coretemp.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859
  1. /*
  2. * coretemp.c - Linux kernel module for hardware monitoring
  3. *
  4. * Copyright (C) 2007 Rudolf Marek <r.marek@assembler.cz>
  5. *
  6. * Inspired from many hwmon drivers
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; version 2 of the License.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20. * 02110-1301 USA.
  21. */
  22. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  23. #include <linux/module.h>
  24. #include <linux/init.h>
  25. #include <linux/slab.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/hwmon.h>
  28. #include <linux/sysfs.h>
  29. #include <linux/hwmon-sysfs.h>
  30. #include <linux/err.h>
  31. #include <linux/mutex.h>
  32. #include <linux/list.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/cpu.h>
  35. #include <linux/pci.h>
  36. #include <linux/smp.h>
  37. #include <linux/moduleparam.h>
  38. #include <asm/msr.h>
  39. #include <asm/processor.h>
  40. #include <asm/cpu_device_id.h>
  41. #define DRVNAME "coretemp"
  42. /*
  43. * force_tjmax only matters when TjMax can't be read from the CPU itself.
  44. * When set, it replaces the driver's suboptimal heuristic.
  45. */
  46. static int force_tjmax;
  47. module_param_named(tjmax, force_tjmax, int, 0444);
  48. MODULE_PARM_DESC(tjmax, "TjMax value in degrees Celsius");
  49. #define BASE_SYSFS_ATTR_NO 2 /* Sysfs Base attr no for coretemp */
  50. #define NUM_REAL_CORES 32 /* Number of Real cores per cpu */
  51. #define CORETEMP_NAME_LENGTH 17 /* String Length of attrs */
  52. #define MAX_CORE_ATTRS 4 /* Maximum no of basic attrs */
  53. #define TOTAL_ATTRS (MAX_CORE_ATTRS + 1)
  54. #define MAX_CORE_DATA (NUM_REAL_CORES + BASE_SYSFS_ATTR_NO)
  55. #define TO_PHYS_ID(cpu) (cpu_data(cpu).phys_proc_id)
  56. #define TO_CORE_ID(cpu) (cpu_data(cpu).cpu_core_id)
  57. #define TO_ATTR_NO(cpu) (TO_CORE_ID(cpu) + BASE_SYSFS_ATTR_NO)
  58. #ifdef CONFIG_SMP
  59. #define for_each_sibling(i, cpu) for_each_cpu(i, cpu_sibling_mask(cpu))
  60. #else
  61. #define for_each_sibling(i, cpu) for (i = 0; false; )
  62. #endif
  63. /*
  64. * Per-Core Temperature Data
  65. * @last_updated: The time when the current temperature value was updated
  66. * earlier (in jiffies).
  67. * @cpu_core_id: The CPU Core from which temperature values should be read
  68. * This value is passed as "id" field to rdmsr/wrmsr functions.
  69. * @status_reg: One of IA32_THERM_STATUS or IA32_PACKAGE_THERM_STATUS,
  70. * from where the temperature values should be read.
  71. * @attr_size: Total number of pre-core attrs displayed in the sysfs.
  72. * @is_pkg_data: If this is 1, the temp_data holds pkgtemp data.
  73. * Otherwise, temp_data holds coretemp data.
  74. * @valid: If this is 1, the current temperature is valid.
  75. */
  76. struct temp_data {
  77. int temp;
  78. int ttarget;
  79. int tjmax;
  80. unsigned long last_updated;
  81. unsigned int cpu;
  82. u32 cpu_core_id;
  83. u32 status_reg;
  84. int attr_size;
  85. bool is_pkg_data;
  86. bool valid;
  87. struct sensor_device_attribute sd_attrs[TOTAL_ATTRS];
  88. char attr_name[TOTAL_ATTRS][CORETEMP_NAME_LENGTH];
  89. struct mutex update_lock;
  90. };
  91. /* Platform Data per Physical CPU */
  92. struct platform_data {
  93. struct device *hwmon_dev;
  94. u16 phys_proc_id;
  95. struct temp_data *core_data[MAX_CORE_DATA];
  96. struct device_attribute name_attr;
  97. };
  98. struct pdev_entry {
  99. struct list_head list;
  100. struct platform_device *pdev;
  101. u16 phys_proc_id;
  102. };
  103. static LIST_HEAD(pdev_list);
  104. static DEFINE_MUTEX(pdev_list_mutex);
  105. static ssize_t show_name(struct device *dev,
  106. struct device_attribute *devattr, char *buf)
  107. {
  108. return sprintf(buf, "%s\n", DRVNAME);
  109. }
  110. static ssize_t show_label(struct device *dev,
  111. struct device_attribute *devattr, char *buf)
  112. {
  113. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  114. struct platform_data *pdata = dev_get_drvdata(dev);
  115. struct temp_data *tdata = pdata->core_data[attr->index];
  116. if (tdata->is_pkg_data)
  117. return sprintf(buf, "Physical id %u\n", pdata->phys_proc_id);
  118. return sprintf(buf, "Core %u\n", tdata->cpu_core_id);
  119. }
  120. static ssize_t show_crit_alarm(struct device *dev,
  121. struct device_attribute *devattr, char *buf)
  122. {
  123. u32 eax, edx;
  124. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  125. struct platform_data *pdata = dev_get_drvdata(dev);
  126. struct temp_data *tdata = pdata->core_data[attr->index];
  127. rdmsr_on_cpu(tdata->cpu, tdata->status_reg, &eax, &edx);
  128. return sprintf(buf, "%d\n", (eax >> 5) & 1);
  129. }
  130. static ssize_t show_tjmax(struct device *dev,
  131. struct device_attribute *devattr, char *buf)
  132. {
  133. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  134. struct platform_data *pdata = dev_get_drvdata(dev);
  135. return sprintf(buf, "%d\n", pdata->core_data[attr->index]->tjmax);
  136. }
  137. static ssize_t show_ttarget(struct device *dev,
  138. struct device_attribute *devattr, char *buf)
  139. {
  140. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  141. struct platform_data *pdata = dev_get_drvdata(dev);
  142. return sprintf(buf, "%d\n", pdata->core_data[attr->index]->ttarget);
  143. }
  144. static ssize_t show_temp(struct device *dev,
  145. struct device_attribute *devattr, char *buf)
  146. {
  147. u32 eax, edx;
  148. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  149. struct platform_data *pdata = dev_get_drvdata(dev);
  150. struct temp_data *tdata = pdata->core_data[attr->index];
  151. mutex_lock(&tdata->update_lock);
  152. /* Check whether the time interval has elapsed */
  153. if (!tdata->valid || time_after(jiffies, tdata->last_updated + HZ)) {
  154. rdmsr_on_cpu(tdata->cpu, tdata->status_reg, &eax, &edx);
  155. tdata->valid = 0;
  156. /* Check whether the data is valid */
  157. if (eax & 0x80000000) {
  158. tdata->temp = tdata->tjmax -
  159. ((eax >> 16) & 0x7f) * 1000;
  160. tdata->valid = 1;
  161. }
  162. tdata->last_updated = jiffies;
  163. }
  164. mutex_unlock(&tdata->update_lock);
  165. return tdata->valid ? sprintf(buf, "%d\n", tdata->temp) : -EAGAIN;
  166. }
  167. struct tjmax {
  168. char const *id;
  169. int tjmax;
  170. };
  171. static struct tjmax __cpuinitconst tjmax_table[] = {
  172. { "CPU D410", 100000 },
  173. { "CPU D425", 100000 },
  174. { "CPU D510", 100000 },
  175. { "CPU D525", 100000 },
  176. { "CPU N450", 100000 },
  177. { "CPU N455", 100000 },
  178. { "CPU N470", 100000 },
  179. { "CPU N475", 100000 },
  180. { "CPU 230", 100000 },
  181. { "CPU 330", 125000 },
  182. };
  183. static int __cpuinit adjust_tjmax(struct cpuinfo_x86 *c, u32 id,
  184. struct device *dev)
  185. {
  186. /* The 100C is default for both mobile and non mobile CPUs */
  187. int tjmax = 100000;
  188. int tjmax_ee = 85000;
  189. int usemsr_ee = 1;
  190. int err;
  191. u32 eax, edx;
  192. struct pci_dev *host_bridge;
  193. int i;
  194. /* explicit tjmax table entries override heuristics */
  195. for (i = 0; i < ARRAY_SIZE(tjmax_table); i++) {
  196. if (strstr(c->x86_model_id, tjmax_table[i].id))
  197. return tjmax_table[i].tjmax;
  198. }
  199. /* Early chips have no MSR for TjMax */
  200. if (c->x86_model == 0xf && c->x86_mask < 4)
  201. usemsr_ee = 0;
  202. /* Atom CPUs */
  203. if (c->x86_model == 0x1c || c->x86_model == 0x26
  204. || c->x86_model == 0x27) {
  205. usemsr_ee = 0;
  206. host_bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
  207. if (host_bridge && host_bridge->vendor == PCI_VENDOR_ID_INTEL
  208. && (host_bridge->device == 0xa000 /* NM10 based nettop */
  209. || host_bridge->device == 0xa010)) /* NM10 based netbook */
  210. tjmax = 100000;
  211. else
  212. tjmax = 90000;
  213. pci_dev_put(host_bridge);
  214. } else if (c->x86_model == 0x36) {
  215. usemsr_ee = 0;
  216. tjmax = 100000;
  217. }
  218. if (c->x86_model > 0xe && usemsr_ee) {
  219. u8 platform_id;
  220. /*
  221. * Now we can detect the mobile CPU using Intel provided table
  222. * http://softwarecommunity.intel.com/Wiki/Mobility/720.htm
  223. * For Core2 cores, check MSR 0x17, bit 28 1 = Mobile CPU
  224. */
  225. err = rdmsr_safe_on_cpu(id, 0x17, &eax, &edx);
  226. if (err) {
  227. dev_warn(dev,
  228. "Unable to access MSR 0x17, assuming desktop"
  229. " CPU\n");
  230. usemsr_ee = 0;
  231. } else if (c->x86_model < 0x17 && !(eax & 0x10000000)) {
  232. /*
  233. * Trust bit 28 up to Penryn, I could not find any
  234. * documentation on that; if you happen to know
  235. * someone at Intel please ask
  236. */
  237. usemsr_ee = 0;
  238. } else {
  239. /* Platform ID bits 52:50 (EDX starts at bit 32) */
  240. platform_id = (edx >> 18) & 0x7;
  241. /*
  242. * Mobile Penryn CPU seems to be platform ID 7 or 5
  243. * (guesswork)
  244. */
  245. if (c->x86_model == 0x17 &&
  246. (platform_id == 5 || platform_id == 7)) {
  247. /*
  248. * If MSR EE bit is set, set it to 90 degrees C,
  249. * otherwise 105 degrees C
  250. */
  251. tjmax_ee = 90000;
  252. tjmax = 105000;
  253. }
  254. }
  255. }
  256. if (usemsr_ee) {
  257. err = rdmsr_safe_on_cpu(id, 0xee, &eax, &edx);
  258. if (err) {
  259. dev_warn(dev,
  260. "Unable to access MSR 0xEE, for Tjmax, left"
  261. " at default\n");
  262. } else if (eax & 0x40000000) {
  263. tjmax = tjmax_ee;
  264. }
  265. } else if (tjmax == 100000) {
  266. /*
  267. * If we don't use msr EE it means we are desktop CPU
  268. * (with exeception of Atom)
  269. */
  270. dev_warn(dev, "Using relative temperature scale!\n");
  271. }
  272. return tjmax;
  273. }
  274. static int __cpuinit get_tjmax(struct cpuinfo_x86 *c, u32 id,
  275. struct device *dev)
  276. {
  277. int err;
  278. u32 eax, edx;
  279. u32 val;
  280. /*
  281. * A new feature of current Intel(R) processors, the
  282. * IA32_TEMPERATURE_TARGET contains the TjMax value
  283. */
  284. err = rdmsr_safe_on_cpu(id, MSR_IA32_TEMPERATURE_TARGET, &eax, &edx);
  285. if (err) {
  286. if (c->x86_model > 0xe && c->x86_model != 0x1c)
  287. dev_warn(dev, "Unable to read TjMax from CPU %u\n", id);
  288. } else {
  289. val = (eax >> 16) & 0xff;
  290. /*
  291. * If the TjMax is not plausible, an assumption
  292. * will be used
  293. */
  294. if (val) {
  295. dev_dbg(dev, "TjMax is %d degrees C\n", val);
  296. return val * 1000;
  297. }
  298. }
  299. if (force_tjmax) {
  300. dev_notice(dev, "TjMax forced to %d degrees C by user\n",
  301. force_tjmax);
  302. return force_tjmax * 1000;
  303. }
  304. /*
  305. * An assumption is made for early CPUs and unreadable MSR.
  306. * NOTE: the calculated value may not be correct.
  307. */
  308. return adjust_tjmax(c, id, dev);
  309. }
  310. static int __devinit create_name_attr(struct platform_data *pdata,
  311. struct device *dev)
  312. {
  313. sysfs_attr_init(&pdata->name_attr.attr);
  314. pdata->name_attr.attr.name = "name";
  315. pdata->name_attr.attr.mode = S_IRUGO;
  316. pdata->name_attr.show = show_name;
  317. return device_create_file(dev, &pdata->name_attr);
  318. }
  319. static int __cpuinit create_core_attrs(struct temp_data *tdata,
  320. struct device *dev, int attr_no)
  321. {
  322. int err, i;
  323. static ssize_t (*const rd_ptr[TOTAL_ATTRS]) (struct device *dev,
  324. struct device_attribute *devattr, char *buf) = {
  325. show_label, show_crit_alarm, show_temp, show_tjmax,
  326. show_ttarget };
  327. static const char *const names[TOTAL_ATTRS] = {
  328. "temp%d_label", "temp%d_crit_alarm",
  329. "temp%d_input", "temp%d_crit",
  330. "temp%d_max" };
  331. for (i = 0; i < tdata->attr_size; i++) {
  332. snprintf(tdata->attr_name[i], CORETEMP_NAME_LENGTH, names[i],
  333. attr_no);
  334. sysfs_attr_init(&tdata->sd_attrs[i].dev_attr.attr);
  335. tdata->sd_attrs[i].dev_attr.attr.name = tdata->attr_name[i];
  336. tdata->sd_attrs[i].dev_attr.attr.mode = S_IRUGO;
  337. tdata->sd_attrs[i].dev_attr.show = rd_ptr[i];
  338. tdata->sd_attrs[i].index = attr_no;
  339. err = device_create_file(dev, &tdata->sd_attrs[i].dev_attr);
  340. if (err)
  341. goto exit_free;
  342. }
  343. return 0;
  344. exit_free:
  345. while (--i >= 0)
  346. device_remove_file(dev, &tdata->sd_attrs[i].dev_attr);
  347. return err;
  348. }
  349. static int __cpuinit chk_ucode_version(unsigned int cpu)
  350. {
  351. struct cpuinfo_x86 *c = &cpu_data(cpu);
  352. /*
  353. * Check if we have problem with errata AE18 of Core processors:
  354. * Readings might stop update when processor visited too deep sleep,
  355. * fixed for stepping D0 (6EC).
  356. */
  357. if (c->x86_model == 0xe && c->x86_mask < 0xc && c->microcode < 0x39) {
  358. pr_err("Errata AE18 not fixed, update BIOS or "
  359. "microcode of the CPU!\n");
  360. return -ENODEV;
  361. }
  362. return 0;
  363. }
  364. static struct platform_device __cpuinit *coretemp_get_pdev(unsigned int cpu)
  365. {
  366. u16 phys_proc_id = TO_PHYS_ID(cpu);
  367. struct pdev_entry *p;
  368. mutex_lock(&pdev_list_mutex);
  369. list_for_each_entry(p, &pdev_list, list)
  370. if (p->phys_proc_id == phys_proc_id) {
  371. mutex_unlock(&pdev_list_mutex);
  372. return p->pdev;
  373. }
  374. mutex_unlock(&pdev_list_mutex);
  375. return NULL;
  376. }
  377. static struct temp_data __cpuinit *init_temp_data(unsigned int cpu,
  378. int pkg_flag)
  379. {
  380. struct temp_data *tdata;
  381. tdata = kzalloc(sizeof(struct temp_data), GFP_KERNEL);
  382. if (!tdata)
  383. return NULL;
  384. tdata->status_reg = pkg_flag ? MSR_IA32_PACKAGE_THERM_STATUS :
  385. MSR_IA32_THERM_STATUS;
  386. tdata->is_pkg_data = pkg_flag;
  387. tdata->cpu = cpu;
  388. tdata->cpu_core_id = TO_CORE_ID(cpu);
  389. tdata->attr_size = MAX_CORE_ATTRS;
  390. mutex_init(&tdata->update_lock);
  391. return tdata;
  392. }
  393. static int __cpuinit create_core_data(struct platform_device *pdev,
  394. unsigned int cpu, int pkg_flag)
  395. {
  396. struct temp_data *tdata;
  397. struct platform_data *pdata = platform_get_drvdata(pdev);
  398. struct cpuinfo_x86 *c = &cpu_data(cpu);
  399. u32 eax, edx;
  400. int err, attr_no;
  401. /*
  402. * Find attr number for sysfs:
  403. * We map the attr number to core id of the CPU
  404. * The attr number is always core id + 2
  405. * The Pkgtemp will always show up as temp1_*, if available
  406. */
  407. attr_no = pkg_flag ? 1 : TO_ATTR_NO(cpu);
  408. if (attr_no > MAX_CORE_DATA - 1)
  409. return -ERANGE;
  410. /*
  411. * Provide a single set of attributes for all HT siblings of a core
  412. * to avoid duplicate sensors (the processor ID and core ID of all
  413. * HT siblings of a core are the same).
  414. * Skip if a HT sibling of this core is already registered.
  415. * This is not an error.
  416. */
  417. if (pdata->core_data[attr_no] != NULL)
  418. return 0;
  419. tdata = init_temp_data(cpu, pkg_flag);
  420. if (!tdata)
  421. return -ENOMEM;
  422. /* Test if we can access the status register */
  423. err = rdmsr_safe_on_cpu(cpu, tdata->status_reg, &eax, &edx);
  424. if (err)
  425. goto exit_free;
  426. /* We can access status register. Get Critical Temperature */
  427. tdata->tjmax = get_tjmax(c, cpu, &pdev->dev);
  428. /*
  429. * Read the still undocumented bits 8:15 of IA32_TEMPERATURE_TARGET.
  430. * The target temperature is available on older CPUs but not in this
  431. * register. Atoms don't have the register at all.
  432. */
  433. if (c->x86_model > 0xe && c->x86_model != 0x1c) {
  434. err = rdmsr_safe_on_cpu(cpu, MSR_IA32_TEMPERATURE_TARGET,
  435. &eax, &edx);
  436. if (!err) {
  437. tdata->ttarget
  438. = tdata->tjmax - ((eax >> 8) & 0xff) * 1000;
  439. tdata->attr_size++;
  440. }
  441. }
  442. pdata->core_data[attr_no] = tdata;
  443. /* Create sysfs interfaces */
  444. err = create_core_attrs(tdata, &pdev->dev, attr_no);
  445. if (err)
  446. goto exit_free;
  447. return 0;
  448. exit_free:
  449. pdata->core_data[attr_no] = NULL;
  450. kfree(tdata);
  451. return err;
  452. }
  453. static void __cpuinit coretemp_add_core(unsigned int cpu, int pkg_flag)
  454. {
  455. struct platform_device *pdev = coretemp_get_pdev(cpu);
  456. int err;
  457. if (!pdev)
  458. return;
  459. err = create_core_data(pdev, cpu, pkg_flag);
  460. if (err)
  461. dev_err(&pdev->dev, "Adding Core %u failed\n", cpu);
  462. }
  463. static void coretemp_remove_core(struct platform_data *pdata,
  464. struct device *dev, int indx)
  465. {
  466. int i;
  467. struct temp_data *tdata = pdata->core_data[indx];
  468. /* Remove the sysfs attributes */
  469. for (i = 0; i < tdata->attr_size; i++)
  470. device_remove_file(dev, &tdata->sd_attrs[i].dev_attr);
  471. kfree(pdata->core_data[indx]);
  472. pdata->core_data[indx] = NULL;
  473. }
  474. static int __devinit coretemp_probe(struct platform_device *pdev)
  475. {
  476. struct platform_data *pdata;
  477. int err;
  478. /* Initialize the per-package data structures */
  479. pdata = kzalloc(sizeof(struct platform_data), GFP_KERNEL);
  480. if (!pdata)
  481. return -ENOMEM;
  482. err = create_name_attr(pdata, &pdev->dev);
  483. if (err)
  484. goto exit_free;
  485. pdata->phys_proc_id = pdev->id;
  486. platform_set_drvdata(pdev, pdata);
  487. pdata->hwmon_dev = hwmon_device_register(&pdev->dev);
  488. if (IS_ERR(pdata->hwmon_dev)) {
  489. err = PTR_ERR(pdata->hwmon_dev);
  490. dev_err(&pdev->dev, "Class registration failed (%d)\n", err);
  491. goto exit_name;
  492. }
  493. return 0;
  494. exit_name:
  495. device_remove_file(&pdev->dev, &pdata->name_attr);
  496. platform_set_drvdata(pdev, NULL);
  497. exit_free:
  498. kfree(pdata);
  499. return err;
  500. }
  501. static int __devexit coretemp_remove(struct platform_device *pdev)
  502. {
  503. struct platform_data *pdata = platform_get_drvdata(pdev);
  504. int i;
  505. for (i = MAX_CORE_DATA - 1; i >= 0; --i)
  506. if (pdata->core_data[i])
  507. coretemp_remove_core(pdata, &pdev->dev, i);
  508. device_remove_file(&pdev->dev, &pdata->name_attr);
  509. hwmon_device_unregister(pdata->hwmon_dev);
  510. platform_set_drvdata(pdev, NULL);
  511. kfree(pdata);
  512. return 0;
  513. }
  514. static struct platform_driver coretemp_driver = {
  515. .driver = {
  516. .owner = THIS_MODULE,
  517. .name = DRVNAME,
  518. },
  519. .probe = coretemp_probe,
  520. .remove = __devexit_p(coretemp_remove),
  521. };
  522. static int __cpuinit coretemp_device_add(unsigned int cpu)
  523. {
  524. int err;
  525. struct platform_device *pdev;
  526. struct pdev_entry *pdev_entry;
  527. mutex_lock(&pdev_list_mutex);
  528. pdev = platform_device_alloc(DRVNAME, TO_PHYS_ID(cpu));
  529. if (!pdev) {
  530. err = -ENOMEM;
  531. pr_err("Device allocation failed\n");
  532. goto exit;
  533. }
  534. pdev_entry = kzalloc(sizeof(struct pdev_entry), GFP_KERNEL);
  535. if (!pdev_entry) {
  536. err = -ENOMEM;
  537. goto exit_device_put;
  538. }
  539. err = platform_device_add(pdev);
  540. if (err) {
  541. pr_err("Device addition failed (%d)\n", err);
  542. goto exit_device_free;
  543. }
  544. pdev_entry->pdev = pdev;
  545. pdev_entry->phys_proc_id = pdev->id;
  546. list_add_tail(&pdev_entry->list, &pdev_list);
  547. mutex_unlock(&pdev_list_mutex);
  548. return 0;
  549. exit_device_free:
  550. kfree(pdev_entry);
  551. exit_device_put:
  552. platform_device_put(pdev);
  553. exit:
  554. mutex_unlock(&pdev_list_mutex);
  555. return err;
  556. }
  557. static void __cpuinit coretemp_device_remove(unsigned int cpu)
  558. {
  559. struct pdev_entry *p, *n;
  560. u16 phys_proc_id = TO_PHYS_ID(cpu);
  561. mutex_lock(&pdev_list_mutex);
  562. list_for_each_entry_safe(p, n, &pdev_list, list) {
  563. if (p->phys_proc_id != phys_proc_id)
  564. continue;
  565. platform_device_unregister(p->pdev);
  566. list_del(&p->list);
  567. kfree(p);
  568. }
  569. mutex_unlock(&pdev_list_mutex);
  570. }
  571. static bool __cpuinit is_any_core_online(struct platform_data *pdata)
  572. {
  573. int i;
  574. /* Find online cores, except pkgtemp data */
  575. for (i = MAX_CORE_DATA - 1; i >= 0; --i) {
  576. if (pdata->core_data[i] &&
  577. !pdata->core_data[i]->is_pkg_data) {
  578. return true;
  579. }
  580. }
  581. return false;
  582. }
  583. static void __cpuinit get_core_online(unsigned int cpu)
  584. {
  585. struct cpuinfo_x86 *c = &cpu_data(cpu);
  586. struct platform_device *pdev = coretemp_get_pdev(cpu);
  587. int err;
  588. /*
  589. * CPUID.06H.EAX[0] indicates whether the CPU has thermal
  590. * sensors. We check this bit only, all the early CPUs
  591. * without thermal sensors will be filtered out.
  592. */
  593. if (!cpu_has(c, X86_FEATURE_DTHERM))
  594. return;
  595. if (!pdev) {
  596. /* Check the microcode version of the CPU */
  597. if (chk_ucode_version(cpu))
  598. return;
  599. /*
  600. * Alright, we have DTS support.
  601. * We are bringing the _first_ core in this pkg
  602. * online. So, initialize per-pkg data structures and
  603. * then bring this core online.
  604. */
  605. err = coretemp_device_add(cpu);
  606. if (err)
  607. return;
  608. /*
  609. * Check whether pkgtemp support is available.
  610. * If so, add interfaces for pkgtemp.
  611. */
  612. if (cpu_has(c, X86_FEATURE_PTS))
  613. coretemp_add_core(cpu, 1);
  614. }
  615. /*
  616. * Physical CPU device already exists.
  617. * So, just add interfaces for this core.
  618. */
  619. coretemp_add_core(cpu, 0);
  620. }
  621. static void __cpuinit put_core_offline(unsigned int cpu)
  622. {
  623. int i, indx;
  624. struct platform_data *pdata;
  625. struct platform_device *pdev = coretemp_get_pdev(cpu);
  626. /* If the physical CPU device does not exist, just return */
  627. if (!pdev)
  628. return;
  629. pdata = platform_get_drvdata(pdev);
  630. indx = TO_ATTR_NO(cpu);
  631. /* The core id is too big, just return */
  632. if (indx > MAX_CORE_DATA - 1)
  633. return;
  634. if (pdata->core_data[indx] && pdata->core_data[indx]->cpu == cpu)
  635. coretemp_remove_core(pdata, &pdev->dev, indx);
  636. /*
  637. * If a HT sibling of a core is taken offline, but another HT sibling
  638. * of the same core is still online, register the alternate sibling.
  639. * This ensures that exactly one set of attributes is provided as long
  640. * as at least one HT sibling of a core is online.
  641. */
  642. for_each_sibling(i, cpu) {
  643. if (i != cpu) {
  644. get_core_online(i);
  645. /*
  646. * Display temperature sensor data for one HT sibling
  647. * per core only, so abort the loop after one such
  648. * sibling has been found.
  649. */
  650. break;
  651. }
  652. }
  653. /*
  654. * If all cores in this pkg are offline, remove the device.
  655. * coretemp_device_remove calls unregister_platform_device,
  656. * which in turn calls coretemp_remove. This removes the
  657. * pkgtemp entry and does other clean ups.
  658. */
  659. if (!is_any_core_online(pdata))
  660. coretemp_device_remove(cpu);
  661. }
  662. static int __cpuinit coretemp_cpu_callback(struct notifier_block *nfb,
  663. unsigned long action, void *hcpu)
  664. {
  665. unsigned int cpu = (unsigned long) hcpu;
  666. switch (action) {
  667. case CPU_ONLINE:
  668. case CPU_DOWN_FAILED:
  669. get_core_online(cpu);
  670. break;
  671. case CPU_DOWN_PREPARE:
  672. put_core_offline(cpu);
  673. break;
  674. }
  675. return NOTIFY_OK;
  676. }
  677. static struct notifier_block coretemp_cpu_notifier __refdata = {
  678. .notifier_call = coretemp_cpu_callback,
  679. };
  680. static const struct x86_cpu_id __initconst coretemp_ids[] = {
  681. { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_DTHERM },
  682. {}
  683. };
  684. MODULE_DEVICE_TABLE(x86cpu, coretemp_ids);
  685. static int __init coretemp_init(void)
  686. {
  687. int i, err;
  688. /*
  689. * CPUID.06H.EAX[0] indicates whether the CPU has thermal
  690. * sensors. We check this bit only, all the early CPUs
  691. * without thermal sensors will be filtered out.
  692. */
  693. if (!x86_match_cpu(coretemp_ids))
  694. return -ENODEV;
  695. err = platform_driver_register(&coretemp_driver);
  696. if (err)
  697. goto exit;
  698. for_each_online_cpu(i)
  699. get_core_online(i);
  700. #ifndef CONFIG_HOTPLUG_CPU
  701. if (list_empty(&pdev_list)) {
  702. err = -ENODEV;
  703. goto exit_driver_unreg;
  704. }
  705. #endif
  706. register_hotcpu_notifier(&coretemp_cpu_notifier);
  707. return 0;
  708. #ifndef CONFIG_HOTPLUG_CPU
  709. exit_driver_unreg:
  710. platform_driver_unregister(&coretemp_driver);
  711. #endif
  712. exit:
  713. return err;
  714. }
  715. static void __exit coretemp_exit(void)
  716. {
  717. struct pdev_entry *p, *n;
  718. unregister_hotcpu_notifier(&coretemp_cpu_notifier);
  719. mutex_lock(&pdev_list_mutex);
  720. list_for_each_entry_safe(p, n, &pdev_list, list) {
  721. platform_device_unregister(p->pdev);
  722. list_del(&p->list);
  723. kfree(p);
  724. }
  725. mutex_unlock(&pdev_list_mutex);
  726. platform_driver_unregister(&coretemp_driver);
  727. }
  728. MODULE_AUTHOR("Rudolf Marek <r.marek@assembler.cz>");
  729. MODULE_DESCRIPTION("Intel Core temperature monitor");
  730. MODULE_LICENSE("GPL");
  731. module_init(coretemp_init)
  732. module_exit(coretemp_exit)