mv_xor.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371
  1. /*
  2. * offload engine driver for the Marvell XOR engine
  3. * Copyright (C) 2007, 2008, Marvell International Ltd.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/slab.h>
  21. #include <linux/delay.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/memory.h>
  27. #include <linux/clk.h>
  28. #include <plat/mv_xor.h>
  29. #include "dmaengine.h"
  30. #include "mv_xor.h"
  31. static void mv_xor_issue_pending(struct dma_chan *chan);
  32. #define to_mv_xor_chan(chan) \
  33. container_of(chan, struct mv_xor_chan, common)
  34. #define to_mv_xor_device(dev) \
  35. container_of(dev, struct mv_xor_device, common)
  36. #define to_mv_xor_slot(tx) \
  37. container_of(tx, struct mv_xor_desc_slot, async_tx)
  38. static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
  39. {
  40. struct mv_xor_desc *hw_desc = desc->hw_desc;
  41. hw_desc->status = (1 << 31);
  42. hw_desc->phy_next_desc = 0;
  43. hw_desc->desc_command = (1 << 31);
  44. }
  45. static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
  46. {
  47. struct mv_xor_desc *hw_desc = desc->hw_desc;
  48. return hw_desc->phy_dest_addr;
  49. }
  50. static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
  51. int src_idx)
  52. {
  53. struct mv_xor_desc *hw_desc = desc->hw_desc;
  54. return hw_desc->phy_src_addr[src_idx];
  55. }
  56. static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
  57. u32 byte_count)
  58. {
  59. struct mv_xor_desc *hw_desc = desc->hw_desc;
  60. hw_desc->byte_count = byte_count;
  61. }
  62. static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
  63. u32 next_desc_addr)
  64. {
  65. struct mv_xor_desc *hw_desc = desc->hw_desc;
  66. BUG_ON(hw_desc->phy_next_desc);
  67. hw_desc->phy_next_desc = next_desc_addr;
  68. }
  69. static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
  70. {
  71. struct mv_xor_desc *hw_desc = desc->hw_desc;
  72. hw_desc->phy_next_desc = 0;
  73. }
  74. static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
  75. {
  76. desc->value = val;
  77. }
  78. static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
  79. dma_addr_t addr)
  80. {
  81. struct mv_xor_desc *hw_desc = desc->hw_desc;
  82. hw_desc->phy_dest_addr = addr;
  83. }
  84. static int mv_chan_memset_slot_count(size_t len)
  85. {
  86. return 1;
  87. }
  88. #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
  89. static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
  90. int index, dma_addr_t addr)
  91. {
  92. struct mv_xor_desc *hw_desc = desc->hw_desc;
  93. hw_desc->phy_src_addr[index] = addr;
  94. if (desc->type == DMA_XOR)
  95. hw_desc->desc_command |= (1 << index);
  96. }
  97. static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
  98. {
  99. return __raw_readl(XOR_CURR_DESC(chan));
  100. }
  101. static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
  102. u32 next_desc_addr)
  103. {
  104. __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
  105. }
  106. static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
  107. {
  108. __raw_writel(desc_addr, XOR_DEST_POINTER(chan));
  109. }
  110. static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
  111. {
  112. __raw_writel(block_size, XOR_BLOCK_SIZE(chan));
  113. }
  114. static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
  115. {
  116. __raw_writel(value, XOR_INIT_VALUE_LOW(chan));
  117. __raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
  118. }
  119. static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
  120. {
  121. u32 val = __raw_readl(XOR_INTR_MASK(chan));
  122. val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
  123. __raw_writel(val, XOR_INTR_MASK(chan));
  124. }
  125. static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
  126. {
  127. u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
  128. intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
  129. return intr_cause;
  130. }
  131. static int mv_is_err_intr(u32 intr_cause)
  132. {
  133. if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
  134. return 1;
  135. return 0;
  136. }
  137. static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
  138. {
  139. u32 val = ~(1 << (chan->idx * 16));
  140. dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
  141. __raw_writel(val, XOR_INTR_CAUSE(chan));
  142. }
  143. static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
  144. {
  145. u32 val = 0xFFFF0000 >> (chan->idx * 16);
  146. __raw_writel(val, XOR_INTR_CAUSE(chan));
  147. }
  148. static int mv_can_chain(struct mv_xor_desc_slot *desc)
  149. {
  150. struct mv_xor_desc_slot *chain_old_tail = list_entry(
  151. desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
  152. if (chain_old_tail->type != desc->type)
  153. return 0;
  154. if (desc->type == DMA_MEMSET)
  155. return 0;
  156. return 1;
  157. }
  158. static void mv_set_mode(struct mv_xor_chan *chan,
  159. enum dma_transaction_type type)
  160. {
  161. u32 op_mode;
  162. u32 config = __raw_readl(XOR_CONFIG(chan));
  163. switch (type) {
  164. case DMA_XOR:
  165. op_mode = XOR_OPERATION_MODE_XOR;
  166. break;
  167. case DMA_MEMCPY:
  168. op_mode = XOR_OPERATION_MODE_MEMCPY;
  169. break;
  170. case DMA_MEMSET:
  171. op_mode = XOR_OPERATION_MODE_MEMSET;
  172. break;
  173. default:
  174. dev_printk(KERN_ERR, chan->device->common.dev,
  175. "error: unsupported operation %d.\n",
  176. type);
  177. BUG();
  178. return;
  179. }
  180. config &= ~0x7;
  181. config |= op_mode;
  182. __raw_writel(config, XOR_CONFIG(chan));
  183. chan->current_type = type;
  184. }
  185. static void mv_chan_activate(struct mv_xor_chan *chan)
  186. {
  187. u32 activation;
  188. dev_dbg(chan->device->common.dev, " activate chan.\n");
  189. activation = __raw_readl(XOR_ACTIVATION(chan));
  190. activation |= 0x1;
  191. __raw_writel(activation, XOR_ACTIVATION(chan));
  192. }
  193. static char mv_chan_is_busy(struct mv_xor_chan *chan)
  194. {
  195. u32 state = __raw_readl(XOR_ACTIVATION(chan));
  196. state = (state >> 4) & 0x3;
  197. return (state == 1) ? 1 : 0;
  198. }
  199. static int mv_chan_xor_slot_count(size_t len, int src_cnt)
  200. {
  201. return 1;
  202. }
  203. /**
  204. * mv_xor_free_slots - flags descriptor slots for reuse
  205. * @slot: Slot to free
  206. * Caller must hold &mv_chan->lock while calling this function
  207. */
  208. static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
  209. struct mv_xor_desc_slot *slot)
  210. {
  211. dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
  212. __func__, __LINE__, slot);
  213. slot->slots_per_op = 0;
  214. }
  215. /*
  216. * mv_xor_start_new_chain - program the engine to operate on new chain headed by
  217. * sw_desc
  218. * Caller must hold &mv_chan->lock while calling this function
  219. */
  220. static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
  221. struct mv_xor_desc_slot *sw_desc)
  222. {
  223. dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
  224. __func__, __LINE__, sw_desc);
  225. if (sw_desc->type != mv_chan->current_type)
  226. mv_set_mode(mv_chan, sw_desc->type);
  227. if (sw_desc->type == DMA_MEMSET) {
  228. /* for memset requests we need to program the engine, no
  229. * descriptors used.
  230. */
  231. struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
  232. mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
  233. mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
  234. mv_chan_set_value(mv_chan, sw_desc->value);
  235. } else {
  236. /* set the hardware chain */
  237. mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
  238. }
  239. mv_chan->pending += sw_desc->slot_cnt;
  240. mv_xor_issue_pending(&mv_chan->common);
  241. }
  242. static dma_cookie_t
  243. mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
  244. struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
  245. {
  246. BUG_ON(desc->async_tx.cookie < 0);
  247. if (desc->async_tx.cookie > 0) {
  248. cookie = desc->async_tx.cookie;
  249. /* call the callback (must not sleep or submit new
  250. * operations to this channel)
  251. */
  252. if (desc->async_tx.callback)
  253. desc->async_tx.callback(
  254. desc->async_tx.callback_param);
  255. /* unmap dma addresses
  256. * (unmap_single vs unmap_page?)
  257. */
  258. if (desc->group_head && desc->unmap_len) {
  259. struct mv_xor_desc_slot *unmap = desc->group_head;
  260. struct device *dev =
  261. &mv_chan->device->pdev->dev;
  262. u32 len = unmap->unmap_len;
  263. enum dma_ctrl_flags flags = desc->async_tx.flags;
  264. u32 src_cnt;
  265. dma_addr_t addr;
  266. dma_addr_t dest;
  267. src_cnt = unmap->unmap_src_cnt;
  268. dest = mv_desc_get_dest_addr(unmap);
  269. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  270. enum dma_data_direction dir;
  271. if (src_cnt > 1) /* is xor ? */
  272. dir = DMA_BIDIRECTIONAL;
  273. else
  274. dir = DMA_FROM_DEVICE;
  275. dma_unmap_page(dev, dest, len, dir);
  276. }
  277. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  278. while (src_cnt--) {
  279. addr = mv_desc_get_src_addr(unmap,
  280. src_cnt);
  281. if (addr == dest)
  282. continue;
  283. dma_unmap_page(dev, addr, len,
  284. DMA_TO_DEVICE);
  285. }
  286. }
  287. desc->group_head = NULL;
  288. }
  289. }
  290. /* run dependent operations */
  291. dma_run_dependencies(&desc->async_tx);
  292. return cookie;
  293. }
  294. static int
  295. mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
  296. {
  297. struct mv_xor_desc_slot *iter, *_iter;
  298. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  299. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  300. completed_node) {
  301. if (async_tx_test_ack(&iter->async_tx)) {
  302. list_del(&iter->completed_node);
  303. mv_xor_free_slots(mv_chan, iter);
  304. }
  305. }
  306. return 0;
  307. }
  308. static int
  309. mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
  310. struct mv_xor_chan *mv_chan)
  311. {
  312. dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
  313. __func__, __LINE__, desc, desc->async_tx.flags);
  314. list_del(&desc->chain_node);
  315. /* the client is allowed to attach dependent operations
  316. * until 'ack' is set
  317. */
  318. if (!async_tx_test_ack(&desc->async_tx)) {
  319. /* move this slot to the completed_slots */
  320. list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
  321. return 0;
  322. }
  323. mv_xor_free_slots(mv_chan, desc);
  324. return 0;
  325. }
  326. static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  327. {
  328. struct mv_xor_desc_slot *iter, *_iter;
  329. dma_cookie_t cookie = 0;
  330. int busy = mv_chan_is_busy(mv_chan);
  331. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  332. int seen_current = 0;
  333. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  334. dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
  335. mv_xor_clean_completed_slots(mv_chan);
  336. /* free completed slots from the chain starting with
  337. * the oldest descriptor
  338. */
  339. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  340. chain_node) {
  341. prefetch(_iter);
  342. prefetch(&_iter->async_tx);
  343. /* do not advance past the current descriptor loaded into the
  344. * hardware channel, subsequent descriptors are either in
  345. * process or have not been submitted
  346. */
  347. if (seen_current)
  348. break;
  349. /* stop the search if we reach the current descriptor and the
  350. * channel is busy
  351. */
  352. if (iter->async_tx.phys == current_desc) {
  353. seen_current = 1;
  354. if (busy)
  355. break;
  356. }
  357. cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
  358. if (mv_xor_clean_slot(iter, mv_chan))
  359. break;
  360. }
  361. if ((busy == 0) && !list_empty(&mv_chan->chain)) {
  362. struct mv_xor_desc_slot *chain_head;
  363. chain_head = list_entry(mv_chan->chain.next,
  364. struct mv_xor_desc_slot,
  365. chain_node);
  366. mv_xor_start_new_chain(mv_chan, chain_head);
  367. }
  368. if (cookie > 0)
  369. mv_chan->common.completed_cookie = cookie;
  370. }
  371. static void
  372. mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  373. {
  374. spin_lock_bh(&mv_chan->lock);
  375. __mv_xor_slot_cleanup(mv_chan);
  376. spin_unlock_bh(&mv_chan->lock);
  377. }
  378. static void mv_xor_tasklet(unsigned long data)
  379. {
  380. struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
  381. mv_xor_slot_cleanup(chan);
  382. }
  383. static struct mv_xor_desc_slot *
  384. mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
  385. int slots_per_op)
  386. {
  387. struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
  388. LIST_HEAD(chain);
  389. int slots_found, retry = 0;
  390. /* start search from the last allocated descrtiptor
  391. * if a contiguous allocation can not be found start searching
  392. * from the beginning of the list
  393. */
  394. retry:
  395. slots_found = 0;
  396. if (retry == 0)
  397. iter = mv_chan->last_used;
  398. else
  399. iter = list_entry(&mv_chan->all_slots,
  400. struct mv_xor_desc_slot,
  401. slot_node);
  402. list_for_each_entry_safe_continue(
  403. iter, _iter, &mv_chan->all_slots, slot_node) {
  404. prefetch(_iter);
  405. prefetch(&_iter->async_tx);
  406. if (iter->slots_per_op) {
  407. /* give up after finding the first busy slot
  408. * on the second pass through the list
  409. */
  410. if (retry)
  411. break;
  412. slots_found = 0;
  413. continue;
  414. }
  415. /* start the allocation if the slot is correctly aligned */
  416. if (!slots_found++)
  417. alloc_start = iter;
  418. if (slots_found == num_slots) {
  419. struct mv_xor_desc_slot *alloc_tail = NULL;
  420. struct mv_xor_desc_slot *last_used = NULL;
  421. iter = alloc_start;
  422. while (num_slots) {
  423. int i;
  424. /* pre-ack all but the last descriptor */
  425. async_tx_ack(&iter->async_tx);
  426. list_add_tail(&iter->chain_node, &chain);
  427. alloc_tail = iter;
  428. iter->async_tx.cookie = 0;
  429. iter->slot_cnt = num_slots;
  430. iter->xor_check_result = NULL;
  431. for (i = 0; i < slots_per_op; i++) {
  432. iter->slots_per_op = slots_per_op - i;
  433. last_used = iter;
  434. iter = list_entry(iter->slot_node.next,
  435. struct mv_xor_desc_slot,
  436. slot_node);
  437. }
  438. num_slots -= slots_per_op;
  439. }
  440. alloc_tail->group_head = alloc_start;
  441. alloc_tail->async_tx.cookie = -EBUSY;
  442. list_splice(&chain, &alloc_tail->tx_list);
  443. mv_chan->last_used = last_used;
  444. mv_desc_clear_next_desc(alloc_start);
  445. mv_desc_clear_next_desc(alloc_tail);
  446. return alloc_tail;
  447. }
  448. }
  449. if (!retry++)
  450. goto retry;
  451. /* try to free some slots if the allocation fails */
  452. tasklet_schedule(&mv_chan->irq_tasklet);
  453. return NULL;
  454. }
  455. /************************ DMA engine API functions ****************************/
  456. static dma_cookie_t
  457. mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
  458. {
  459. struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
  460. struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
  461. struct mv_xor_desc_slot *grp_start, *old_chain_tail;
  462. dma_cookie_t cookie;
  463. int new_hw_chain = 1;
  464. dev_dbg(mv_chan->device->common.dev,
  465. "%s sw_desc %p: async_tx %p\n",
  466. __func__, sw_desc, &sw_desc->async_tx);
  467. grp_start = sw_desc->group_head;
  468. spin_lock_bh(&mv_chan->lock);
  469. cookie = dma_cookie_assign(tx);
  470. if (list_empty(&mv_chan->chain))
  471. list_splice_init(&sw_desc->tx_list, &mv_chan->chain);
  472. else {
  473. new_hw_chain = 0;
  474. old_chain_tail = list_entry(mv_chan->chain.prev,
  475. struct mv_xor_desc_slot,
  476. chain_node);
  477. list_splice_init(&grp_start->tx_list,
  478. &old_chain_tail->chain_node);
  479. if (!mv_can_chain(grp_start))
  480. goto submit_done;
  481. dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
  482. old_chain_tail->async_tx.phys);
  483. /* fix up the hardware chain */
  484. mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
  485. /* if the channel is not busy */
  486. if (!mv_chan_is_busy(mv_chan)) {
  487. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  488. /*
  489. * and the curren desc is the end of the chain before
  490. * the append, then we need to start the channel
  491. */
  492. if (current_desc == old_chain_tail->async_tx.phys)
  493. new_hw_chain = 1;
  494. }
  495. }
  496. if (new_hw_chain)
  497. mv_xor_start_new_chain(mv_chan, grp_start);
  498. submit_done:
  499. spin_unlock_bh(&mv_chan->lock);
  500. return cookie;
  501. }
  502. /* returns the number of allocated descriptors */
  503. static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
  504. {
  505. char *hw_desc;
  506. int idx;
  507. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  508. struct mv_xor_desc_slot *slot = NULL;
  509. struct mv_xor_platform_data *plat_data =
  510. mv_chan->device->pdev->dev.platform_data;
  511. int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
  512. /* Allocate descriptor slots */
  513. idx = mv_chan->slots_allocated;
  514. while (idx < num_descs_in_pool) {
  515. slot = kzalloc(sizeof(*slot), GFP_KERNEL);
  516. if (!slot) {
  517. printk(KERN_INFO "MV XOR Channel only initialized"
  518. " %d descriptor slots", idx);
  519. break;
  520. }
  521. hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
  522. slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  523. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  524. slot->async_tx.tx_submit = mv_xor_tx_submit;
  525. INIT_LIST_HEAD(&slot->chain_node);
  526. INIT_LIST_HEAD(&slot->slot_node);
  527. INIT_LIST_HEAD(&slot->tx_list);
  528. hw_desc = (char *) mv_chan->device->dma_desc_pool;
  529. slot->async_tx.phys =
  530. (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  531. slot->idx = idx++;
  532. spin_lock_bh(&mv_chan->lock);
  533. mv_chan->slots_allocated = idx;
  534. list_add_tail(&slot->slot_node, &mv_chan->all_slots);
  535. spin_unlock_bh(&mv_chan->lock);
  536. }
  537. if (mv_chan->slots_allocated && !mv_chan->last_used)
  538. mv_chan->last_used = list_entry(mv_chan->all_slots.next,
  539. struct mv_xor_desc_slot,
  540. slot_node);
  541. dev_dbg(mv_chan->device->common.dev,
  542. "allocated %d descriptor slots last_used: %p\n",
  543. mv_chan->slots_allocated, mv_chan->last_used);
  544. return mv_chan->slots_allocated ? : -ENOMEM;
  545. }
  546. static struct dma_async_tx_descriptor *
  547. mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  548. size_t len, unsigned long flags)
  549. {
  550. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  551. struct mv_xor_desc_slot *sw_desc, *grp_start;
  552. int slot_cnt;
  553. dev_dbg(mv_chan->device->common.dev,
  554. "%s dest: %x src %x len: %u flags: %ld\n",
  555. __func__, dest, src, len, flags);
  556. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  557. return NULL;
  558. BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
  559. spin_lock_bh(&mv_chan->lock);
  560. slot_cnt = mv_chan_memcpy_slot_count(len);
  561. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  562. if (sw_desc) {
  563. sw_desc->type = DMA_MEMCPY;
  564. sw_desc->async_tx.flags = flags;
  565. grp_start = sw_desc->group_head;
  566. mv_desc_init(grp_start, flags);
  567. mv_desc_set_byte_count(grp_start, len);
  568. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  569. mv_desc_set_src_addr(grp_start, 0, src);
  570. sw_desc->unmap_src_cnt = 1;
  571. sw_desc->unmap_len = len;
  572. }
  573. spin_unlock_bh(&mv_chan->lock);
  574. dev_dbg(mv_chan->device->common.dev,
  575. "%s sw_desc %p async_tx %p\n",
  576. __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
  577. return sw_desc ? &sw_desc->async_tx : NULL;
  578. }
  579. static struct dma_async_tx_descriptor *
  580. mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
  581. size_t len, unsigned long flags)
  582. {
  583. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  584. struct mv_xor_desc_slot *sw_desc, *grp_start;
  585. int slot_cnt;
  586. dev_dbg(mv_chan->device->common.dev,
  587. "%s dest: %x len: %u flags: %ld\n",
  588. __func__, dest, len, flags);
  589. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  590. return NULL;
  591. BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
  592. spin_lock_bh(&mv_chan->lock);
  593. slot_cnt = mv_chan_memset_slot_count(len);
  594. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  595. if (sw_desc) {
  596. sw_desc->type = DMA_MEMSET;
  597. sw_desc->async_tx.flags = flags;
  598. grp_start = sw_desc->group_head;
  599. mv_desc_init(grp_start, flags);
  600. mv_desc_set_byte_count(grp_start, len);
  601. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  602. mv_desc_set_block_fill_val(grp_start, value);
  603. sw_desc->unmap_src_cnt = 1;
  604. sw_desc->unmap_len = len;
  605. }
  606. spin_unlock_bh(&mv_chan->lock);
  607. dev_dbg(mv_chan->device->common.dev,
  608. "%s sw_desc %p async_tx %p \n",
  609. __func__, sw_desc, &sw_desc->async_tx);
  610. return sw_desc ? &sw_desc->async_tx : NULL;
  611. }
  612. static struct dma_async_tx_descriptor *
  613. mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  614. unsigned int src_cnt, size_t len, unsigned long flags)
  615. {
  616. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  617. struct mv_xor_desc_slot *sw_desc, *grp_start;
  618. int slot_cnt;
  619. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  620. return NULL;
  621. BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
  622. dev_dbg(mv_chan->device->common.dev,
  623. "%s src_cnt: %d len: dest %x %u flags: %ld\n",
  624. __func__, src_cnt, len, dest, flags);
  625. spin_lock_bh(&mv_chan->lock);
  626. slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
  627. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  628. if (sw_desc) {
  629. sw_desc->type = DMA_XOR;
  630. sw_desc->async_tx.flags = flags;
  631. grp_start = sw_desc->group_head;
  632. mv_desc_init(grp_start, flags);
  633. /* the byte count field is the same as in memcpy desc*/
  634. mv_desc_set_byte_count(grp_start, len);
  635. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  636. sw_desc->unmap_src_cnt = src_cnt;
  637. sw_desc->unmap_len = len;
  638. while (src_cnt--)
  639. mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
  640. }
  641. spin_unlock_bh(&mv_chan->lock);
  642. dev_dbg(mv_chan->device->common.dev,
  643. "%s sw_desc %p async_tx %p \n",
  644. __func__, sw_desc, &sw_desc->async_tx);
  645. return sw_desc ? &sw_desc->async_tx : NULL;
  646. }
  647. static void mv_xor_free_chan_resources(struct dma_chan *chan)
  648. {
  649. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  650. struct mv_xor_desc_slot *iter, *_iter;
  651. int in_use_descs = 0;
  652. mv_xor_slot_cleanup(mv_chan);
  653. spin_lock_bh(&mv_chan->lock);
  654. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  655. chain_node) {
  656. in_use_descs++;
  657. list_del(&iter->chain_node);
  658. }
  659. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  660. completed_node) {
  661. in_use_descs++;
  662. list_del(&iter->completed_node);
  663. }
  664. list_for_each_entry_safe_reverse(
  665. iter, _iter, &mv_chan->all_slots, slot_node) {
  666. list_del(&iter->slot_node);
  667. kfree(iter);
  668. mv_chan->slots_allocated--;
  669. }
  670. mv_chan->last_used = NULL;
  671. dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
  672. __func__, mv_chan->slots_allocated);
  673. spin_unlock_bh(&mv_chan->lock);
  674. if (in_use_descs)
  675. dev_err(mv_chan->device->common.dev,
  676. "freeing %d in use descriptors!\n", in_use_descs);
  677. }
  678. /**
  679. * mv_xor_status - poll the status of an XOR transaction
  680. * @chan: XOR channel handle
  681. * @cookie: XOR transaction identifier
  682. * @txstate: XOR transactions state holder (or NULL)
  683. */
  684. static enum dma_status mv_xor_status(struct dma_chan *chan,
  685. dma_cookie_t cookie,
  686. struct dma_tx_state *txstate)
  687. {
  688. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  689. enum dma_status ret;
  690. ret = dma_cookie_status(chan, cookie, txstate);
  691. if (ret == DMA_SUCCESS) {
  692. mv_xor_clean_completed_slots(mv_chan);
  693. return ret;
  694. }
  695. mv_xor_slot_cleanup(mv_chan);
  696. return dma_cookie_status(chan, cookie, txstate);
  697. }
  698. static void mv_dump_xor_regs(struct mv_xor_chan *chan)
  699. {
  700. u32 val;
  701. val = __raw_readl(XOR_CONFIG(chan));
  702. dev_printk(KERN_ERR, chan->device->common.dev,
  703. "config 0x%08x.\n", val);
  704. val = __raw_readl(XOR_ACTIVATION(chan));
  705. dev_printk(KERN_ERR, chan->device->common.dev,
  706. "activation 0x%08x.\n", val);
  707. val = __raw_readl(XOR_INTR_CAUSE(chan));
  708. dev_printk(KERN_ERR, chan->device->common.dev,
  709. "intr cause 0x%08x.\n", val);
  710. val = __raw_readl(XOR_INTR_MASK(chan));
  711. dev_printk(KERN_ERR, chan->device->common.dev,
  712. "intr mask 0x%08x.\n", val);
  713. val = __raw_readl(XOR_ERROR_CAUSE(chan));
  714. dev_printk(KERN_ERR, chan->device->common.dev,
  715. "error cause 0x%08x.\n", val);
  716. val = __raw_readl(XOR_ERROR_ADDR(chan));
  717. dev_printk(KERN_ERR, chan->device->common.dev,
  718. "error addr 0x%08x.\n", val);
  719. }
  720. static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
  721. u32 intr_cause)
  722. {
  723. if (intr_cause & (1 << 4)) {
  724. dev_dbg(chan->device->common.dev,
  725. "ignore this error\n");
  726. return;
  727. }
  728. dev_printk(KERN_ERR, chan->device->common.dev,
  729. "error on chan %d. intr cause 0x%08x.\n",
  730. chan->idx, intr_cause);
  731. mv_dump_xor_regs(chan);
  732. BUG();
  733. }
  734. static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
  735. {
  736. struct mv_xor_chan *chan = data;
  737. u32 intr_cause = mv_chan_get_intr_cause(chan);
  738. dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
  739. if (mv_is_err_intr(intr_cause))
  740. mv_xor_err_interrupt_handler(chan, intr_cause);
  741. tasklet_schedule(&chan->irq_tasklet);
  742. mv_xor_device_clear_eoc_cause(chan);
  743. return IRQ_HANDLED;
  744. }
  745. static void mv_xor_issue_pending(struct dma_chan *chan)
  746. {
  747. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  748. if (mv_chan->pending >= MV_XOR_THRESHOLD) {
  749. mv_chan->pending = 0;
  750. mv_chan_activate(mv_chan);
  751. }
  752. }
  753. /*
  754. * Perform a transaction to verify the HW works.
  755. */
  756. #define MV_XOR_TEST_SIZE 2000
  757. static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
  758. {
  759. int i;
  760. void *src, *dest;
  761. dma_addr_t src_dma, dest_dma;
  762. struct dma_chan *dma_chan;
  763. dma_cookie_t cookie;
  764. struct dma_async_tx_descriptor *tx;
  765. int err = 0;
  766. struct mv_xor_chan *mv_chan;
  767. src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  768. if (!src)
  769. return -ENOMEM;
  770. dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  771. if (!dest) {
  772. kfree(src);
  773. return -ENOMEM;
  774. }
  775. /* Fill in src buffer */
  776. for (i = 0; i < MV_XOR_TEST_SIZE; i++)
  777. ((u8 *) src)[i] = (u8)i;
  778. /* Start copy, using first DMA channel */
  779. dma_chan = container_of(device->common.channels.next,
  780. struct dma_chan,
  781. device_node);
  782. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  783. err = -ENODEV;
  784. goto out;
  785. }
  786. dest_dma = dma_map_single(dma_chan->device->dev, dest,
  787. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  788. src_dma = dma_map_single(dma_chan->device->dev, src,
  789. MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
  790. tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
  791. MV_XOR_TEST_SIZE, 0);
  792. cookie = mv_xor_tx_submit(tx);
  793. mv_xor_issue_pending(dma_chan);
  794. async_tx_ack(tx);
  795. msleep(1);
  796. if (mv_xor_status(dma_chan, cookie, NULL) !=
  797. DMA_SUCCESS) {
  798. dev_printk(KERN_ERR, dma_chan->device->dev,
  799. "Self-test copy timed out, disabling\n");
  800. err = -ENODEV;
  801. goto free_resources;
  802. }
  803. mv_chan = to_mv_xor_chan(dma_chan);
  804. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  805. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  806. if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
  807. dev_printk(KERN_ERR, dma_chan->device->dev,
  808. "Self-test copy failed compare, disabling\n");
  809. err = -ENODEV;
  810. goto free_resources;
  811. }
  812. free_resources:
  813. mv_xor_free_chan_resources(dma_chan);
  814. out:
  815. kfree(src);
  816. kfree(dest);
  817. return err;
  818. }
  819. #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
  820. static int __devinit
  821. mv_xor_xor_self_test(struct mv_xor_device *device)
  822. {
  823. int i, src_idx;
  824. struct page *dest;
  825. struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
  826. dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
  827. dma_addr_t dest_dma;
  828. struct dma_async_tx_descriptor *tx;
  829. struct dma_chan *dma_chan;
  830. dma_cookie_t cookie;
  831. u8 cmp_byte = 0;
  832. u32 cmp_word;
  833. int err = 0;
  834. struct mv_xor_chan *mv_chan;
  835. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  836. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  837. if (!xor_srcs[src_idx]) {
  838. while (src_idx--)
  839. __free_page(xor_srcs[src_idx]);
  840. return -ENOMEM;
  841. }
  842. }
  843. dest = alloc_page(GFP_KERNEL);
  844. if (!dest) {
  845. while (src_idx--)
  846. __free_page(xor_srcs[src_idx]);
  847. return -ENOMEM;
  848. }
  849. /* Fill in src buffers */
  850. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  851. u8 *ptr = page_address(xor_srcs[src_idx]);
  852. for (i = 0; i < PAGE_SIZE; i++)
  853. ptr[i] = (1 << src_idx);
  854. }
  855. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
  856. cmp_byte ^= (u8) (1 << src_idx);
  857. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  858. (cmp_byte << 8) | cmp_byte;
  859. memset(page_address(dest), 0, PAGE_SIZE);
  860. dma_chan = container_of(device->common.channels.next,
  861. struct dma_chan,
  862. device_node);
  863. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  864. err = -ENODEV;
  865. goto out;
  866. }
  867. /* test xor */
  868. dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
  869. DMA_FROM_DEVICE);
  870. for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
  871. dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
  872. 0, PAGE_SIZE, DMA_TO_DEVICE);
  873. tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  874. MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
  875. cookie = mv_xor_tx_submit(tx);
  876. mv_xor_issue_pending(dma_chan);
  877. async_tx_ack(tx);
  878. msleep(8);
  879. if (mv_xor_status(dma_chan, cookie, NULL) !=
  880. DMA_SUCCESS) {
  881. dev_printk(KERN_ERR, dma_chan->device->dev,
  882. "Self-test xor timed out, disabling\n");
  883. err = -ENODEV;
  884. goto free_resources;
  885. }
  886. mv_chan = to_mv_xor_chan(dma_chan);
  887. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  888. PAGE_SIZE, DMA_FROM_DEVICE);
  889. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  890. u32 *ptr = page_address(dest);
  891. if (ptr[i] != cmp_word) {
  892. dev_printk(KERN_ERR, dma_chan->device->dev,
  893. "Self-test xor failed compare, disabling."
  894. " index %d, data %x, expected %x\n", i,
  895. ptr[i], cmp_word);
  896. err = -ENODEV;
  897. goto free_resources;
  898. }
  899. }
  900. free_resources:
  901. mv_xor_free_chan_resources(dma_chan);
  902. out:
  903. src_idx = MV_XOR_NUM_SRC_TEST;
  904. while (src_idx--)
  905. __free_page(xor_srcs[src_idx]);
  906. __free_page(dest);
  907. return err;
  908. }
  909. static int __devexit mv_xor_remove(struct platform_device *dev)
  910. {
  911. struct mv_xor_device *device = platform_get_drvdata(dev);
  912. struct dma_chan *chan, *_chan;
  913. struct mv_xor_chan *mv_chan;
  914. struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
  915. dma_async_device_unregister(&device->common);
  916. dma_free_coherent(&dev->dev, plat_data->pool_size,
  917. device->dma_desc_pool_virt, device->dma_desc_pool);
  918. list_for_each_entry_safe(chan, _chan, &device->common.channels,
  919. device_node) {
  920. mv_chan = to_mv_xor_chan(chan);
  921. list_del(&chan->device_node);
  922. }
  923. return 0;
  924. }
  925. static int __devinit mv_xor_probe(struct platform_device *pdev)
  926. {
  927. int ret = 0;
  928. int irq;
  929. struct mv_xor_device *adev;
  930. struct mv_xor_chan *mv_chan;
  931. struct dma_device *dma_dev;
  932. struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
  933. adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
  934. if (!adev)
  935. return -ENOMEM;
  936. dma_dev = &adev->common;
  937. /* allocate coherent memory for hardware descriptors
  938. * note: writecombine gives slightly better performance, but
  939. * requires that we explicitly flush the writes
  940. */
  941. adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
  942. plat_data->pool_size,
  943. &adev->dma_desc_pool,
  944. GFP_KERNEL);
  945. if (!adev->dma_desc_pool_virt)
  946. return -ENOMEM;
  947. adev->id = plat_data->hw_id;
  948. /* discover transaction capabilites from the platform data */
  949. dma_dev->cap_mask = plat_data->cap_mask;
  950. adev->pdev = pdev;
  951. platform_set_drvdata(pdev, adev);
  952. adev->shared = platform_get_drvdata(plat_data->shared);
  953. INIT_LIST_HEAD(&dma_dev->channels);
  954. /* set base routines */
  955. dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
  956. dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
  957. dma_dev->device_tx_status = mv_xor_status;
  958. dma_dev->device_issue_pending = mv_xor_issue_pending;
  959. dma_dev->dev = &pdev->dev;
  960. /* set prep routines based on capability */
  961. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
  962. dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
  963. if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
  964. dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
  965. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  966. dma_dev->max_xor = 8;
  967. dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
  968. }
  969. mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
  970. if (!mv_chan) {
  971. ret = -ENOMEM;
  972. goto err_free_dma;
  973. }
  974. mv_chan->device = adev;
  975. mv_chan->idx = plat_data->hw_id;
  976. mv_chan->mmr_base = adev->shared->xor_base;
  977. if (!mv_chan->mmr_base) {
  978. ret = -ENOMEM;
  979. goto err_free_dma;
  980. }
  981. tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
  982. mv_chan);
  983. /* clear errors before enabling interrupts */
  984. mv_xor_device_clear_err_status(mv_chan);
  985. irq = platform_get_irq(pdev, 0);
  986. if (irq < 0) {
  987. ret = irq;
  988. goto err_free_dma;
  989. }
  990. ret = devm_request_irq(&pdev->dev, irq,
  991. mv_xor_interrupt_handler,
  992. 0, dev_name(&pdev->dev), mv_chan);
  993. if (ret)
  994. goto err_free_dma;
  995. mv_chan_unmask_interrupts(mv_chan);
  996. mv_set_mode(mv_chan, DMA_MEMCPY);
  997. spin_lock_init(&mv_chan->lock);
  998. INIT_LIST_HEAD(&mv_chan->chain);
  999. INIT_LIST_HEAD(&mv_chan->completed_slots);
  1000. INIT_LIST_HEAD(&mv_chan->all_slots);
  1001. mv_chan->common.device = dma_dev;
  1002. dma_cookie_init(&mv_chan->common);
  1003. list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
  1004. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
  1005. ret = mv_xor_memcpy_self_test(adev);
  1006. dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
  1007. if (ret)
  1008. goto err_free_dma;
  1009. }
  1010. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  1011. ret = mv_xor_xor_self_test(adev);
  1012. dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
  1013. if (ret)
  1014. goto err_free_dma;
  1015. }
  1016. dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
  1017. "( %s%s%s%s)\n",
  1018. dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
  1019. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
  1020. dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
  1021. dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
  1022. dma_async_device_register(dma_dev);
  1023. goto out;
  1024. err_free_dma:
  1025. dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
  1026. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  1027. out:
  1028. return ret;
  1029. }
  1030. static void
  1031. mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
  1032. const struct mbus_dram_target_info *dram)
  1033. {
  1034. void __iomem *base = msp->xor_base;
  1035. u32 win_enable = 0;
  1036. int i;
  1037. for (i = 0; i < 8; i++) {
  1038. writel(0, base + WINDOW_BASE(i));
  1039. writel(0, base + WINDOW_SIZE(i));
  1040. if (i < 4)
  1041. writel(0, base + WINDOW_REMAP_HIGH(i));
  1042. }
  1043. for (i = 0; i < dram->num_cs; i++) {
  1044. const struct mbus_dram_window *cs = dram->cs + i;
  1045. writel((cs->base & 0xffff0000) |
  1046. (cs->mbus_attr << 8) |
  1047. dram->mbus_dram_target_id, base + WINDOW_BASE(i));
  1048. writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
  1049. win_enable |= (1 << i);
  1050. win_enable |= 3 << (16 + (2 * i));
  1051. }
  1052. writel(win_enable, base + WINDOW_BAR_ENABLE(0));
  1053. writel(win_enable, base + WINDOW_BAR_ENABLE(1));
  1054. }
  1055. static struct platform_driver mv_xor_driver = {
  1056. .probe = mv_xor_probe,
  1057. .remove = __devexit_p(mv_xor_remove),
  1058. .driver = {
  1059. .owner = THIS_MODULE,
  1060. .name = MV_XOR_NAME,
  1061. },
  1062. };
  1063. static int mv_xor_shared_probe(struct platform_device *pdev)
  1064. {
  1065. const struct mbus_dram_target_info *dram;
  1066. struct mv_xor_shared_private *msp;
  1067. struct resource *res;
  1068. dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
  1069. msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
  1070. if (!msp)
  1071. return -ENOMEM;
  1072. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1073. if (!res)
  1074. return -ENODEV;
  1075. msp->xor_base = devm_ioremap(&pdev->dev, res->start,
  1076. resource_size(res));
  1077. if (!msp->xor_base)
  1078. return -EBUSY;
  1079. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1080. if (!res)
  1081. return -ENODEV;
  1082. msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
  1083. resource_size(res));
  1084. if (!msp->xor_high_base)
  1085. return -EBUSY;
  1086. platform_set_drvdata(pdev, msp);
  1087. /*
  1088. * (Re-)program MBUS remapping windows if we are asked to.
  1089. */
  1090. dram = mv_mbus_dram_info();
  1091. if (dram)
  1092. mv_xor_conf_mbus_windows(msp, dram);
  1093. /* Not all platforms can gate the clock, so it is not
  1094. * an error if the clock does not exists.
  1095. */
  1096. msp->clk = clk_get(&pdev->dev, NULL);
  1097. if (!IS_ERR(msp->clk))
  1098. clk_prepare_enable(msp->clk);
  1099. return 0;
  1100. }
  1101. static int mv_xor_shared_remove(struct platform_device *pdev)
  1102. {
  1103. struct mv_xor_shared_private *msp = platform_get_drvdata(pdev);
  1104. if (!IS_ERR(msp->clk)) {
  1105. clk_disable_unprepare(msp->clk);
  1106. clk_put(msp->clk);
  1107. }
  1108. return 0;
  1109. }
  1110. static struct platform_driver mv_xor_shared_driver = {
  1111. .probe = mv_xor_shared_probe,
  1112. .remove = mv_xor_shared_remove,
  1113. .driver = {
  1114. .owner = THIS_MODULE,
  1115. .name = MV_XOR_SHARED_NAME,
  1116. },
  1117. };
  1118. static int __init mv_xor_init(void)
  1119. {
  1120. int rc;
  1121. rc = platform_driver_register(&mv_xor_shared_driver);
  1122. if (!rc) {
  1123. rc = platform_driver_register(&mv_xor_driver);
  1124. if (rc)
  1125. platform_driver_unregister(&mv_xor_shared_driver);
  1126. }
  1127. return rc;
  1128. }
  1129. module_init(mv_xor_init);
  1130. /* it's currently unsafe to unload this module */
  1131. #if 0
  1132. static void __exit mv_xor_exit(void)
  1133. {
  1134. platform_driver_unregister(&mv_xor_driver);
  1135. platform_driver_unregister(&mv_xor_shared_driver);
  1136. return;
  1137. }
  1138. module_exit(mv_xor_exit);
  1139. #endif
  1140. MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
  1141. MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
  1142. MODULE_LICENSE("GPL");