caamhash.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_JOB_IO_LEN (CAAM_CMD_SZ * 5 + CAAM_PTR_SZ * 3)
  70. #define DESC_AHASH_BASE (4 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  75. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  76. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  77. CAAM_MAX_HASH_KEY_SIZE)
  78. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  79. /* caam context sizes for hashes: running digest + 8 */
  80. #define HASH_MSG_LEN 8
  81. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  82. #ifdef DEBUG
  83. /* for print_hex_dumps with line references */
  84. #define xstr(s) str(s)
  85. #define str(s) #s
  86. #define debug(format, arg...) printk(format, arg)
  87. #else
  88. #define debug(format, arg...)
  89. #endif
  90. /* ahash per-session context */
  91. struct caam_hash_ctx {
  92. struct device *jrdev;
  93. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN];
  94. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN];
  95. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN];
  96. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN];
  97. u32 sh_desc_finup[DESC_HASH_MAX_USED_LEN];
  98. dma_addr_t sh_desc_update_dma;
  99. dma_addr_t sh_desc_update_first_dma;
  100. dma_addr_t sh_desc_fin_dma;
  101. dma_addr_t sh_desc_digest_dma;
  102. dma_addr_t sh_desc_finup_dma;
  103. u32 alg_type;
  104. u32 alg_op;
  105. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  106. dma_addr_t key_dma;
  107. int ctx_len;
  108. unsigned int split_key_len;
  109. unsigned int split_key_pad_len;
  110. };
  111. /* ahash state */
  112. struct caam_hash_state {
  113. dma_addr_t buf_dma;
  114. dma_addr_t ctx_dma;
  115. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  116. int buflen_0;
  117. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  118. int buflen_1;
  119. u8 caam_ctx[MAX_CTX_LEN];
  120. int (*update)(struct ahash_request *req);
  121. int (*final)(struct ahash_request *req);
  122. int (*finup)(struct ahash_request *req);
  123. int current_buf;
  124. };
  125. /* Common job descriptor seq in/out ptr routines */
  126. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  127. static inline void map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  128. struct caam_hash_state *state,
  129. int ctx_len)
  130. {
  131. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  132. ctx_len, DMA_FROM_DEVICE);
  133. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  134. }
  135. /* Map req->result, and append seq_out_ptr command that points to it */
  136. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  137. u8 *result, int digestsize)
  138. {
  139. dma_addr_t dst_dma;
  140. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  141. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  142. return dst_dma;
  143. }
  144. /* Map current buffer in state and put it in link table */
  145. static inline dma_addr_t buf_map_to_sec4_sg(struct device *jrdev,
  146. struct sec4_sg_entry *sec4_sg,
  147. u8 *buf, int buflen)
  148. {
  149. dma_addr_t buf_dma;
  150. buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  151. dma_to_sec4_sg_one(sec4_sg, buf_dma, buflen, 0);
  152. return buf_dma;
  153. }
  154. /* Map req->src and put it in link table */
  155. static inline void src_map_to_sec4_sg(struct device *jrdev,
  156. struct scatterlist *src, int src_nents,
  157. struct sec4_sg_entry *sec4_sg,
  158. bool chained)
  159. {
  160. dma_map_sg_chained(jrdev, src, src_nents, DMA_TO_DEVICE, chained);
  161. sg_to_sec4_sg_last(src, src_nents, sec4_sg, 0);
  162. }
  163. /*
  164. * Only put buffer in link table if it contains data, which is possible,
  165. * since a buffer has previously been used, and needs to be unmapped,
  166. */
  167. static inline dma_addr_t
  168. try_buf_map_to_sec4_sg(struct device *jrdev, struct sec4_sg_entry *sec4_sg,
  169. u8 *buf, dma_addr_t buf_dma, int buflen,
  170. int last_buflen)
  171. {
  172. if (buf_dma && !dma_mapping_error(jrdev, buf_dma))
  173. dma_unmap_single(jrdev, buf_dma, last_buflen, DMA_TO_DEVICE);
  174. if (buflen)
  175. buf_dma = buf_map_to_sec4_sg(jrdev, sec4_sg, buf, buflen);
  176. else
  177. buf_dma = 0;
  178. return buf_dma;
  179. }
  180. /* Map state->caam_ctx, and add it to link table */
  181. static inline void ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  182. struct caam_hash_state *state,
  183. int ctx_len,
  184. struct sec4_sg_entry *sec4_sg,
  185. u32 flag)
  186. {
  187. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  188. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  189. }
  190. /* Common shared descriptor commands */
  191. static inline void append_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  192. {
  193. append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
  194. ctx->split_key_len, CLASS_2 |
  195. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  196. }
  197. /* Append key if it has been set */
  198. static inline void init_sh_desc_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  199. {
  200. u32 *key_jump_cmd;
  201. init_sh_desc(desc, HDR_SHARE_WAIT);
  202. if (ctx->split_key_len) {
  203. /* Skip if already shared */
  204. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  205. JUMP_COND_SHRD);
  206. append_key_ahash(desc, ctx);
  207. set_jump_tgt_here(desc, key_jump_cmd);
  208. }
  209. /* Propagate errors from shared to job descriptor */
  210. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  211. }
  212. /*
  213. * For ahash read data from seqin following state->caam_ctx,
  214. * and write resulting class2 context to seqout, which may be state->caam_ctx
  215. * or req->result
  216. */
  217. static inline void ahash_append_load_str(u32 *desc, int digestsize)
  218. {
  219. /* Calculate remaining bytes to read */
  220. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  221. /* Read remaining bytes */
  222. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  223. FIFOLD_TYPE_MSG | KEY_VLF);
  224. /* Store class2 context bytes */
  225. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  226. LDST_SRCDST_BYTE_CONTEXT);
  227. }
  228. /*
  229. * For ahash update, final and finup, import context, read and write to seqout
  230. */
  231. static inline void ahash_ctx_data_to_out(u32 *desc, u32 op, u32 state,
  232. int digestsize,
  233. struct caam_hash_ctx *ctx)
  234. {
  235. init_sh_desc_key_ahash(desc, ctx);
  236. /* Import context from software */
  237. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  238. LDST_CLASS_2_CCB | ctx->ctx_len);
  239. /* Class 2 operation */
  240. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  241. /*
  242. * Load from buf and/or src and write to req->result or state->context
  243. */
  244. ahash_append_load_str(desc, digestsize);
  245. }
  246. /* For ahash firsts and digest, read and write to seqout */
  247. static inline void ahash_data_to_out(u32 *desc, u32 op, u32 state,
  248. int digestsize, struct caam_hash_ctx *ctx)
  249. {
  250. init_sh_desc_key_ahash(desc, ctx);
  251. /* Class 2 operation */
  252. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  253. /*
  254. * Load from buf and/or src and write to req->result or state->context
  255. */
  256. ahash_append_load_str(desc, digestsize);
  257. }
  258. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  259. {
  260. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  261. int digestsize = crypto_ahash_digestsize(ahash);
  262. struct device *jrdev = ctx->jrdev;
  263. u32 have_key = 0;
  264. u32 *desc;
  265. if (ctx->split_key_len)
  266. have_key = OP_ALG_AAI_HMAC_PRECOMP;
  267. /* ahash_update shared descriptor */
  268. desc = ctx->sh_desc_update;
  269. init_sh_desc(desc, HDR_SHARE_WAIT);
  270. /* Import context from software */
  271. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  272. LDST_CLASS_2_CCB | ctx->ctx_len);
  273. /* Class 2 operation */
  274. append_operation(desc, ctx->alg_type | OP_ALG_AS_UPDATE |
  275. OP_ALG_ENCRYPT);
  276. /* Load data and write to result or context */
  277. ahash_append_load_str(desc, ctx->ctx_len);
  278. ctx->sh_desc_update_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  279. DMA_TO_DEVICE);
  280. if (dma_mapping_error(jrdev, ctx->sh_desc_update_dma)) {
  281. dev_err(jrdev, "unable to map shared descriptor\n");
  282. return -ENOMEM;
  283. }
  284. #ifdef DEBUG
  285. print_hex_dump(KERN_ERR, "ahash update shdesc@"xstr(__LINE__)": ",
  286. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  287. #endif
  288. /* ahash_update_first shared descriptor */
  289. desc = ctx->sh_desc_update_first;
  290. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INIT,
  291. ctx->ctx_len, ctx);
  292. ctx->sh_desc_update_first_dma = dma_map_single(jrdev, desc,
  293. desc_bytes(desc),
  294. DMA_TO_DEVICE);
  295. if (dma_mapping_error(jrdev, ctx->sh_desc_update_first_dma)) {
  296. dev_err(jrdev, "unable to map shared descriptor\n");
  297. return -ENOMEM;
  298. }
  299. #ifdef DEBUG
  300. print_hex_dump(KERN_ERR, "ahash update first shdesc@"xstr(__LINE__)": ",
  301. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  302. #endif
  303. /* ahash_final shared descriptor */
  304. desc = ctx->sh_desc_fin;
  305. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  306. OP_ALG_AS_FINALIZE, digestsize, ctx);
  307. ctx->sh_desc_fin_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  308. DMA_TO_DEVICE);
  309. if (dma_mapping_error(jrdev, ctx->sh_desc_fin_dma)) {
  310. dev_err(jrdev, "unable to map shared descriptor\n");
  311. return -ENOMEM;
  312. }
  313. #ifdef DEBUG
  314. print_hex_dump(KERN_ERR, "ahash final shdesc@"xstr(__LINE__)": ",
  315. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  316. desc_bytes(desc), 1);
  317. #endif
  318. /* ahash_finup shared descriptor */
  319. desc = ctx->sh_desc_finup;
  320. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  321. OP_ALG_AS_FINALIZE, digestsize, ctx);
  322. ctx->sh_desc_finup_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  323. DMA_TO_DEVICE);
  324. if (dma_mapping_error(jrdev, ctx->sh_desc_finup_dma)) {
  325. dev_err(jrdev, "unable to map shared descriptor\n");
  326. return -ENOMEM;
  327. }
  328. #ifdef DEBUG
  329. print_hex_dump(KERN_ERR, "ahash finup shdesc@"xstr(__LINE__)": ",
  330. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  331. desc_bytes(desc), 1);
  332. #endif
  333. /* ahash_digest shared descriptor */
  334. desc = ctx->sh_desc_digest;
  335. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INITFINAL,
  336. digestsize, ctx);
  337. ctx->sh_desc_digest_dma = dma_map_single(jrdev, desc,
  338. desc_bytes(desc),
  339. DMA_TO_DEVICE);
  340. if (dma_mapping_error(jrdev, ctx->sh_desc_digest_dma)) {
  341. dev_err(jrdev, "unable to map shared descriptor\n");
  342. return -ENOMEM;
  343. }
  344. #ifdef DEBUG
  345. print_hex_dump(KERN_ERR, "ahash digest shdesc@"xstr(__LINE__)": ",
  346. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  347. desc_bytes(desc), 1);
  348. #endif
  349. return 0;
  350. }
  351. static u32 gen_split_hash_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  352. u32 keylen)
  353. {
  354. return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len,
  355. ctx->split_key_pad_len, key_in, keylen,
  356. ctx->alg_op);
  357. }
  358. /* Digest hash size if it is too large */
  359. static u32 hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  360. u32 *keylen, u8 *key_out, u32 digestsize)
  361. {
  362. struct device *jrdev = ctx->jrdev;
  363. u32 *desc;
  364. struct split_key_result result;
  365. dma_addr_t src_dma, dst_dma;
  366. int ret = 0;
  367. desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  368. init_job_desc(desc, 0);
  369. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  370. DMA_TO_DEVICE);
  371. if (dma_mapping_error(jrdev, src_dma)) {
  372. dev_err(jrdev, "unable to map key input memory\n");
  373. kfree(desc);
  374. return -ENOMEM;
  375. }
  376. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  377. DMA_FROM_DEVICE);
  378. if (dma_mapping_error(jrdev, dst_dma)) {
  379. dev_err(jrdev, "unable to map key output memory\n");
  380. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  381. kfree(desc);
  382. return -ENOMEM;
  383. }
  384. /* Job descriptor to perform unkeyed hash on key_in */
  385. append_operation(desc, ctx->alg_type | OP_ALG_ENCRYPT |
  386. OP_ALG_AS_INITFINAL);
  387. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  388. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  389. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  390. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  391. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  392. LDST_SRCDST_BYTE_CONTEXT);
  393. #ifdef DEBUG
  394. print_hex_dump(KERN_ERR, "key_in@"xstr(__LINE__)": ",
  395. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  396. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  397. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  398. #endif
  399. result.err = 0;
  400. init_completion(&result.completion);
  401. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  402. if (!ret) {
  403. /* in progress */
  404. wait_for_completion_interruptible(&result.completion);
  405. ret = result.err;
  406. #ifdef DEBUG
  407. print_hex_dump(KERN_ERR, "digested key@"xstr(__LINE__)": ",
  408. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  409. digestsize, 1);
  410. #endif
  411. }
  412. *keylen = digestsize;
  413. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  414. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  415. kfree(desc);
  416. return ret;
  417. }
  418. static int ahash_setkey(struct crypto_ahash *ahash,
  419. const u8 *key, unsigned int keylen)
  420. {
  421. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  422. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  423. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  424. struct device *jrdev = ctx->jrdev;
  425. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  426. int digestsize = crypto_ahash_digestsize(ahash);
  427. int ret = 0;
  428. u8 *hashed_key = NULL;
  429. #ifdef DEBUG
  430. printk(KERN_ERR "keylen %d\n", keylen);
  431. #endif
  432. if (keylen > blocksize) {
  433. hashed_key = kmalloc(sizeof(u8) * digestsize, GFP_KERNEL |
  434. GFP_DMA);
  435. if (!hashed_key)
  436. return -ENOMEM;
  437. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  438. digestsize);
  439. if (ret)
  440. goto badkey;
  441. key = hashed_key;
  442. }
  443. /* Pick class 2 key length from algorithm submask */
  444. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  445. OP_ALG_ALGSEL_SHIFT] * 2;
  446. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  447. #ifdef DEBUG
  448. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  449. ctx->split_key_len, ctx->split_key_pad_len);
  450. print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
  451. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  452. #endif
  453. ret = gen_split_hash_key(ctx, key, keylen);
  454. if (ret)
  455. goto badkey;
  456. ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  457. DMA_TO_DEVICE);
  458. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  459. dev_err(jrdev, "unable to map key i/o memory\n");
  460. return -ENOMEM;
  461. }
  462. #ifdef DEBUG
  463. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  464. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  465. ctx->split_key_pad_len, 1);
  466. #endif
  467. ret = ahash_set_sh_desc(ahash);
  468. if (ret) {
  469. dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len,
  470. DMA_TO_DEVICE);
  471. }
  472. kfree(hashed_key);
  473. return ret;
  474. badkey:
  475. kfree(hashed_key);
  476. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  477. return -EINVAL;
  478. }
  479. /*
  480. * ahash_edesc - s/w-extended ahash descriptor
  481. * @dst_dma: physical mapped address of req->result
  482. * @sec4_sg_dma: physical mapped address of h/w link table
  483. * @chained: if source is chained
  484. * @src_nents: number of segments in input scatterlist
  485. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  486. * @sec4_sg: pointer to h/w link table
  487. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  488. */
  489. struct ahash_edesc {
  490. dma_addr_t dst_dma;
  491. dma_addr_t sec4_sg_dma;
  492. bool chained;
  493. int src_nents;
  494. int sec4_sg_bytes;
  495. struct sec4_sg_entry *sec4_sg;
  496. u32 hw_desc[0];
  497. };
  498. static inline void ahash_unmap(struct device *dev,
  499. struct ahash_edesc *edesc,
  500. struct ahash_request *req, int dst_len)
  501. {
  502. if (edesc->src_nents)
  503. dma_unmap_sg_chained(dev, req->src, edesc->src_nents,
  504. DMA_TO_DEVICE, edesc->chained);
  505. if (edesc->dst_dma)
  506. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  507. if (edesc->sec4_sg_bytes)
  508. dma_unmap_single(dev, edesc->sec4_sg_dma,
  509. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  510. }
  511. static inline void ahash_unmap_ctx(struct device *dev,
  512. struct ahash_edesc *edesc,
  513. struct ahash_request *req, int dst_len, u32 flag)
  514. {
  515. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  516. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  517. struct caam_hash_state *state = ahash_request_ctx(req);
  518. if (state->ctx_dma)
  519. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  520. ahash_unmap(dev, edesc, req, dst_len);
  521. }
  522. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  523. void *context)
  524. {
  525. struct ahash_request *req = context;
  526. struct ahash_edesc *edesc;
  527. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  528. int digestsize = crypto_ahash_digestsize(ahash);
  529. #ifdef DEBUG
  530. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  531. struct caam_hash_state *state = ahash_request_ctx(req);
  532. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  533. #endif
  534. edesc = (struct ahash_edesc *)((char *)desc -
  535. offsetof(struct ahash_edesc, hw_desc));
  536. if (err) {
  537. char tmp[CAAM_ERROR_STR_MAX];
  538. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  539. }
  540. ahash_unmap(jrdev, edesc, req, digestsize);
  541. kfree(edesc);
  542. #ifdef DEBUG
  543. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  544. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  545. ctx->ctx_len, 1);
  546. if (req->result)
  547. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  548. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  549. digestsize, 1);
  550. #endif
  551. req->base.complete(&req->base, err);
  552. }
  553. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  554. void *context)
  555. {
  556. struct ahash_request *req = context;
  557. struct ahash_edesc *edesc;
  558. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  559. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  560. #ifdef DEBUG
  561. struct caam_hash_state *state = ahash_request_ctx(req);
  562. int digestsize = crypto_ahash_digestsize(ahash);
  563. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  564. #endif
  565. edesc = (struct ahash_edesc *)((char *)desc -
  566. offsetof(struct ahash_edesc, hw_desc));
  567. if (err) {
  568. char tmp[CAAM_ERROR_STR_MAX];
  569. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  570. }
  571. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  572. kfree(edesc);
  573. #ifdef DEBUG
  574. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  575. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  576. ctx->ctx_len, 1);
  577. if (req->result)
  578. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  579. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  580. digestsize, 1);
  581. #endif
  582. req->base.complete(&req->base, err);
  583. }
  584. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  585. void *context)
  586. {
  587. struct ahash_request *req = context;
  588. struct ahash_edesc *edesc;
  589. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  590. int digestsize = crypto_ahash_digestsize(ahash);
  591. #ifdef DEBUG
  592. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  593. struct caam_hash_state *state = ahash_request_ctx(req);
  594. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  595. #endif
  596. edesc = (struct ahash_edesc *)((char *)desc -
  597. offsetof(struct ahash_edesc, hw_desc));
  598. if (err) {
  599. char tmp[CAAM_ERROR_STR_MAX];
  600. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  601. }
  602. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  603. kfree(edesc);
  604. #ifdef DEBUG
  605. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  606. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  607. ctx->ctx_len, 1);
  608. if (req->result)
  609. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  610. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  611. digestsize, 1);
  612. #endif
  613. req->base.complete(&req->base, err);
  614. }
  615. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  616. void *context)
  617. {
  618. struct ahash_request *req = context;
  619. struct ahash_edesc *edesc;
  620. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  621. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  622. #ifdef DEBUG
  623. struct caam_hash_state *state = ahash_request_ctx(req);
  624. int digestsize = crypto_ahash_digestsize(ahash);
  625. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  626. #endif
  627. edesc = (struct ahash_edesc *)((char *)desc -
  628. offsetof(struct ahash_edesc, hw_desc));
  629. if (err) {
  630. char tmp[CAAM_ERROR_STR_MAX];
  631. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  632. }
  633. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  634. kfree(edesc);
  635. #ifdef DEBUG
  636. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  637. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  638. ctx->ctx_len, 1);
  639. if (req->result)
  640. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  641. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  642. digestsize, 1);
  643. #endif
  644. req->base.complete(&req->base, err);
  645. }
  646. /* submit update job descriptor */
  647. static int ahash_update_ctx(struct ahash_request *req)
  648. {
  649. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  650. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  651. struct caam_hash_state *state = ahash_request_ctx(req);
  652. struct device *jrdev = ctx->jrdev;
  653. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  654. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  655. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  656. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  657. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  658. int *next_buflen = state->current_buf ? &state->buflen_0 :
  659. &state->buflen_1, last_buflen;
  660. int in_len = *buflen + req->nbytes, to_hash;
  661. u32 *sh_desc = ctx->sh_desc_update, *desc;
  662. dma_addr_t ptr = ctx->sh_desc_update_dma;
  663. int src_nents, sec4_sg_bytes, sec4_sg_src_index;
  664. struct ahash_edesc *edesc;
  665. bool chained = false;
  666. int ret = 0;
  667. int sh_len;
  668. last_buflen = *next_buflen;
  669. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  670. to_hash = in_len - *next_buflen;
  671. if (to_hash) {
  672. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen),
  673. &chained);
  674. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  675. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  676. sizeof(struct sec4_sg_entry);
  677. /*
  678. * allocate space for base edesc and hw desc commands,
  679. * link tables
  680. */
  681. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  682. sec4_sg_bytes, GFP_DMA | flags);
  683. if (!edesc) {
  684. dev_err(jrdev,
  685. "could not allocate extended descriptor\n");
  686. return -ENOMEM;
  687. }
  688. edesc->src_nents = src_nents;
  689. edesc->chained = chained;
  690. edesc->sec4_sg_bytes = sec4_sg_bytes;
  691. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  692. DESC_JOB_IO_LEN;
  693. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  694. sec4_sg_bytes,
  695. DMA_TO_DEVICE);
  696. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  697. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  698. state->buf_dma = try_buf_map_to_sec4_sg(jrdev,
  699. edesc->sec4_sg + 1,
  700. buf, state->buf_dma,
  701. *buflen, last_buflen);
  702. if (src_nents) {
  703. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  704. edesc->sec4_sg + sec4_sg_src_index,
  705. chained);
  706. if (*next_buflen) {
  707. sg_copy_part(next_buf, req->src, to_hash -
  708. *buflen, req->nbytes);
  709. state->current_buf = !state->current_buf;
  710. }
  711. } else {
  712. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  713. SEC4_SG_LEN_FIN;
  714. }
  715. sh_len = desc_len(sh_desc);
  716. desc = edesc->hw_desc;
  717. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  718. HDR_REVERSE);
  719. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  720. to_hash, LDST_SGF);
  721. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  722. #ifdef DEBUG
  723. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  724. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  725. desc_bytes(desc), 1);
  726. #endif
  727. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  728. if (!ret) {
  729. ret = -EINPROGRESS;
  730. } else {
  731. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  732. DMA_BIDIRECTIONAL);
  733. kfree(edesc);
  734. }
  735. } else if (*next_buflen) {
  736. sg_copy(buf + *buflen, req->src, req->nbytes);
  737. *buflen = *next_buflen;
  738. *next_buflen = last_buflen;
  739. }
  740. #ifdef DEBUG
  741. print_hex_dump(KERN_ERR, "buf@"xstr(__LINE__)": ",
  742. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  743. print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
  744. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  745. *next_buflen, 1);
  746. #endif
  747. return ret;
  748. }
  749. static int ahash_final_ctx(struct ahash_request *req)
  750. {
  751. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  752. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  753. struct caam_hash_state *state = ahash_request_ctx(req);
  754. struct device *jrdev = ctx->jrdev;
  755. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  756. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  757. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  758. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  759. int last_buflen = state->current_buf ? state->buflen_0 :
  760. state->buflen_1;
  761. u32 *sh_desc = ctx->sh_desc_fin, *desc;
  762. dma_addr_t ptr = ctx->sh_desc_fin_dma;
  763. int sec4_sg_bytes;
  764. int digestsize = crypto_ahash_digestsize(ahash);
  765. struct ahash_edesc *edesc;
  766. int ret = 0;
  767. int sh_len;
  768. sec4_sg_bytes = (1 + (buflen ? 1 : 0)) * sizeof(struct sec4_sg_entry);
  769. /* allocate space for base edesc and hw desc commands, link tables */
  770. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  771. sec4_sg_bytes, GFP_DMA | flags);
  772. if (!edesc) {
  773. dev_err(jrdev, "could not allocate extended descriptor\n");
  774. return -ENOMEM;
  775. }
  776. sh_len = desc_len(sh_desc);
  777. desc = edesc->hw_desc;
  778. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  779. edesc->sec4_sg_bytes = sec4_sg_bytes;
  780. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  781. DESC_JOB_IO_LEN;
  782. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  783. sec4_sg_bytes, DMA_TO_DEVICE);
  784. edesc->src_nents = 0;
  785. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len, edesc->sec4_sg,
  786. DMA_TO_DEVICE);
  787. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  788. buf, state->buf_dma, buflen,
  789. last_buflen);
  790. (edesc->sec4_sg + sec4_sg_bytes - 1)->len |= SEC4_SG_LEN_FIN;
  791. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  792. LDST_SGF);
  793. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  794. digestsize);
  795. #ifdef DEBUG
  796. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  797. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  798. #endif
  799. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  800. if (!ret) {
  801. ret = -EINPROGRESS;
  802. } else {
  803. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  804. kfree(edesc);
  805. }
  806. return ret;
  807. }
  808. static int ahash_finup_ctx(struct ahash_request *req)
  809. {
  810. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  811. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  812. struct caam_hash_state *state = ahash_request_ctx(req);
  813. struct device *jrdev = ctx->jrdev;
  814. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  815. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  816. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  817. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  818. int last_buflen = state->current_buf ? state->buflen_0 :
  819. state->buflen_1;
  820. u32 *sh_desc = ctx->sh_desc_finup, *desc;
  821. dma_addr_t ptr = ctx->sh_desc_finup_dma;
  822. int sec4_sg_bytes, sec4_sg_src_index;
  823. int src_nents;
  824. int digestsize = crypto_ahash_digestsize(ahash);
  825. struct ahash_edesc *edesc;
  826. bool chained = false;
  827. int ret = 0;
  828. int sh_len;
  829. src_nents = __sg_count(req->src, req->nbytes, &chained);
  830. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  831. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  832. sizeof(struct sec4_sg_entry);
  833. /* allocate space for base edesc and hw desc commands, link tables */
  834. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  835. sec4_sg_bytes, GFP_DMA | flags);
  836. if (!edesc) {
  837. dev_err(jrdev, "could not allocate extended descriptor\n");
  838. return -ENOMEM;
  839. }
  840. sh_len = desc_len(sh_desc);
  841. desc = edesc->hw_desc;
  842. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  843. edesc->src_nents = src_nents;
  844. edesc->chained = chained;
  845. edesc->sec4_sg_bytes = sec4_sg_bytes;
  846. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  847. DESC_JOB_IO_LEN;
  848. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  849. sec4_sg_bytes, DMA_TO_DEVICE);
  850. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len, edesc->sec4_sg,
  851. DMA_TO_DEVICE);
  852. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  853. buf, state->buf_dma, buflen,
  854. last_buflen);
  855. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg +
  856. sec4_sg_src_index, chained);
  857. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  858. buflen + req->nbytes, LDST_SGF);
  859. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  860. digestsize);
  861. #ifdef DEBUG
  862. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  863. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  864. #endif
  865. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  866. if (!ret) {
  867. ret = -EINPROGRESS;
  868. } else {
  869. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  870. kfree(edesc);
  871. }
  872. return ret;
  873. }
  874. static int ahash_digest(struct ahash_request *req)
  875. {
  876. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  877. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  878. struct device *jrdev = ctx->jrdev;
  879. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  880. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  881. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  882. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  883. int digestsize = crypto_ahash_digestsize(ahash);
  884. int src_nents, sec4_sg_bytes;
  885. dma_addr_t src_dma;
  886. struct ahash_edesc *edesc;
  887. bool chained = false;
  888. int ret = 0;
  889. u32 options;
  890. int sh_len;
  891. src_nents = sg_count(req->src, req->nbytes, &chained);
  892. dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE,
  893. chained);
  894. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  895. /* allocate space for base edesc and hw desc commands, link tables */
  896. edesc = kmalloc(sizeof(struct ahash_edesc) + sec4_sg_bytes +
  897. DESC_JOB_IO_LEN, GFP_DMA | flags);
  898. if (!edesc) {
  899. dev_err(jrdev, "could not allocate extended descriptor\n");
  900. return -ENOMEM;
  901. }
  902. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  903. DESC_JOB_IO_LEN;
  904. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  905. sec4_sg_bytes, DMA_TO_DEVICE);
  906. edesc->src_nents = src_nents;
  907. edesc->chained = chained;
  908. sh_len = desc_len(sh_desc);
  909. desc = edesc->hw_desc;
  910. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  911. if (src_nents) {
  912. sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
  913. src_dma = edesc->sec4_sg_dma;
  914. options = LDST_SGF;
  915. } else {
  916. src_dma = sg_dma_address(req->src);
  917. options = 0;
  918. }
  919. append_seq_in_ptr(desc, src_dma, req->nbytes, options);
  920. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  921. digestsize);
  922. #ifdef DEBUG
  923. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  924. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  925. #endif
  926. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  927. if (!ret) {
  928. ret = -EINPROGRESS;
  929. } else {
  930. ahash_unmap(jrdev, edesc, req, digestsize);
  931. kfree(edesc);
  932. }
  933. return ret;
  934. }
  935. /* submit ahash final if it the first job descriptor */
  936. static int ahash_final_no_ctx(struct ahash_request *req)
  937. {
  938. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  939. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  940. struct caam_hash_state *state = ahash_request_ctx(req);
  941. struct device *jrdev = ctx->jrdev;
  942. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  943. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  944. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  945. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  946. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  947. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  948. int digestsize = crypto_ahash_digestsize(ahash);
  949. struct ahash_edesc *edesc;
  950. int ret = 0;
  951. int sh_len;
  952. /* allocate space for base edesc and hw desc commands, link tables */
  953. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN,
  954. GFP_DMA | flags);
  955. if (!edesc) {
  956. dev_err(jrdev, "could not allocate extended descriptor\n");
  957. return -ENOMEM;
  958. }
  959. sh_len = desc_len(sh_desc);
  960. desc = edesc->hw_desc;
  961. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  962. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  963. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  964. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  965. digestsize);
  966. edesc->src_nents = 0;
  967. #ifdef DEBUG
  968. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  969. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  970. #endif
  971. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  972. if (!ret) {
  973. ret = -EINPROGRESS;
  974. } else {
  975. ahash_unmap(jrdev, edesc, req, digestsize);
  976. kfree(edesc);
  977. }
  978. return ret;
  979. }
  980. /* submit ahash update if it the first job descriptor after update */
  981. static int ahash_update_no_ctx(struct ahash_request *req)
  982. {
  983. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  984. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  985. struct caam_hash_state *state = ahash_request_ctx(req);
  986. struct device *jrdev = ctx->jrdev;
  987. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  988. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  989. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  990. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  991. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  992. int *next_buflen = state->current_buf ? &state->buflen_0 :
  993. &state->buflen_1;
  994. int in_len = *buflen + req->nbytes, to_hash;
  995. int sec4_sg_bytes, src_nents;
  996. struct ahash_edesc *edesc;
  997. u32 *desc, *sh_desc = ctx->sh_desc_update_first;
  998. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  999. bool chained = false;
  1000. int ret = 0;
  1001. int sh_len;
  1002. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  1003. to_hash = in_len - *next_buflen;
  1004. if (to_hash) {
  1005. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen),
  1006. &chained);
  1007. sec4_sg_bytes = (1 + src_nents) *
  1008. sizeof(struct sec4_sg_entry);
  1009. /*
  1010. * allocate space for base edesc and hw desc commands,
  1011. * link tables
  1012. */
  1013. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1014. sec4_sg_bytes, GFP_DMA | flags);
  1015. if (!edesc) {
  1016. dev_err(jrdev,
  1017. "could not allocate extended descriptor\n");
  1018. return -ENOMEM;
  1019. }
  1020. edesc->src_nents = src_nents;
  1021. edesc->chained = chained;
  1022. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1023. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1024. DESC_JOB_IO_LEN;
  1025. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1026. sec4_sg_bytes,
  1027. DMA_TO_DEVICE);
  1028. state->buf_dma = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg,
  1029. buf, *buflen);
  1030. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  1031. edesc->sec4_sg + 1, chained);
  1032. if (*next_buflen) {
  1033. sg_copy_part(next_buf, req->src, to_hash - *buflen,
  1034. req->nbytes);
  1035. state->current_buf = !state->current_buf;
  1036. }
  1037. sh_len = desc_len(sh_desc);
  1038. desc = edesc->hw_desc;
  1039. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1040. HDR_REVERSE);
  1041. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1042. map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1043. #ifdef DEBUG
  1044. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  1045. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1046. desc_bytes(desc), 1);
  1047. #endif
  1048. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1049. if (!ret) {
  1050. ret = -EINPROGRESS;
  1051. state->update = ahash_update_ctx;
  1052. state->finup = ahash_finup_ctx;
  1053. state->final = ahash_final_ctx;
  1054. } else {
  1055. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1056. DMA_TO_DEVICE);
  1057. kfree(edesc);
  1058. }
  1059. } else if (*next_buflen) {
  1060. sg_copy(buf + *buflen, req->src, req->nbytes);
  1061. *buflen = *next_buflen;
  1062. *next_buflen = 0;
  1063. }
  1064. #ifdef DEBUG
  1065. print_hex_dump(KERN_ERR, "buf@"xstr(__LINE__)": ",
  1066. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1067. print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
  1068. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1069. *next_buflen, 1);
  1070. #endif
  1071. return ret;
  1072. }
  1073. /* submit ahash finup if it the first job descriptor after update */
  1074. static int ahash_finup_no_ctx(struct ahash_request *req)
  1075. {
  1076. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1077. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1078. struct caam_hash_state *state = ahash_request_ctx(req);
  1079. struct device *jrdev = ctx->jrdev;
  1080. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1081. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1082. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1083. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1084. int last_buflen = state->current_buf ? state->buflen_0 :
  1085. state->buflen_1;
  1086. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  1087. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  1088. int sec4_sg_bytes, sec4_sg_src_index, src_nents;
  1089. int digestsize = crypto_ahash_digestsize(ahash);
  1090. struct ahash_edesc *edesc;
  1091. bool chained = false;
  1092. int sh_len;
  1093. int ret = 0;
  1094. src_nents = __sg_count(req->src, req->nbytes, &chained);
  1095. sec4_sg_src_index = 2;
  1096. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  1097. sizeof(struct sec4_sg_entry);
  1098. /* allocate space for base edesc and hw desc commands, link tables */
  1099. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1100. sec4_sg_bytes, GFP_DMA | flags);
  1101. if (!edesc) {
  1102. dev_err(jrdev, "could not allocate extended descriptor\n");
  1103. return -ENOMEM;
  1104. }
  1105. sh_len = desc_len(sh_desc);
  1106. desc = edesc->hw_desc;
  1107. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  1108. edesc->src_nents = src_nents;
  1109. edesc->chained = chained;
  1110. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1111. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1112. DESC_JOB_IO_LEN;
  1113. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1114. sec4_sg_bytes, DMA_TO_DEVICE);
  1115. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, buf,
  1116. state->buf_dma, buflen,
  1117. last_buflen);
  1118. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg + 1,
  1119. chained);
  1120. append_seq_in_ptr(desc, edesc->sec4_sg_dma, buflen +
  1121. req->nbytes, LDST_SGF);
  1122. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1123. digestsize);
  1124. #ifdef DEBUG
  1125. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  1126. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1127. #endif
  1128. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1129. if (!ret) {
  1130. ret = -EINPROGRESS;
  1131. } else {
  1132. ahash_unmap(jrdev, edesc, req, digestsize);
  1133. kfree(edesc);
  1134. }
  1135. return ret;
  1136. }
  1137. /* submit first update job descriptor after init */
  1138. static int ahash_update_first(struct ahash_request *req)
  1139. {
  1140. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1141. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1142. struct caam_hash_state *state = ahash_request_ctx(req);
  1143. struct device *jrdev = ctx->jrdev;
  1144. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1145. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1146. u8 *next_buf = state->buf_0 + state->current_buf *
  1147. CAAM_MAX_HASH_BLOCK_SIZE;
  1148. int *next_buflen = &state->buflen_0 + state->current_buf;
  1149. int to_hash;
  1150. u32 *sh_desc = ctx->sh_desc_update_first, *desc;
  1151. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1152. int sec4_sg_bytes, src_nents;
  1153. dma_addr_t src_dma;
  1154. u32 options;
  1155. struct ahash_edesc *edesc;
  1156. bool chained = false;
  1157. int ret = 0;
  1158. int sh_len;
  1159. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1160. 1);
  1161. to_hash = req->nbytes - *next_buflen;
  1162. if (to_hash) {
  1163. src_nents = sg_count(req->src, req->nbytes - (*next_buflen),
  1164. &chained);
  1165. dma_map_sg_chained(jrdev, req->src, src_nents ? : 1,
  1166. DMA_TO_DEVICE, chained);
  1167. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  1168. /*
  1169. * allocate space for base edesc and hw desc commands,
  1170. * link tables
  1171. */
  1172. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1173. sec4_sg_bytes, GFP_DMA | flags);
  1174. if (!edesc) {
  1175. dev_err(jrdev,
  1176. "could not allocate extended descriptor\n");
  1177. return -ENOMEM;
  1178. }
  1179. edesc->src_nents = src_nents;
  1180. edesc->chained = chained;
  1181. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1182. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1183. DESC_JOB_IO_LEN;
  1184. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1185. sec4_sg_bytes,
  1186. DMA_TO_DEVICE);
  1187. if (src_nents) {
  1188. sg_to_sec4_sg_last(req->src, src_nents,
  1189. edesc->sec4_sg, 0);
  1190. src_dma = edesc->sec4_sg_dma;
  1191. options = LDST_SGF;
  1192. } else {
  1193. src_dma = sg_dma_address(req->src);
  1194. options = 0;
  1195. }
  1196. if (*next_buflen)
  1197. sg_copy_part(next_buf, req->src, to_hash, req->nbytes);
  1198. sh_len = desc_len(sh_desc);
  1199. desc = edesc->hw_desc;
  1200. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1201. HDR_REVERSE);
  1202. append_seq_in_ptr(desc, src_dma, to_hash, options);
  1203. map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1204. #ifdef DEBUG
  1205. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  1206. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1207. desc_bytes(desc), 1);
  1208. #endif
  1209. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst,
  1210. req);
  1211. if (!ret) {
  1212. ret = -EINPROGRESS;
  1213. state->update = ahash_update_ctx;
  1214. state->finup = ahash_finup_ctx;
  1215. state->final = ahash_final_ctx;
  1216. } else {
  1217. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1218. DMA_TO_DEVICE);
  1219. kfree(edesc);
  1220. }
  1221. } else if (*next_buflen) {
  1222. state->update = ahash_update_no_ctx;
  1223. state->finup = ahash_finup_no_ctx;
  1224. state->final = ahash_final_no_ctx;
  1225. sg_copy(next_buf, req->src, req->nbytes);
  1226. }
  1227. #ifdef DEBUG
  1228. print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
  1229. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1230. *next_buflen, 1);
  1231. #endif
  1232. return ret;
  1233. }
  1234. static int ahash_finup_first(struct ahash_request *req)
  1235. {
  1236. return ahash_digest(req);
  1237. }
  1238. static int ahash_init(struct ahash_request *req)
  1239. {
  1240. struct caam_hash_state *state = ahash_request_ctx(req);
  1241. state->update = ahash_update_first;
  1242. state->finup = ahash_finup_first;
  1243. state->final = ahash_final_no_ctx;
  1244. state->current_buf = 0;
  1245. return 0;
  1246. }
  1247. static int ahash_update(struct ahash_request *req)
  1248. {
  1249. struct caam_hash_state *state = ahash_request_ctx(req);
  1250. return state->update(req);
  1251. }
  1252. static int ahash_finup(struct ahash_request *req)
  1253. {
  1254. struct caam_hash_state *state = ahash_request_ctx(req);
  1255. return state->finup(req);
  1256. }
  1257. static int ahash_final(struct ahash_request *req)
  1258. {
  1259. struct caam_hash_state *state = ahash_request_ctx(req);
  1260. return state->final(req);
  1261. }
  1262. static int ahash_export(struct ahash_request *req, void *out)
  1263. {
  1264. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1265. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1266. struct caam_hash_state *state = ahash_request_ctx(req);
  1267. memcpy(out, ctx, sizeof(struct caam_hash_ctx));
  1268. memcpy(out + sizeof(struct caam_hash_ctx), state,
  1269. sizeof(struct caam_hash_state));
  1270. return 0;
  1271. }
  1272. static int ahash_import(struct ahash_request *req, const void *in)
  1273. {
  1274. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1275. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1276. struct caam_hash_state *state = ahash_request_ctx(req);
  1277. memcpy(ctx, in, sizeof(struct caam_hash_ctx));
  1278. memcpy(state, in + sizeof(struct caam_hash_ctx),
  1279. sizeof(struct caam_hash_state));
  1280. return 0;
  1281. }
  1282. struct caam_hash_template {
  1283. char name[CRYPTO_MAX_ALG_NAME];
  1284. char driver_name[CRYPTO_MAX_ALG_NAME];
  1285. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1286. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1287. unsigned int blocksize;
  1288. struct ahash_alg template_ahash;
  1289. u32 alg_type;
  1290. u32 alg_op;
  1291. };
  1292. /* ahash descriptors */
  1293. static struct caam_hash_template driver_hash[] = {
  1294. {
  1295. .name = "sha1",
  1296. .driver_name = "sha1-caam",
  1297. .hmac_name = "hmac(sha1)",
  1298. .hmac_driver_name = "hmac-sha1-caam",
  1299. .blocksize = SHA1_BLOCK_SIZE,
  1300. .template_ahash = {
  1301. .init = ahash_init,
  1302. .update = ahash_update,
  1303. .final = ahash_final,
  1304. .finup = ahash_finup,
  1305. .digest = ahash_digest,
  1306. .export = ahash_export,
  1307. .import = ahash_import,
  1308. .setkey = ahash_setkey,
  1309. .halg = {
  1310. .digestsize = SHA1_DIGEST_SIZE,
  1311. },
  1312. },
  1313. .alg_type = OP_ALG_ALGSEL_SHA1,
  1314. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1315. }, {
  1316. .name = "sha224",
  1317. .driver_name = "sha224-caam",
  1318. .hmac_name = "hmac(sha224)",
  1319. .hmac_driver_name = "hmac-sha224-caam",
  1320. .blocksize = SHA224_BLOCK_SIZE,
  1321. .template_ahash = {
  1322. .init = ahash_init,
  1323. .update = ahash_update,
  1324. .final = ahash_final,
  1325. .finup = ahash_finup,
  1326. .digest = ahash_digest,
  1327. .export = ahash_export,
  1328. .import = ahash_import,
  1329. .setkey = ahash_setkey,
  1330. .halg = {
  1331. .digestsize = SHA224_DIGEST_SIZE,
  1332. },
  1333. },
  1334. .alg_type = OP_ALG_ALGSEL_SHA224,
  1335. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1336. }, {
  1337. .name = "sha256",
  1338. .driver_name = "sha256-caam",
  1339. .hmac_name = "hmac(sha256)",
  1340. .hmac_driver_name = "hmac-sha256-caam",
  1341. .blocksize = SHA256_BLOCK_SIZE,
  1342. .template_ahash = {
  1343. .init = ahash_init,
  1344. .update = ahash_update,
  1345. .final = ahash_final,
  1346. .finup = ahash_finup,
  1347. .digest = ahash_digest,
  1348. .export = ahash_export,
  1349. .import = ahash_import,
  1350. .setkey = ahash_setkey,
  1351. .halg = {
  1352. .digestsize = SHA256_DIGEST_SIZE,
  1353. },
  1354. },
  1355. .alg_type = OP_ALG_ALGSEL_SHA256,
  1356. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1357. }, {
  1358. .name = "sha384",
  1359. .driver_name = "sha384-caam",
  1360. .hmac_name = "hmac(sha384)",
  1361. .hmac_driver_name = "hmac-sha384-caam",
  1362. .blocksize = SHA384_BLOCK_SIZE,
  1363. .template_ahash = {
  1364. .init = ahash_init,
  1365. .update = ahash_update,
  1366. .final = ahash_final,
  1367. .finup = ahash_finup,
  1368. .digest = ahash_digest,
  1369. .export = ahash_export,
  1370. .import = ahash_import,
  1371. .setkey = ahash_setkey,
  1372. .halg = {
  1373. .digestsize = SHA384_DIGEST_SIZE,
  1374. },
  1375. },
  1376. .alg_type = OP_ALG_ALGSEL_SHA384,
  1377. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1378. }, {
  1379. .name = "sha512",
  1380. .driver_name = "sha512-caam",
  1381. .hmac_name = "hmac(sha512)",
  1382. .hmac_driver_name = "hmac-sha512-caam",
  1383. .blocksize = SHA512_BLOCK_SIZE,
  1384. .template_ahash = {
  1385. .init = ahash_init,
  1386. .update = ahash_update,
  1387. .final = ahash_final,
  1388. .finup = ahash_finup,
  1389. .digest = ahash_digest,
  1390. .export = ahash_export,
  1391. .import = ahash_import,
  1392. .setkey = ahash_setkey,
  1393. .halg = {
  1394. .digestsize = SHA512_DIGEST_SIZE,
  1395. },
  1396. },
  1397. .alg_type = OP_ALG_ALGSEL_SHA512,
  1398. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1399. }, {
  1400. .name = "md5",
  1401. .driver_name = "md5-caam",
  1402. .hmac_name = "hmac(md5)",
  1403. .hmac_driver_name = "hmac-md5-caam",
  1404. .blocksize = MD5_BLOCK_WORDS * 4,
  1405. .template_ahash = {
  1406. .init = ahash_init,
  1407. .update = ahash_update,
  1408. .final = ahash_final,
  1409. .finup = ahash_finup,
  1410. .digest = ahash_digest,
  1411. .export = ahash_export,
  1412. .import = ahash_import,
  1413. .setkey = ahash_setkey,
  1414. .halg = {
  1415. .digestsize = MD5_DIGEST_SIZE,
  1416. },
  1417. },
  1418. .alg_type = OP_ALG_ALGSEL_MD5,
  1419. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1420. },
  1421. };
  1422. struct caam_hash_alg {
  1423. struct list_head entry;
  1424. struct device *ctrldev;
  1425. int alg_type;
  1426. int alg_op;
  1427. struct ahash_alg ahash_alg;
  1428. };
  1429. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1430. {
  1431. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1432. struct crypto_alg *base = tfm->__crt_alg;
  1433. struct hash_alg_common *halg =
  1434. container_of(base, struct hash_alg_common, base);
  1435. struct ahash_alg *alg =
  1436. container_of(halg, struct ahash_alg, halg);
  1437. struct caam_hash_alg *caam_hash =
  1438. container_of(alg, struct caam_hash_alg, ahash_alg);
  1439. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1440. struct caam_drv_private *priv = dev_get_drvdata(caam_hash->ctrldev);
  1441. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1442. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1443. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1444. HASH_MSG_LEN + 32,
  1445. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1446. HASH_MSG_LEN + 64,
  1447. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1448. int tgt_jr = atomic_inc_return(&priv->tfm_count);
  1449. int ret = 0;
  1450. /*
  1451. * distribute tfms across job rings to ensure in-order
  1452. * crypto request processing per tfm
  1453. */
  1454. ctx->jrdev = priv->jrdev[tgt_jr % priv->total_jobrs];
  1455. /* copy descriptor header template value */
  1456. ctx->alg_type = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1457. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_hash->alg_op;
  1458. ctx->ctx_len = runninglen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  1459. OP_ALG_ALGSEL_SHIFT];
  1460. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1461. sizeof(struct caam_hash_state));
  1462. ret = ahash_set_sh_desc(ahash);
  1463. return ret;
  1464. }
  1465. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1466. {
  1467. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1468. if (ctx->sh_desc_update_dma &&
  1469. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_dma))
  1470. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_dma,
  1471. desc_bytes(ctx->sh_desc_update),
  1472. DMA_TO_DEVICE);
  1473. if (ctx->sh_desc_update_first_dma &&
  1474. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_first_dma))
  1475. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_first_dma,
  1476. desc_bytes(ctx->sh_desc_update_first),
  1477. DMA_TO_DEVICE);
  1478. if (ctx->sh_desc_fin_dma &&
  1479. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_fin_dma))
  1480. dma_unmap_single(ctx->jrdev, ctx->sh_desc_fin_dma,
  1481. desc_bytes(ctx->sh_desc_fin), DMA_TO_DEVICE);
  1482. if (ctx->sh_desc_digest_dma &&
  1483. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_digest_dma))
  1484. dma_unmap_single(ctx->jrdev, ctx->sh_desc_digest_dma,
  1485. desc_bytes(ctx->sh_desc_digest),
  1486. DMA_TO_DEVICE);
  1487. if (ctx->sh_desc_finup_dma &&
  1488. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_finup_dma))
  1489. dma_unmap_single(ctx->jrdev, ctx->sh_desc_finup_dma,
  1490. desc_bytes(ctx->sh_desc_finup), DMA_TO_DEVICE);
  1491. }
  1492. static void __exit caam_algapi_hash_exit(void)
  1493. {
  1494. struct device_node *dev_node;
  1495. struct platform_device *pdev;
  1496. struct device *ctrldev;
  1497. struct caam_drv_private *priv;
  1498. struct caam_hash_alg *t_alg, *n;
  1499. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1500. if (!dev_node)
  1501. return;
  1502. pdev = of_find_device_by_node(dev_node);
  1503. if (!pdev)
  1504. return;
  1505. ctrldev = &pdev->dev;
  1506. of_node_put(dev_node);
  1507. priv = dev_get_drvdata(ctrldev);
  1508. if (!priv->hash_list.next)
  1509. return;
  1510. list_for_each_entry_safe(t_alg, n, &priv->hash_list, entry) {
  1511. crypto_unregister_ahash(&t_alg->ahash_alg);
  1512. list_del(&t_alg->entry);
  1513. kfree(t_alg);
  1514. }
  1515. }
  1516. static struct caam_hash_alg *
  1517. caam_hash_alloc(struct device *ctrldev, struct caam_hash_template *template,
  1518. bool keyed)
  1519. {
  1520. struct caam_hash_alg *t_alg;
  1521. struct ahash_alg *halg;
  1522. struct crypto_alg *alg;
  1523. t_alg = kzalloc(sizeof(struct caam_hash_alg), GFP_KERNEL);
  1524. if (!t_alg) {
  1525. dev_err(ctrldev, "failed to allocate t_alg\n");
  1526. return ERR_PTR(-ENOMEM);
  1527. }
  1528. t_alg->ahash_alg = template->template_ahash;
  1529. halg = &t_alg->ahash_alg;
  1530. alg = &halg->halg.base;
  1531. if (keyed) {
  1532. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1533. template->hmac_name);
  1534. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1535. template->hmac_driver_name);
  1536. } else {
  1537. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1538. template->name);
  1539. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1540. template->driver_name);
  1541. }
  1542. alg->cra_module = THIS_MODULE;
  1543. alg->cra_init = caam_hash_cra_init;
  1544. alg->cra_exit = caam_hash_cra_exit;
  1545. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1546. alg->cra_priority = CAAM_CRA_PRIORITY;
  1547. alg->cra_blocksize = template->blocksize;
  1548. alg->cra_alignmask = 0;
  1549. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1550. alg->cra_type = &crypto_ahash_type;
  1551. t_alg->alg_type = template->alg_type;
  1552. t_alg->alg_op = template->alg_op;
  1553. t_alg->ctrldev = ctrldev;
  1554. return t_alg;
  1555. }
  1556. static int __init caam_algapi_hash_init(void)
  1557. {
  1558. struct device_node *dev_node;
  1559. struct platform_device *pdev;
  1560. struct device *ctrldev;
  1561. struct caam_drv_private *priv;
  1562. int i = 0, err = 0;
  1563. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1564. if (!dev_node)
  1565. return -ENODEV;
  1566. pdev = of_find_device_by_node(dev_node);
  1567. if (!pdev)
  1568. return -ENODEV;
  1569. ctrldev = &pdev->dev;
  1570. priv = dev_get_drvdata(ctrldev);
  1571. of_node_put(dev_node);
  1572. INIT_LIST_HEAD(&priv->hash_list);
  1573. atomic_set(&priv->tfm_count, -1);
  1574. /* register crypto algorithms the device supports */
  1575. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1576. /* TODO: check if h/w supports alg */
  1577. struct caam_hash_alg *t_alg;
  1578. /* register hmac version */
  1579. t_alg = caam_hash_alloc(ctrldev, &driver_hash[i], true);
  1580. if (IS_ERR(t_alg)) {
  1581. err = PTR_ERR(t_alg);
  1582. dev_warn(ctrldev, "%s alg allocation failed\n",
  1583. driver_hash[i].driver_name);
  1584. continue;
  1585. }
  1586. err = crypto_register_ahash(&t_alg->ahash_alg);
  1587. if (err) {
  1588. dev_warn(ctrldev, "%s alg registration failed\n",
  1589. t_alg->ahash_alg.halg.base.cra_driver_name);
  1590. kfree(t_alg);
  1591. } else
  1592. list_add_tail(&t_alg->entry, &priv->hash_list);
  1593. /* register unkeyed version */
  1594. t_alg = caam_hash_alloc(ctrldev, &driver_hash[i], false);
  1595. if (IS_ERR(t_alg)) {
  1596. err = PTR_ERR(t_alg);
  1597. dev_warn(ctrldev, "%s alg allocation failed\n",
  1598. driver_hash[i].driver_name);
  1599. continue;
  1600. }
  1601. err = crypto_register_ahash(&t_alg->ahash_alg);
  1602. if (err) {
  1603. dev_warn(ctrldev, "%s alg registration failed\n",
  1604. t_alg->ahash_alg.halg.base.cra_driver_name);
  1605. kfree(t_alg);
  1606. } else
  1607. list_add_tail(&t_alg->entry, &priv->hash_list);
  1608. }
  1609. return err;
  1610. }
  1611. module_init(caam_algapi_hash_init);
  1612. module_exit(caam_algapi_hash_exit);
  1613. MODULE_LICENSE("GPL");
  1614. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1615. MODULE_AUTHOR("Freescale Semiconductor - NMG");