component size, but
  3660. * not increase it (except from 0).
  3661. * If array is active, we can try an on-line resize
  3662. */
  3663. sector_t sectors;
  3664. int err = strict_blocks_to_sectors(buf, &sectors);
  3665. if (err < 0)
  3666. return err;
  3667. if (mddev->pers) {
  3668. err = update_size(mddev, sectors);
  3669. md_update_sb(mddev, 1);
  3670. } else {
  3671. if (mddev->dev_sectors == 0 ||
  3672. mddev->dev_sectors > sectors)
  3673. mddev->dev_sectors = sectors;
  3674. else
  3675. err = -ENOSPC;
  3676. }
  3677. return err ? err : len;
  3678. }
  3679. static struct md_sysfs_entry md_size =
  3680. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3681. /* Metdata version.
  3682. * This is one of
  3683. * 'none' for arrays with no metadata (good luck...)
  3684. * 'external' for arrays with externally managed metadata,
  3685. * or N.M for internally known formats
  3686. */
  3687. static ssize_t
  3688. metadata_show(struct mddev *mddev, char *page)
  3689. {
  3690. if (mddev->persistent)
  3691. return sprintf(page, "%d.%d\n",
  3692. mddev->major_version, mddev->minor_version);
  3693. else if (mddev->external)
  3694. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3695. else
  3696. return sprintf(page, "none\n");
  3697. }
  3698. static ssize_t
  3699. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3700. {
  3701. int major, minor;
  3702. char *e;
  3703. /* Changing the details of 'external' metadata is
  3704. * always permitted. Otherwise there must be
  3705. * no devices attached to the array.
  3706. */
  3707. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3708. ;
  3709. else if (!list_empty(&mddev->disks))
  3710. return -EBUSY;
  3711. if (cmd_match(buf, "none")) {
  3712. mddev->persistent = 0;
  3713. mddev->external = 0;
  3714. mddev->major_version = 0;
  3715. mddev->minor_version = 90;
  3716. return len;
  3717. }
  3718. if (strncmp(buf, "external:", 9) == 0) {
  3719. size_t namelen = len-9;
  3720. if (namelen >= sizeof(mddev->metadata_type))
  3721. namelen = sizeof(mddev->metadata_type)-1;
  3722. strncpy(mddev->metadata_type, buf+9, namelen);
  3723. mddev->metadata_type[namelen] = 0;
  3724. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3725. mddev->metadata_type[--namelen] = 0;
  3726. mddev->persistent = 0;
  3727. mddev->external = 1;
  3728. mddev->major_version = 0;
  3729. mddev->minor_version = 90;
  3730. return len;
  3731. }
  3732. major = simple_strtoul(buf, &e, 10);
  3733. if (e==buf || *e != '.')
  3734. return -EINVAL;
  3735. buf = e+1;
  3736. minor = simple_strtoul(buf, &e, 10);
  3737. if (e==buf || (*e && *e != '\n') )
  3738. return -EINVAL;
  3739. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3740. return -ENOENT;
  3741. mddev->major_version = major;
  3742. mddev->minor_version = minor;
  3743. mddev->persistent = 1;
  3744. mddev->external = 0;
  3745. return len;
  3746. }
  3747. static struct md_sysfs_entry md_metadata =
  3748. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3749. static ssize_t
  3750. action_show(struct mddev *mddev, char *page)
  3751. {
  3752. char *type = "idle";
  3753. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3754. type = "frozen";
  3755. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3756. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3757. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3758. type = "reshape";
  3759. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3760. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3761. type = "resync";
  3762. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3763. type = "check";
  3764. else
  3765. type = "repair";
  3766. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3767. type = "recover";
  3768. }
  3769. return sprintf(page, "%s\n", type);
  3770. }
  3771. static void reap_sync_thread(struct mddev *mddev);
  3772. static ssize_t
  3773. action_store(struct mddev *mddev, const char *page, size_t len)
  3774. {
  3775. if (!mddev->pers || !mddev->pers->sync_request)
  3776. return -EINVAL;
  3777. if (cmd_match(page, "frozen"))
  3778. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3779. else
  3780. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3781. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3782. if (mddev->sync_thread) {
  3783. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3784. reap_sync_thread(mddev);
  3785. }
  3786. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3787. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3788. return -EBUSY;
  3789. else if (cmd_match(page, "resync"))
  3790. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3791. else if (cmd_match(page, "recover")) {
  3792. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3793. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3794. } else if (cmd_match(page, "reshape")) {
  3795. int err;
  3796. if (mddev->pers->start_reshape == NULL)
  3797. return -EINVAL;
  3798. err = mddev->pers->start_reshape(mddev);
  3799. if (err)
  3800. return err;
  3801. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3802. } else {
  3803. if (cmd_match(page, "check"))
  3804. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3805. else if (!cmd_match(page, "repair"))
  3806. return -EINVAL;
  3807. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3808. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3809. }
  3810. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3811. md_wakeup_thread(mddev->thread);
  3812. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3813. return len;
  3814. }
  3815. static ssize_t
  3816. mismatch_cnt_show(struct mddev *mddev, char *page)
  3817. {
  3818. return sprintf(page, "%llu\n",
  3819. (unsigned long long) mddev->resync_mismatches);
  3820. }
  3821. static struct md_sysfs_entry md_scan_mode =
  3822. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3823. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3824. static ssize_t
  3825. sync_min_show(struct mddev *mddev, char *page)
  3826. {
  3827. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3828. mddev->sync_speed_min ? "local": "system");
  3829. }
  3830. static ssize_t
  3831. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3832. {
  3833. int min;
  3834. char *e;
  3835. if (strncmp(buf, "system", 6)==0) {
  3836. mddev->sync_speed_min = 0;
  3837. return len;
  3838. }
  3839. min = simple_strtoul(buf, &e, 10);
  3840. if (buf == e || (*e && *e != '\n') || min <= 0)
  3841. return -EINVAL;
  3842. mddev->sync_speed_min = min;
  3843. return len;
  3844. }
  3845. static struct md_sysfs_entry md_sync_min =
  3846. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3847. static ssize_t
  3848. sync_max_show(struct mddev *mddev, char *page)
  3849. {
  3850. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3851. mddev->sync_speed_max ? "local": "system");
  3852. }
  3853. static ssize_t
  3854. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3855. {
  3856. int max;
  3857. char *e;
  3858. if (strncmp(buf, "system", 6)==0) {
  3859. mddev->sync_speed_max = 0;
  3860. return len;
  3861. }
  3862. max = simple_strtoul(buf, &e, 10);
  3863. if (buf == e || (*e && *e != '\n') || max <= 0)
  3864. return -EINVAL;
  3865. mddev->sync_speed_max = max;
  3866. return len;
  3867. }
  3868. static struct md_sysfs_entry md_sync_max =
  3869. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3870. static ssize_t
  3871. degraded_show(struct mddev *mddev, char *page)
  3872. {
  3873. return sprintf(page, "%d\n", mddev->degraded);
  3874. }
  3875. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3876. static ssize_t
  3877. sync_force_parallel_show(struct mddev *mddev, char *page)
  3878. {
  3879. return sprintf(page, "%d\n", mddev->parallel_resync);
  3880. }
  3881. static ssize_t
  3882. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3883. {
  3884. long n;
  3885. if (strict_strtol(buf, 10, &n))
  3886. return -EINVAL;
  3887. if (n != 0 && n != 1)
  3888. return -EINVAL;
  3889. mddev->parallel_resync = n;
  3890. if (mddev->sync_thread)
  3891. wake_up(&resync_wait);
  3892. return len;
  3893. }
  3894. /* force parallel resync, even with shared block devices */
  3895. static struct md_sysfs_entry md_sync_force_parallel =
  3896. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3897. sync_force_parallel_show, sync_force_parallel_store);
  3898. static ssize_t
  3899. sync_speed_show(struct mddev *mddev, char *page)
  3900. {
  3901. unsigned long resync, dt, db;
  3902. if (mddev->curr_resync == 0)
  3903. return sprintf(page, "none\n");
  3904. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3905. dt = (jiffies - mddev->resync_mark) / HZ;
  3906. if (!dt) dt++;
  3907. db = resync - mddev->resync_mark_cnt;
  3908. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3909. }
  3910. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3911. static ssize_t
  3912. sync_completed_show(struct mddev *mddev, char *page)
  3913. {
  3914. unsigned long long max_sectors, resync;
  3915. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3916. return sprintf(page, "none\n");
  3917. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3918. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3919. max_sectors = mddev->resync_max_sectors;
  3920. else
  3921. max_sectors = mddev->dev_sectors;
  3922. resync = mddev->curr_resync_completed;
  3923. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3924. }
  3925. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3926. static ssize_t
  3927. min_sync_show(struct mddev *mddev, char *page)
  3928. {
  3929. return sprintf(page, "%llu\n",
  3930. (unsigned long long)mddev->resync_min);
  3931. }
  3932. static ssize_t
  3933. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3934. {
  3935. unsigned long long min;
  3936. if (strict_strtoull(buf, 10, &min))
  3937. return -EINVAL;
  3938. if (min > mddev->resync_max)
  3939. return -EINVAL;
  3940. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3941. return -EBUSY;
  3942. /* Must be a multiple of chunk_size */
  3943. if (mddev->chunk_sectors) {
  3944. sector_t temp = min;
  3945. if (sector_div(temp, mddev->chunk_sectors))
  3946. return -EINVAL;
  3947. }
  3948. mddev->resync_min = min;
  3949. return len;
  3950. }
  3951. static struct md_sysfs_entry md_min_sync =
  3952. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3953. static ssize_t
  3954. max_sync_show(struct mddev *mddev, char *page)
  3955. {
  3956. if (mddev->resync_max == MaxSector)
  3957. return sprintf(page, "max\n");
  3958. else
  3959. return sprintf(page, "%llu\n",
  3960. (unsigned long long)mddev->resync_max);
  3961. }
  3962. static ssize_t
  3963. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3964. {
  3965. if (strncmp(buf, "max", 3) == 0)
  3966. mddev->resync_max = MaxSector;
  3967. else {
  3968. unsigned long long max;
  3969. if (strict_strtoull(buf, 10, &max))
  3970. return -EINVAL;
  3971. if (max < mddev->resync_min)
  3972. return -EINVAL;
  3973. if (max < mddev->resync_max &&
  3974. mddev->ro == 0 &&
  3975. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3976. return -EBUSY;
  3977. /* Must be a multiple of chunk_size */
  3978. if (mddev->chunk_sectors) {
  3979. sector_t temp = max;
  3980. if (sector_div(temp, mddev->chunk_sectors))
  3981. return -EINVAL;
  3982. }
  3983. mddev->resync_max = max;
  3984. }
  3985. wake_up(&mddev->recovery_wait);
  3986. return len;
  3987. }
  3988. static struct md_sysfs_entry md_max_sync =
  3989. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3990. static ssize_t
  3991. suspend_lo_show(struct mddev *mddev, char *page)
  3992. {
  3993. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3994. }
  3995. static ssize_t
  3996. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3997. {
  3998. char *e;
  3999. unsigned long long new = simple_strtoull(buf, &e, 10);
  4000. unsigned long long old = mddev->suspend_lo;
  4001. if (mddev->pers == NULL ||
  4002. mddev->pers->quiesce == NULL)
  4003. return -EINVAL;
  4004. if (buf == e || (*e && *e != '\n'))
  4005. return -EINVAL;
  4006. mddev->suspend_lo = new;
  4007. if (new >= old)
  4008. /* Shrinking suspended region */
  4009. mddev->pers->quiesce(mddev, 2);
  4010. else {
  4011. /* Expanding suspended region - need to wait */
  4012. mddev->pers->quiesce(mddev, 1);
  4013. mddev->pers->quiesce(mddev, 0);
  4014. }
  4015. return len;
  4016. }
  4017. static struct md_sysfs_entry md_suspend_lo =
  4018. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4019. static ssize_t
  4020. suspend_hi_show(struct mddev *mddev, char *page)
  4021. {
  4022. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4023. }
  4024. static ssize_t
  4025. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4026. {
  4027. char *e;
  4028. unsigned long long new = simple_strtoull(buf, &e, 10);
  4029. unsigned long long old = mddev->suspend_hi;
  4030. if (mddev->pers == NULL ||
  4031. mddev->pers->quiesce == NULL)
  4032. return -EINVAL;
  4033. if (buf == e || (*e && *e != '\n'))
  4034. return -EINVAL;
  4035. mddev->suspend_hi = new;
  4036. if (new <= old)
  4037. /* Shrinking suspended region */
  4038. mddev->pers->quiesce(mddev, 2);
  4039. else {
  4040. /* Expanding suspended region - need to wait */
  4041. mddev->pers->quiesce(mddev, 1);
  4042. mddev->pers->quiesce(mddev, 0);
  4043. }
  4044. return len;
  4045. }
  4046. static struct md_sysfs_entry md_suspend_hi =
  4047. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4048. static ssize_t
  4049. reshape_position_show(struct mddev *mddev, char *page)
  4050. {
  4051. if (mddev->reshape_position != MaxSector)
  4052. return sprintf(page, "%llu\n",
  4053. (unsigned long long)mddev->reshape_position);
  4054. strcpy(page, "none\n");
  4055. return 5;
  4056. }
  4057. static ssize_t
  4058. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4059. {
  4060. struct md_rdev *rdev;
  4061. char *e;
  4062. unsigned long long new = simple_strtoull(buf, &e, 10);
  4063. if (mddev->pers)
  4064. return -EBUSY;
  4065. if (buf == e || (*e && *e != '\n'))
  4066. return -EINVAL;
  4067. mddev->reshape_position = new;
  4068. mddev->delta_disks = 0;
  4069. mddev->reshape_backwards = 0;
  4070. mddev->new_level = mddev->level;
  4071. mddev->new_layout = mddev->layout;
  4072. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4073. rdev_for_each(rdev, mddev)
  4074. rdev->new_data_offset = rdev->data_offset;
  4075. return len;
  4076. }
  4077. static struct md_sysfs_entry md_reshape_position =
  4078. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4079. reshape_position_store);
  4080. static ssize_t
  4081. reshape_direction_show(struct mddev *mddev, char *page)
  4082. {
  4083. return sprintf(page, "%s\n",
  4084. mddev->reshape_backwards ? "backwards" : "forwards");
  4085. }
  4086. static ssize_t
  4087. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4088. {
  4089. int backwards = 0;
  4090. if (cmd_match(buf, "forwards"))
  4091. backwards = 0;
  4092. else if (cmd_match(buf, "backwards"))
  4093. backwards = 1;
  4094. else
  4095. return -EINVAL;
  4096. if (mddev->reshape_backwards == backwards)
  4097. return len;
  4098. /* check if we are allowed to change */
  4099. if (mddev->delta_disks)
  4100. return -EBUSY;
  4101. if (mddev->persistent &&
  4102. mddev->major_version == 0)
  4103. return -EINVAL;
  4104. mddev->reshape_backwards = backwards;
  4105. return len;
  4106. }
  4107. static struct md_sysfs_entry md_reshape_direction =
  4108. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4109. reshape_direction_store);
  4110. static ssize_t
  4111. array_size_show(struct mddev *mddev, char *page)
  4112. {
  4113. if (mddev->external_size)
  4114. return sprintf(page, "%llu\n",
  4115. (unsigned long long)mddev->array_sectors/2);
  4116. else
  4117. return sprintf(page, "default\n");
  4118. }
  4119. static ssize_t
  4120. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4121. {
  4122. sector_t sectors;
  4123. if (strncmp(buf, "default", 7) == 0) {
  4124. if (mddev->pers)
  4125. sectors = mddev->pers->size(mddev, 0, 0);
  4126. else
  4127. sectors = mddev->array_sectors;
  4128. mddev->external_size = 0;
  4129. } else {
  4130. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4131. return -EINVAL;
  4132. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4133. return -E2BIG;
  4134. mddev->external_size = 1;
  4135. }
  4136. mddev->array_sectors = sectors;
  4137. if (mddev->pers) {
  4138. set_capacity(mddev->gendisk, mddev->array_sectors);
  4139. revalidate_disk(mddev->gendisk);
  4140. }
  4141. return len;
  4142. }
  4143. static struct md_sysfs_entry md_array_size =
  4144. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4145. array_size_store);
  4146. static struct attribute *md_default_attrs[] = {
  4147. &md_level.attr,
  4148. &md_layout.attr,
  4149. &md_raid_disks.attr,
  4150. &md_chunk_size.attr,
  4151. &md_size.attr,
  4152. &md_resync_start.attr,
  4153. &md_metadata.attr,
  4154. &md_new_device.attr,
  4155. &md_safe_delay.attr,
  4156. &md_array_state.attr,
  4157. &md_reshape_position.attr,
  4158. &md_reshape_direction.attr,
  4159. &md_array_size.attr,
  4160. &max_corr_read_errors.attr,
  4161. NULL,
  4162. };
  4163. static struct attribute *md_redundancy_attrs[] = {
  4164. &md_scan_mode.attr,
  4165. &md_mismatches.attr,
  4166. &md_sync_min.attr,
  4167. &md_sync_max.attr,
  4168. &md_sync_speed.attr,
  4169. &md_sync_force_parallel.attr,
  4170. &md_sync_completed.attr,
  4171. &md_min_sync.attr,
  4172. &md_max_sync.attr,
  4173. &md_suspend_lo.attr,
  4174. &md_suspend_hi.attr,
  4175. &md_bitmap.attr,
  4176. &md_degraded.attr,
  4177. NULL,
  4178. };
  4179. static struct attribute_group md_redundancy_group = {
  4180. .name = NULL,
  4181. .attrs = md_redundancy_attrs,
  4182. };
  4183. static ssize_t
  4184. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4185. {
  4186. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4187. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4188. ssize_t rv;
  4189. if (!entry->show)
  4190. return -EIO;
  4191. spin_lock(&all_mddevs_lock);
  4192. if (list_empty(&mddev->all_mddevs)) {
  4193. spin_unlock(&all_mddevs_lock);
  4194. return -EBUSY;
  4195. }
  4196. mddev_get(mddev);
  4197. spin_unlock(&all_mddevs_lock);
  4198. rv = mddev_lock(mddev);
  4199. if (!rv) {
  4200. rv = entry->show(mddev, page);
  4201. mddev_unlock(mddev);
  4202. }
  4203. mddev_put(mddev);
  4204. return rv;
  4205. }
  4206. static ssize_t
  4207. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4208. const char *page, size_t length)
  4209. {
  4210. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4211. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4212. ssize_t rv;
  4213. if (!entry->store)
  4214. return -EIO;
  4215. if (!capable(CAP_SYS_ADMIN))
  4216. return -EACCES;
  4217. spin_lock(&all_mddevs_lock);
  4218. if (list_empty(&mddev->all_mddevs)) {
  4219. spin_unlock(&all_mddevs_lock);
  4220. return -EBUSY;
  4221. }
  4222. mddev_get(mddev);
  4223. spin_unlock(&all_mddevs_lock);
  4224. rv = mddev_lock(mddev);
  4225. if (!rv) {
  4226. rv = entry->store(mddev, page, length);
  4227. mddev_unlock(mddev);
  4228. }
  4229. mddev_put(mddev);
  4230. return rv;
  4231. }
  4232. static void md_free(struct kobject *ko)
  4233. {
  4234. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4235. if (mddev->sysfs_state)
  4236. sysfs_put(mddev->sysfs_state);
  4237. if (mddev->gendisk) {
  4238. del_gendisk(mddev->gendisk);
  4239. put_disk(mddev->gendisk);
  4240. }
  4241. if (mddev->queue)
  4242. blk_cleanup_queue(mddev->queue);
  4243. kfree(mddev);
  4244. }
  4245. static const struct sysfs_ops md_sysfs_ops = {
  4246. .show = md_attr_show,
  4247. .store = md_attr_store,
  4248. };
  4249. static struct kobj_type md_ktype = {
  4250. .release = md_free,
  4251. .sysfs_ops = &md_sysfs_ops,
  4252. .default_attrs = md_default_attrs,
  4253. };
  4254. int mdp_major = 0;
  4255. static void mddev_delayed_delete(struct work_struct *ws)
  4256. {
  4257. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4258. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4259. kobject_del(&mddev->kobj);
  4260. kobject_put(&mddev->kobj);
  4261. }
  4262. static int md_alloc(dev_t dev, char *name)
  4263. {
  4264. static DEFINE_MUTEX(disks_mutex);
  4265. struct mddev *mddev = mddev_find(dev);
  4266. struct gendisk *disk;
  4267. int partitioned;
  4268. int shift;
  4269. int unit;
  4270. int error;
  4271. if (!mddev)
  4272. return -ENODEV;
  4273. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4274. shift = partitioned ? MdpMinorShift : 0;
  4275. unit = MINOR(mddev->unit) >> shift;
  4276. /* wait for any previous instance of this device to be
  4277. * completely removed (mddev_delayed_delete).
  4278. */
  4279. flush_workqueue(md_misc_wq);
  4280. mutex_lock(&disks_mutex);
  4281. error = -EEXIST;
  4282. if (mddev->gendisk)
  4283. goto abort;
  4284. if (name) {
  4285. /* Need to ensure that 'name' is not a duplicate.
  4286. */
  4287. struct mddev *mddev2;
  4288. spin_lock(&all_mddevs_lock);
  4289. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4290. if (mddev2->gendisk &&
  4291. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4292. spin_unlock(&all_mddevs_lock);
  4293. goto abort;
  4294. }
  4295. spin_unlock(&all_mddevs_lock);
  4296. }
  4297. error = -ENOMEM;
  4298. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4299. if (!mddev->queue)
  4300. goto abort;
  4301. mddev->queue->queuedata = mddev;
  4302. blk_queue_make_request(mddev->queue, md_make_request);
  4303. blk_set_stacking_limits(&mddev->queue->limits);
  4304. disk = alloc_disk(1 << shift);
  4305. if (!disk) {
  4306. blk_cleanup_queue(mddev->queue);
  4307. mddev->queue = NULL;
  4308. goto abort;
  4309. }
  4310. disk->major = MAJOR(mddev->unit);
  4311. disk->first_minor = unit << shift;
  4312. if (name)
  4313. strcpy(disk->disk_name, name);
  4314. else if (partitioned)
  4315. sprintf(disk->disk_name, "md_d%d", unit);
  4316. else
  4317. sprintf(disk->disk_name, "md%d", unit);
  4318. disk->fops = &md_fops;
  4319. disk->private_data = mddev;
  4320. disk->queue = mddev->queue;
  4321. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4322. /* Allow extended partitions. This makes the
  4323. * 'mdp' device redundant, but we can't really
  4324. * remove it now.
  4325. */
  4326. disk->flags |= GENHD_FL_EXT_DEVT;
  4327. mddev->gendisk = disk;
  4328. /* As soon as we call add_disk(), another thread could get
  4329. * through to md_open, so make sure it doesn't get too far
  4330. */
  4331. mutex_lock(&mddev->open_mutex);
  4332. add_disk(disk);
  4333. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4334. &disk_to_dev(disk)->kobj, "%s", "md");
  4335. if (error) {
  4336. /* This isn't possible, but as kobject_init_and_add is marked
  4337. * __must_check, we must do something with the result
  4338. */
  4339. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4340. disk->disk_name);
  4341. error = 0;
  4342. }
  4343. if (mddev->kobj.sd &&
  4344. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4345. printk(KERN_DEBUG "pointless warning\n");
  4346. mutex_unlock(&mddev->open_mutex);
  4347. abort:
  4348. mutex_unlock(&disks_mutex);
  4349. if (!error && mddev->kobj.sd) {
  4350. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4351. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4352. }
  4353. mddev_put(mddev);
  4354. return error;
  4355. }
  4356. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4357. {
  4358. md_alloc(dev, NULL);
  4359. return NULL;
  4360. }
  4361. static int add_named_array(const char *val, struct kernel_param *kp)
  4362. {
  4363. /* val must be "md_*" where * is not all digits.
  4364. * We allocate an array with a large free minor number, and
  4365. * set the name to val. val must not already be an active name.
  4366. */
  4367. int len = strlen(val);
  4368. char buf[DISK_NAME_LEN];
  4369. while (len && val[len-1] == '\n')
  4370. len--;
  4371. if (len >= DISK_NAME_LEN)
  4372. return -E2BIG;
  4373. strlcpy(buf, val, len+1);
  4374. if (strncmp(buf, "md_", 3) != 0)
  4375. return -EINVAL;
  4376. return md_alloc(0, buf);
  4377. }
  4378. static void md_safemode_timeout(unsigned long data)
  4379. {
  4380. struct mddev *mddev = (struct mddev *) data;
  4381. if (!atomic_read(&mddev->writes_pending)) {
  4382. mddev->safemode = 1;
  4383. if (mddev->external)
  4384. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4385. }
  4386. md_wakeup_thread(mddev->thread);
  4387. }
  4388. static int start_dirty_degraded;
  4389. int md_run(struct mddev *mddev)
  4390. {
  4391. int err;
  4392. struct md_rdev *rdev;
  4393. struct md_personality *pers;
  4394. if (list_empty(&mddev->disks))
  4395. /* cannot run an array with no devices.. */
  4396. return -EINVAL;
  4397. if (mddev->pers)
  4398. return -EBUSY;
  4399. /* Cannot run until previous stop completes properly */
  4400. if (mddev->sysfs_active)
  4401. return -EBUSY;
  4402. /*
  4403. * Analyze all RAID superblock(s)
  4404. */
  4405. if (!mddev->raid_disks) {
  4406. if (!mddev->persistent)
  4407. return -EINVAL;
  4408. analyze_sbs(mddev);
  4409. }
  4410. if (mddev->level != LEVEL_NONE)
  4411. request_module("md-level-%d", mddev->level);
  4412. else if (mddev->clevel[0])
  4413. request_module("md-%s", mddev->clevel);
  4414. /*
  4415. * Drop all container device buffers, from now on
  4416. * the only valid external interface is through the md
  4417. * device.
  4418. */
  4419. rdev_for_each(rdev, mddev) {
  4420. if (test_bit(Faulty, &rdev->flags))
  4421. continue;
  4422. sync_blockdev(rdev->bdev);
  4423. invalidate_bdev(rdev->bdev);
  4424. /* perform some consistency tests on the device.
  4425. * We don't want the data to overlap the metadata,
  4426. * Internal Bitmap issues have been handled elsewhere.
  4427. */
  4428. if (rdev->meta_bdev) {
  4429. /* Nothing to check */;
  4430. } else if (rdev->data_offset < rdev->sb_start) {
  4431. if (mddev->dev_sectors &&
  4432. rdev->data_offset + mddev->dev_sectors
  4433. > rdev->sb_start) {
  4434. printk("md: %s: data overlaps metadata\n",
  4435. mdname(mddev));
  4436. return -EINVAL;
  4437. }
  4438. } else {
  4439. if (rdev->sb_start + rdev->sb_size/512
  4440. > rdev->data_offset) {
  4441. printk("md: %s: metadata overlaps data\n",
  4442. mdname(mddev));
  4443. return -EINVAL;
  4444. }
  4445. }
  4446. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4447. }
  4448. if (mddev->bio_set == NULL)
  4449. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4450. sizeof(struct mddev *));
  4451. spin_lock(&pers_lock);
  4452. pers = find_pers(mddev->level, mddev->clevel);
  4453. if (!pers || !try_module_get(pers->owner)) {
  4454. spin_unlock(&pers_lock);
  4455. if (mddev->level != LEVEL_NONE)
  4456. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4457. mddev->level);
  4458. else
  4459. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4460. mddev->clevel);
  4461. return -EINVAL;
  4462. }
  4463. mddev->pers = pers;
  4464. spin_unlock(&pers_lock);
  4465. if (mddev->level != pers->level) {
  4466. mddev->level = pers->level;
  4467. mddev->new_level = pers->level;
  4468. }
  4469. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4470. if (mddev->reshape_position != MaxSector &&
  4471. pers->start_reshape == NULL) {
  4472. /* This personality cannot handle reshaping... */
  4473. mddev->pers = NULL;
  4474. module_put(pers->owner);
  4475. return -EINVAL;
  4476. }
  4477. if (pers->sync_request) {
  4478. /* Warn if this is a potentially silly
  4479. * configuration.
  4480. */
  4481. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4482. struct md_rdev *rdev2;
  4483. int warned = 0;
  4484. rdev_for_each(rdev, mddev)
  4485. rdev_for_each(rdev2, mddev) {
  4486. if (rdev < rdev2 &&
  4487. rdev->bdev->bd_contains ==
  4488. rdev2->bdev->bd_contains) {
  4489. printk(KERN_WARNING
  4490. "%s: WARNING: %s appears to be"
  4491. " on the same physical disk as"
  4492. " %s.\n",
  4493. mdname(mddev),
  4494. bdevname(rdev->bdev,b),
  4495. bdevname(rdev2->bdev,b2));
  4496. warned = 1;
  4497. }
  4498. }
  4499. if (warned)
  4500. printk(KERN_WARNING
  4501. "True protection against single-disk"
  4502. " failure might be compromised.\n");
  4503. }
  4504. mddev->recovery = 0;
  4505. /* may be over-ridden by personality */
  4506. mddev->resync_max_sectors = mddev->dev_sectors;
  4507. mddev->ok_start_degraded = start_dirty_degraded;
  4508. if (start_readonly && mddev->ro == 0)
  4509. mddev->ro = 2; /* read-only, but switch on first write */
  4510. err = mddev->pers->run(mddev);
  4511. if (err)
  4512. printk(KERN_ERR "md: pers->run() failed ...\n");
  4513. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4514. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4515. " but 'external_size' not in effect?\n", __func__);
  4516. printk(KERN_ERR
  4517. "md: invalid array_size %llu > default size %llu\n",
  4518. (unsigned long long)mddev->array_sectors / 2,
  4519. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4520. err = -EINVAL;
  4521. mddev->pers->stop(mddev);
  4522. }
  4523. if (err == 0 && mddev->pers->sync_request &&
  4524. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4525. err = bitmap_create(mddev);
  4526. if (err) {
  4527. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4528. mdname(mddev), err);
  4529. mddev->pers->stop(mddev);
  4530. }
  4531. }
  4532. if (err) {
  4533. module_put(mddev->pers->owner);
  4534. mddev->pers = NULL;
  4535. bitmap_destroy(mddev);
  4536. return err;
  4537. }
  4538. if (mddev->pers->sync_request) {
  4539. if (mddev->kobj.sd &&
  4540. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4541. printk(KERN_WARNING
  4542. "md: cannot register extra attributes for %s\n",
  4543. mdname(mddev));
  4544. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4545. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4546. mddev->ro = 0;
  4547. atomic_set(&mddev->writes_pending,0);
  4548. atomic_set(&mddev->max_corr_read_errors,
  4549. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4550. mddev->safemode = 0;
  4551. mddev->safemode_timer.function = md_safemode_timeout;
  4552. mddev->safemode_timer.data = (unsigned long) mddev;
  4553. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4554. mddev->in_sync = 1;
  4555. smp_wmb();
  4556. mddev->ready = 1;
  4557. rdev_for_each(rdev, mddev)
  4558. if (rdev->raid_disk >= 0)
  4559. if (sysfs_link_rdev(mddev, rdev))
  4560. /* failure here is OK */;
  4561. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4562. if (mddev->flags)
  4563. md_update_sb(mddev, 0);
  4564. md_new_event(mddev);
  4565. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4566. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4567. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4568. return 0;
  4569. }
  4570. EXPORT_SYMBOL_GPL(md_run);
  4571. static int do_md_run(struct mddev *mddev)
  4572. {
  4573. int err;
  4574. err = md_run(mddev);
  4575. if (err)
  4576. goto out;
  4577. err = bitmap_load(mddev);
  4578. if (err) {
  4579. bitmap_destroy(mddev);
  4580. goto out;
  4581. }
  4582. md_wakeup_thread(mddev->thread);
  4583. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4584. set_capacity(mddev->gendisk, mddev->array_sectors);
  4585. revalidate_disk(mddev->gendisk);
  4586. mddev->changed = 1;
  4587. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4588. out:
  4589. return err;
  4590. }
  4591. static int restart_array(struct mddev *mddev)
  4592. {
  4593. struct gendisk *disk = mddev->gendisk;
  4594. /* Complain if it has no devices */
  4595. if (list_empty(&mddev->disks))
  4596. return -ENXIO;
  4597. if (!mddev->pers)
  4598. return -EINVAL;
  4599. if (!mddev->ro)
  4600. return -EBUSY;
  4601. mddev->safemode = 0;
  4602. mddev->ro = 0;
  4603. set_disk_ro(disk, 0);
  4604. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4605. mdname(mddev));
  4606. /* Kick recovery or resync if necessary */
  4607. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4608. md_wakeup_thread(mddev->thread);
  4609. md_wakeup_thread(mddev->sync_thread);
  4610. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4611. return 0;
  4612. }
  4613. /* similar to deny_write_access, but accounts for our holding a reference
  4614. * to the file ourselves */
  4615. static int deny_bitmap_write_access(struct file * file)
  4616. {
  4617. struct inode *inode = file->f_mapping->host;
  4618. spin_lock(&inode->i_lock);
  4619. if (atomic_read(&inode->i_writecount) > 1) {
  4620. spin_unlock(&inode->i_lock);
  4621. return -ETXTBSY;
  4622. }
  4623. atomic_set(&inode->i_writecount, -1);
  4624. spin_unlock(&inode->i_lock);
  4625. return 0;
  4626. }
  4627. void restore_bitmap_write_access(struct file *file)
  4628. {
  4629. struct inode *inode = file->f_mapping->host;
  4630. spin_lock(&inode->i_lock);
  4631. atomic_set(&inode->i_writecount, 1);
  4632. spin_unlock(&inode->i_lock);
  4633. }
  4634. static void md_clean(struct mddev *mddev)
  4635. {
  4636. mddev->array_sectors = 0;
  4637. mddev->external_size = 0;
  4638. mddev->dev_sectors = 0;
  4639. mddev->raid_disks = 0;
  4640. mddev->recovery_cp = 0;
  4641. mddev->resync_min = 0;
  4642. mddev->resync_max = MaxSector;
  4643. mddev->reshape_position = MaxSector;
  4644. mddev->external = 0;
  4645. mddev->persistent = 0;
  4646. mddev->level = LEVEL_NONE;
  4647. mddev->clevel[0] = 0;
  4648. mddev->flags = 0;
  4649. mddev->ro = 0;
  4650. mddev->metadata_type[0] = 0;
  4651. mddev->chunk_sectors = 0;
  4652. mddev->ctime = mddev->utime = 0;
  4653. mddev->layout = 0;
  4654. mddev->max_disks = 0;
  4655. mddev->events = 0;
  4656. mddev->can_decrease_events = 0;
  4657. mddev->delta_disks = 0;
  4658. mddev->reshape_backwards = 0;
  4659. mddev->new_level = LEVEL_NONE;
  4660. mddev->new_layout = 0;
  4661. mddev->new_chunk_sectors = 0;
  4662. mddev->curr_resync = 0;
  4663. mddev->resync_mismatches = 0;
  4664. mddev->suspend_lo = mddev->suspend_hi = 0;
  4665. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4666. mddev->recovery = 0;
  4667. mddev->in_sync = 0;
  4668. mddev->changed = 0;
  4669. mddev->degraded = 0;
  4670. mddev->safemode = 0;
  4671. mddev->merge_check_needed = 0;
  4672. mddev->bitmap_info.offset = 0;
  4673. mddev->bitmap_info.default_offset = 0;
  4674. mddev->bitmap_info.default_space = 0;
  4675. mddev->bitmap_info.chunksize = 0;
  4676. mddev->bitmap_info.daemon_sleep = 0;
  4677. mddev->bitmap_info.max_write_behind = 0;
  4678. }
  4679. static void __md_stop_writes(struct mddev *mddev)
  4680. {
  4681. if (mddev->sync_thread) {
  4682. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4683. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4684. reap_sync_thread(mddev);
  4685. }
  4686. del_timer_sync(&mddev->safemode_timer);
  4687. bitmap_flush(mddev);
  4688. md_super_wait(mddev);
  4689. if (!mddev->in_sync || mddev->flags) {
  4690. /* mark array as shutdown cleanly */
  4691. mddev->in_sync = 1;
  4692. md_update_sb(mddev, 1);
  4693. }
  4694. }
  4695. void md_stop_writes(struct mddev *mddev)
  4696. {
  4697. mddev_lock(mddev);
  4698. __md_stop_writes(mddev);
  4699. mddev_unlock(mddev);
  4700. }
  4701. EXPORT_SYMBOL_GPL(md_stop_writes);
  4702. void md_stop(struct mddev *mddev)
  4703. {
  4704. mddev->ready = 0;
  4705. mddev->pers->stop(mddev);
  4706. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4707. mddev->to_remove = &md_redundancy_group;
  4708. module_put(mddev->pers->owner);
  4709. mddev->pers = NULL;
  4710. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4711. }
  4712. EXPORT_SYMBOL_GPL(md_stop);
  4713. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4714. {
  4715. int err = 0;
  4716. mutex_lock(&mddev->open_mutex);
  4717. if (atomic_read(&mddev->openers) > !!bdev) {
  4718. printk("md: %s still in use.\n",mdname(mddev));
  4719. err = -EBUSY;
  4720. goto out;
  4721. }
  4722. if (bdev)
  4723. sync_blockdev(bdev);
  4724. if (mddev->pers) {
  4725. __md_stop_writes(mddev);
  4726. err = -ENXIO;
  4727. if (mddev->ro==1)
  4728. goto out;
  4729. mddev->ro = 1;
  4730. set_disk_ro(mddev->gendisk, 1);
  4731. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4732. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4733. err = 0;
  4734. }
  4735. out:
  4736. mutex_unlock(&mddev->open_mutex);
  4737. return err;
  4738. }
  4739. /* mode:
  4740. * 0 - completely stop and dis-assemble array
  4741. * 2 - stop but do not disassemble array
  4742. */
  4743. static int do_md_stop(struct mddev * mddev, int mode,
  4744. struct block_device *bdev)
  4745. {
  4746. struct gendisk *disk = mddev->gendisk;
  4747. struct md_rdev *rdev;
  4748. mutex_lock(&mddev->open_mutex);
  4749. if (atomic_read(&mddev->openers) > !!bdev ||
  4750. mddev->sysfs_active) {
  4751. printk("md: %s still in use.\n",mdname(mddev));
  4752. mutex_unlock(&mddev->open_mutex);
  4753. return -EBUSY;
  4754. }
  4755. if (bdev)
  4756. /* It is possible IO was issued on some other
  4757. * open file which was closed before we took ->open_mutex.
  4758. * As that was not the last close __blkdev_put will not
  4759. * have called sync_blockdev, so we must.
  4760. */
  4761. sync_blockdev(bdev);
  4762. if (mddev->pers) {
  4763. if (mddev->ro)
  4764. set_disk_ro(disk, 0);
  4765. __md_stop_writes(mddev);
  4766. md_stop(mddev);
  4767. mddev->queue->merge_bvec_fn = NULL;
  4768. mddev->queue->backing_dev_info.congested_fn = NULL;
  4769. /* tell userspace to handle 'inactive' */
  4770. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4771. rdev_for_each(rdev, mddev)
  4772. if (rdev->raid_disk >= 0)
  4773. sysfs_unlink_rdev(mddev, rdev);
  4774. set_capacity(disk, 0);
  4775. mutex_unlock(&mddev->open_mutex);
  4776. mddev->changed = 1;
  4777. revalidate_disk(disk);
  4778. if (mddev->ro)
  4779. mddev->ro = 0;
  4780. } else
  4781. mutex_unlock(&mddev->open_mutex);
  4782. /*
  4783. * Free resources if final stop
  4784. */
  4785. if (mode == 0) {
  4786. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4787. bitmap_destroy(mddev);
  4788. if (mddev->bitmap_info.file) {
  4789. restore_bitmap_write_access(mddev->bitmap_info.file);
  4790. fput(mddev->bitmap_info.file);
  4791. mddev->bitmap_info.file = NULL;
  4792. }
  4793. mddev->bitmap_info.offset = 0;
  4794. export_array(mddev);
  4795. md_clean(mddev);
  4796. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4797. if (mddev->hold_active == UNTIL_STOP)
  4798. mddev->hold_active = 0;
  4799. }
  4800. blk_integrity_unregister(disk);
  4801. md_new_event(mddev);
  4802. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4803. return 0;
  4804. }
  4805. #ifndef MODULE
  4806. static void autorun_array(struct mddev *mddev)
  4807. {
  4808. struct md_rdev *rdev;
  4809. int err;
  4810. if (list_empty(&mddev->disks))
  4811. return;
  4812. printk(KERN_INFO "md: running: ");
  4813. rdev_for_each(rdev, mddev) {
  4814. char b[BDEVNAME_SIZE];
  4815. printk("<%s>", bdevname(rdev->bdev,b));
  4816. }
  4817. printk("\n");
  4818. err = do_md_run(mddev);
  4819. if (err) {
  4820. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4821. do_md_stop(mddev, 0, NULL);
  4822. }
  4823. }
  4824. /*
  4825. * lets try to run arrays based on all disks that have arrived
  4826. * until now. (those are in pending_raid_disks)
  4827. *
  4828. * the method: pick the first pending disk, collect all disks with
  4829. * the same UUID, remove all from the pending list and put them into
  4830. * the 'same_array' list. Then order this list based on superblock
  4831. * update time (freshest comes first), kick out 'old' disks and
  4832. * compare superblocks. If everything's fine then run it.
  4833. *
  4834. * If "unit" is allocated, then bump its reference count
  4835. */
  4836. static void autorun_devices(int part)
  4837. {
  4838. struct md_rdev *rdev0, *rdev, *tmp;
  4839. struct mddev *mddev;
  4840. char b[BDEVNAME_SIZE];
  4841. printk(KERN_INFO "md: autorun ...\n");
  4842. while (!list_empty(&pending_raid_disks)) {
  4843. int unit;
  4844. dev_t dev;
  4845. LIST_HEAD(candidates);
  4846. rdev0 = list_entry(pending_raid_disks.next,
  4847. struct md_rdev, same_set);
  4848. printk(KERN_INFO "md: considering %s ...\n",
  4849. bdevname(rdev0->bdev,b));
  4850. INIT_LIST_HEAD(&candidates);
  4851. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4852. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4853. printk(KERN_INFO "md: adding %s ...\n",
  4854. bdevname(rdev->bdev,b));
  4855. list_move(&rdev->same_set, &candidates);
  4856. }
  4857. /*
  4858. * now we have a set of devices, with all of them having
  4859. * mostly sane superblocks. It's time to allocate the
  4860. * mddev.
  4861. */
  4862. if (part) {
  4863. dev = MKDEV(mdp_major,
  4864. rdev0->preferred_minor << MdpMinorShift);
  4865. unit = MINOR(dev) >> MdpMinorShift;
  4866. } else {
  4867. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4868. unit = MINOR(dev);
  4869. }
  4870. if (rdev0->preferred_minor != unit) {
  4871. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4872. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4873. break;
  4874. }
  4875. md_probe(dev, NULL, NULL);
  4876. mddev = mddev_find(dev);
  4877. if (!mddev || !mddev->gendisk) {
  4878. if (mddev)
  4879. mddev_put(mddev);
  4880. printk(KERN_ERR
  4881. "md: cannot allocate memory for md drive.\n");
  4882. break;
  4883. }
  4884. if (mddev_lock(mddev))
  4885. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4886. mdname(mddev));
  4887. else if (mddev->raid_disks || mddev->major_version
  4888. || !list_empty(&mddev->disks)) {
  4889. printk(KERN_WARNING
  4890. "md: %s already running, cannot run %s\n",
  4891. mdname(mddev), bdevname(rdev0->bdev,b));
  4892. mddev_unlock(mddev);
  4893. } else {
  4894. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4895. mddev->persistent = 1;
  4896. rdev_for_each_list(rdev, tmp, &candidates) {
  4897. list_del_init(&rdev->same_set);
  4898. if (bind_rdev_to_array(rdev, mddev))
  4899. export_rdev(rdev);
  4900. }
  4901. autorun_array(mddev);
  4902. mddev_unlock(mddev);
  4903. }
  4904. /* on success, candidates will be empty, on error
  4905. * it won't...
  4906. */
  4907. rdev_for_each_list(rdev, tmp, &candidates) {
  4908. list_del_init(&rdev->same_set);
  4909. export_rdev(rdev);
  4910. }
  4911. mddev_put(mddev);
  4912. }
  4913. printk(KERN_INFO "md: ... autorun DONE.\n");
  4914. }
  4915. #endif /* !MODULE */
  4916. static int get_version(void __user * arg)
  4917. {
  4918. mdu_version_t ver;
  4919. ver.major = MD_MAJOR_VERSION;
  4920. ver.minor = MD_MINOR_VERSION;
  4921. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4922. if (copy_to_user(arg, &ver, sizeof(ver)))
  4923. return -EFAULT;
  4924. return 0;
  4925. }
  4926. static int get_array_info(struct mddev * mddev, void __user * arg)
  4927. {
  4928. mdu_array_info_t info;
  4929. int nr,working,insync,failed,spare;
  4930. struct md_rdev *rdev;
  4931. nr=working=insync=failed=spare=0;
  4932. rdev_for_each(rdev, mddev) {
  4933. nr++;
  4934. if (test_bit(Faulty, &rdev->flags))
  4935. failed++;
  4936. else {
  4937. working++;
  4938. if (test_bit(In_sync, &rdev->flags))
  4939. insync++;
  4940. else
  4941. spare++;
  4942. }
  4943. }
  4944. info.major_version = mddev->major_version;
  4945. info.minor_version = mddev->minor_version;
  4946. info.patch_version = MD_PATCHLEVEL_VERSION;
  4947. info.ctime = mddev->ctime;
  4948. info.level = mddev->level;
  4949. info.size = mddev->dev_sectors / 2;
  4950. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4951. info.size = -1;
  4952. info.nr_disks = nr;
  4953. info.raid_disks = mddev->raid_disks;
  4954. info.md_minor = mddev->md_minor;
  4955. info.not_persistent= !mddev->persistent;
  4956. info.utime = mddev->utime;
  4957. info.state = 0;
  4958. if (mddev->in_sync)
  4959. info.state = (1<<MD_SB_CLEAN);
  4960. if (mddev->bitmap && mddev->bitmap_info.offset)
  4961. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4962. info.active_disks = insync;
  4963. info.working_disks = working;
  4964. info.failed_disks = failed;
  4965. info.spare_disks = spare;
  4966. info.layout = mddev->layout;
  4967. info.chunk_size = mddev->chunk_sectors << 9;
  4968. if (copy_to_user(arg, &info, sizeof(info)))
  4969. return -EFAULT;
  4970. return 0;
  4971. }
  4972. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4973. {
  4974. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4975. char *ptr, *buf = NULL;
  4976. int err = -ENOMEM;
  4977. if (md_allow_write(mddev))
  4978. file = kmalloc(sizeof(*file), GFP_NOIO);
  4979. else
  4980. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4981. if (!file)
  4982. goto out;
  4983. /* bitmap disabled, zero the first byte and copy out */
  4984. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  4985. file->pathname[0] = '\0';
  4986. goto copy_out;
  4987. }
  4988. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4989. if (!buf)
  4990. goto out;
  4991. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  4992. buf, sizeof(file->pathname));
  4993. if (IS_ERR(ptr))
  4994. goto out;
  4995. strcpy(file->pathname, ptr);
  4996. copy_out:
  4997. err = 0;
  4998. if (copy_to_user(arg, file, sizeof(*file)))
  4999. err = -EFAULT;
  5000. out:
  5001. kfree(buf);
  5002. kfree(file);
  5003. return err;
  5004. }
  5005. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5006. {
  5007. mdu_disk_info_t info;
  5008. struct md_rdev *rdev;
  5009. if (copy_from_user(&info, arg, sizeof(info)))
  5010. return -EFAULT;
  5011. rdev = find_rdev_nr(mddev, info.number);
  5012. if (rdev) {
  5013. info.major = MAJOR(rdev->bdev->bd_dev);
  5014. info.minor = MINOR(rdev->bdev->bd_dev);
  5015. info.raid_disk = rdev->raid_disk;
  5016. info.state = 0;
  5017. if (test_bit(Faulty, &rdev->flags))
  5018. info.state |= (1<<MD_DISK_FAULTY);
  5019. else if (test_bit(In_sync, &rdev->flags)) {
  5020. info.state |= (1<<MD_DISK_ACTIVE);
  5021. info.state |= (1<<MD_DISK_SYNC);
  5022. }
  5023. if (test_bit(WriteMostly, &rdev->flags))
  5024. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5025. } else {
  5026. info.major = info.minor = 0;
  5027. info.raid_disk = -1;
  5028. info.state = (1<<MD_DISK_REMOVED);
  5029. }
  5030. if (copy_to_user(arg, &info, sizeof(info)))
  5031. return -EFAULT;
  5032. return 0;
  5033. }
  5034. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5035. {
  5036. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5037. struct md_rdev *rdev;
  5038. dev_t dev = MKDEV(info->major,info->minor);
  5039. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5040. return -EOVERFLOW;
  5041. if (!mddev->raid_disks) {
  5042. int err;
  5043. /* expecting a device which has a superblock */
  5044. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5045. if (IS_ERR(rdev)) {
  5046. printk(KERN_WARNING
  5047. "md: md_import_device returned %ld\n",
  5048. PTR_ERR(rdev));
  5049. return PTR_ERR(rdev);
  5050. }
  5051. if (!list_empty(&mddev->disks)) {
  5052. struct md_rdev *rdev0
  5053. = list_entry(mddev->disks.next,
  5054. struct md_rdev, same_set);
  5055. err = super_types[mddev->major_version]
  5056. .load_super(rdev, rdev0, mddev->minor_version);
  5057. if (err < 0) {
  5058. printk(KERN_WARNING
  5059. "md: %s has different UUID to %s\n",
  5060. bdevname(rdev->bdev,b),
  5061. bdevname(rdev0->bdev,b2));
  5062. export_rdev(rdev);
  5063. return -EINVAL;
  5064. }
  5065. }
  5066. err = bind_rdev_to_array(rdev, mddev);
  5067. if (err)
  5068. export_rdev(rdev);
  5069. return err;
  5070. }
  5071. /*
  5072. * add_new_disk can be used once the array is assembled
  5073. * to add "hot spares". They must already have a superblock
  5074. * written
  5075. */
  5076. if (mddev->pers) {
  5077. int err;
  5078. if (!mddev->pers->hot_add_disk) {
  5079. printk(KERN_WARNING
  5080. "%s: personality does not support diskops!\n",
  5081. mdname(mddev));
  5082. return -EINVAL;
  5083. }
  5084. if (mddev->persistent)
  5085. rdev = md_import_device(dev, mddev->major_version,
  5086. mddev->minor_version);
  5087. else
  5088. rdev = md_import_device(dev, -1, -1);
  5089. if (IS_ERR(rdev)) {
  5090. printk(KERN_WARNING
  5091. "md: md_import_device returned %ld\n",
  5092. PTR_ERR(rdev));
  5093. return PTR_ERR(rdev);
  5094. }
  5095. /* set saved_raid_disk if appropriate */
  5096. if (!mddev->persistent) {
  5097. if (info->state & (1<<MD_DISK_SYNC) &&
  5098. info->raid_disk < mddev->raid_disks) {
  5099. rdev->raid_disk = info->raid_disk;
  5100. set_bit(In_sync, &rdev->flags);
  5101. } else
  5102. rdev->raid_disk = -1;
  5103. } else
  5104. super_types[mddev->major_version].
  5105. validate_super(mddev, rdev);
  5106. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5107. rdev->raid_disk != info->raid_disk) {
  5108. /* This was a hot-add request, but events doesn't
  5109. * match, so reject it.
  5110. */
  5111. export_rdev(rdev);
  5112. return -EINVAL;
  5113. }
  5114. if (test_bit(In_sync, &rdev->flags))
  5115. rdev->saved_raid_disk = rdev->raid_disk;
  5116. else
  5117. rdev->saved_raid_disk = -1;
  5118. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5119. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5120. set_bit(WriteMostly, &rdev->flags);
  5121. else
  5122. clear_bit(WriteMostly, &rdev->flags);
  5123. rdev->raid_disk = -1;
  5124. err = bind_rdev_to_array(rdev, mddev);
  5125. if (!err && !mddev->pers->hot_remove_disk) {
  5126. /* If there is hot_add_disk but no hot_remove_disk
  5127. * then added disks for geometry changes,
  5128. * and should be added immediately.
  5129. */
  5130. super_types[mddev->major_version].
  5131. validate_super(mddev, rdev);
  5132. err = mddev->pers->hot_add_disk(mddev, rdev);
  5133. if (err)
  5134. unbind_rdev_from_array(rdev);
  5135. }
  5136. if (err)
  5137. export_rdev(rdev);
  5138. else
  5139. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5140. md_update_sb(mddev, 1);
  5141. if (mddev->degraded)
  5142. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5143. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5144. if (!err)
  5145. md_new_event(mddev);
  5146. md_wakeup_thread(mddev->thread);
  5147. return err;
  5148. }
  5149. /* otherwise, add_new_disk is only allowed
  5150. * for major_version==0 superblocks
  5151. */
  5152. if (mddev->major_version != 0) {
  5153. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5154. mdname(mddev));
  5155. return -EINVAL;
  5156. }
  5157. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5158. int err;
  5159. rdev = md_import_device(dev, -1, 0);
  5160. if (IS_ERR(rdev)) {
  5161. printk(KERN_WARNING
  5162. "md: error, md_import_device() returned %ld\n",
  5163. PTR_ERR(rdev));
  5164. return PTR_ERR(rdev);
  5165. }
  5166. rdev->desc_nr = info->number;
  5167. if (info->raid_disk < mddev->raid_disks)
  5168. rdev->raid_disk = info->raid_disk;
  5169. else
  5170. rdev->raid_disk = -1;
  5171. if (rdev->raid_disk < mddev->raid_disks)
  5172. if (info->state & (1<<MD_DISK_SYNC))
  5173. set_bit(In_sync, &rdev->flags);
  5174. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5175. set_bit(WriteMostly, &rdev->flags);
  5176. if (!mddev->persistent) {
  5177. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5178. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5179. } else
  5180. rdev->sb_start = calc_dev_sboffset(rdev);
  5181. rdev->sectors = rdev->sb_start;
  5182. err = bind_rdev_to_array(rdev, mddev);
  5183. if (err) {
  5184. export_rdev(rdev);
  5185. return err;
  5186. }
  5187. }
  5188. return 0;
  5189. }
  5190. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5191. {
  5192. char b[BDEVNAME_SIZE];
  5193. struct md_rdev *rdev;
  5194. rdev = find_rdev(mddev, dev);
  5195. if (!rdev)
  5196. return -ENXIO;
  5197. if (rdev->raid_disk >= 0)
  5198. goto busy;
  5199. kick_rdev_from_array(rdev);
  5200. md_update_sb(mddev, 1);
  5201. md_new_event(mddev);
  5202. return 0;
  5203. busy:
  5204. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5205. bdevname(rdev->bdev,b), mdname(mddev));
  5206. return -EBUSY;
  5207. }
  5208. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5209. {
  5210. char b[BDEVNAME_SIZE];
  5211. int err;
  5212. struct md_rdev *rdev;
  5213. if (!mddev->pers)
  5214. return -ENODEV;
  5215. if (mddev->major_version != 0) {
  5216. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5217. " version-0 superblocks.\n",
  5218. mdname(mddev));
  5219. return -EINVAL;
  5220. }
  5221. if (!mddev->pers->hot_add_disk) {
  5222. printk(KERN_WARNING
  5223. "%s: personality does not support diskops!\n",
  5224. mdname(mddev));
  5225. return -EINVAL;
  5226. }
  5227. rdev = md_import_device(dev, -1, 0);
  5228. if (IS_ERR(rdev)) {
  5229. printk(KERN_WARNING
  5230. "md: error, md_import_device() returned %ld\n",
  5231. PTR_ERR(rdev));
  5232. return -EINVAL;
  5233. }
  5234. if (mddev->persistent)
  5235. rdev->sb_start = calc_dev_sboffset(rdev);
  5236. else
  5237. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5238. rdev->sectors = rdev->sb_start;
  5239. if (test_bit(Faulty, &rdev->flags)) {
  5240. printk(KERN_WARNING
  5241. "md: can not hot-add faulty %s disk to %s!\n",
  5242. bdevname(rdev->bdev,b), mdname(mddev));
  5243. err = -EINVAL;
  5244. goto abort_export;
  5245. }
  5246. clear_bit(In_sync, &rdev->flags);
  5247. rdev->desc_nr = -1;
  5248. rdev->saved_raid_disk = -1;
  5249. err = bind_rdev_to_array(rdev, mddev);
  5250. if (err)
  5251. goto abort_export;
  5252. /*
  5253. * The rest should better be atomic, we can have disk failures
  5254. * noticed in interrupt contexts ...
  5255. */
  5256. rdev->raid_disk = -1;
  5257. md_update_sb(mddev, 1);
  5258. /*
  5259. * Kick recovery, maybe this spare has to be added to the
  5260. * array immediately.
  5261. */
  5262. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5263. md_wakeup_thread(mddev->thread);
  5264. md_new_event(mddev);
  5265. return 0;
  5266. abort_export:
  5267. export_rdev(rdev);
  5268. return err;
  5269. }
  5270. static int set_bitmap_file(struct mddev *mddev, int fd)
  5271. {
  5272. int err;
  5273. if (mddev->pers) {
  5274. if (!mddev->pers->quiesce)
  5275. return -EBUSY;
  5276. if (mddev->recovery || mddev->sync_thread)
  5277. return -EBUSY;
  5278. /* we should be able to change the bitmap.. */
  5279. }
  5280. if (fd >= 0) {
  5281. if (mddev->bitmap)
  5282. return -EEXIST; /* cannot add when bitmap is present */
  5283. mddev->bitmap_info.file = fget(fd);
  5284. if (mddev->bitmap_info.file == NULL) {
  5285. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5286. mdname(mddev));
  5287. return -EBADF;
  5288. }
  5289. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5290. if (err) {
  5291. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5292. mdname(mddev));
  5293. fput(mddev->bitmap_info.file);
  5294. mddev->bitmap_info.file = NULL;
  5295. return err;
  5296. }
  5297. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5298. } else if (mddev->bitmap == NULL)
  5299. return -ENOENT; /* cannot remove what isn't there */
  5300. err = 0;
  5301. if (mddev->pers) {
  5302. mddev->pers->quiesce(mddev, 1);
  5303. if (fd >= 0) {
  5304. err = bitmap_create(mddev);
  5305. if (!err)
  5306. err = bitmap_load(mddev);
  5307. }
  5308. if (fd < 0 || err) {
  5309. bitmap_destroy(mddev);
  5310. fd = -1; /* make sure to put the file */
  5311. }
  5312. mddev->pers->quiesce(mddev, 0);
  5313. }
  5314. if (fd < 0) {
  5315. if (mddev->bitmap_info.file) {
  5316. restore_bitmap_write_access(mddev->bitmap_info.file);
  5317. fput(mddev->bitmap_info.file);
  5318. }
  5319. mddev->bitmap_info.file = NULL;
  5320. }
  5321. return err;
  5322. }
  5323. /*
  5324. * set_array_info is used two different ways
  5325. * The original usage is when creating a new array.
  5326. * In this usage, raid_disks is > 0 and it together with
  5327. * level, size, not_persistent,layout,chunksize determine the
  5328. * shape of the array.
  5329. * This will always create an array with a type-0.90.0 superblock.
  5330. * The newer usage is when assembling an array.
  5331. * In this case raid_disks will be 0, and the major_version field is
  5332. * use to determine which style super-blocks are to be found on the devices.
  5333. * The minor and patch _version numbers are also kept incase the
  5334. * super_block handler wishes to interpret them.
  5335. */
  5336. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5337. {
  5338. if (info->raid_disks == 0) {
  5339. /* just setting version number for superblock loading */
  5340. if (info->major_version < 0 ||
  5341. info->major_version >= ARRAY_SIZE(super_types) ||
  5342. super_types[info->major_version].name == NULL) {
  5343. /* maybe try to auto-load a module? */
  5344. printk(KERN_INFO
  5345. "md: superblock version %d not known\n",
  5346. info->major_version);
  5347. return -EINVAL;
  5348. }
  5349. mddev->major_version = info->major_version;
  5350. mddev->minor_version = info->minor_version;
  5351. mddev->patch_version = info->patch_version;
  5352. mddev->persistent = !info->not_persistent;
  5353. /* ensure mddev_put doesn't delete this now that there
  5354. * is some minimal configuration.
  5355. */
  5356. mddev->ctime = get_seconds();
  5357. return 0;
  5358. }
  5359. mddev->major_version = MD_MAJOR_VERSION;
  5360. mddev->minor_version = MD_MINOR_VERSION;
  5361. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5362. mddev->ctime = get_seconds();
  5363. mddev->level = info->level;
  5364. mddev->clevel[0] = 0;
  5365. mddev->dev_sectors = 2 * (sector_t)info->size;
  5366. mddev->raid_disks = info->raid_disks;
  5367. /* don't set md_minor, it is determined by which /dev/md* was
  5368. * openned
  5369. */
  5370. if (info->state & (1<<MD_SB_CLEAN))
  5371. mddev->recovery_cp = MaxSector;
  5372. else
  5373. mddev->recovery_cp = 0;
  5374. mddev->persistent = ! info->not_persistent;
  5375. mddev->external = 0;
  5376. mddev->layout = info->layout;
  5377. mddev->chunk_sectors = info->chunk_size >> 9;
  5378. mddev->max_disks = MD_SB_DISKS;
  5379. if (mddev->persistent)
  5380. mddev->flags = 0;
  5381. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5382. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5383. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5384. mddev->bitmap_info.offset = 0;
  5385. mddev->reshape_position = MaxSector;
  5386. /*
  5387. * Generate a 128 bit UUID
  5388. */
  5389. get_random_bytes(mddev->uuid, 16);
  5390. mddev->new_level = mddev->level;
  5391. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5392. mddev->new_layout = mddev->layout;
  5393. mddev->delta_disks = 0;
  5394. mddev->reshape_backwards = 0;
  5395. return 0;
  5396. }
  5397. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5398. {
  5399. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5400. if (mddev->external_size)
  5401. return;
  5402. mddev->array_sectors = array_sectors;
  5403. }
  5404. EXPORT_SYMBOL(md_set_array_sectors);
  5405. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5406. {
  5407. struct md_rdev *rdev;
  5408. int rv;
  5409. int fit = (num_sectors == 0);
  5410. if (mddev->pers->resize == NULL)
  5411. return -EINVAL;
  5412. /* The "num_sectors" is the number of sectors of each device that
  5413. * is used. This can only make sense for arrays with redundancy.
  5414. * linear and raid0 always use whatever space is available. We can only
  5415. * consider changing this number if no resync or reconstruction is
  5416. * happening, and if the new size is acceptable. It must fit before the
  5417. * sb_start or, if that is <data_offset, it must fit before the size
  5418. * of each device. If num_sectors is zero, we find the largest size
  5419. * that fits.
  5420. */
  5421. if (mddev->sync_thread)
  5422. return -EBUSY;
  5423. rdev_for_each(rdev, mddev) {
  5424. sector_t avail = rdev->sectors;
  5425. if (fit && (num_sectors == 0 || num_sectors > avail))
  5426. num_sectors = avail;
  5427. if (avail < num_sectors)
  5428. return -ENOSPC;
  5429. }
  5430. rv = mddev->pers->resize(mddev, num_sectors);
  5431. if (!rv)
  5432. revalidate_disk(mddev->gendisk);
  5433. return rv;
  5434. }
  5435. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5436. {
  5437. int rv;
  5438. struct md_rdev *rdev;
  5439. /* change the number of raid disks */
  5440. if (mddev->pers->check_reshape == NULL)
  5441. return -EINVAL;
  5442. if (raid_disks <= 0 ||
  5443. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5444. return -EINVAL;
  5445. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5446. return -EBUSY;
  5447. rdev_for_each(rdev, mddev) {
  5448. if (mddev->raid_disks < raid_disks &&
  5449. rdev->data_offset < rdev->new_data_offset)
  5450. return -EINVAL;
  5451. if (mddev->raid_disks > raid_disks &&
  5452. rdev->data_offset > rdev->new_data_offset)
  5453. return -EINVAL;
  5454. }
  5455. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5456. if (mddev->delta_disks < 0)
  5457. mddev->reshape_backwards = 1;
  5458. else if (mddev->delta_disks > 0)
  5459. mddev->reshape_backwards = 0;
  5460. rv = mddev->pers->check_reshape(mddev);
  5461. if (rv < 0) {
  5462. mddev->delta_disks = 0;
  5463. mddev->reshape_backwards = 0;
  5464. }
  5465. return rv;
  5466. }
  5467. /*
  5468. * update_array_info is used to change the configuration of an
  5469. * on-line array.
  5470. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5471. * fields in the info are checked against the array.
  5472. * Any differences that cannot be handled will cause an error.
  5473. * Normally, only one change can be managed at a time.
  5474. */
  5475. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5476. {
  5477. int rv = 0;
  5478. int cnt = 0;
  5479. int state = 0;
  5480. /* calculate expected state,ignoring low bits */
  5481. if (mddev->bitmap && mddev->bitmap_info.offset)
  5482. state |= (1 << MD_SB_BITMAP_PRESENT);
  5483. if (mddev->major_version != info->major_version ||
  5484. mddev->minor_version != info->minor_version ||
  5485. /* mddev->patch_version != info->patch_version || */
  5486. mddev->ctime != info->ctime ||
  5487. mddev->level != info->level ||
  5488. /* mddev->layout != info->layout || */
  5489. !mddev->persistent != info->not_persistent||
  5490. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5491. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5492. ((state^info->state) & 0xfffffe00)
  5493. )
  5494. return -EINVAL;
  5495. /* Check there is only one change */
  5496. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5497. cnt++;
  5498. if (mddev->raid_disks != info->raid_disks)
  5499. cnt++;
  5500. if (mddev->layout != info->layout)
  5501. cnt++;
  5502. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5503. cnt++;
  5504. if (cnt == 0)
  5505. return 0;
  5506. if (cnt > 1)
  5507. return -EINVAL;
  5508. if (mddev->layout != info->layout) {
  5509. /* Change layout
  5510. * we don't need to do anything at the md level, the
  5511. * personality will take care of it all.
  5512. */
  5513. if (mddev->pers->check_reshape == NULL)
  5514. return -EINVAL;
  5515. else {
  5516. mddev->new_layout = info->layout;
  5517. rv = mddev->pers->check_reshape(mddev);
  5518. if (rv)
  5519. mddev->new_layout = mddev->layout;
  5520. return rv;
  5521. }
  5522. }
  5523. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5524. rv = update_size(mddev, (sector_t)info->size * 2);
  5525. if (mddev->raid_disks != info->raid_disks)
  5526. rv = update_raid_disks(mddev, info->raid_disks);
  5527. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5528. if (mddev->pers->quiesce == NULL)
  5529. return -EINVAL;
  5530. if (mddev->recovery || mddev->sync_thread)
  5531. return -EBUSY;
  5532. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5533. /* add the bitmap */
  5534. if (mddev->bitmap)
  5535. return -EEXIST;
  5536. if (mddev->bitmap_info.default_offset == 0)
  5537. return -EINVAL;
  5538. mddev->bitmap_info.offset =
  5539. mddev->bitmap_info.default_offset;
  5540. mddev->bitmap_info.space =
  5541. mddev->bitmap_info.default_space;
  5542. mddev->pers->quiesce(mddev, 1);
  5543. rv = bitmap_create(mddev);
  5544. if (!rv)
  5545. rv = bitmap_load(mddev);
  5546. if (rv)
  5547. bitmap_destroy(mddev);
  5548. mddev->pers->quiesce(mddev, 0);
  5549. } else {
  5550. /* remove the bitmap */
  5551. if (!mddev->bitmap)
  5552. return -ENOENT;
  5553. if (mddev->bitmap->storage.file)
  5554. return -EINVAL;
  5555. mddev->pers->quiesce(mddev, 1);
  5556. bitmap_destroy(mddev);
  5557. mddev->pers->quiesce(mddev, 0);
  5558. mddev->bitmap_info.offset = 0;
  5559. }
  5560. }
  5561. md_update_sb(mddev, 1);
  5562. return rv;
  5563. }
  5564. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5565. {
  5566. struct md_rdev *rdev;
  5567. if (mddev->pers == NULL)
  5568. return -ENODEV;
  5569. rdev = find_rdev(mddev, dev);
  5570. if (!rdev)
  5571. return -ENODEV;
  5572. md_error(mddev, rdev);
  5573. if (!test_bit(Faulty, &rdev->flags))
  5574. return -EBUSY;
  5575. return 0;
  5576. }
  5577. /*
  5578. * We have a problem here : there is no easy way to give a CHS
  5579. * virtual geometry. We currently pretend that we have a 2 heads
  5580. * 4 sectors (with a BIG number of cylinders...). This drives
  5581. * dosfs just mad... ;-)
  5582. */
  5583. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5584. {
  5585. struct mddev *mddev = bdev->bd_disk->private_data;
  5586. geo->heads = 2;
  5587. geo->sectors = 4;
  5588. geo->cylinders = mddev->array_sectors / 8;
  5589. return 0;
  5590. }
  5591. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5592. unsigned int cmd, unsigned long arg)
  5593. {
  5594. int err = 0;
  5595. void __user *argp = (void __user *)arg;
  5596. struct mddev *mddev = NULL;
  5597. int ro;
  5598. switch (cmd) {
  5599. case RAID_VERSION:
  5600. case GET_ARRAY_INFO:
  5601. case GET_DISK_INFO:
  5602. break;
  5603. default:
  5604. if (!capable(CAP_SYS_ADMIN))
  5605. return -EACCES;
  5606. }
  5607. /*
  5608. * Commands dealing with the RAID driver but not any
  5609. * particular array:
  5610. */
  5611. switch (cmd)
  5612. {
  5613. case RAID_VERSION:
  5614. err = get_version(argp);
  5615. goto done;
  5616. case PRINT_RAID_DEBUG:
  5617. err = 0;
  5618. md_print_devices();
  5619. goto done;
  5620. #ifndef MODULE
  5621. case RAID_AUTORUN:
  5622. err = 0;
  5623. autostart_arrays(arg);
  5624. goto done;
  5625. #endif
  5626. default:;
  5627. }
  5628. /*
  5629. * Commands creating/starting a new array:
  5630. */
  5631. mddev = bdev->bd_disk->private_data;
  5632. if (!mddev) {
  5633. BUG();
  5634. goto abort;
  5635. }
  5636. err = mddev_lock(mddev);
  5637. if (err) {
  5638. printk(KERN_INFO
  5639. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5640. err, cmd);
  5641. goto abort;
  5642. }
  5643. switch (cmd)
  5644. {
  5645. case SET_ARRAY_INFO:
  5646. {
  5647. mdu_array_info_t info;
  5648. if (!arg)
  5649. memset(&info, 0, sizeof(info));
  5650. else if (copy_from_user(&info, argp, sizeof(info))) {
  5651. err = -EFAULT;
  5652. goto abort_unlock;
  5653. }
  5654. if (mddev->pers) {
  5655. err = update_array_info(mddev, &info);
  5656. if (err) {
  5657. printk(KERN_WARNING "md: couldn't update"
  5658. " array info. %d\n", err);
  5659. goto abort_unlock;
  5660. }
  5661. goto done_unlock;
  5662. }
  5663. if (!list_empty(&mddev->disks)) {
  5664. printk(KERN_WARNING
  5665. "md: array %s already has disks!\n",
  5666. mdname(mddev));
  5667. err = -EBUSY;
  5668. goto abort_unlock;
  5669. }
  5670. if (mddev->raid_disks) {
  5671. printk(KERN_WARNING
  5672. "md: array %s already initialised!\n",
  5673. mdname(mddev));
  5674. err = -EBUSY;
  5675. goto abort_unlock;
  5676. }
  5677. err = set_array_info(mddev, &info);
  5678. if (err) {
  5679. printk(KERN_WARNING "md: couldn't set"
  5680. " array info. %d\n", err);
  5681. goto abort_unlock;
  5682. }
  5683. }
  5684. goto done_unlock;
  5685. default:;
  5686. }
  5687. /*
  5688. * Commands querying/configuring an existing array:
  5689. */
  5690. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5691. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5692. if ((!mddev->raid_disks && !mddev->external)
  5693. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5694. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5695. && cmd != GET_BITMAP_FILE) {
  5696. err = -ENODEV;
  5697. goto abort_unlock;
  5698. }
  5699. /*
  5700. * Commands even a read-only array can execute:
  5701. */
  5702. switch (cmd)
  5703. {
  5704. case GET_ARRAY_INFO:
  5705. err = get_array_info(mddev, argp);
  5706. goto done_unlock;
  5707. case GET_BITMAP_FILE:
  5708. err = get_bitmap_file(mddev, argp);
  5709. goto done_unlock;
  5710. case GET_DISK_INFO:
  5711. err = get_disk_info(mddev, argp);
  5712. goto done_unlock;
  5713. case RESTART_ARRAY_RW:
  5714. err = restart_array(mddev);
  5715. goto done_unlock;
  5716. case STOP_ARRAY:
  5717. err = do_md_stop(mddev, 0, bdev);
  5718. goto done_unlock;
  5719. case STOP_ARRAY_RO:
  5720. err = md_set_readonly(mddev, bdev);
  5721. goto done_unlock;
  5722. case BLKROSET:
  5723. if (get_user(ro, (int __user *)(arg))) {
  5724. err = -EFAULT;
  5725. goto done_unlock;
  5726. }
  5727. err = -EINVAL;
  5728. /* if the bdev is going readonly the value of mddev->ro
  5729. * does not matter, no writes are coming
  5730. */
  5731. if (ro)
  5732. goto done_unlock;
  5733. /* are we are already prepared for writes? */
  5734. if (mddev->ro != 1)
  5735. goto done_unlock;
  5736. /* transitioning to readauto need only happen for
  5737. * arrays that call md_write_start
  5738. */
  5739. if (mddev->pers) {
  5740. err = restart_array(mddev);
  5741. if (err == 0) {
  5742. mddev->ro = 2;
  5743. set_disk_ro(mddev->gendisk, 0);
  5744. }
  5745. }
  5746. goto done_unlock;
  5747. }
  5748. /*
  5749. * The remaining ioctls are changing the state of the
  5750. * superblock, so we do not allow them on read-only arrays.
  5751. * However non-MD ioctls (e.g. get-size) will still come through
  5752. * here and hit the 'default' below, so only disallow
  5753. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5754. */
  5755. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5756. if (mddev->ro == 2) {
  5757. mddev->ro = 0;
  5758. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5759. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5760. md_wakeup_thread(mddev->thread);
  5761. } else {
  5762. err = -EROFS;
  5763. goto abort_unlock;
  5764. }
  5765. }
  5766. switch (cmd)
  5767. {
  5768. case ADD_NEW_DISK:
  5769. {
  5770. mdu_disk_info_t info;
  5771. if (copy_from_user(&info, argp, sizeof(info)))
  5772. err = -EFAULT;
  5773. else
  5774. err = add_new_disk(mddev, &info);
  5775. goto done_unlock;
  5776. }
  5777. case HOT_REMOVE_DISK:
  5778. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5779. goto done_unlock;
  5780. case HOT_ADD_DISK:
  5781. err = hot_add_disk(mddev, new_decode_dev(arg));
  5782. goto done_unlock;
  5783. case SET_DISK_FAULTY:
  5784. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5785. goto done_unlock;
  5786. case RUN_ARRAY:
  5787. err = do_md_run(mddev);
  5788. goto done_unlock;
  5789. case SET_BITMAP_FILE:
  5790. err = set_bitmap_file(mddev, (int)arg);
  5791. goto done_unlock;
  5792. default:
  5793. err = -EINVAL;
  5794. goto abort_unlock;
  5795. }
  5796. done_unlock:
  5797. abort_unlock:
  5798. if (mddev->hold_active == UNTIL_IOCTL &&
  5799. err != -EINVAL)
  5800. mddev->hold_active = 0;
  5801. mddev_unlock(mddev);
  5802. return err;
  5803. done:
  5804. if (err)
  5805. MD_BUG();
  5806. abort:
  5807. return err;
  5808. }
  5809. #ifdef CONFIG_COMPAT
  5810. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5811. unsigned int cmd, unsigned long arg)
  5812. {
  5813. switch (cmd) {
  5814. case HOT_REMOVE_DISK:
  5815. case HOT_ADD_DISK:
  5816. case SET_DISK_FAULTY:
  5817. case SET_BITMAP_FILE:
  5818. /* These take in integer arg, do not convert */
  5819. break;
  5820. default:
  5821. arg = (unsigned long)compat_ptr(arg);
  5822. break;
  5823. }
  5824. return md_ioctl(bdev, mode, cmd, arg);
  5825. }
  5826. #endif /* CONFIG_COMPAT */
  5827. static int md_open(struct block_device *bdev, fmode_t mode)
  5828. {
  5829. /*
  5830. * Succeed if we can lock the mddev, which confirms that
  5831. * it isn't being stopped right now.
  5832. */
  5833. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5834. int err;
  5835. if (!mddev)
  5836. return -ENODEV;
  5837. if (mddev->gendisk != bdev->bd_disk) {
  5838. /* we are racing with mddev_put which is discarding this
  5839. * bd_disk.
  5840. */
  5841. mddev_put(mddev);
  5842. /* Wait until bdev->bd_disk is definitely gone */
  5843. flush_workqueue(md_misc_wq);
  5844. /* Then retry the open from the top */
  5845. return -ERESTARTSYS;
  5846. }
  5847. BUG_ON(mddev != bdev->bd_disk->private_data);
  5848. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5849. goto out;
  5850. err = 0;
  5851. atomic_inc(&mddev->openers);
  5852. mutex_unlock(&mddev->open_mutex);
  5853. check_disk_change(bdev);
  5854. out:
  5855. return err;
  5856. }
  5857. static int md_release(struct gendisk *disk, fmode_t mode)
  5858. {
  5859. struct mddev *mddev = disk->private_data;
  5860. BUG_ON(!mddev);
  5861. atomic_dec(&mddev->openers);
  5862. mddev_put(mddev);
  5863. return 0;
  5864. }
  5865. static int md_media_changed(struct gendisk *disk)
  5866. {
  5867. struct mddev *mddev = disk->private_data;
  5868. return mddev->changed;
  5869. }
  5870. static int md_revalidate(struct gendisk *disk)
  5871. {
  5872. struct mddev *mddev = disk->private_data;
  5873. mddev->changed = 0;
  5874. return 0;
  5875. }
  5876. static const struct block_device_operations md_fops =
  5877. {
  5878. .owner = THIS_MODULE,
  5879. .open = md_open,
  5880. .release = md_release,
  5881. .ioctl = md_ioctl,
  5882. #ifdef CONFIG_COMPAT
  5883. .compat_ioctl = md_compat_ioctl,
  5884. #endif
  5885. .getgeo = md_getgeo,
  5886. .media_changed = md_media_changed,
  5887. .revalidate_disk= md_revalidate,
  5888. };
  5889. static int md_thread(void * arg)
  5890. {
  5891. struct md_thread *thread = arg;
  5892. /*
  5893. * md_thread is a 'system-thread', it's priority should be very
  5894. * high. We avoid resource deadlocks individually in each
  5895. * raid personality. (RAID5 does preallocation) We also use RR and
  5896. * the very same RT priority as kswapd, thus we will never get
  5897. * into a priority inversion deadlock.
  5898. *
  5899. * we definitely have to have equal or higher priority than
  5900. * bdflush, otherwise bdflush will deadlock if there are too
  5901. * many dirty RAID5 blocks.
  5902. */
  5903. allow_signal(SIGKILL);
  5904. while (!kthread_should_stop()) {
  5905. /* We need to wait INTERRUPTIBLE so that
  5906. * we don't add to the load-average.
  5907. * That means we need to be sure no signals are
  5908. * pending
  5909. */
  5910. if (signal_pending(current))
  5911. flush_signals(current);
  5912. wait_event_interruptible_timeout
  5913. (thread->wqueue,
  5914. test_bit(THREAD_WAKEUP, &thread->flags)
  5915. || kthread_should_stop(),
  5916. thread->timeout);
  5917. clear_bit(THREAD_WAKEUP, &thread->flags);
  5918. if (!kthread_should_stop())
  5919. thread->run(thread->mddev);
  5920. }
  5921. return 0;
  5922. }
  5923. void md_wakeup_thread(struct md_thread *thread)
  5924. {
  5925. if (thread) {
  5926. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5927. set_bit(THREAD_WAKEUP, &thread->flags);
  5928. wake_up(&thread->wqueue);
  5929. }
  5930. }
  5931. struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
  5932. const char *name)
  5933. {
  5934. struct md_thread *thread;
  5935. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5936. if (!thread)
  5937. return NULL;
  5938. init_waitqueue_head(&thread->wqueue);
  5939. thread->run = run;
  5940. thread->mddev = mddev;
  5941. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5942. thread->tsk = kthread_run(md_thread, thread,
  5943. "%s_%s",
  5944. mdname(thread->mddev),
  5945. name);
  5946. if (IS_ERR(thread->tsk)) {
  5947. kfree(thread);
  5948. return NULL;
  5949. }
  5950. return thread;
  5951. }
  5952. void md_unregister_thread(struct md_thread **threadp)
  5953. {
  5954. struct md_thread *thread = *threadp;
  5955. if (!thread)
  5956. return;
  5957. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5958. /* Locking ensures that mddev_unlock does not wake_up a
  5959. * non-existent thread
  5960. */
  5961. spin_lock(&pers_lock);
  5962. *threadp = NULL;
  5963. spin_unlock(&pers_lock);
  5964. kthread_stop(thread->tsk);
  5965. kfree(thread);
  5966. }
  5967. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5968. {
  5969. if (!mddev) {
  5970. MD_BUG();
  5971. return;
  5972. }
  5973. if (!rdev || test_bit(Faulty, &rdev->flags))
  5974. return;
  5975. if (!mddev->pers || !mddev->pers->error_handler)
  5976. return;
  5977. mddev->pers->error_handler(mddev,rdev);
  5978. if (mddev->degraded)
  5979. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5980. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5981. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5982. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5983. md_wakeup_thread(mddev->thread);
  5984. if (mddev->event_work.func)
  5985. queue_work(md_misc_wq, &mddev->event_work);
  5986. md_new_event_inintr(mddev);
  5987. }
  5988. /* seq_file implementation /proc/mdstat */
  5989. static void status_unused(struct seq_file *seq)
  5990. {
  5991. int i = 0;
  5992. struct md_rdev *rdev;
  5993. seq_printf(seq, "unused devices: ");
  5994. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5995. char b[BDEVNAME_SIZE];
  5996. i++;
  5997. seq_printf(seq, "%s ",
  5998. bdevname(rdev->bdev,b));
  5999. }
  6000. if (!i)
  6001. seq_printf(seq, "<none>");
  6002. seq_printf(seq, "\n");
  6003. }
  6004. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6005. {
  6006. sector_t max_sectors, resync, res;
  6007. unsigned long dt, db;
  6008. sector_t rt;
  6009. int scale;
  6010. unsigned int per_milli;
  6011. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  6012. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6013. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6014. max_sectors = mddev->resync_max_sectors;
  6015. else
  6016. max_sectors = mddev->dev_sectors;
  6017. /*
  6018. * Should not happen.
  6019. */
  6020. if (!max_sectors) {
  6021. MD_BUG();
  6022. return;
  6023. }
  6024. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6025. * in a sector_t, and (max_sectors>>scale) will fit in a
  6026. * u32, as those are the requirements for sector_div.
  6027. * Thus 'scale' must be at least 10
  6028. */
  6029. scale = 10;
  6030. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6031. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6032. scale++;
  6033. }
  6034. res = (resync>>scale)*1000;
  6035. sector_div(res, (u32)((max_sectors>>scale)+1));
  6036. per_milli = res;
  6037. {
  6038. int i, x = per_milli/50, y = 20-x;
  6039. seq_printf(seq, "[");
  6040. for (i = 0; i < x; i++)
  6041. seq_printf(seq, "=");
  6042. seq_printf(seq, ">");
  6043. for (i = 0; i < y; i++)
  6044. seq_printf(seq, ".");
  6045. seq_printf(seq, "] ");
  6046. }
  6047. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6048. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6049. "reshape" :
  6050. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6051. "check" :
  6052. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6053. "resync" : "recovery"))),
  6054. per_milli/10, per_milli % 10,
  6055. (unsigned long long) resync/2,
  6056. (unsigned long long) max_sectors/2);
  6057. /*
  6058. * dt: time from mark until now
  6059. * db: blocks written from mark until now
  6060. * rt: remaining time
  6061. *
  6062. * rt is a sector_t, so could be 32bit or 64bit.
  6063. * So we divide before multiply in case it is 32bit and close
  6064. * to the limit.
  6065. * We scale the divisor (db) by 32 to avoid losing precision
  6066. * near the end of resync when the number of remaining sectors
  6067. * is close to 'db'.
  6068. * We then divide rt by 32 after multiplying by db to compensate.
  6069. * The '+1' avoids division by zero if db is very small.
  6070. */
  6071. dt = ((jiffies - mddev->resync_mark) / HZ);
  6072. if (!dt) dt++;
  6073. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6074. - mddev->resync_mark_cnt;
  6075. rt = max_sectors - resync; /* number of remaining sectors */
  6076. sector_div(rt, db/32+1);
  6077. rt *= dt;
  6078. rt >>= 5;
  6079. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6080. ((unsigned long)rt % 60)/6);
  6081. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6082. }
  6083. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6084. {
  6085. struct list_head *tmp;
  6086. loff_t l = *pos;
  6087. struct mddev *mddev;
  6088. if (l >= 0x10000)
  6089. return NULL;
  6090. if (!l--)
  6091. /* header */
  6092. return (void*)1;
  6093. spin_lock(&all_mddevs_lock);
  6094. list_for_each(tmp,&all_mddevs)
  6095. if (!l--) {
  6096. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6097. mddev_get(mddev);
  6098. spin_unlock(&all_mddevs_lock);
  6099. return mddev;
  6100. }
  6101. spin_unlock(&all_mddevs_lock);
  6102. if (!l--)
  6103. return (void*)2;/* tail */
  6104. return NULL;
  6105. }
  6106. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6107. {
  6108. struct list_head *tmp;
  6109. struct mddev *next_mddev, *mddev = v;
  6110. ++*pos;
  6111. if (v == (void*)2)
  6112. return NULL;
  6113. spin_lock(&all_mddevs_lock);
  6114. if (v == (void*)1)
  6115. tmp = all_mddevs.next;
  6116. else
  6117. tmp = mddev->all_mddevs.next;
  6118. if (tmp != &all_mddevs)
  6119. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6120. else {
  6121. next_mddev = (void*)2;
  6122. *pos = 0x10000;
  6123. }
  6124. spin_unlock(&all_mddevs_lock);
  6125. if (v != (void*)1)
  6126. mddev_put(mddev);
  6127. return next_mddev;
  6128. }
  6129. static void md_seq_stop(struct seq_file *seq, void *v)
  6130. {
  6131. struct mddev *mddev = v;
  6132. if (mddev && v != (void*)1 && v != (void*)2)
  6133. mddev_put(mddev);
  6134. }
  6135. static int md_seq_show(struct seq_file *seq, void *v)
  6136. {
  6137. struct mddev *mddev = v;
  6138. sector_t sectors;
  6139. struct md_rdev *rdev;
  6140. if (v == (void*)1) {
  6141. struct md_personality *pers;
  6142. seq_printf(seq, "Personalities : ");
  6143. spin_lock(&pers_lock);
  6144. list_for_each_entry(pers, &pers_list, list)
  6145. seq_printf(seq, "[%s] ", pers->name);
  6146. spin_unlock(&pers_lock);
  6147. seq_printf(seq, "\n");
  6148. seq->poll_event = atomic_read(&md_event_count);
  6149. return 0;
  6150. }
  6151. if (v == (void*)2) {
  6152. status_unused(seq);
  6153. return 0;
  6154. }
  6155. if (mddev_lock(mddev) < 0)
  6156. return -EINTR;
  6157. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6158. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6159. mddev->pers ? "" : "in");
  6160. if (mddev->pers) {
  6161. if (mddev->ro==1)
  6162. seq_printf(seq, " (read-only)");
  6163. if (mddev->ro==2)
  6164. seq_printf(seq, " (auto-read-only)");
  6165. seq_printf(seq, " %s", mddev->pers->name);
  6166. }
  6167. sectors = 0;
  6168. rdev_for_each(rdev, mddev) {
  6169. char b[BDEVNAME_SIZE];
  6170. seq_printf(seq, " %s[%d]",
  6171. bdevname(rdev->bdev,b), rdev->desc_nr);
  6172. if (test_bit(WriteMostly, &rdev->flags))
  6173. seq_printf(seq, "(W)");
  6174. if (test_bit(Faulty, &rdev->flags)) {
  6175. seq_printf(seq, "(F)");
  6176. continue;
  6177. }
  6178. if (rdev->raid_disk < 0)
  6179. seq_printf(seq, "(S)"); /* spare */
  6180. if (test_bit(Replacement, &rdev->flags))
  6181. seq_printf(seq, "(R)");
  6182. sectors += rdev->sectors;
  6183. }
  6184. if (!list_empty(&mddev->disks)) {
  6185. if (mddev->pers)
  6186. seq_printf(seq, "\n %llu blocks",
  6187. (unsigned long long)
  6188. mddev->array_sectors / 2);
  6189. else
  6190. seq_printf(seq, "\n %llu blocks",
  6191. (unsigned long long)sectors / 2);
  6192. }
  6193. if (mddev->persistent) {
  6194. if (mddev->major_version != 0 ||
  6195. mddev->minor_version != 90) {
  6196. seq_printf(seq," super %d.%d",
  6197. mddev->major_version,
  6198. mddev->minor_version);
  6199. }
  6200. } else if (mddev->external)
  6201. seq_printf(seq, " super external:%s",
  6202. mddev->metadata_type);
  6203. else
  6204. seq_printf(seq, " super non-persistent");
  6205. if (mddev->pers) {
  6206. mddev->pers->status(seq, mddev);
  6207. seq_printf(seq, "\n ");
  6208. if (mddev->pers->sync_request) {
  6209. if (mddev->curr_resync > 2) {
  6210. status_resync(seq, mddev);
  6211. seq_printf(seq, "\n ");
  6212. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  6213. seq_printf(seq, "\tresync=DELAYED\n ");
  6214. else if (mddev->recovery_cp < MaxSector)
  6215. seq_printf(seq, "\tresync=PENDING\n ");
  6216. }
  6217. } else
  6218. seq_printf(seq, "\n ");
  6219. bitmap_status(seq, mddev->bitmap);
  6220. seq_printf(seq, "\n");
  6221. }
  6222. mddev_unlock(mddev);
  6223. return 0;
  6224. }
  6225. static const struct seq_operations md_seq_ops = {
  6226. .start = md_seq_start,
  6227. .next = md_seq_next,
  6228. .stop = md_seq_stop,
  6229. .show = md_seq_show,
  6230. };
  6231. static int md_seq_open(struct inode *inode, struct file *file)
  6232. {
  6233. struct seq_file *seq;
  6234. int error;
  6235. error = seq_open(file, &md_seq_ops);
  6236. if (error)
  6237. return error;
  6238. seq = file->private_data;
  6239. seq->poll_event = atomic_read(&md_event_count);
  6240. return error;
  6241. }
  6242. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6243. {
  6244. struct seq_file *seq = filp->private_data;
  6245. int mask;
  6246. poll_wait(filp, &md_event_waiters, wait);
  6247. /* always allow read */
  6248. mask = POLLIN | POLLRDNORM;
  6249. if (seq->poll_event != atomic_read(&md_event_count))
  6250. mask |= POLLERR | POLLPRI;
  6251. return mask;
  6252. }
  6253. static const struct file_operations md_seq_fops = {
  6254. .owner = THIS_MODULE,
  6255. .open = md_seq_open,
  6256. .read = seq_read,
  6257. .llseek = seq_lseek,
  6258. .release = seq_release_private,
  6259. .poll = mdstat_poll,
  6260. };
  6261. int register_md_personality(struct md_personality *p)
  6262. {
  6263. spin_lock(&pers_lock);
  6264. list_add_tail(&p->list, &pers_list);
  6265. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6266. spin_unlock(&pers_lock);
  6267. return 0;
  6268. }
  6269. int unregister_md_personality(struct md_personality *p)
  6270. {
  6271. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6272. spin_lock(&pers_lock);
  6273. list_del_init(&p->list);
  6274. spin_unlock(&pers_lock);
  6275. return 0;
  6276. }
  6277. static int is_mddev_idle(struct mddev *mddev, int init)
  6278. {
  6279. struct md_rdev * rdev;
  6280. int idle;
  6281. int curr_events;
  6282. idle = 1;
  6283. rcu_read_lock();
  6284. rdev_for_each_rcu(rdev, mddev) {
  6285. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6286. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6287. (int)part_stat_read(&disk->part0, sectors[1]) -
  6288. atomic_read(&disk->sync_io);
  6289. /* sync IO will cause sync_io to increase before the disk_stats
  6290. * as sync_io is counted when a request starts, and
  6291. * disk_stats is counted when it completes.
  6292. * So resync activity will cause curr_events to be smaller than
  6293. * when there was no such activity.
  6294. * non-sync IO will cause disk_stat to increase without
  6295. * increasing sync_io so curr_events will (eventually)
  6296. * be larger than it was before. Once it becomes
  6297. * substantially larger, the test below will cause
  6298. * the array to appear non-idle, and resync will slow
  6299. * down.
  6300. * If there is a lot of outstanding resync activity when
  6301. * we set last_event to curr_events, then all that activity
  6302. * completing might cause the array to appear non-idle
  6303. * and resync will be slowed down even though there might
  6304. * not have been non-resync activity. This will only
  6305. * happen once though. 'last_events' will soon reflect
  6306. * the state where there is little or no outstanding
  6307. * resync requests, and further resync activity will
  6308. * always make curr_events less than last_events.
  6309. *
  6310. */
  6311. if (init || curr_events - rdev->last_events > 64) {
  6312. rdev->last_events = curr_events;
  6313. idle = 0;
  6314. }
  6315. }
  6316. rcu_read_unlock();
  6317. return idle;
  6318. }
  6319. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6320. {
  6321. /* another "blocks" (512byte) blocks have been synced */
  6322. atomic_sub(blocks, &mddev->recovery_active);
  6323. wake_up(&mddev->recovery_wait);
  6324. if (!ok) {
  6325. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6326. md_wakeup_thread(mddev->thread);
  6327. // stop recovery, signal do_sync ....
  6328. }
  6329. }
  6330. /* md_write_start(mddev, bi)
  6331. * If we need to update some array metadata (e.g. 'active' flag
  6332. * in superblock) before writing, schedule a superblock update
  6333. * and wait for it to complete.
  6334. */
  6335. void md_write_start(struct mddev *mddev, struct bio *bi)
  6336. {
  6337. int did_change = 0;
  6338. if (bio_data_dir(bi) != WRITE)
  6339. return;
  6340. BUG_ON(mddev->ro == 1);
  6341. if (mddev->ro == 2) {
  6342. /* need to switch to read/write */
  6343. mddev->ro = 0;
  6344. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6345. md_wakeup_thread(mddev->thread);
  6346. md_wakeup_thread(mddev->sync_thread);
  6347. did_change = 1;
  6348. }
  6349. atomic_inc(&mddev->writes_pending);
  6350. if (mddev->safemode == 1)
  6351. mddev->safemode = 0;
  6352. if (mddev->in_sync) {
  6353. spin_lock_irq(&mddev->write_lock);
  6354. if (mddev->in_sync) {
  6355. mddev->in_sync = 0;
  6356. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6357. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6358. md_wakeup_thread(mddev->thread);
  6359. did_change = 1;
  6360. }
  6361. spin_unlock_irq(&mddev->write_lock);
  6362. }
  6363. if (did_change)
  6364. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6365. wait_event(mddev->sb_wait,
  6366. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6367. }
  6368. void md_write_end(struct mddev *mddev)
  6369. {
  6370. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6371. if (mddev->safemode == 2)
  6372. md_wakeup_thread(mddev->thread);
  6373. else if (mddev->safemode_delay)
  6374. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6375. }
  6376. }
  6377. /* md_allow_write(mddev)
  6378. * Calling this ensures that the array is marked 'active' so that writes
  6379. * may proceed without blocking. It is important to call this before
  6380. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6381. * Must be called with mddev_lock held.
  6382. *
  6383. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6384. * is dropped, so return -EAGAIN after notifying userspace.
  6385. */
  6386. int md_allow_write(struct mddev *mddev)
  6387. {
  6388. if (!mddev->pers)
  6389. return 0;
  6390. if (mddev->ro)
  6391. return 0;
  6392. if (!mddev->pers->sync_request)
  6393. return 0;
  6394. spin_lock_irq(&mddev->write_lock);
  6395. if (mddev->in_sync) {
  6396. mddev->in_sync = 0;
  6397. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6398. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6399. if (mddev->safemode_delay &&
  6400. mddev->safemode == 0)
  6401. mddev->safemode = 1;
  6402. spin_unlock_irq(&mddev->write_lock);
  6403. md_update_sb(mddev, 0);
  6404. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6405. } else
  6406. spin_unlock_irq(&mddev->write_lock);
  6407. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6408. return -EAGAIN;
  6409. else
  6410. return 0;
  6411. }
  6412. EXPORT_SYMBOL_GPL(md_allow_write);
  6413. #define SYNC_MARKS 10
  6414. #define SYNC_MARK_STEP (3*HZ)
  6415. void md_do_sync(struct mddev *mddev)
  6416. {
  6417. struct mddev *mddev2;
  6418. unsigned int currspeed = 0,
  6419. window;
  6420. sector_t max_sectors,j, io_sectors;
  6421. unsigned long mark[SYNC_MARKS];
  6422. sector_t mark_cnt[SYNC_MARKS];
  6423. int last_mark,m;
  6424. struct list_head *tmp;
  6425. sector_t last_check;
  6426. int skipped = 0;
  6427. struct md_rdev *rdev;
  6428. char *desc;
  6429. struct blk_plug plug;
  6430. /* just incase thread restarts... */
  6431. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6432. return;
  6433. if (mddev->ro) /* never try to sync a read-only array */
  6434. return;
  6435. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6436. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6437. desc = "data-check";
  6438. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6439. desc = "requested-resync";
  6440. else
  6441. desc = "resync";
  6442. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6443. desc = "reshape";
  6444. else
  6445. desc = "recovery";
  6446. /* we overload curr_resync somewhat here.
  6447. * 0 == not engaged in resync at all
  6448. * 2 == checking that there is no conflict with another sync
  6449. * 1 == like 2, but have yielded to allow conflicting resync to
  6450. * commense
  6451. * other == active in resync - this many blocks
  6452. *
  6453. * Before starting a resync we must have set curr_resync to
  6454. * 2, and then checked that every "conflicting" array has curr_resync
  6455. * less than ours. When we find one that is the same or higher
  6456. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6457. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6458. * This will mean we have to start checking from the beginning again.
  6459. *
  6460. */
  6461. do {
  6462. mddev->curr_resync = 2;
  6463. try_again:
  6464. if (kthread_should_stop())
  6465. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6466. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6467. goto skip;
  6468. for_each_mddev(mddev2, tmp) {
  6469. if (mddev2 == mddev)
  6470. continue;
  6471. if (!mddev->parallel_resync
  6472. && mddev2->curr_resync
  6473. && match_mddev_units(mddev, mddev2)) {
  6474. DEFINE_WAIT(wq);
  6475. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6476. /* arbitrarily yield */
  6477. mddev->curr_resync = 1;
  6478. wake_up(&resync_wait);
  6479. }
  6480. if (mddev > mddev2 && mddev->curr_resync == 1)
  6481. /* no need to wait here, we can wait the next
  6482. * time 'round when curr_resync == 2
  6483. */
  6484. continue;
  6485. /* We need to wait 'interruptible' so as not to
  6486. * contribute to the load average, and not to
  6487. * be caught by 'softlockup'
  6488. */
  6489. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6490. if (!kthread_should_stop() &&
  6491. mddev2->curr_resync >= mddev->curr_resync) {
  6492. printk(KERN_INFO "md: delaying %s of %s"
  6493. " until %s has finished (they"
  6494. " share one or more physical units)\n",
  6495. desc, mdname(mddev), mdname(mddev2));
  6496. mddev_put(mddev2);
  6497. if (signal_pending(current))
  6498. flush_signals(current);
  6499. schedule();
  6500. finish_wait(&resync_wait, &wq);
  6501. goto try_again;
  6502. }
  6503. finish_wait(&resync_wait, &wq);
  6504. }
  6505. }
  6506. } while (mddev->curr_resync < 2);
  6507. j = 0;
  6508. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6509. /* resync follows the size requested by the personality,
  6510. * which defaults to physical size, but can be virtual size
  6511. */
  6512. max_sectors = mddev->resync_max_sectors;
  6513. mddev->resync_mismatches = 0;
  6514. /* we don't use the checkpoint if there's a bitmap */
  6515. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6516. j = mddev->resync_min;
  6517. else if (!mddev->bitmap)
  6518. j = mddev->recovery_cp;
  6519. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6520. max_sectors = mddev->resync_max_sectors;
  6521. else {
  6522. /* recovery follows the physical size of devices */
  6523. max_sectors = mddev->dev_sectors;
  6524. j = MaxSector;
  6525. rcu_read_lock();
  6526. rdev_for_each_rcu(rdev, mddev)
  6527. if (rdev->raid_disk >= 0 &&
  6528. !test_bit(Faulty, &rdev->flags) &&
  6529. !test_bit(In_sync, &rdev->flags) &&
  6530. rdev->recovery_offset < j)
  6531. j = rdev->recovery_offset;
  6532. rcu_read_unlock();
  6533. }
  6534. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6535. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6536. " %d KB/sec/disk.\n", speed_min(mddev));
  6537. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6538. "(but not more than %d KB/sec) for %s.\n",
  6539. speed_max(mddev), desc);
  6540. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6541. io_sectors = 0;
  6542. for (m = 0; m < SYNC_MARKS; m++) {
  6543. mark[m] = jiffies;
  6544. mark_cnt[m] = io_sectors;
  6545. }
  6546. last_mark = 0;
  6547. mddev->resync_mark = mark[last_mark];
  6548. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6549. /*
  6550. * Tune reconstruction:
  6551. */
  6552. window = 32*(PAGE_SIZE/512);
  6553. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6554. window/2, (unsigned long long)max_sectors/2);
  6555. atomic_set(&mddev->recovery_active, 0);
  6556. last_check = 0;
  6557. if (j>2) {
  6558. printk(KERN_INFO
  6559. "md: resuming %s of %s from checkpoint.\n",
  6560. desc, mdname(mddev));
  6561. mddev->curr_resync = j;
  6562. }
  6563. mddev->curr_resync_completed = j;
  6564. blk_start_plug(&plug);
  6565. while (j < max_sectors) {
  6566. sector_t sectors;
  6567. skipped = 0;
  6568. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6569. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6570. (mddev->curr_resync - mddev->curr_resync_completed)
  6571. > (max_sectors >> 4)) ||
  6572. (j - mddev->curr_resync_completed)*2
  6573. >= mddev->resync_max - mddev->curr_resync_completed
  6574. )) {
  6575. /* time to update curr_resync_completed */
  6576. wait_event(mddev->recovery_wait,
  6577. atomic_read(&mddev->recovery_active) == 0);
  6578. mddev->curr_resync_completed = j;
  6579. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6580. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6581. }
  6582. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6583. /* As this condition is controlled by user-space,
  6584. * we can block indefinitely, so use '_interruptible'
  6585. * to avoid triggering warnings.
  6586. */
  6587. flush_signals(current); /* just in case */
  6588. wait_event_interruptible(mddev->recovery_wait,
  6589. mddev->resync_max > j
  6590. || kthread_should_stop());
  6591. }
  6592. if (kthread_should_stop())
  6593. goto interrupted;
  6594. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6595. currspeed < speed_min(mddev));
  6596. if (sectors == 0) {
  6597. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6598. goto out;
  6599. }
  6600. if (!skipped) { /* actual IO requested */
  6601. io_sectors += sectors;
  6602. atomic_add(sectors, &mddev->recovery_active);
  6603. }
  6604. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6605. break;
  6606. j += sectors;
  6607. if (j>1) mddev->curr_resync = j;
  6608. mddev->curr_mark_cnt = io_sectors;
  6609. if (last_check == 0)
  6610. /* this is the earliest that rebuild will be
  6611. * visible in /proc/mdstat
  6612. */
  6613. md_new_event(mddev);
  6614. if (last_check + window > io_sectors || j == max_sectors)
  6615. continue;
  6616. last_check = io_sectors;
  6617. repeat:
  6618. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6619. /* step marks */
  6620. int next = (last_mark+1) % SYNC_MARKS;
  6621. mddev->resync_mark = mark[next];
  6622. mddev->resync_mark_cnt = mark_cnt[next];
  6623. mark[next] = jiffies;
  6624. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6625. last_mark = next;
  6626. }
  6627. if (kthread_should_stop())
  6628. goto interrupted;
  6629. /*
  6630. * this loop exits only if either when we are slower than
  6631. * the 'hard' speed limit, or the system was IO-idle for
  6632. * a jiffy.
  6633. * the system might be non-idle CPU-wise, but we only care
  6634. * about not overloading the IO subsystem. (things like an
  6635. * e2fsck being done on the RAID array should execute fast)
  6636. */
  6637. cond_resched();
  6638. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6639. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6640. if (currspeed > speed_min(mddev)) {
  6641. if ((currspeed > speed_max(mddev)) ||
  6642. !is_mddev_idle(mddev, 0)) {
  6643. msleep(500);
  6644. goto repeat;
  6645. }
  6646. }
  6647. }
  6648. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6649. /*
  6650. * this also signals 'finished resyncing' to md_stop
  6651. */
  6652. out:
  6653. blk_finish_plug(&plug);
  6654. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6655. /* tell personality that we are finished */
  6656. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6657. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6658. mddev->curr_resync > 2) {
  6659. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6660. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6661. if (mddev->curr_resync >= mddev->recovery_cp) {
  6662. printk(KERN_INFO
  6663. "md: checkpointing %s of %s.\n",
  6664. desc, mdname(mddev));
  6665. mddev->recovery_cp =
  6666. mddev->curr_resync_completed;
  6667. }
  6668. } else
  6669. mddev->recovery_cp = MaxSector;
  6670. } else {
  6671. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6672. mddev->curr_resync = MaxSector;
  6673. rcu_read_lock();
  6674. rdev_for_each_rcu(rdev, mddev)
  6675. if (rdev->raid_disk >= 0 &&
  6676. mddev->delta_disks >= 0 &&
  6677. !test_bit(Faulty, &rdev->flags) &&
  6678. !test_bit(In_sync, &rdev->flags) &&
  6679. rdev->recovery_offset < mddev->curr_resync)
  6680. rdev->recovery_offset = mddev->curr_resync;
  6681. rcu_read_unlock();
  6682. }
  6683. }
  6684. skip:
  6685. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6686. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6687. /* We completed so min/max setting can be forgotten if used. */
  6688. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6689. mddev->resync_min = 0;
  6690. mddev->resync_max = MaxSector;
  6691. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6692. mddev->resync_min = mddev->curr_resync_completed;
  6693. mddev->curr_resync = 0;
  6694. wake_up(&resync_wait);
  6695. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6696. md_wakeup_thread(mddev->thread);
  6697. return;
  6698. interrupted:
  6699. /*
  6700. * got a signal, exit.
  6701. */
  6702. printk(KERN_INFO
  6703. "md: md_do_sync() got signal ... exiting\n");
  6704. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6705. goto out;
  6706. }
  6707. EXPORT_SYMBOL_GPL(md_do_sync);
  6708. static int remove_and_add_spares(struct mddev *mddev)
  6709. {
  6710. struct md_rdev *rdev;
  6711. int spares = 0;
  6712. int removed = 0;
  6713. mddev->curr_resync_completed = 0;
  6714. rdev_for_each(rdev, mddev)
  6715. if (rdev->raid_disk >= 0 &&
  6716. !test_bit(Blocked, &rdev->flags) &&
  6717. (test_bit(Faulty, &rdev->flags) ||
  6718. ! test_bit(In_sync, &rdev->flags)) &&
  6719. atomic_read(&rdev->nr_pending)==0) {
  6720. if (mddev->pers->hot_remove_disk(
  6721. mddev, rdev) == 0) {
  6722. sysfs_unlink_rdev(mddev, rdev);
  6723. rdev->raid_disk = -1;
  6724. removed++;
  6725. }
  6726. }
  6727. if (removed)
  6728. sysfs_notify(&mddev->kobj, NULL,
  6729. "degraded");
  6730. rdev_for_each(rdev, mddev) {
  6731. if (rdev->raid_disk >= 0 &&
  6732. !test_bit(In_sync, &rdev->flags) &&
  6733. !test_bit(Faulty, &rdev->flags))
  6734. spares++;
  6735. if (rdev->raid_disk < 0
  6736. && !test_bit(Faulty, &rdev->flags)) {
  6737. rdev->recovery_offset = 0;
  6738. if (mddev->pers->
  6739. hot_add_disk(mddev, rdev) == 0) {
  6740. if (sysfs_link_rdev(mddev, rdev))
  6741. /* failure here is OK */;
  6742. spares++;
  6743. md_new_event(mddev);
  6744. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6745. }
  6746. }
  6747. }
  6748. return spares;
  6749. }
  6750. static void reap_sync_thread(struct mddev *mddev)
  6751. {
  6752. struct md_rdev *rdev;
  6753. /* resync has finished, collect result */
  6754. md_unregister_thread(&mddev->sync_thread);
  6755. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6756. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6757. /* success...*/
  6758. /* activate any spares */
  6759. if (mddev->pers->spare_active(mddev))
  6760. sysfs_notify(&mddev->kobj, NULL,
  6761. "degraded");
  6762. }
  6763. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6764. mddev->pers->finish_reshape)
  6765. mddev->pers->finish_reshape(mddev);
  6766. /* If array is no-longer degraded, then any saved_raid_disk
  6767. * information must be scrapped. Also if any device is now
  6768. * In_sync we must scrape the saved_raid_disk for that device
  6769. * do the superblock for an incrementally recovered device
  6770. * written out.
  6771. */
  6772. rdev_for_each(rdev, mddev)
  6773. if (!mddev->degraded ||
  6774. test_bit(In_sync, &rdev->flags))
  6775. rdev->saved_raid_disk = -1;
  6776. md_update_sb(mddev, 1);
  6777. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6778. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6779. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6780. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6781. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6782. /* flag recovery needed just to double check */
  6783. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6784. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6785. md_new_event(mddev);
  6786. if (mddev->event_work.func)
  6787. queue_work(md_misc_wq, &mddev->event_work);
  6788. }
  6789. /*
  6790. * This routine is regularly called by all per-raid-array threads to
  6791. * deal with generic issues like resync and super-block update.
  6792. * Raid personalities that don't have a thread (linear/raid0) do not
  6793. * need this as they never do any recovery or update the superblock.
  6794. *
  6795. * It does not do any resync itself, but rather "forks" off other threads
  6796. * to do that as needed.
  6797. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6798. * "->recovery" and create a thread at ->sync_thread.
  6799. * When the thread finishes it sets MD_RECOVERY_DONE
  6800. * and wakeups up this thread which will reap the thread and finish up.
  6801. * This thread also removes any faulty devices (with nr_pending == 0).
  6802. *
  6803. * The overall approach is:
  6804. * 1/ if the superblock needs updating, update it.
  6805. * 2/ If a recovery thread is running, don't do anything else.
  6806. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6807. * 4/ If there are any faulty devices, remove them.
  6808. * 5/ If array is degraded, try to add spares devices
  6809. * 6/ If array has spares or is not in-sync, start a resync thread.
  6810. */
  6811. void md_check_recovery(struct mddev *mddev)
  6812. {
  6813. if (mddev->suspended)
  6814. return;
  6815. if (mddev->bitmap)
  6816. bitmap_daemon_work(mddev);
  6817. if (signal_pending(current)) {
  6818. if (mddev->pers->sync_request && !mddev->external) {
  6819. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6820. mdname(mddev));
  6821. mddev->safemode = 2;
  6822. }
  6823. flush_signals(current);
  6824. }
  6825. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6826. return;
  6827. if ( ! (
  6828. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6829. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6830. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6831. (mddev->external == 0 && mddev->safemode == 1) ||
  6832. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6833. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6834. ))
  6835. return;
  6836. if (mddev_trylock(mddev)) {
  6837. int spares = 0;
  6838. if (mddev->ro) {
  6839. /* Only thing we do on a ro array is remove
  6840. * failed devices.
  6841. */
  6842. struct md_rdev *rdev;
  6843. rdev_for_each(rdev, mddev)
  6844. if (rdev->raid_disk >= 0 &&
  6845. !test_bit(Blocked, &rdev->flags) &&
  6846. test_bit(Faulty, &rdev->flags) &&
  6847. atomic_read(&rdev->nr_pending)==0) {
  6848. if (mddev->pers->hot_remove_disk(
  6849. mddev, rdev) == 0) {
  6850. sysfs_unlink_rdev(mddev, rdev);
  6851. rdev->raid_disk = -1;
  6852. }
  6853. }
  6854. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6855. goto unlock;
  6856. }
  6857. if (!mddev->external) {
  6858. int did_change = 0;
  6859. spin_lock_irq(&mddev->write_lock);
  6860. if (mddev->safemode &&
  6861. !atomic_read(&mddev->writes_pending) &&
  6862. !mddev->in_sync &&
  6863. mddev->recovery_cp == MaxSector) {
  6864. mddev->in_sync = 1;
  6865. did_change = 1;
  6866. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6867. }
  6868. if (mddev->safemode == 1)
  6869. mddev->safemode = 0;
  6870. spin_unlock_irq(&mddev->write_lock);
  6871. if (did_change)
  6872. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6873. }
  6874. if (mddev->flags)
  6875. md_update_sb(mddev, 0);
  6876. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6877. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6878. /* resync/recovery still happening */
  6879. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6880. goto unlock;
  6881. }
  6882. if (mddev->sync_thread) {
  6883. reap_sync_thread(mddev);
  6884. goto unlock;
  6885. }
  6886. /* Set RUNNING before clearing NEEDED to avoid
  6887. * any transients in the value of "sync_action".
  6888. */
  6889. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6890. /* Clear some bits that don't mean anything, but
  6891. * might be left set
  6892. */
  6893. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6894. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6895. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6896. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6897. goto unlock;
  6898. /* no recovery is running.
  6899. * remove any failed drives, then
  6900. * add spares if possible.
  6901. * Spare are also removed and re-added, to allow
  6902. * the personality to fail the re-add.
  6903. */
  6904. if (mddev->reshape_position != MaxSector) {
  6905. if (mddev->pers->check_reshape == NULL ||
  6906. mddev->pers->check_reshape(mddev) != 0)
  6907. /* Cannot proceed */
  6908. goto unlock;
  6909. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6910. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6911. } else if ((spares = remove_and_add_spares(mddev))) {
  6912. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6913. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6914. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6915. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6916. } else if (mddev->recovery_cp < MaxSector) {
  6917. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6918. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6919. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6920. /* nothing to be done ... */
  6921. goto unlock;
  6922. if (mddev->pers->sync_request) {
  6923. if (spares) {
  6924. /* We are adding a device or devices to an array
  6925. * which has the bitmap stored on all devices.
  6926. * So make sure all bitmap pages get written
  6927. */
  6928. bitmap_write_all(mddev->bitmap);
  6929. }
  6930. mddev->sync_thread = md_register_thread(md_do_sync,
  6931. mddev,
  6932. "resync");
  6933. if (!mddev->sync_thread) {
  6934. printk(KERN_ERR "%s: could not start resync"
  6935. " thread...\n",
  6936. mdname(mddev));
  6937. /* leave the spares where they are, it shouldn't hurt */
  6938. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6939. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6940. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6941. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6942. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6943. } else
  6944. md_wakeup_thread(mddev->sync_thread);
  6945. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6946. md_new_event(mddev);
  6947. }
  6948. unlock:
  6949. if (!mddev->sync_thread) {
  6950. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6951. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6952. &mddev->recovery))
  6953. if (mddev->sysfs_action)
  6954. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6955. }
  6956. mddev_unlock(mddev);
  6957. }
  6958. }
  6959. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6960. {
  6961. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6962. wait_event_timeout(rdev->blocked_wait,
  6963. !test_bit(Blocked, &rdev->flags) &&
  6964. !test_bit(BlockedBadBlocks, &rdev->flags),
  6965. msecs_to_jiffies(5000));
  6966. rdev_dec_pending(rdev, mddev);
  6967. }
  6968. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6969. void md_finish_reshape(struct mddev *mddev)
  6970. {
  6971. /* called be personality module when reshape completes. */
  6972. struct md_rdev *rdev;
  6973. rdev_for_each(rdev, mddev) {
  6974. if (rdev->data_offset > rdev->new_data_offset)
  6975. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  6976. else
  6977. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  6978. rdev->data_offset = rdev->new_data_offset;
  6979. }
  6980. }
  6981. EXPORT_SYMBOL(md_finish_reshape);
  6982. /* Bad block management.
  6983. * We can record which blocks on each device are 'bad' and so just
  6984. * fail those blocks, or that stripe, rather than the whole device.
  6985. * Entries in the bad-block table are 64bits wide. This comprises:
  6986. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6987. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6988. * A 'shift' can be set so that larger blocks are tracked and
  6989. * consequently larger devices can be covered.
  6990. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6991. *
  6992. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6993. * might need to retry if it is very unlucky.
  6994. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6995. * so we use the write_seqlock_irq variant.
  6996. *
  6997. * When looking for a bad block we specify a range and want to
  6998. * know if any block in the range is bad. So we binary-search
  6999. * to the last range that starts at-or-before the given endpoint,
  7000. * (or "before the sector after the target range")
  7001. * then see if it ends after the given start.
  7002. * We return
  7003. * 0 if there are no known bad blocks in the range
  7004. * 1 if there are known bad block which are all acknowledged
  7005. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7006. * plus the start/length of the first bad section we overlap.
  7007. */
  7008. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7009. sector_t *first_bad, int *bad_sectors)
  7010. {
  7011. int hi;
  7012. int lo = 0;
  7013. u64 *p = bb->page;
  7014. int rv = 0;
  7015. sector_t target = s + sectors;
  7016. unsigned seq;
  7017. if (bb->shift > 0) {
  7018. /* round the start down, and the end up */
  7019. s >>= bb->shift;
  7020. target += (1<<bb->shift) - 1;
  7021. target >>= bb->shift;
  7022. sectors = target - s;
  7023. }
  7024. /* 'target' is now the first block after the bad range */
  7025. retry:
  7026. seq = read_seqbegin(&bb->lock);
  7027. hi = bb->count;
  7028. /* Binary search between lo and hi for 'target'
  7029. * i.e. for the last range that starts before 'target'
  7030. */
  7031. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7032. * are known not to be the last range before target.
  7033. * VARIANT: hi-lo is the number of possible
  7034. * ranges, and decreases until it reaches 1
  7035. */
  7036. while (hi - lo > 1) {
  7037. int mid = (lo + hi) / 2;
  7038. sector_t a = BB_OFFSET(p[mid]);
  7039. if (a < target)
  7040. /* This could still be the one, earlier ranges
  7041. * could not. */
  7042. lo = mid;
  7043. else
  7044. /* This and later ranges are definitely out. */
  7045. hi = mid;
  7046. }
  7047. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7048. if (hi > lo) {
  7049. /* need to check all range that end after 's' to see if
  7050. * any are unacknowledged.
  7051. */
  7052. while (lo >= 0 &&
  7053. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7054. if (BB_OFFSET(p[lo]) < target) {
  7055. /* starts before the end, and finishes after
  7056. * the start, so they must overlap
  7057. */
  7058. if (rv != -1 && BB_ACK(p[lo]))
  7059. rv = 1;
  7060. else
  7061. rv = -1;
  7062. *first_bad = BB_OFFSET(p[lo]);
  7063. *bad_sectors = BB_LEN(p[lo]);
  7064. }
  7065. lo--;
  7066. }
  7067. }
  7068. if (read_seqretry(&bb->lock, seq))
  7069. goto retry;
  7070. return rv;
  7071. }
  7072. EXPORT_SYMBOL_GPL(md_is_badblock);
  7073. /*
  7074. * Add a range of bad blocks to the table.
  7075. * This might extend the table, or might contract it
  7076. * if two adjacent ranges can be merged.
  7077. * We binary-search to find the 'insertion' point, then
  7078. * decide how best to handle it.
  7079. */
  7080. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7081. int acknowledged)
  7082. {
  7083. u64 *p;
  7084. int lo, hi;
  7085. int rv = 1;
  7086. if (bb->shift < 0)
  7087. /* badblocks are disabled */
  7088. return 0;
  7089. if (bb->shift) {
  7090. /* round the start down, and the end up */
  7091. sector_t next = s + sectors;
  7092. s >>= bb->shift;
  7093. next += (1<<bb->shift) - 1;
  7094. next >>= bb->shift;
  7095. sectors = next - s;
  7096. }
  7097. write_seqlock_irq(&bb->lock);
  7098. p = bb->page;
  7099. lo = 0;
  7100. hi = bb->count;
  7101. /* Find the last range that starts at-or-before 's' */
  7102. while (hi - lo > 1) {
  7103. int mid = (lo + hi) / 2;
  7104. sector_t a = BB_OFFSET(p[mid]);
  7105. if (a <= s)
  7106. lo = mid;
  7107. else
  7108. hi = mid;
  7109. }
  7110. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7111. hi = lo;
  7112. if (hi > lo) {
  7113. /* we found a range that might merge with the start
  7114. * of our new range
  7115. */
  7116. sector_t a = BB_OFFSET(p[lo]);
  7117. sector_t e = a + BB_LEN(p[lo]);
  7118. int ack = BB_ACK(p[lo]);
  7119. if (e >= s) {
  7120. /* Yes, we can merge with a previous range */
  7121. if (s == a && s + sectors >= e)
  7122. /* new range covers old */
  7123. ack = acknowledged;
  7124. else
  7125. ack = ack && acknowledged;
  7126. if (e < s + sectors)
  7127. e = s + sectors;
  7128. if (e - a <= BB_MAX_LEN) {
  7129. p[lo] = BB_MAKE(a, e-a, ack);
  7130. s = e;
  7131. } else {
  7132. /* does not all fit in one range,
  7133. * make p[lo] maximal
  7134. */
  7135. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7136. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7137. s = a + BB_MAX_LEN;
  7138. }
  7139. sectors = e - s;
  7140. }
  7141. }
  7142. if (sectors && hi < bb->count) {
  7143. /* 'hi' points to the first range that starts after 's'.
  7144. * Maybe we can merge with the start of that range */
  7145. sector_t a = BB_OFFSET(p[hi]);
  7146. sector_t e = a + BB_LEN(p[hi]);
  7147. int ack = BB_ACK(p[hi]);
  7148. if (a <= s + sectors) {
  7149. /* merging is possible */
  7150. if (e <= s + sectors) {
  7151. /* full overlap */
  7152. e = s + sectors;
  7153. ack = acknowledged;
  7154. } else
  7155. ack = ack && acknowledged;
  7156. a = s;
  7157. if (e - a <= BB_MAX_LEN) {
  7158. p[hi] = BB_MAKE(a, e-a, ack);
  7159. s = e;
  7160. } else {
  7161. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7162. s = a + BB_MAX_LEN;
  7163. }
  7164. sectors = e - s;
  7165. lo = hi;
  7166. hi++;
  7167. }
  7168. }
  7169. if (sectors == 0 && hi < bb->count) {
  7170. /* we might be able to combine lo and hi */
  7171. /* Note: 's' is at the end of 'lo' */
  7172. sector_t a = BB_OFFSET(p[hi]);
  7173. int lolen = BB_LEN(p[lo]);
  7174. int hilen = BB_LEN(p[hi]);
  7175. int newlen = lolen + hilen - (s - a);
  7176. if (s >= a && newlen < BB_MAX_LEN) {
  7177. /* yes, we can combine them */
  7178. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7179. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7180. memmove(p + hi, p + hi + 1,
  7181. (bb->count - hi - 1) * 8);
  7182. bb->count--;
  7183. }
  7184. }
  7185. while (sectors) {
  7186. /* didn't merge (it all).
  7187. * Need to add a range just before 'hi' */
  7188. if (bb->count >= MD_MAX_BADBLOCKS) {
  7189. /* No room for more */
  7190. rv = 0;
  7191. break;
  7192. } else {
  7193. int this_sectors = sectors;
  7194. memmove(p + hi + 1, p + hi,
  7195. (bb->count - hi) * 8);
  7196. bb->count++;
  7197. if (this_sectors > BB_MAX_LEN)
  7198. this_sectors = BB_MAX_LEN;
  7199. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7200. sectors -= this_sectors;
  7201. s += this_sectors;
  7202. }
  7203. }
  7204. bb->changed = 1;
  7205. if (!acknowledged)
  7206. bb->unacked_exist = 1;
  7207. write_sequnlock_irq(&bb->lock);
  7208. return rv;
  7209. }
  7210. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7211. int is_new)
  7212. {
  7213. int rv;
  7214. if (is_new)
  7215. s += rdev->new_data_offset;
  7216. else
  7217. s += rdev->data_offset;
  7218. rv = md_set_badblocks(&rdev->badblocks,
  7219. s, sectors, 0);
  7220. if (rv) {
  7221. /* Make sure they get written out promptly */
  7222. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7223. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7224. md_wakeup_thread(rdev->mddev->thread);
  7225. }
  7226. return rv;
  7227. }
  7228. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7229. /*
  7230. * Remove a range of bad blocks from the table.
  7231. * This may involve extending the table if we spilt a region,
  7232. * but it must not fail. So if the table becomes full, we just
  7233. * drop the remove request.
  7234. */
  7235. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7236. {
  7237. u64 *p;
  7238. int lo, hi;
  7239. sector_t target = s + sectors;
  7240. int rv = 0;
  7241. if (bb->shift > 0) {
  7242. /* When clearing we round the start up and the end down.
  7243. * This should not matter as the shift should align with
  7244. * the block size and no rounding should ever be needed.
  7245. * However it is better the think a block is bad when it
  7246. * isn't than to think a block is not bad when it is.
  7247. */
  7248. s += (1<<bb->shift) - 1;
  7249. s >>= bb->shift;
  7250. target >>= bb->shift;
  7251. sectors = target - s;
  7252. }
  7253. write_seqlock_irq(&bb->lock);
  7254. p = bb->page;
  7255. lo = 0;
  7256. hi = bb->count;
  7257. /* Find the last range that starts before 'target' */
  7258. while (hi - lo > 1) {
  7259. int mid = (lo + hi) / 2;
  7260. sector_t a = BB_OFFSET(p[mid]);
  7261. if (a < target)
  7262. lo = mid;
  7263. else
  7264. hi = mid;
  7265. }
  7266. if (hi > lo) {
  7267. /* p[lo] is the last range that could overlap the
  7268. * current range. Earlier ranges could also overlap,
  7269. * but only this one can overlap the end of the range.
  7270. */
  7271. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7272. /* Partial overlap, leave the tail of this range */
  7273. int ack = BB_ACK(p[lo]);
  7274. sector_t a = BB_OFFSET(p[lo]);
  7275. sector_t end = a + BB_LEN(p[lo]);
  7276. if (a < s) {
  7277. /* we need to split this range */
  7278. if (bb->count >= MD_MAX_BADBLOCKS) {
  7279. rv = 0;
  7280. goto out;
  7281. }
  7282. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7283. bb->count++;
  7284. p[lo] = BB_MAKE(a, s-a, ack);
  7285. lo++;
  7286. }
  7287. p[lo] = BB_MAKE(target, end - target, ack);
  7288. /* there is no longer an overlap */
  7289. hi = lo;
  7290. lo--;
  7291. }
  7292. while (lo >= 0 &&
  7293. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7294. /* This range does overlap */
  7295. if (BB_OFFSET(p[lo]) < s) {
  7296. /* Keep the early parts of this range. */
  7297. int ack = BB_ACK(p[lo]);
  7298. sector_t start = BB_OFFSET(p[lo]);
  7299. p[lo] = BB_MAKE(start, s - start, ack);
  7300. /* now low doesn't overlap, so.. */
  7301. break;
  7302. }
  7303. lo--;
  7304. }
  7305. /* 'lo' is strictly before, 'hi' is strictly after,
  7306. * anything between needs to be discarded
  7307. */
  7308. if (hi - lo > 1) {
  7309. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7310. bb->count -= (hi - lo - 1);
  7311. }
  7312. }
  7313. bb->changed = 1;
  7314. out:
  7315. write_sequnlock_irq(&bb->lock);
  7316. return rv;
  7317. }
  7318. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7319. int is_new)
  7320. {
  7321. if (is_new)
  7322. s += rdev->new_data_offset;
  7323. else
  7324. s += rdev->data_offset;
  7325. return md_clear_badblocks(&rdev->badblocks,
  7326. s, sectors);
  7327. }
  7328. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7329. /*
  7330. * Acknowledge all bad blocks in a list.
  7331. * This only succeeds if ->changed is clear. It is used by
  7332. * in-kernel metadata updates
  7333. */
  7334. void md_ack_all_badblocks(struct badblocks *bb)
  7335. {
  7336. if (bb->page == NULL || bb->changed)
  7337. /* no point even trying */
  7338. return;
  7339. write_seqlock_irq(&bb->lock);
  7340. if (bb->changed == 0 && bb->unacked_exist) {
  7341. u64 *p = bb->page;
  7342. int i;
  7343. for (i = 0; i < bb->count ; i++) {
  7344. if (!BB_ACK(p[i])) {
  7345. sector_t start = BB_OFFSET(p[i]);
  7346. int len = BB_LEN(p[i]);
  7347. p[i] = BB_MAKE(start, len, 1);
  7348. }
  7349. }
  7350. bb->unacked_exist = 0;
  7351. }
  7352. write_sequnlock_irq(&bb->lock);
  7353. }
  7354. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7355. /* sysfs access to bad-blocks list.
  7356. * We present two files.
  7357. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7358. * are recorded as bad. The list is truncated to fit within
  7359. * the one-page limit of sysfs.
  7360. * Writing "sector length" to this file adds an acknowledged
  7361. * bad block list.
  7362. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7363. * been acknowledged. Writing to this file adds bad blocks
  7364. * without acknowledging them. This is largely for testing.
  7365. */
  7366. static ssize_t
  7367. badblocks_show(struct badblocks *bb, char *page, int unack)
  7368. {
  7369. size_t len;
  7370. int i;
  7371. u64 *p = bb->page;
  7372. unsigned seq;
  7373. if (bb->shift < 0)
  7374. return 0;
  7375. retry:
  7376. seq = read_seqbegin(&bb->lock);
  7377. len = 0;
  7378. i = 0;
  7379. while (len < PAGE_SIZE && i < bb->count) {
  7380. sector_t s = BB_OFFSET(p[i]);
  7381. unsigned int length = BB_LEN(p[i]);
  7382. int ack = BB_ACK(p[i]);
  7383. i++;
  7384. if (unack && ack)
  7385. continue;
  7386. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7387. (unsigned long long)s << bb->shift,
  7388. length << bb->shift);
  7389. }
  7390. if (unack && len == 0)
  7391. bb->unacked_exist = 0;
  7392. if (read_seqretry(&bb->lock, seq))
  7393. goto retry;
  7394. return len;
  7395. }
  7396. #define DO_DEBUG 1
  7397. static ssize_t
  7398. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7399. {
  7400. unsigned long long sector;
  7401. int length;
  7402. char newline;
  7403. #ifdef DO_DEBUG
  7404. /* Allow clearing via sysfs *only* for testing/debugging.
  7405. * Normally only a successful write may clear a badblock
  7406. */
  7407. int clear = 0;
  7408. if (page[0] == '-') {
  7409. clear = 1;
  7410. page++;
  7411. }
  7412. #endif /* DO_DEBUG */
  7413. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7414. case 3:
  7415. if (newline != '\n')
  7416. return -EINVAL;
  7417. case 2:
  7418. if (length <= 0)
  7419. return -EINVAL;
  7420. break;
  7421. default:
  7422. return -EINVAL;
  7423. }
  7424. #ifdef DO_DEBUG
  7425. if (clear) {
  7426. md_clear_badblocks(bb, sector, length);
  7427. return len;
  7428. }
  7429. #endif /* DO_DEBUG */
  7430. if (md_set_badblocks(bb, sector, length, !unack))
  7431. return len;
  7432. else
  7433. return -ENOSPC;
  7434. }
  7435. static int md_notify_reboot(struct notifier_block *this,
  7436. unsigned long code, void *x)
  7437. {
  7438. struct list_head *tmp;
  7439. struct mddev *mddev;
  7440. int need_delay = 0;
  7441. for_each_mddev(mddev, tmp) {
  7442. if (mddev_trylock(mddev)) {
  7443. if (mddev->pers)
  7444. __md_stop_writes(mddev);
  7445. mddev->safemode = 2;
  7446. mddev_unlock(mddev);
  7447. }
  7448. need_delay = 1;
  7449. }
  7450. /*
  7451. * certain more exotic SCSI devices are known to be
  7452. * volatile wrt too early system reboots. While the
  7453. * right place to handle this issue is the given
  7454. * driver, we do want to have a safe RAID driver ...
  7455. */
  7456. if (need_delay)
  7457. mdelay(1000*1);
  7458. return NOTIFY_DONE;
  7459. }
  7460. static struct notifier_block md_notifier = {
  7461. .notifier_call = md_notify_reboot,
  7462. .next = NULL,
  7463. .priority = INT_MAX, /* before any real devices */
  7464. };
  7465. static void md_geninit(void)
  7466. {
  7467. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7468. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7469. }
  7470. static int __init md_init(void)
  7471. {
  7472. int ret = -ENOMEM;
  7473. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7474. if (!md_wq)
  7475. goto err_wq;
  7476. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7477. if (!md_misc_wq)
  7478. goto err_misc_wq;
  7479. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7480. goto err_md;
  7481. if ((ret = register_blkdev(0, "mdp")) < 0)
  7482. goto err_mdp;
  7483. mdp_major = ret;
  7484. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7485. md_probe, NULL, NULL);
  7486. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7487. md_probe, NULL, NULL);
  7488. register_reboot_notifier(&md_notifier);
  7489. raid_table_header = register_sysctl_table(raid_root_table);
  7490. md_geninit();
  7491. return 0;
  7492. err_mdp:
  7493. unregister_blkdev(MD_MAJOR, "md");
  7494. err_md:
  7495. destroy_workqueue(md_misc_wq);
  7496. err_misc_wq:
  7497. destroy_workqueue(md_wq);
  7498. err_wq:
  7499. return ret;
  7500. }
  7501. #ifndef MODULE
  7502. /*
  7503. * Searches all registered partitions for autorun RAID arrays
  7504. * at boot time.
  7505. */
  7506. static LIST_HEAD(all_detected_devices);
  7507. struct detected_devices_node {
  7508. struct list_head list;
  7509. dev_t dev;
  7510. };
  7511. void md_autodetect_dev(dev_t dev)
  7512. {
  7513. struct detected_devices_node *node_detected_dev;
  7514. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7515. if (node_detected_dev) {
  7516. node_detected_dev->dev = dev;
  7517. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7518. } else {
  7519. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7520. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7521. }
  7522. }
  7523. static void autostart_arrays(int part)
  7524. {
  7525. struct md_rdev *rdev;
  7526. struct detected_devices_node *node_detected_dev;
  7527. dev_t dev;
  7528. int i_scanned, i_passed;
  7529. i_scanned = 0;
  7530. i_passed = 0;
  7531. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7532. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7533. i_scanned++;
  7534. node_detected_dev = list_entry(all_detected_devices.next,
  7535. struct detected_devices_node, list);
  7536. list_del(&node_detected_dev->list);
  7537. dev = node_detected_dev->dev;
  7538. kfree(node_detected_dev);
  7539. rdev = md_import_device(dev,0, 90);
  7540. if (IS_ERR(rdev))
  7541. continue;
  7542. if (test_bit(Faulty, &rdev->flags)) {
  7543. MD_BUG();
  7544. continue;
  7545. }
  7546. set_bit(AutoDetected, &rdev->flags);
  7547. list_add(&rdev->same_set, &pending_raid_disks);
  7548. i_passed++;
  7549. }
  7550. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7551. i_scanned, i_passed);
  7552. autorun_devices(part);
  7553. }
  7554. #endif /* !MODULE */
  7555. static __exit void md_exit(void)
  7556. {
  7557. struct mddev *mddev;
  7558. struct list_head *tmp;
  7559. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7560. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7561. unregister_blkdev(MD_MAJOR,"md");
  7562. unregister_blkdev(mdp_major, "mdp");
  7563. unregister_reboot_notifier(&md_notifier);
  7564. unregister_sysctl_table(raid_table_header);
  7565. remove_proc_entry("mdstat", NULL);
  7566. for_each_mddev(mddev, tmp) {
  7567. export_array(mddev);
  7568. mddev->hold_active = 0;
  7569. }
  7570. destroy_workqueue(md_misc_wq);
  7571. destroy_workqueue(md_wq);
  7572. }
  7573. subsys_initcall(md_init);
  7574. module_exit(md_exit)
  7575. static int get_ro(char *buffer, struct kernel_param *kp)
  7576. {
  7577. return sprintf(buffer, "%d", start_readonly);
  7578. }
  7579. static int set_ro(const char *val, struct kernel_param *kp)
  7580. {
  7581. char *e;
  7582. int num = simple_strtoul(val, &e, 10);
  7583. if (*val && (*e == '\0' || *e == '\n')) {
  7584. start_readonly = num;
  7585. return 0;
  7586. }
  7587. return -EINVAL;
  7588. }
  7589. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7590. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7591. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7592. EXPORT_SYMBOL(register_md_personality);
  7593. EXPORT_SYMBOL(unregister_md_personality);
  7594. EXPORT_SYMBOL(md_error);
  7595. EXPORT_SYMBOL(md_done_sync);
  7596. EXPORT_SYMBOL(md_write_start);
  7597. EXPORT_SYMBOL(md_write_end);
  7598. EXPORT_SYMBOL(md_register_thread);
  7599. EXPORT_SYMBOL(md_unregister_thread);
  7600. EXPORT_SYMBOL(md_wakeup_thread);
  7601. EXPORT_SYMBOL(md_check_recovery);
  7602. MODULE_LICENSE("GPL");
  7603. MODULE_DESCRIPTION("MD RAID framework");
  7604. MODULE_ALIAS("md");
  7605. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);