dm-crypt.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905
  1. /*
  2. * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
  3. * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
  4. * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
  5. *
  6. * This file is released under the GPL.
  7. */
  8. #include <linux/completion.h>
  9. #include <linux/err.h>
  10. #include <linux/module.h>
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/mempool.h>
  16. #include <linux/slab.h>
  17. #include <linux/crypto.h>
  18. #include <linux/workqueue.h>
  19. #include <linux/backing-dev.h>
  20. #include <linux/percpu.h>
  21. #include <linux/atomic.h>
  22. #include <linux/scatterlist.h>
  23. #include <asm/page.h>
  24. #include <asm/unaligned.h>
  25. #include <crypto/hash.h>
  26. #include <crypto/md5.h>
  27. #include <crypto/algapi.h>
  28. #include <linux/device-mapper.h>
  29. #define DM_MSG_PREFIX "crypt"
  30. /*
  31. * context holding the current state of a multi-part conversion
  32. */
  33. struct convert_context {
  34. struct completion restart;
  35. struct bio *bio_in;
  36. struct bio *bio_out;
  37. unsigned int offset_in;
  38. unsigned int offset_out;
  39. unsigned int idx_in;
  40. unsigned int idx_out;
  41. sector_t cc_sector;
  42. atomic_t cc_pending;
  43. };
  44. /*
  45. * per bio private data
  46. */
  47. struct dm_crypt_io {
  48. struct crypt_config *cc;
  49. struct bio *base_bio;
  50. struct work_struct work;
  51. struct convert_context ctx;
  52. atomic_t io_pending;
  53. int error;
  54. sector_t sector;
  55. struct dm_crypt_io *base_io;
  56. };
  57. struct dm_crypt_request {
  58. struct convert_context *ctx;
  59. struct scatterlist sg_in;
  60. struct scatterlist sg_out;
  61. sector_t iv_sector;
  62. };
  63. struct crypt_config;
  64. struct crypt_iv_operations {
  65. int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  66. const char *opts);
  67. void (*dtr)(struct crypt_config *cc);
  68. int (*init)(struct crypt_config *cc);
  69. int (*wipe)(struct crypt_config *cc);
  70. int (*generator)(struct crypt_config *cc, u8 *iv,
  71. struct dm_crypt_request *dmreq);
  72. int (*post)(struct crypt_config *cc, u8 *iv,
  73. struct dm_crypt_request *dmreq);
  74. };
  75. struct iv_essiv_private {
  76. struct crypto_hash *hash_tfm;
  77. u8 *salt;
  78. };
  79. struct iv_benbi_private {
  80. int shift;
  81. };
  82. #define LMK_SEED_SIZE 64 /* hash + 0 */
  83. struct iv_lmk_private {
  84. struct crypto_shash *hash_tfm;
  85. u8 *seed;
  86. };
  87. /*
  88. * Crypt: maps a linear range of a block device
  89. * and encrypts / decrypts at the same time.
  90. */
  91. enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
  92. /*
  93. * Duplicated per-CPU state for cipher.
  94. */
  95. struct crypt_cpu {
  96. struct ablkcipher_request *req;
  97. };
  98. /*
  99. * The fields in here must be read only after initialization,
  100. * changing state should be in crypt_cpu.
  101. */
  102. struct crypt_config {
  103. struct dm_dev *dev;
  104. sector_t start;
  105. /*
  106. * pool for per bio private data, crypto requests and
  107. * encryption requeusts/buffer pages
  108. */
  109. mempool_t *io_pool;
  110. mempool_t *req_pool;
  111. mempool_t *page_pool;
  112. struct bio_set *bs;
  113. struct workqueue_struct *io_queue;
  114. struct workqueue_struct *crypt_queue;
  115. char *cipher;
  116. char *cipher_string;
  117. struct crypt_iv_operations *iv_gen_ops;
  118. union {
  119. struct iv_essiv_private essiv;
  120. struct iv_benbi_private benbi;
  121. struct iv_lmk_private lmk;
  122. } iv_gen_private;
  123. sector_t iv_offset;
  124. unsigned int iv_size;
  125. /*
  126. * Duplicated per cpu state. Access through
  127. * per_cpu_ptr() only.
  128. */
  129. struct crypt_cpu __percpu *cpu;
  130. /* ESSIV: struct crypto_cipher *essiv_tfm */
  131. void *iv_private;
  132. struct crypto_ablkcipher **tfms;
  133. unsigned tfms_count;
  134. /*
  135. * Layout of each crypto request:
  136. *
  137. * struct ablkcipher_request
  138. * context
  139. * padding
  140. * struct dm_crypt_request
  141. * padding
  142. * IV
  143. *
  144. * The padding is added so that dm_crypt_request and the IV are
  145. * correctly aligned.
  146. */
  147. unsigned int dmreq_start;
  148. unsigned long flags;
  149. unsigned int key_size;
  150. unsigned int key_parts;
  151. u8 key[0];
  152. };
  153. #define MIN_IOS 16
  154. #define MIN_POOL_PAGES 32
  155. static struct kmem_cache *_crypt_io_pool;
  156. static void clone_init(struct dm_crypt_io *, struct bio *);
  157. static void kcryptd_queue_crypt(struct dm_crypt_io *io);
  158. static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
  159. static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
  160. {
  161. return this_cpu_ptr(cc->cpu);
  162. }
  163. /*
  164. * Use this to access cipher attributes that are the same for each CPU.
  165. */
  166. static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
  167. {
  168. return cc->tfms[0];
  169. }
  170. /*
  171. * Different IV generation algorithms:
  172. *
  173. * plain: the initial vector is the 32-bit little-endian version of the sector
  174. * number, padded with zeros if necessary.
  175. *
  176. * plain64: the initial vector is the 64-bit little-endian version of the sector
  177. * number, padded with zeros if necessary.
  178. *
  179. * essiv: "encrypted sector|salt initial vector", the sector number is
  180. * encrypted with the bulk cipher using a salt as key. The salt
  181. * should be derived from the bulk cipher's key via hashing.
  182. *
  183. * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
  184. * (needed for LRW-32-AES and possible other narrow block modes)
  185. *
  186. * null: the initial vector is always zero. Provides compatibility with
  187. * obsolete loop_fish2 devices. Do not use for new devices.
  188. *
  189. * lmk: Compatible implementation of the block chaining mode used
  190. * by the Loop-AES block device encryption system
  191. * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
  192. * It operates on full 512 byte sectors and uses CBC
  193. * with an IV derived from the sector number, the data and
  194. * optionally extra IV seed.
  195. * This means that after decryption the first block
  196. * of sector must be tweaked according to decrypted data.
  197. * Loop-AES can use three encryption schemes:
  198. * version 1: is plain aes-cbc mode
  199. * version 2: uses 64 multikey scheme with lmk IV generator
  200. * version 3: the same as version 2 with additional IV seed
  201. * (it uses 65 keys, last key is used as IV seed)
  202. *
  203. * plumb: unimplemented, see:
  204. * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
  205. */
  206. static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
  207. struct dm_crypt_request *dmreq)
  208. {
  209. memset(iv, 0, cc->iv_size);
  210. *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
  211. return 0;
  212. }
  213. static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
  214. struct dm_crypt_request *dmreq)
  215. {
  216. memset(iv, 0, cc->iv_size);
  217. *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
  218. return 0;
  219. }
  220. /* Initialise ESSIV - compute salt but no local memory allocations */
  221. static int crypt_iv_essiv_init(struct crypt_config *cc)
  222. {
  223. struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
  224. struct hash_desc desc;
  225. struct scatterlist sg;
  226. struct crypto_cipher *essiv_tfm;
  227. int err;
  228. sg_init_one(&sg, cc->key, cc->key_size);
  229. desc.tfm = essiv->hash_tfm;
  230. desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
  231. err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
  232. if (err)
  233. return err;
  234. essiv_tfm = cc->iv_private;
  235. err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
  236. crypto_hash_digestsize(essiv->hash_tfm));
  237. if (err)
  238. return err;
  239. return 0;
  240. }
  241. /* Wipe salt and reset key derived from volume key */
  242. static int crypt_iv_essiv_wipe(struct crypt_config *cc)
  243. {
  244. struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
  245. unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
  246. struct crypto_cipher *essiv_tfm;
  247. int r, err = 0;
  248. memset(essiv->salt, 0, salt_size);
  249. essiv_tfm = cc->iv_private;
  250. r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
  251. if (r)
  252. err = r;
  253. return err;
  254. }
  255. /* Set up per cpu cipher state */
  256. static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
  257. struct dm_target *ti,
  258. u8 *salt, unsigned saltsize)
  259. {
  260. struct crypto_cipher *essiv_tfm;
  261. int err;
  262. /* Setup the essiv_tfm with the given salt */
  263. essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
  264. if (IS_ERR(essiv_tfm)) {
  265. ti->error = "Error allocating crypto tfm for ESSIV";
  266. return essiv_tfm;
  267. }
  268. if (crypto_cipher_blocksize(essiv_tfm) !=
  269. crypto_ablkcipher_ivsize(any_tfm(cc))) {
  270. ti->error = "Block size of ESSIV cipher does "
  271. "not match IV size of block cipher";
  272. crypto_free_cipher(essiv_tfm);
  273. return ERR_PTR(-EINVAL);
  274. }
  275. err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
  276. if (err) {
  277. ti->error = "Failed to set key for ESSIV cipher";
  278. crypto_free_cipher(essiv_tfm);
  279. return ERR_PTR(err);
  280. }
  281. return essiv_tfm;
  282. }
  283. static void crypt_iv_essiv_dtr(struct crypt_config *cc)
  284. {
  285. struct crypto_cipher *essiv_tfm;
  286. struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
  287. crypto_free_hash(essiv->hash_tfm);
  288. essiv->hash_tfm = NULL;
  289. kzfree(essiv->salt);
  290. essiv->salt = NULL;
  291. essiv_tfm = cc->iv_private;
  292. if (essiv_tfm)
  293. crypto_free_cipher(essiv_tfm);
  294. cc->iv_private = NULL;
  295. }
  296. static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
  297. const char *opts)
  298. {
  299. struct crypto_cipher *essiv_tfm = NULL;
  300. struct crypto_hash *hash_tfm = NULL;
  301. u8 *salt = NULL;
  302. int err;
  303. if (!opts) {
  304. ti->error = "Digest algorithm missing for ESSIV mode";
  305. return -EINVAL;
  306. }
  307. /* Allocate hash algorithm */
  308. hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
  309. if (IS_ERR(hash_tfm)) {
  310. ti->error = "Error initializing ESSIV hash";
  311. err = PTR_ERR(hash_tfm);
  312. goto bad;
  313. }
  314. salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
  315. if (!salt) {
  316. ti->error = "Error kmallocing salt storage in ESSIV";
  317. err = -ENOMEM;
  318. goto bad;
  319. }
  320. cc->iv_gen_private.essiv.salt = salt;
  321. cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
  322. essiv_tfm = setup_essiv_cpu(cc, ti, salt,
  323. crypto_hash_digestsize(hash_tfm));
  324. if (IS_ERR(essiv_tfm)) {
  325. crypt_iv_essiv_dtr(cc);
  326. return PTR_ERR(essiv_tfm);
  327. }
  328. cc->iv_private = essiv_tfm;
  329. return 0;
  330. bad:
  331. if (hash_tfm && !IS_ERR(hash_tfm))
  332. crypto_free_hash(hash_tfm);
  333. kfree(salt);
  334. return err;
  335. }
  336. static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
  337. struct dm_crypt_request *dmreq)
  338. {
  339. struct crypto_cipher *essiv_tfm = cc->iv_private;
  340. memset(iv, 0, cc->iv_size);
  341. *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
  342. crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
  343. return 0;
  344. }
  345. static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
  346. const char *opts)
  347. {
  348. unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
  349. int log = ilog2(bs);
  350. /* we need to calculate how far we must shift the sector count
  351. * to get the cipher block count, we use this shift in _gen */
  352. if (1 << log != bs) {
  353. ti->error = "cypher blocksize is not a power of 2";
  354. return -EINVAL;
  355. }
  356. if (log > 9) {
  357. ti->error = "cypher blocksize is > 512";
  358. return -EINVAL;
  359. }
  360. cc->iv_gen_private.benbi.shift = 9 - log;
  361. return 0;
  362. }
  363. static void crypt_iv_benbi_dtr(struct crypt_config *cc)
  364. {
  365. }
  366. static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
  367. struct dm_crypt_request *dmreq)
  368. {
  369. __be64 val;
  370. memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
  371. val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
  372. put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
  373. return 0;
  374. }
  375. static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
  376. struct dm_crypt_request *dmreq)
  377. {
  378. memset(iv, 0, cc->iv_size);
  379. return 0;
  380. }
  381. static void crypt_iv_lmk_dtr(struct crypt_config *cc)
  382. {
  383. struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
  384. if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
  385. crypto_free_shash(lmk->hash_tfm);
  386. lmk->hash_tfm = NULL;
  387. kzfree(lmk->seed);
  388. lmk->seed = NULL;
  389. }
  390. static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
  391. const char *opts)
  392. {
  393. struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
  394. lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
  395. if (IS_ERR(lmk->hash_tfm)) {
  396. ti->error = "Error initializing LMK hash";
  397. return PTR_ERR(lmk->hash_tfm);
  398. }
  399. /* No seed in LMK version 2 */
  400. if (cc->key_parts == cc->tfms_count) {
  401. lmk->seed = NULL;
  402. return 0;
  403. }
  404. lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
  405. if (!lmk->seed) {
  406. crypt_iv_lmk_dtr(cc);
  407. ti->error = "Error kmallocing seed storage in LMK";
  408. return -ENOMEM;
  409. }
  410. return 0;
  411. }
  412. static int crypt_iv_lmk_init(struct crypt_config *cc)
  413. {
  414. struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
  415. int subkey_size = cc->key_size / cc->key_parts;
  416. /* LMK seed is on the position of LMK_KEYS + 1 key */
  417. if (lmk->seed)
  418. memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
  419. crypto_shash_digestsize(lmk->hash_tfm));
  420. return 0;
  421. }
  422. static int crypt_iv_lmk_wipe(struct crypt_config *cc)
  423. {
  424. struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
  425. if (lmk->seed)
  426. memset(lmk->seed, 0, LMK_SEED_SIZE);
  427. return 0;
  428. }
  429. static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
  430. struct dm_crypt_request *dmreq,
  431. u8 *data)
  432. {
  433. struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
  434. struct {
  435. struct shash_desc desc;
  436. char ctx[crypto_shash_descsize(lmk->hash_tfm)];
  437. } sdesc;
  438. struct md5_state md5state;
  439. u32 buf[4];
  440. int i, r;
  441. sdesc.desc.tfm = lmk->hash_tfm;
  442. sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
  443. r = crypto_shash_init(&sdesc.desc);
  444. if (r)
  445. return r;
  446. if (lmk->seed) {
  447. r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
  448. if (r)
  449. return r;
  450. }
  451. /* Sector is always 512B, block size 16, add data of blocks 1-31 */
  452. r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
  453. if (r)
  454. return r;
  455. /* Sector is cropped to 56 bits here */
  456. buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
  457. buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
  458. buf[2] = cpu_to_le32(4024);
  459. buf[3] = 0;
  460. r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
  461. if (r)
  462. return r;
  463. /* No MD5 padding here */
  464. r = crypto_shash_export(&sdesc.desc, &md5state);
  465. if (r)
  466. return r;
  467. for (i = 0; i < MD5_HASH_WORDS; i++)
  468. __cpu_to_le32s(&md5state.hash[i]);
  469. memcpy(iv, &md5state.hash, cc->iv_size);
  470. return 0;
  471. }
  472. static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
  473. struct dm_crypt_request *dmreq)
  474. {
  475. u8 *src;
  476. int r = 0;
  477. if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
  478. src = kmap_atomic(sg_page(&dmreq->sg_in));
  479. r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
  480. kunmap_atomic(src);
  481. } else
  482. memset(iv, 0, cc->iv_size);
  483. return r;
  484. }
  485. static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
  486. struct dm_crypt_request *dmreq)
  487. {
  488. u8 *dst;
  489. int r;
  490. if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
  491. return 0;
  492. dst = kmap_atomic(sg_page(&dmreq->sg_out));
  493. r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
  494. /* Tweak the first block of plaintext sector */
  495. if (!r)
  496. crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
  497. kunmap_atomic(dst);
  498. return r;
  499. }
  500. static struct crypt_iv_operations crypt_iv_plain_ops = {
  501. .generator = crypt_iv_plain_gen
  502. };
  503. static struct crypt_iv_operations crypt_iv_plain64_ops = {
  504. .generator = crypt_iv_plain64_gen
  505. };
  506. static struct crypt_iv_operations crypt_iv_essiv_ops = {
  507. .ctr = crypt_iv_essiv_ctr,
  508. .dtr = crypt_iv_essiv_dtr,
  509. .init = crypt_iv_essiv_init,
  510. .wipe = crypt_iv_essiv_wipe,
  511. .generator = crypt_iv_essiv_gen
  512. };
  513. static struct crypt_iv_operations crypt_iv_benbi_ops = {
  514. .ctr = crypt_iv_benbi_ctr,
  515. .dtr = crypt_iv_benbi_dtr,
  516. .generator = crypt_iv_benbi_gen
  517. };
  518. static struct crypt_iv_operations crypt_iv_null_ops = {
  519. .generator = crypt_iv_null_gen
  520. };
  521. static struct crypt_iv_operations crypt_iv_lmk_ops = {
  522. .ctr = crypt_iv_lmk_ctr,
  523. .dtr = crypt_iv_lmk_dtr,
  524. .init = crypt_iv_lmk_init,
  525. .wipe = crypt_iv_lmk_wipe,
  526. .generator = crypt_iv_lmk_gen,
  527. .post = crypt_iv_lmk_post
  528. };
  529. static void crypt_convert_init(struct crypt_config *cc,
  530. struct convert_context *ctx,
  531. struct bio *bio_out, struct bio *bio_in,
  532. sector_t sector)
  533. {
  534. ctx->bio_in = bio_in;
  535. ctx->bio_out = bio_out;
  536. ctx->offset_in = 0;
  537. ctx->offset_out = 0;
  538. ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
  539. ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
  540. ctx->cc_sector = sector + cc->iv_offset;
  541. init_completion(&ctx->restart);
  542. }
  543. static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
  544. struct ablkcipher_request *req)
  545. {
  546. return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
  547. }
  548. static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
  549. struct dm_crypt_request *dmreq)
  550. {
  551. return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
  552. }
  553. static u8 *iv_of_dmreq(struct crypt_config *cc,
  554. struct dm_crypt_request *dmreq)
  555. {
  556. return (u8 *)ALIGN((unsigned long)(dmreq + 1),
  557. crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
  558. }
  559. static int crypt_convert_block(struct crypt_config *cc,
  560. struct convert_context *ctx,
  561. struct ablkcipher_request *req)
  562. {
  563. struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
  564. struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
  565. struct dm_crypt_request *dmreq;
  566. u8 *iv;
  567. int r;
  568. dmreq = dmreq_of_req(cc, req);
  569. iv = iv_of_dmreq(cc, dmreq);
  570. dmreq->iv_sector = ctx->cc_sector;
  571. dmreq->ctx = ctx;
  572. sg_init_table(&dmreq->sg_in, 1);
  573. sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
  574. bv_in->bv_offset + ctx->offset_in);
  575. sg_init_table(&dmreq->sg_out, 1);
  576. sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
  577. bv_out->bv_offset + ctx->offset_out);
  578. ctx->offset_in += 1 << SECTOR_SHIFT;
  579. if (ctx->offset_in >= bv_in->bv_len) {
  580. ctx->offset_in = 0;
  581. ctx->idx_in++;
  582. }
  583. ctx->offset_out += 1 << SECTOR_SHIFT;
  584. if (ctx->offset_out >= bv_out->bv_len) {
  585. ctx->offset_out = 0;
  586. ctx->idx_out++;
  587. }
  588. if (cc->iv_gen_ops) {
  589. r = cc->iv_gen_ops->generator(cc, iv, dmreq);
  590. if (r < 0)
  591. return r;
  592. }
  593. ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
  594. 1 << SECTOR_SHIFT, iv);
  595. if (bio_data_dir(ctx->bio_in) == WRITE)
  596. r = crypto_ablkcipher_encrypt(req);
  597. else
  598. r = crypto_ablkcipher_decrypt(req);
  599. if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
  600. r = cc->iv_gen_ops->post(cc, iv, dmreq);
  601. return r;
  602. }
  603. static void kcryptd_async_done(struct crypto_async_request *async_req,
  604. int error);
  605. static void crypt_alloc_req(struct crypt_config *cc,
  606. struct convert_context *ctx)
  607. {
  608. struct crypt_cpu *this_cc = this_crypt_config(cc);
  609. unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
  610. if (!this_cc->req)
  611. this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
  612. ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]);
  613. ablkcipher_request_set_callback(this_cc->req,
  614. CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
  615. kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
  616. }
  617. /*
  618. * Encrypt / decrypt data from one bio to another one (can be the same one)
  619. */
  620. static int crypt_convert(struct crypt_config *cc,
  621. struct convert_context *ctx)
  622. {
  623. struct crypt_cpu *this_cc = this_crypt_config(cc);
  624. int r;
  625. atomic_set(&ctx->cc_pending, 1);
  626. while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
  627. ctx->idx_out < ctx->bio_out->bi_vcnt) {
  628. crypt_alloc_req(cc, ctx);
  629. atomic_inc(&ctx->cc_pending);
  630. r = crypt_convert_block(cc, ctx, this_cc->req);
  631. switch (r) {
  632. /* async */
  633. case -EBUSY:
  634. wait_for_completion(&ctx->restart);
  635. INIT_COMPLETION(ctx->restart);
  636. /* fall through*/
  637. case -EINPROGRESS:
  638. this_cc->req = NULL;
  639. ctx->cc_sector++;
  640. continue;
  641. /* sync */
  642. case 0:
  643. atomic_dec(&ctx->cc_pending);
  644. ctx->cc_sector++;
  645. cond_resched();
  646. continue;
  647. /* error */
  648. default:
  649. atomic_dec(&ctx->cc_pending);
  650. return r;
  651. }
  652. }
  653. return 0;
  654. }
  655. static void dm_crypt_bio_destructor(struct bio *bio)
  656. {
  657. struct dm_crypt_io *io = bio->bi_private;
  658. struct crypt_config *cc = io->cc;
  659. bio_free(bio, cc->bs);
  660. }
  661. /*
  662. * Generate a new unfragmented bio with the given size
  663. * This should never violate the device limitations
  664. * May return a smaller bio when running out of pages, indicated by
  665. * *out_of_pages set to 1.
  666. */
  667. static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
  668. unsigned *out_of_pages)
  669. {
  670. struct crypt_config *cc = io->cc;
  671. struct bio *clone;
  672. unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  673. gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
  674. unsigned i, len;
  675. struct page *page;
  676. clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
  677. if (!clone)
  678. return NULL;
  679. clone_init(io, clone);
  680. *out_of_pages = 0;
  681. for (i = 0; i < nr_iovecs; i++) {
  682. page = mempool_alloc(cc->page_pool, gfp_mask);
  683. if (!page) {
  684. *out_of_pages = 1;
  685. break;
  686. }
  687. /*
  688. * If additional pages cannot be allocated without waiting,
  689. * return a partially-allocated bio. The caller will then try
  690. * to allocate more bios while submitting this partial bio.
  691. */
  692. gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
  693. len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
  694. if (!bio_add_page(clone, page, len, 0)) {
  695. mempool_free(page, cc->page_pool);
  696. break;
  697. }
  698. size -= len;
  699. }
  700. if (!clone->bi_size) {
  701. bio_put(clone);
  702. return NULL;
  703. }
  704. return clone;
  705. }
  706. static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
  707. {
  708. unsigned int i;
  709. struct bio_vec *bv;
  710. for (i = 0; i < clone->bi_vcnt; i++) {
  711. bv = bio_iovec_idx(clone, i);
  712. BUG_ON(!bv->bv_page);
  713. mempool_free(bv->bv_page, cc->page_pool);
  714. bv->bv_page = NULL;
  715. }
  716. }
  717. static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
  718. struct bio *bio, sector_t sector)
  719. {
  720. struct dm_crypt_io *io;
  721. io = mempool_alloc(cc->io_pool, GFP_NOIO);
  722. io->cc = cc;
  723. io->base_bio = bio;
  724. io->sector = sector;
  725. io->error = 0;
  726. io->base_io = NULL;
  727. atomic_set(&io->io_pending, 0);
  728. return io;
  729. }
  730. static void crypt_inc_pending(struct dm_crypt_io *io)
  731. {
  732. atomic_inc(&io->io_pending);
  733. }
  734. /*
  735. * One of the bios was finished. Check for completion of
  736. * the whole request and correctly clean up the buffer.
  737. * If base_io is set, wait for the last fragment to complete.
  738. */
  739. static void crypt_dec_pending(struct dm_crypt_io *io)
  740. {
  741. struct crypt_config *cc = io->cc;
  742. struct bio *base_bio = io->base_bio;
  743. struct dm_crypt_io *base_io = io->base_io;
  744. int error = io->error;
  745. if (!atomic_dec_and_test(&io->io_pending))
  746. return;
  747. mempool_free(io, cc->io_pool);
  748. if (likely(!base_io))
  749. bio_endio(base_bio, error);
  750. else {
  751. if (error && !base_io->error)
  752. base_io->error = error;
  753. crypt_dec_pending(base_io);
  754. }
  755. }
  756. /*
  757. * kcryptd/kcryptd_io:
  758. *
  759. * Needed because it would be very unwise to do decryption in an
  760. * interrupt context.
  761. *
  762. * kcryptd performs the actual encryption or decryption.
  763. *
  764. * kcryptd_io performs the IO submission.
  765. *
  766. * They must be separated as otherwise the final stages could be
  767. * starved by new requests which can block in the first stages due
  768. * to memory allocation.
  769. *
  770. * The work is done per CPU global for all dm-crypt instances.
  771. * They should not depend on each other and do not block.
  772. */
  773. static void crypt_endio(struct bio *clone, int error)
  774. {
  775. struct dm_crypt_io *io = clone->bi_private;
  776. struct crypt_config *cc = io->cc;
  777. unsigned rw = bio_data_dir(clone);
  778. if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
  779. error = -EIO;
  780. /*
  781. * free the processed pages
  782. */
  783. if (rw == WRITE)
  784. crypt_free_buffer_pages(cc, clone);
  785. bio_put(clone);
  786. if (rw == READ && !error) {
  787. kcryptd_queue_crypt(io);
  788. return;
  789. }
  790. if (unlikely(error))
  791. io->error = error;
  792. crypt_dec_pending(io);
  793. }
  794. static void clone_init(struct dm_crypt_io *io, struct bio *clone)
  795. {
  796. struct crypt_config *cc = io->cc;
  797. clone->bi_private = io;
  798. clone->bi_end_io = crypt_endio;
  799. clone->bi_bdev = cc->dev->bdev;
  800. clone->bi_rw = io->base_bio->bi_rw;
  801. clone->bi_destructor = dm_crypt_bio_destructor;
  802. }
  803. static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
  804. {
  805. struct crypt_config *cc = io->cc;
  806. struct bio *base_bio = io->base_bio;
  807. struct bio *clone;
  808. /*
  809. * The block layer might modify the bvec array, so always
  810. * copy the required bvecs because we need the original
  811. * one in order to decrypt the whole bio data *afterwards*.
  812. */
  813. clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
  814. if (!clone)
  815. return 1;
  816. crypt_inc_pending(io);
  817. clone_init(io, clone);
  818. clone->bi_idx = 0;
  819. clone->bi_vcnt = bio_segments(base_bio);
  820. clone->bi_size = base_bio->bi_size;
  821. clone->bi_sector = cc->start + io->sector;
  822. memcpy(clone->bi_io_vec, bio_iovec(base_bio),
  823. sizeof(struct bio_vec) * clone->bi_vcnt);
  824. generic_make_request(clone);
  825. return 0;
  826. }
  827. static void kcryptd_io_write(struct dm_crypt_io *io)
  828. {
  829. struct bio *clone = io->ctx.bio_out;
  830. generic_make_request(clone);
  831. }
  832. static void kcryptd_io(struct work_struct *work)
  833. {
  834. struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
  835. if (bio_data_dir(io->base_bio) == READ) {
  836. crypt_inc_pending(io);
  837. if (kcryptd_io_read(io, GFP_NOIO))
  838. io->error = -ENOMEM;
  839. crypt_dec_pending(io);
  840. } else
  841. kcryptd_io_write(io);
  842. }
  843. static void kcryptd_queue_io(struct dm_crypt_io *io)
  844. {
  845. struct crypt_config *cc = io->cc;
  846. INIT_WORK(&io->work, kcryptd_io);
  847. queue_work(cc->io_queue, &io->work);
  848. }
  849. static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
  850. {
  851. struct bio *clone = io->ctx.bio_out;
  852. struct crypt_config *cc = io->cc;
  853. if (unlikely(io->error < 0)) {
  854. crypt_free_buffer_pages(cc, clone);
  855. bio_put(clone);
  856. crypt_dec_pending(io);
  857. return;
  858. }
  859. /* crypt_convert should have filled the clone bio */
  860. BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
  861. clone->bi_sector = cc->start + io->sector;
  862. if (async)
  863. kcryptd_queue_io(io);
  864. else
  865. generic_make_request(clone);
  866. }
  867. static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
  868. {
  869. struct crypt_config *cc = io->cc;
  870. struct bio *clone;
  871. struct dm_crypt_io *new_io;
  872. int crypt_finished;
  873. unsigned out_of_pages = 0;
  874. unsigned remaining = io->base_bio->bi_size;
  875. sector_t sector = io->sector;
  876. int r;
  877. /*
  878. * Prevent io from disappearing until this function completes.
  879. */
  880. crypt_inc_pending(io);
  881. crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
  882. /*
  883. * The allocated buffers can be smaller than the whole bio,
  884. * so repeat the whole process until all the data can be handled.
  885. */
  886. while (remaining) {
  887. clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
  888. if (unlikely(!clone)) {
  889. io->error = -ENOMEM;
  890. break;
  891. }
  892. io->ctx.bio_out = clone;
  893. io->ctx.idx_out = 0;
  894. remaining -= clone->bi_size;
  895. sector += bio_sectors(clone);
  896. crypt_inc_pending(io);
  897. r = crypt_convert(cc, &io->ctx);
  898. if (r < 0)
  899. io->error = -EIO;
  900. crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
  901. /* Encryption was already finished, submit io now */
  902. if (crypt_finished) {
  903. kcryptd_crypt_write_io_submit(io, 0);
  904. /*
  905. * If there was an error, do not try next fragments.
  906. * For async, error is processed in async handler.
  907. */
  908. if (unlikely(r < 0))
  909. break;
  910. io->sector = sector;
  911. }
  912. /*
  913. * Out of memory -> run queues
  914. * But don't wait if split was due to the io size restriction
  915. */
  916. if (unlikely(out_of_pages))
  917. congestion_wait(BLK_RW_ASYNC, HZ/100);
  918. /*
  919. * With async crypto it is unsafe to share the crypto context
  920. * between fragments, so switch to a new dm_crypt_io structure.
  921. */
  922. if (unlikely(!crypt_finished && remaining)) {
  923. new_io = crypt_io_alloc(io->cc, io->base_bio,
  924. sector);
  925. crypt_inc_pending(new_io);
  926. crypt_convert_init(cc, &new_io->ctx, NULL,
  927. io->base_bio, sector);
  928. new_io->ctx.idx_in = io->ctx.idx_in;
  929. new_io->ctx.offset_in = io->ctx.offset_in;
  930. /*
  931. * Fragments after the first use the base_io
  932. * pending count.
  933. */
  934. if (!io->base_io)
  935. new_io->base_io = io;
  936. else {
  937. new_io->base_io = io->base_io;
  938. crypt_inc_pending(io->base_io);
  939. crypt_dec_pending(io);
  940. }
  941. io = new_io;
  942. }
  943. }
  944. crypt_dec_pending(io);
  945. }
  946. static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
  947. {
  948. crypt_dec_pending(io);
  949. }
  950. static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
  951. {
  952. struct crypt_config *cc = io->cc;
  953. int r = 0;
  954. crypt_inc_pending(io);
  955. crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
  956. io->sector);
  957. r = crypt_convert(cc, &io->ctx);
  958. if (r < 0)
  959. io->error = -EIO;
  960. if (atomic_dec_and_test(&io->ctx.cc_pending))
  961. kcryptd_crypt_read_done(io);
  962. crypt_dec_pending(io);
  963. }
  964. static void kcryptd_async_done(struct crypto_async_request *async_req,
  965. int error)
  966. {
  967. struct dm_crypt_request *dmreq = async_req->data;
  968. struct convert_context *ctx = dmreq->ctx;
  969. struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
  970. struct crypt_config *cc = io->cc;
  971. if (error == -EINPROGRESS) {
  972. complete(&ctx->restart);
  973. return;
  974. }
  975. if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
  976. error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
  977. if (error < 0)
  978. io->error = -EIO;
  979. mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
  980. if (!atomic_dec_and_test(&ctx->cc_pending))
  981. return;
  982. if (bio_data_dir(io->base_bio) == READ)
  983. kcryptd_crypt_read_done(io);
  984. else
  985. kcryptd_crypt_write_io_submit(io, 1);
  986. }
  987. static void kcryptd_crypt(struct work_struct *work)
  988. {
  989. struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
  990. if (bio_data_dir(io->base_bio) == READ)
  991. kcryptd_crypt_read_convert(io);
  992. else
  993. kcryptd_crypt_write_convert(io);
  994. }
  995. static void kcryptd_queue_crypt(struct dm_crypt_io *io)
  996. {
  997. struct crypt_config *cc = io->cc;
  998. INIT_WORK(&io->work, kcryptd_crypt);
  999. queue_work(cc->crypt_queue, &io->work);
  1000. }
  1001. /*
  1002. * Decode key from its hex representation
  1003. */
  1004. static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
  1005. {
  1006. char buffer[3];
  1007. unsigned int i;
  1008. buffer[2] = '\0';
  1009. for (i = 0; i < size; i++) {
  1010. buffer[0] = *hex++;
  1011. buffer[1] = *hex++;
  1012. if (kstrtou8(buffer, 16, &key[i]))
  1013. return -EINVAL;
  1014. }
  1015. if (*hex != '\0')
  1016. return -EINVAL;
  1017. return 0;
  1018. }
  1019. /*
  1020. * Encode key into its hex representation
  1021. */
  1022. static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
  1023. {
  1024. unsigned int i;
  1025. for (i = 0; i < size; i++) {
  1026. sprintf(hex, "%02x", *key);
  1027. hex += 2;
  1028. key++;
  1029. }
  1030. }
  1031. static void crypt_free_tfms(struct crypt_config *cc)
  1032. {
  1033. unsigned i;
  1034. if (!cc->tfms)
  1035. return;
  1036. for (i = 0; i < cc->tfms_count; i++)
  1037. if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
  1038. crypto_free_ablkcipher(cc->tfms[i]);
  1039. cc->tfms[i] = NULL;
  1040. }
  1041. kfree(cc->tfms);
  1042. cc->tfms = NULL;
  1043. }
  1044. static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
  1045. {
  1046. unsigned i;
  1047. int err;
  1048. cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
  1049. GFP_KERNEL);
  1050. if (!cc->tfms)
  1051. return -ENOMEM;
  1052. for (i = 0; i < cc->tfms_count; i++) {
  1053. cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
  1054. if (IS_ERR(cc->tfms[i])) {
  1055. err = PTR_ERR(cc->tfms[i]);
  1056. crypt_free_tfms(cc);
  1057. return err;
  1058. }
  1059. }
  1060. return 0;
  1061. }
  1062. static int crypt_setkey_allcpus(struct crypt_config *cc)
  1063. {
  1064. unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
  1065. int err = 0, i, r;
  1066. for (i = 0; i < cc->tfms_count; i++) {
  1067. r = crypto_ablkcipher_setkey(cc->tfms[i],
  1068. cc->key + (i * subkey_size),
  1069. subkey_size);
  1070. if (r)
  1071. err = r;
  1072. }
  1073. return err;
  1074. }
  1075. static int crypt_set_key(struct crypt_config *cc, char *key)
  1076. {
  1077. int r = -EINVAL;
  1078. int key_string_len = strlen(key);
  1079. /* The key size may not be changed. */
  1080. if (cc->key_size != (key_string_len >> 1))
  1081. goto out;
  1082. /* Hyphen (which gives a key_size of zero) means there is no key. */
  1083. if (!cc->key_size && strcmp(key, "-"))
  1084. goto out;
  1085. if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
  1086. goto out;
  1087. set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
  1088. r = crypt_setkey_allcpus(cc);
  1089. out:
  1090. /* Hex key string not needed after here, so wipe it. */
  1091. memset(key, '0', key_string_len);
  1092. return r;
  1093. }
  1094. static int crypt_wipe_key(struct crypt_config *cc)
  1095. {
  1096. clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
  1097. memset(&cc->key, 0, cc->key_size * sizeof(u8));
  1098. return crypt_setkey_allcpus(cc);
  1099. }
  1100. static void crypt_dtr(struct dm_target *ti)
  1101. {
  1102. struct crypt_config *cc = ti->private;
  1103. struct crypt_cpu *cpu_cc;
  1104. int cpu;
  1105. ti->private = NULL;
  1106. if (!cc)
  1107. return;
  1108. if (cc->io_queue)
  1109. destroy_workqueue(cc->io_queue);
  1110. if (cc->crypt_queue)
  1111. destroy_workqueue(cc->crypt_queue);
  1112. if (cc->cpu)
  1113. for_each_possible_cpu(cpu) {
  1114. cpu_cc = per_cpu_ptr(cc->cpu, cpu);
  1115. if (cpu_cc->req)
  1116. mempool_free(cpu_cc->req, cc->req_pool);
  1117. }
  1118. crypt_free_tfms(cc);
  1119. if (cc->bs)
  1120. bioset_free(cc->bs);
  1121. if (cc->page_pool)
  1122. mempool_destroy(cc->page_pool);
  1123. if (cc->req_pool)
  1124. mempool_destroy(cc->req_pool);
  1125. if (cc->io_pool)
  1126. mempool_destroy(cc->io_pool);
  1127. if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
  1128. cc->iv_gen_ops->dtr(cc);
  1129. if (cc->dev)
  1130. dm_put_device(ti, cc->dev);
  1131. if (cc->cpu)
  1132. free_percpu(cc->cpu);
  1133. kzfree(cc->cipher);
  1134. kzfree(cc->cipher_string);
  1135. /* Must zero key material before freeing */
  1136. kzfree(cc);
  1137. }
  1138. static int crypt_ctr_cipher(struct dm_target *ti,
  1139. char *cipher_in, char *key)
  1140. {
  1141. struct crypt_config *cc = ti->private;
  1142. char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
  1143. char *cipher_api = NULL;
  1144. int ret = -EINVAL;
  1145. char dummy;
  1146. /* Convert to crypto api definition? */
  1147. if (strchr(cipher_in, '(')) {
  1148. ti->error = "Bad cipher specification";
  1149. return -EINVAL;
  1150. }
  1151. cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
  1152. if (!cc->cipher_string)
  1153. goto bad_mem;
  1154. /*
  1155. * Legacy dm-crypt cipher specification
  1156. * cipher[:keycount]-mode-iv:ivopts
  1157. */
  1158. tmp = cipher_in;
  1159. keycount = strsep(&tmp, "-");
  1160. cipher = strsep(&keycount, ":");
  1161. if (!keycount)
  1162. cc->tfms_count = 1;
  1163. else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
  1164. !is_power_of_2(cc->tfms_count)) {
  1165. ti->error = "Bad cipher key count specification";
  1166. return -EINVAL;
  1167. }
  1168. cc->key_parts = cc->tfms_count;
  1169. cc->cipher = kstrdup(cipher, GFP_KERNEL);
  1170. if (!cc->cipher)
  1171. goto bad_mem;
  1172. chainmode = strsep(&tmp, "-");
  1173. ivopts = strsep(&tmp, "-");
  1174. ivmode = strsep(&ivopts, ":");
  1175. if (tmp)
  1176. DMWARN("Ignoring unexpected additional cipher options");
  1177. cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)),
  1178. __alignof__(struct crypt_cpu));
  1179. if (!cc->cpu) {
  1180. ti->error = "Cannot allocate per cpu state";
  1181. goto bad_mem;
  1182. }
  1183. /*
  1184. * For compatibility with the original dm-crypt mapping format, if
  1185. * only the cipher name is supplied, use cbc-plain.
  1186. */
  1187. if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
  1188. chainmode = "cbc";
  1189. ivmode = "plain";
  1190. }
  1191. if (strcmp(chainmode, "ecb") && !ivmode) {
  1192. ti->error = "IV mechanism required";
  1193. return -EINVAL;
  1194. }
  1195. cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
  1196. if (!cipher_api)
  1197. goto bad_mem;
  1198. ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
  1199. "%s(%s)", chainmode, cipher);
  1200. if (ret < 0) {
  1201. kfree(cipher_api);
  1202. goto bad_mem;
  1203. }
  1204. /* Allocate cipher */
  1205. ret = crypt_alloc_tfms(cc, cipher_api);
  1206. if (ret < 0) {
  1207. ti->error = "Error allocating crypto tfm";
  1208. goto bad;
  1209. }
  1210. /* Initialize and set key */
  1211. ret = crypt_set_key(cc, key);
  1212. if (ret < 0) {
  1213. ti->error = "Error decoding and setting key";
  1214. goto bad;
  1215. }
  1216. /* Initialize IV */
  1217. cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
  1218. if (cc->iv_size)
  1219. /* at least a 64 bit sector number should fit in our buffer */
  1220. cc->iv_size = max(cc->iv_size,
  1221. (unsigned int)(sizeof(u64) / sizeof(u8)));
  1222. else if (ivmode) {
  1223. DMWARN("Selected cipher does not support IVs");
  1224. ivmode = NULL;
  1225. }
  1226. /* Choose ivmode, see comments at iv code. */
  1227. if (ivmode == NULL)
  1228. cc->iv_gen_ops = NULL;
  1229. else if (strcmp(ivmode, "plain") == 0)
  1230. cc->iv_gen_ops = &crypt_iv_plain_ops;
  1231. else if (strcmp(ivmode, "plain64") == 0)
  1232. cc->iv_gen_ops = &crypt_iv_plain64_ops;
  1233. else if (strcmp(ivmode, "essiv") == 0)
  1234. cc->iv_gen_ops = &crypt_iv_essiv_ops;
  1235. else if (strcmp(ivmode, "benbi") == 0)
  1236. cc->iv_gen_ops = &crypt_iv_benbi_ops;
  1237. else if (strcmp(ivmode, "null") == 0)
  1238. cc->iv_gen_ops = &crypt_iv_null_ops;
  1239. else if (strcmp(ivmode, "lmk") == 0) {
  1240. cc->iv_gen_ops = &crypt_iv_lmk_ops;
  1241. /* Version 2 and 3 is recognised according
  1242. * to length of provided multi-key string.
  1243. * If present (version 3), last key is used as IV seed.
  1244. */
  1245. if (cc->key_size % cc->key_parts)
  1246. cc->key_parts++;
  1247. } else {
  1248. ret = -EINVAL;
  1249. ti->error = "Invalid IV mode";
  1250. goto bad;
  1251. }
  1252. /* Allocate IV */
  1253. if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
  1254. ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
  1255. if (ret < 0) {
  1256. ti->error = "Error creating IV";
  1257. goto bad;
  1258. }
  1259. }
  1260. /* Initialize IV (set keys for ESSIV etc) */
  1261. if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
  1262. ret = cc->iv_gen_ops->init(cc);
  1263. if (ret < 0) {
  1264. ti->error = "Error initialising IV";
  1265. goto bad;
  1266. }
  1267. }
  1268. ret = 0;
  1269. bad:
  1270. kfree(cipher_api);
  1271. return ret;
  1272. bad_mem:
  1273. ti->error = "Cannot allocate cipher strings";
  1274. return -ENOMEM;
  1275. }
  1276. /*
  1277. * Construct an encryption mapping:
  1278. * <cipher> <key> <iv_offset> <dev_path> <start>
  1279. */
  1280. static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
  1281. {
  1282. struct crypt_config *cc;
  1283. unsigned int key_size, opt_params;
  1284. unsigned long long tmpll;
  1285. int ret;
  1286. struct dm_arg_set as;
  1287. const char *opt_string;
  1288. char dummy;
  1289. static struct dm_arg _args[] = {
  1290. {0, 1, "Invalid number of feature args"},
  1291. };
  1292. if (argc < 5) {
  1293. ti->error = "Not enough arguments";
  1294. return -EINVAL;
  1295. }
  1296. key_size = strlen(argv[1]) >> 1;
  1297. cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
  1298. if (!cc) {
  1299. ti->error = "Cannot allocate encryption context";
  1300. return -ENOMEM;
  1301. }
  1302. cc->key_size = key_size;
  1303. ti->private = cc;
  1304. ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
  1305. if (ret < 0)
  1306. goto bad;
  1307. ret = -ENOMEM;
  1308. cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
  1309. if (!cc->io_pool) {
  1310. ti->error = "Cannot allocate crypt io mempool";
  1311. goto bad;
  1312. }
  1313. cc->dmreq_start = sizeof(struct ablkcipher_request);
  1314. cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
  1315. cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
  1316. cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
  1317. ~(crypto_tfm_ctx_alignment() - 1);
  1318. cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
  1319. sizeof(struct dm_crypt_request) + cc->iv_size);
  1320. if (!cc->req_pool) {
  1321. ti->error = "Cannot allocate crypt request mempool";
  1322. goto bad;
  1323. }
  1324. cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
  1325. if (!cc->page_pool) {
  1326. ti->error = "Cannot allocate page mempool";
  1327. goto bad;
  1328. }
  1329. cc->bs = bioset_create(MIN_IOS, 0);
  1330. if (!cc->bs) {
  1331. ti->error = "Cannot allocate crypt bioset";
  1332. goto bad;
  1333. }
  1334. ret = -EINVAL;
  1335. if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
  1336. ti->error = "Invalid iv_offset sector";
  1337. goto bad;
  1338. }
  1339. cc->iv_offset = tmpll;
  1340. if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
  1341. ti->error = "Device lookup failed";
  1342. goto bad;
  1343. }
  1344. if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
  1345. ti->error = "Invalid device sector";
  1346. goto bad;
  1347. }
  1348. cc->start = tmpll;
  1349. argv += 5;
  1350. argc -= 5;
  1351. /* Optional parameters */
  1352. if (argc) {
  1353. as.argc = argc;
  1354. as.argv = argv;
  1355. ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
  1356. if (ret)
  1357. goto bad;
  1358. opt_string = dm_shift_arg(&as);
  1359. if (opt_params == 1 && opt_string &&
  1360. !strcasecmp(opt_string, "allow_discards"))
  1361. ti->num_discard_requests = 1;
  1362. else if (opt_params) {
  1363. ret = -EINVAL;
  1364. ti->error = "Invalid feature arguments";
  1365. goto bad;
  1366. }
  1367. }
  1368. ret = -ENOMEM;
  1369. cc->io_queue = alloc_workqueue("kcryptd_io",
  1370. WQ_NON_REENTRANT|
  1371. WQ_MEM_RECLAIM,
  1372. 1);
  1373. if (!cc->io_queue) {
  1374. ti->error = "Couldn't create kcryptd io queue";
  1375. goto bad;
  1376. }
  1377. cc->crypt_queue = alloc_workqueue("kcryptd",
  1378. WQ_NON_REENTRANT|
  1379. WQ_CPU_INTENSIVE|
  1380. WQ_MEM_RECLAIM,
  1381. 1);
  1382. if (!cc->crypt_queue) {
  1383. ti->error = "Couldn't create kcryptd queue";
  1384. goto bad;
  1385. }
  1386. ti->num_flush_requests = 1;
  1387. ti->discard_zeroes_data_unsupported = true;
  1388. return 0;
  1389. bad:
  1390. crypt_dtr(ti);
  1391. return ret;
  1392. }
  1393. static int crypt_map(struct dm_target *ti, struct bio *bio,
  1394. union map_info *map_context)
  1395. {
  1396. struct dm_crypt_io *io;
  1397. struct crypt_config *cc = ti->private;
  1398. /*
  1399. * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
  1400. * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
  1401. * - for REQ_DISCARD caller must use flush if IO ordering matters
  1402. */
  1403. if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
  1404. bio->bi_bdev = cc->dev->bdev;
  1405. if (bio_sectors(bio))
  1406. bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
  1407. return DM_MAPIO_REMAPPED;
  1408. }
  1409. io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_sector));
  1410. if (bio_data_dir(io->base_bio) == READ) {
  1411. if (kcryptd_io_read(io, GFP_NOWAIT))
  1412. kcryptd_queue_io(io);
  1413. } else
  1414. kcryptd_queue_crypt(io);
  1415. return DM_MAPIO_SUBMITTED;
  1416. }
  1417. static int crypt_status(struct dm_target *ti, status_type_t type,
  1418. unsigned status_flags, char *result, unsigned maxlen)
  1419. {
  1420. struct crypt_config *cc = ti->private;
  1421. unsigned int sz = 0;
  1422. switch (type) {
  1423. case STATUSTYPE_INFO:
  1424. result[0] = '\0';
  1425. break;
  1426. case STATUSTYPE_TABLE:
  1427. DMEMIT("%s ", cc->cipher_string);
  1428. if (cc->key_size > 0) {
  1429. if ((maxlen - sz) < ((cc->key_size << 1) + 1))
  1430. return -ENOMEM;
  1431. crypt_encode_key(result + sz, cc->key, cc->key_size);
  1432. sz += cc->key_size << 1;
  1433. } else {
  1434. if (sz >= maxlen)
  1435. return -ENOMEM;
  1436. result[sz++] = '-';
  1437. }
  1438. DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
  1439. cc->dev->name, (unsigned long long)cc->start);
  1440. if (ti->num_discard_requests)
  1441. DMEMIT(" 1 allow_discards");
  1442. break;
  1443. }
  1444. return 0;
  1445. }
  1446. static void crypt_postsuspend(struct dm_target *ti)
  1447. {
  1448. struct crypt_config *cc = ti->private;
  1449. set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
  1450. }
  1451. static int crypt_preresume(struct dm_target *ti)
  1452. {
  1453. struct crypt_config *cc = ti->private;
  1454. if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
  1455. DMERR("aborting resume - crypt key is not set.");
  1456. return -EAGAIN;
  1457. }
  1458. return 0;
  1459. }
  1460. static void crypt_resume(struct dm_target *ti)
  1461. {
  1462. struct crypt_config *cc = ti->private;
  1463. clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
  1464. }
  1465. /* Message interface
  1466. * key set <key>
  1467. * key wipe
  1468. */
  1469. static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
  1470. {
  1471. struct crypt_config *cc = ti->private;
  1472. int ret = -EINVAL;
  1473. if (argc < 2)
  1474. goto error;
  1475. if (!strcasecmp(argv[0], "key")) {
  1476. if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
  1477. DMWARN("not suspended during key manipulation.");
  1478. return -EINVAL;
  1479. }
  1480. if (argc == 3 && !strcasecmp(argv[1], "set")) {
  1481. ret = crypt_set_key(cc, argv[2]);
  1482. if (ret)
  1483. return ret;
  1484. if (cc->iv_gen_ops && cc->iv_gen_ops->init)
  1485. ret = cc->iv_gen_ops->init(cc);
  1486. return ret;
  1487. }
  1488. if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
  1489. if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
  1490. ret = cc->iv_gen_ops->wipe(cc);
  1491. if (ret)
  1492. return ret;
  1493. }
  1494. return crypt_wipe_key(cc);
  1495. }
  1496. }
  1497. error:
  1498. DMWARN("unrecognised message received.");
  1499. return -EINVAL;
  1500. }
  1501. static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  1502. struct bio_vec *biovec, int max_size)
  1503. {
  1504. struct crypt_config *cc = ti->private;
  1505. struct request_queue *q = bdev_get_queue(cc->dev->bdev);
  1506. if (!q->merge_bvec_fn)
  1507. return max_size;
  1508. bvm->bi_bdev = cc->dev->bdev;
  1509. bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
  1510. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  1511. }
  1512. static int crypt_iterate_devices(struct dm_target *ti,
  1513. iterate_devices_callout_fn fn, void *data)
  1514. {
  1515. struct crypt_config *cc = ti->private;
  1516. return fn(ti, cc->dev, cc->start, ti->len, data);
  1517. }
  1518. static struct target_type crypt_target = {
  1519. .name = "crypt",
  1520. .version = {1, 11, 0},
  1521. .module = THIS_MODULE,
  1522. .ctr = crypt_ctr,
  1523. .dtr = crypt_dtr,
  1524. .map = crypt_map,
  1525. .status = crypt_status,
  1526. .postsuspend = crypt_postsuspend,
  1527. .preresume = crypt_preresume,
  1528. .resume = crypt_resume,
  1529. .message = crypt_message,
  1530. .merge = crypt_merge,
  1531. .iterate_devices = crypt_iterate_devices,
  1532. };
  1533. static int __init dm_crypt_init(void)
  1534. {
  1535. int r;
  1536. _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
  1537. if (!_crypt_io_pool)
  1538. return -ENOMEM;
  1539. r = dm_register_target(&crypt_target);
  1540. if (r < 0) {
  1541. DMERR("register failed %d", r);
  1542. kmem_cache_destroy(_crypt_io_pool);
  1543. }
  1544. return r;
  1545. }
  1546. static void __exit dm_crypt_exit(void)
  1547. {
  1548. dm_unregister_target(&crypt_target);
  1549. kmem_cache_destroy(_crypt_io_pool);
  1550. }
  1551. module_init(dm_crypt_init);
  1552. module_exit(dm_crypt_exit);
  1553. MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
  1554. MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
  1555. MODULE_LICENSE("GPL");