atmel-sha.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for ATMEL SHA1/SHA256 HW acceleration.
  5. *
  6. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7. * Author: Nicolas Royer <nicolas@eukrea.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from omap-sham.c drivers.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/hw_random.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/device.h>
  24. #include <linux/module.h>
  25. #include <linux/init.h>
  26. #include <linux/errno.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/kernel.h>
  29. #include <linux/clk.h>
  30. #include <linux/irq.h>
  31. #include <linux/io.h>
  32. #include <linux/platform_device.h>
  33. #include <linux/scatterlist.h>
  34. #include <linux/dma-mapping.h>
  35. #include <linux/delay.h>
  36. #include <linux/crypto.h>
  37. #include <linux/cryptohash.h>
  38. #include <crypto/scatterwalk.h>
  39. #include <crypto/algapi.h>
  40. #include <crypto/sha.h>
  41. #include <crypto/hash.h>
  42. #include <crypto/internal/hash.h>
  43. #include "atmel-sha-regs.h"
  44. /* SHA flags */
  45. #define SHA_FLAGS_BUSY BIT(0)
  46. #define SHA_FLAGS_FINAL BIT(1)
  47. #define SHA_FLAGS_DMA_ACTIVE BIT(2)
  48. #define SHA_FLAGS_OUTPUT_READY BIT(3)
  49. #define SHA_FLAGS_INIT BIT(4)
  50. #define SHA_FLAGS_CPU BIT(5)
  51. #define SHA_FLAGS_DMA_READY BIT(6)
  52. #define SHA_FLAGS_FINUP BIT(16)
  53. #define SHA_FLAGS_SG BIT(17)
  54. #define SHA_FLAGS_SHA1 BIT(18)
  55. #define SHA_FLAGS_SHA256 BIT(19)
  56. #define SHA_FLAGS_ERROR BIT(20)
  57. #define SHA_FLAGS_PAD BIT(21)
  58. #define SHA_FLAGS_DUALBUFF BIT(24)
  59. #define SHA_OP_UPDATE 1
  60. #define SHA_OP_FINAL 2
  61. #define SHA_BUFFER_LEN PAGE_SIZE
  62. #define ATMEL_SHA_DMA_THRESHOLD 56
  63. struct atmel_sha_dev;
  64. struct atmel_sha_reqctx {
  65. struct atmel_sha_dev *dd;
  66. unsigned long flags;
  67. unsigned long op;
  68. u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
  69. size_t digcnt;
  70. size_t bufcnt;
  71. size_t buflen;
  72. dma_addr_t dma_addr;
  73. /* walk state */
  74. struct scatterlist *sg;
  75. unsigned int offset; /* offset in current sg */
  76. unsigned int total; /* total request */
  77. u8 buffer[0] __aligned(sizeof(u32));
  78. };
  79. struct atmel_sha_ctx {
  80. struct atmel_sha_dev *dd;
  81. unsigned long flags;
  82. /* fallback stuff */
  83. struct crypto_shash *fallback;
  84. };
  85. #define ATMEL_SHA_QUEUE_LENGTH 1
  86. struct atmel_sha_dev {
  87. struct list_head list;
  88. unsigned long phys_base;
  89. struct device *dev;
  90. struct clk *iclk;
  91. int irq;
  92. void __iomem *io_base;
  93. spinlock_t lock;
  94. int err;
  95. struct tasklet_struct done_task;
  96. unsigned long flags;
  97. struct crypto_queue queue;
  98. struct ahash_request *req;
  99. };
  100. struct atmel_sha_drv {
  101. struct list_head dev_list;
  102. spinlock_t lock;
  103. };
  104. static struct atmel_sha_drv atmel_sha = {
  105. .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
  106. .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
  107. };
  108. static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
  109. {
  110. return readl_relaxed(dd->io_base + offset);
  111. }
  112. static inline void atmel_sha_write(struct atmel_sha_dev *dd,
  113. u32 offset, u32 value)
  114. {
  115. writel_relaxed(value, dd->io_base + offset);
  116. }
  117. static void atmel_sha_dualbuff_test(struct atmel_sha_dev *dd)
  118. {
  119. atmel_sha_write(dd, SHA_MR, SHA_MR_DUALBUFF);
  120. if (atmel_sha_read(dd, SHA_MR) & SHA_MR_DUALBUFF)
  121. dd->flags |= SHA_FLAGS_DUALBUFF;
  122. }
  123. static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
  124. {
  125. size_t count;
  126. while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
  127. count = min(ctx->sg->length - ctx->offset, ctx->total);
  128. count = min(count, ctx->buflen - ctx->bufcnt);
  129. if (count <= 0)
  130. break;
  131. scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
  132. ctx->offset, count, 0);
  133. ctx->bufcnt += count;
  134. ctx->offset += count;
  135. ctx->total -= count;
  136. if (ctx->offset == ctx->sg->length) {
  137. ctx->sg = sg_next(ctx->sg);
  138. if (ctx->sg)
  139. ctx->offset = 0;
  140. else
  141. ctx->total = 0;
  142. }
  143. }
  144. return 0;
  145. }
  146. /*
  147. * The purpose of this padding is to ensure that the padded message
  148. * is a multiple of 512 bits. The bit "1" is appended at the end of
  149. * the message followed by "padlen-1" zero bits. Then a 64 bits block
  150. * equals to the message length in bits is appended.
  151. *
  152. * padlen is calculated as followed:
  153. * - if message length < 56 bytes then padlen = 56 - message length
  154. * - else padlen = 64 + 56 - message length
  155. */
  156. static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
  157. {
  158. unsigned int index, padlen;
  159. u64 bits;
  160. u64 size;
  161. bits = (ctx->bufcnt + ctx->digcnt + length) << 3;
  162. size = cpu_to_be64(bits);
  163. index = ctx->bufcnt & 0x3f;
  164. padlen = (index < 56) ? (56 - index) : ((64+56) - index);
  165. *(ctx->buffer + ctx->bufcnt) = 0x80;
  166. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
  167. memcpy(ctx->buffer + ctx->bufcnt + padlen, &size, 8);
  168. ctx->bufcnt += padlen + 8;
  169. ctx->flags |= SHA_FLAGS_PAD;
  170. }
  171. static int atmel_sha_init(struct ahash_request *req)
  172. {
  173. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  174. struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
  175. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  176. struct atmel_sha_dev *dd = NULL;
  177. struct atmel_sha_dev *tmp;
  178. spin_lock_bh(&atmel_sha.lock);
  179. if (!tctx->dd) {
  180. list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
  181. dd = tmp;
  182. break;
  183. }
  184. tctx->dd = dd;
  185. } else {
  186. dd = tctx->dd;
  187. }
  188. spin_unlock_bh(&atmel_sha.lock);
  189. ctx->dd = dd;
  190. ctx->flags = 0;
  191. dev_dbg(dd->dev, "init: digest size: %d\n",
  192. crypto_ahash_digestsize(tfm));
  193. if (crypto_ahash_digestsize(tfm) == SHA1_DIGEST_SIZE)
  194. ctx->flags |= SHA_FLAGS_SHA1;
  195. else if (crypto_ahash_digestsize(tfm) == SHA256_DIGEST_SIZE)
  196. ctx->flags |= SHA_FLAGS_SHA256;
  197. ctx->bufcnt = 0;
  198. ctx->digcnt = 0;
  199. ctx->buflen = SHA_BUFFER_LEN;
  200. return 0;
  201. }
  202. static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
  203. {
  204. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  205. u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
  206. if (likely(dma)) {
  207. atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
  208. valmr = SHA_MR_MODE_PDC;
  209. if (dd->flags & SHA_FLAGS_DUALBUFF)
  210. valmr = SHA_MR_DUALBUFF;
  211. } else {
  212. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  213. }
  214. if (ctx->flags & SHA_FLAGS_SHA256)
  215. valmr |= SHA_MR_ALGO_SHA256;
  216. /* Setting CR_FIRST only for the first iteration */
  217. if (!ctx->digcnt)
  218. valcr = SHA_CR_FIRST;
  219. atmel_sha_write(dd, SHA_CR, valcr);
  220. atmel_sha_write(dd, SHA_MR, valmr);
  221. }
  222. static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
  223. size_t length, int final)
  224. {
  225. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  226. int count, len32;
  227. const u32 *buffer = (const u32 *)buf;
  228. dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
  229. ctx->digcnt, length, final);
  230. atmel_sha_write_ctrl(dd, 0);
  231. /* should be non-zero before next lines to disable clocks later */
  232. ctx->digcnt += length;
  233. if (final)
  234. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  235. len32 = DIV_ROUND_UP(length, sizeof(u32));
  236. dd->flags |= SHA_FLAGS_CPU;
  237. for (count = 0; count < len32; count++)
  238. atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
  239. return -EINPROGRESS;
  240. }
  241. static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  242. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  243. {
  244. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  245. int len32;
  246. dev_dbg(dd->dev, "xmit_pdc: digcnt: %d, length: %d, final: %d\n",
  247. ctx->digcnt, length1, final);
  248. len32 = DIV_ROUND_UP(length1, sizeof(u32));
  249. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
  250. atmel_sha_write(dd, SHA_TPR, dma_addr1);
  251. atmel_sha_write(dd, SHA_TCR, len32);
  252. len32 = DIV_ROUND_UP(length2, sizeof(u32));
  253. atmel_sha_write(dd, SHA_TNPR, dma_addr2);
  254. atmel_sha_write(dd, SHA_TNCR, len32);
  255. atmel_sha_write_ctrl(dd, 1);
  256. /* should be non-zero before next lines to disable clocks later */
  257. ctx->digcnt += length1;
  258. if (final)
  259. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  260. dd->flags |= SHA_FLAGS_DMA_ACTIVE;
  261. /* Start DMA transfer */
  262. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
  263. return -EINPROGRESS;
  264. }
  265. static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
  266. {
  267. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  268. int bufcnt;
  269. atmel_sha_append_sg(ctx);
  270. atmel_sha_fill_padding(ctx, 0);
  271. bufcnt = ctx->bufcnt;
  272. ctx->bufcnt = 0;
  273. return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
  274. }
  275. static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
  276. struct atmel_sha_reqctx *ctx,
  277. size_t length, int final)
  278. {
  279. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  280. ctx->buflen + SHA1_BLOCK_SIZE, DMA_TO_DEVICE);
  281. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  282. dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
  283. SHA1_BLOCK_SIZE);
  284. return -EINVAL;
  285. }
  286. ctx->flags &= ~SHA_FLAGS_SG;
  287. /* next call does not fail... so no unmap in the case of error */
  288. return atmel_sha_xmit_pdc(dd, ctx->dma_addr, length, 0, 0, final);
  289. }
  290. static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
  291. {
  292. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  293. unsigned int final;
  294. size_t count;
  295. atmel_sha_append_sg(ctx);
  296. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  297. dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: %d, final: %d\n",
  298. ctx->bufcnt, ctx->digcnt, final);
  299. if (final)
  300. atmel_sha_fill_padding(ctx, 0);
  301. if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
  302. count = ctx->bufcnt;
  303. ctx->bufcnt = 0;
  304. return atmel_sha_xmit_dma_map(dd, ctx, count, final);
  305. }
  306. return 0;
  307. }
  308. static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
  309. {
  310. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  311. unsigned int length, final, tail;
  312. struct scatterlist *sg;
  313. unsigned int count;
  314. if (!ctx->total)
  315. return 0;
  316. if (ctx->bufcnt || ctx->offset)
  317. return atmel_sha_update_dma_slow(dd);
  318. dev_dbg(dd->dev, "fast: digcnt: %d, bufcnt: %u, total: %u\n",
  319. ctx->digcnt, ctx->bufcnt, ctx->total);
  320. sg = ctx->sg;
  321. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  322. return atmel_sha_update_dma_slow(dd);
  323. if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, SHA1_BLOCK_SIZE))
  324. /* size is not SHA1_BLOCK_SIZE aligned */
  325. return atmel_sha_update_dma_slow(dd);
  326. length = min(ctx->total, sg->length);
  327. if (sg_is_last(sg)) {
  328. if (!(ctx->flags & SHA_FLAGS_FINUP)) {
  329. /* not last sg must be SHA1_BLOCK_SIZE aligned */
  330. tail = length & (SHA1_BLOCK_SIZE - 1);
  331. length -= tail;
  332. if (length == 0) {
  333. /* offset where to start slow */
  334. ctx->offset = length;
  335. return atmel_sha_update_dma_slow(dd);
  336. }
  337. }
  338. }
  339. ctx->total -= length;
  340. ctx->offset = length; /* offset where to start slow */
  341. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  342. /* Add padding */
  343. if (final) {
  344. tail = length & (SHA1_BLOCK_SIZE - 1);
  345. length -= tail;
  346. ctx->total += tail;
  347. ctx->offset = length; /* offset where to start slow */
  348. sg = ctx->sg;
  349. atmel_sha_append_sg(ctx);
  350. atmel_sha_fill_padding(ctx, length);
  351. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  352. ctx->buflen + SHA1_BLOCK_SIZE, DMA_TO_DEVICE);
  353. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  354. dev_err(dd->dev, "dma %u bytes error\n",
  355. ctx->buflen + SHA1_BLOCK_SIZE);
  356. return -EINVAL;
  357. }
  358. if (length == 0) {
  359. ctx->flags &= ~SHA_FLAGS_SG;
  360. count = ctx->bufcnt;
  361. ctx->bufcnt = 0;
  362. return atmel_sha_xmit_pdc(dd, ctx->dma_addr, count, 0,
  363. 0, final);
  364. } else {
  365. ctx->sg = sg;
  366. if (!dma_map_sg(dd->dev, ctx->sg, 1,
  367. DMA_TO_DEVICE)) {
  368. dev_err(dd->dev, "dma_map_sg error\n");
  369. return -EINVAL;
  370. }
  371. ctx->flags |= SHA_FLAGS_SG;
  372. count = ctx->bufcnt;
  373. ctx->bufcnt = 0;
  374. return atmel_sha_xmit_pdc(dd, sg_dma_address(ctx->sg),
  375. length, ctx->dma_addr, count, final);
  376. }
  377. }
  378. if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
  379. dev_err(dd->dev, "dma_map_sg error\n");
  380. return -EINVAL;
  381. }
  382. ctx->flags |= SHA_FLAGS_SG;
  383. /* next call does not fail... so no unmap in the case of error */
  384. return atmel_sha_xmit_pdc(dd, sg_dma_address(ctx->sg), length, 0,
  385. 0, final);
  386. }
  387. static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
  388. {
  389. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  390. if (ctx->flags & SHA_FLAGS_SG) {
  391. dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
  392. if (ctx->sg->length == ctx->offset) {
  393. ctx->sg = sg_next(ctx->sg);
  394. if (ctx->sg)
  395. ctx->offset = 0;
  396. }
  397. if (ctx->flags & SHA_FLAGS_PAD)
  398. dma_unmap_single(dd->dev, ctx->dma_addr,
  399. ctx->buflen + SHA1_BLOCK_SIZE, DMA_TO_DEVICE);
  400. } else {
  401. dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
  402. SHA1_BLOCK_SIZE, DMA_TO_DEVICE);
  403. }
  404. return 0;
  405. }
  406. static int atmel_sha_update_req(struct atmel_sha_dev *dd)
  407. {
  408. struct ahash_request *req = dd->req;
  409. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  410. int err;
  411. dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n",
  412. ctx->total, ctx->digcnt, (ctx->flags & SHA_FLAGS_FINUP) != 0);
  413. if (ctx->flags & SHA_FLAGS_CPU)
  414. err = atmel_sha_update_cpu(dd);
  415. else
  416. err = atmel_sha_update_dma_start(dd);
  417. /* wait for dma completion before can take more data */
  418. dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n",
  419. err, ctx->digcnt);
  420. return err;
  421. }
  422. static int atmel_sha_final_req(struct atmel_sha_dev *dd)
  423. {
  424. struct ahash_request *req = dd->req;
  425. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  426. int err = 0;
  427. int count;
  428. if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
  429. atmel_sha_fill_padding(ctx, 0);
  430. count = ctx->bufcnt;
  431. ctx->bufcnt = 0;
  432. err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
  433. }
  434. /* faster to handle last block with cpu */
  435. else {
  436. atmel_sha_fill_padding(ctx, 0);
  437. count = ctx->bufcnt;
  438. ctx->bufcnt = 0;
  439. err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
  440. }
  441. dev_dbg(dd->dev, "final_req: err: %d\n", err);
  442. return err;
  443. }
  444. static void atmel_sha_copy_hash(struct ahash_request *req)
  445. {
  446. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  447. u32 *hash = (u32 *)ctx->digest;
  448. int i;
  449. if (likely(ctx->flags & SHA_FLAGS_SHA1))
  450. for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
  451. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  452. else
  453. for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
  454. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  455. }
  456. static void atmel_sha_copy_ready_hash(struct ahash_request *req)
  457. {
  458. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  459. if (!req->result)
  460. return;
  461. if (likely(ctx->flags & SHA_FLAGS_SHA1))
  462. memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
  463. else
  464. memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
  465. }
  466. static int atmel_sha_finish(struct ahash_request *req)
  467. {
  468. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  469. struct atmel_sha_dev *dd = ctx->dd;
  470. int err = 0;
  471. if (ctx->digcnt)
  472. atmel_sha_copy_ready_hash(req);
  473. dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt,
  474. ctx->bufcnt);
  475. return err;
  476. }
  477. static void atmel_sha_finish_req(struct ahash_request *req, int err)
  478. {
  479. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  480. struct atmel_sha_dev *dd = ctx->dd;
  481. if (!err) {
  482. atmel_sha_copy_hash(req);
  483. if (SHA_FLAGS_FINAL & dd->flags)
  484. err = atmel_sha_finish(req);
  485. } else {
  486. ctx->flags |= SHA_FLAGS_ERROR;
  487. }
  488. /* atomic operation is not needed here */
  489. dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
  490. SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
  491. clk_disable_unprepare(dd->iclk);
  492. if (req->base.complete)
  493. req->base.complete(&req->base, err);
  494. /* handle new request */
  495. tasklet_schedule(&dd->done_task);
  496. }
  497. static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
  498. {
  499. clk_prepare_enable(dd->iclk);
  500. if (SHA_FLAGS_INIT & dd->flags) {
  501. atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
  502. atmel_sha_dualbuff_test(dd);
  503. dd->flags |= SHA_FLAGS_INIT;
  504. dd->err = 0;
  505. }
  506. return 0;
  507. }
  508. static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
  509. struct ahash_request *req)
  510. {
  511. struct crypto_async_request *async_req, *backlog;
  512. struct atmel_sha_reqctx *ctx;
  513. unsigned long flags;
  514. int err = 0, ret = 0;
  515. spin_lock_irqsave(&dd->lock, flags);
  516. if (req)
  517. ret = ahash_enqueue_request(&dd->queue, req);
  518. if (SHA_FLAGS_BUSY & dd->flags) {
  519. spin_unlock_irqrestore(&dd->lock, flags);
  520. return ret;
  521. }
  522. backlog = crypto_get_backlog(&dd->queue);
  523. async_req = crypto_dequeue_request(&dd->queue);
  524. if (async_req)
  525. dd->flags |= SHA_FLAGS_BUSY;
  526. spin_unlock_irqrestore(&dd->lock, flags);
  527. if (!async_req)
  528. return ret;
  529. if (backlog)
  530. backlog->complete(backlog, -EINPROGRESS);
  531. req = ahash_request_cast(async_req);
  532. dd->req = req;
  533. ctx = ahash_request_ctx(req);
  534. dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
  535. ctx->op, req->nbytes);
  536. err = atmel_sha_hw_init(dd);
  537. if (err)
  538. goto err1;
  539. if (ctx->op == SHA_OP_UPDATE) {
  540. err = atmel_sha_update_req(dd);
  541. if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP)) {
  542. /* no final() after finup() */
  543. err = atmel_sha_final_req(dd);
  544. }
  545. } else if (ctx->op == SHA_OP_FINAL) {
  546. err = atmel_sha_final_req(dd);
  547. }
  548. err1:
  549. if (err != -EINPROGRESS)
  550. /* done_task will not finish it, so do it here */
  551. atmel_sha_finish_req(req, err);
  552. dev_dbg(dd->dev, "exit, err: %d\n", err);
  553. return ret;
  554. }
  555. static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
  556. {
  557. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  558. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  559. struct atmel_sha_dev *dd = tctx->dd;
  560. ctx->op = op;
  561. return atmel_sha_handle_queue(dd, req);
  562. }
  563. static int atmel_sha_update(struct ahash_request *req)
  564. {
  565. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  566. if (!req->nbytes)
  567. return 0;
  568. ctx->total = req->nbytes;
  569. ctx->sg = req->src;
  570. ctx->offset = 0;
  571. if (ctx->flags & SHA_FLAGS_FINUP) {
  572. if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
  573. /* faster to use CPU for short transfers */
  574. ctx->flags |= SHA_FLAGS_CPU;
  575. } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
  576. atmel_sha_append_sg(ctx);
  577. return 0;
  578. }
  579. return atmel_sha_enqueue(req, SHA_OP_UPDATE);
  580. }
  581. static int atmel_sha_final(struct ahash_request *req)
  582. {
  583. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  584. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  585. struct atmel_sha_dev *dd = tctx->dd;
  586. int err = 0;
  587. ctx->flags |= SHA_FLAGS_FINUP;
  588. if (ctx->flags & SHA_FLAGS_ERROR)
  589. return 0; /* uncompleted hash is not needed */
  590. if (ctx->bufcnt) {
  591. return atmel_sha_enqueue(req, SHA_OP_FINAL);
  592. } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
  593. err = atmel_sha_hw_init(dd);
  594. if (err)
  595. goto err1;
  596. dd->flags |= SHA_FLAGS_BUSY;
  597. err = atmel_sha_final_req(dd);
  598. } else {
  599. /* copy ready hash (+ finalize hmac) */
  600. return atmel_sha_finish(req);
  601. }
  602. err1:
  603. if (err != -EINPROGRESS)
  604. /* done_task will not finish it, so do it here */
  605. atmel_sha_finish_req(req, err);
  606. return err;
  607. }
  608. static int atmel_sha_finup(struct ahash_request *req)
  609. {
  610. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  611. int err1, err2;
  612. ctx->flags |= SHA_FLAGS_FINUP;
  613. err1 = atmel_sha_update(req);
  614. if (err1 == -EINPROGRESS || err1 == -EBUSY)
  615. return err1;
  616. /*
  617. * final() has to be always called to cleanup resources
  618. * even if udpate() failed, except EINPROGRESS
  619. */
  620. err2 = atmel_sha_final(req);
  621. return err1 ?: err2;
  622. }
  623. static int atmel_sha_digest(struct ahash_request *req)
  624. {
  625. return atmel_sha_init(req) ?: atmel_sha_finup(req);
  626. }
  627. static int atmel_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
  628. {
  629. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
  630. const char *alg_name = crypto_tfm_alg_name(tfm);
  631. /* Allocate a fallback and abort if it failed. */
  632. tctx->fallback = crypto_alloc_shash(alg_name, 0,
  633. CRYPTO_ALG_NEED_FALLBACK);
  634. if (IS_ERR(tctx->fallback)) {
  635. pr_err("atmel-sha: fallback driver '%s' could not be loaded.\n",
  636. alg_name);
  637. return PTR_ERR(tctx->fallback);
  638. }
  639. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  640. sizeof(struct atmel_sha_reqctx) +
  641. SHA_BUFFER_LEN + SHA256_BLOCK_SIZE);
  642. return 0;
  643. }
  644. static int atmel_sha_cra_init(struct crypto_tfm *tfm)
  645. {
  646. return atmel_sha_cra_init_alg(tfm, NULL);
  647. }
  648. static void atmel_sha_cra_exit(struct crypto_tfm *tfm)
  649. {
  650. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
  651. crypto_free_shash(tctx->fallback);
  652. tctx->fallback = NULL;
  653. }
  654. static struct ahash_alg sha_algs[] = {
  655. {
  656. .init = atmel_sha_init,
  657. .update = atmel_sha_update,
  658. .final = atmel_sha_final,
  659. .finup = atmel_sha_finup,
  660. .digest = atmel_sha_digest,
  661. .halg = {
  662. .digestsize = SHA1_DIGEST_SIZE,
  663. .base = {
  664. .cra_name = "sha1",
  665. .cra_driver_name = "atmel-sha1",
  666. .cra_priority = 100,
  667. .cra_flags = CRYPTO_ALG_ASYNC |
  668. CRYPTO_ALG_NEED_FALLBACK,
  669. .cra_blocksize = SHA1_BLOCK_SIZE,
  670. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  671. .cra_alignmask = 0,
  672. .cra_module = THIS_MODULE,
  673. .cra_init = atmel_sha_cra_init,
  674. .cra_exit = atmel_sha_cra_exit,
  675. }
  676. }
  677. },
  678. {
  679. .init = atmel_sha_init,
  680. .update = atmel_sha_update,
  681. .final = atmel_sha_final,
  682. .finup = atmel_sha_finup,
  683. .digest = atmel_sha_digest,
  684. .halg = {
  685. .digestsize = SHA256_DIGEST_SIZE,
  686. .base = {
  687. .cra_name = "sha256",
  688. .cra_driver_name = "atmel-sha256",
  689. .cra_priority = 100,
  690. .cra_flags = CRYPTO_ALG_ASYNC |
  691. CRYPTO_ALG_NEED_FALLBACK,
  692. .cra_blocksize = SHA256_BLOCK_SIZE,
  693. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  694. .cra_alignmask = 0,
  695. .cra_module = THIS_MODULE,
  696. .cra_init = atmel_sha_cra_init,
  697. .cra_exit = atmel_sha_cra_exit,
  698. }
  699. }
  700. },
  701. };
  702. static void atmel_sha_done_task(unsigned long data)
  703. {
  704. struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
  705. int err = 0;
  706. if (!(SHA_FLAGS_BUSY & dd->flags)) {
  707. atmel_sha_handle_queue(dd, NULL);
  708. return;
  709. }
  710. if (SHA_FLAGS_CPU & dd->flags) {
  711. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  712. dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
  713. goto finish;
  714. }
  715. } else if (SHA_FLAGS_DMA_READY & dd->flags) {
  716. if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
  717. dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
  718. atmel_sha_update_dma_stop(dd);
  719. if (dd->err) {
  720. err = dd->err;
  721. goto finish;
  722. }
  723. }
  724. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  725. /* hash or semi-hash ready */
  726. dd->flags &= ~(SHA_FLAGS_DMA_READY |
  727. SHA_FLAGS_OUTPUT_READY);
  728. err = atmel_sha_update_dma_start(dd);
  729. if (err != -EINPROGRESS)
  730. goto finish;
  731. }
  732. }
  733. return;
  734. finish:
  735. /* finish curent request */
  736. atmel_sha_finish_req(dd->req, err);
  737. }
  738. static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
  739. {
  740. struct atmel_sha_dev *sha_dd = dev_id;
  741. u32 reg;
  742. reg = atmel_sha_read(sha_dd, SHA_ISR);
  743. if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
  744. atmel_sha_write(sha_dd, SHA_IDR, reg);
  745. if (SHA_FLAGS_BUSY & sha_dd->flags) {
  746. sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
  747. if (!(SHA_FLAGS_CPU & sha_dd->flags))
  748. sha_dd->flags |= SHA_FLAGS_DMA_READY;
  749. tasklet_schedule(&sha_dd->done_task);
  750. } else {
  751. dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
  752. }
  753. return IRQ_HANDLED;
  754. }
  755. return IRQ_NONE;
  756. }
  757. static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
  758. {
  759. int i;
  760. for (i = 0; i < ARRAY_SIZE(sha_algs); i++)
  761. crypto_unregister_ahash(&sha_algs[i]);
  762. }
  763. static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
  764. {
  765. int err, i, j;
  766. for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
  767. err = crypto_register_ahash(&sha_algs[i]);
  768. if (err)
  769. goto err_sha_algs;
  770. }
  771. return 0;
  772. err_sha_algs:
  773. for (j = 0; j < i; j++)
  774. crypto_unregister_ahash(&sha_algs[j]);
  775. return err;
  776. }
  777. static int __devinit atmel_sha_probe(struct platform_device *pdev)
  778. {
  779. struct atmel_sha_dev *sha_dd;
  780. struct device *dev = &pdev->dev;
  781. struct resource *sha_res;
  782. unsigned long sha_phys_size;
  783. int err;
  784. sha_dd = kzalloc(sizeof(struct atmel_sha_dev), GFP_KERNEL);
  785. if (sha_dd == NULL) {
  786. dev_err(dev, "unable to alloc data struct.\n");
  787. err = -ENOMEM;
  788. goto sha_dd_err;
  789. }
  790. sha_dd->dev = dev;
  791. platform_set_drvdata(pdev, sha_dd);
  792. INIT_LIST_HEAD(&sha_dd->list);
  793. tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
  794. (unsigned long)sha_dd);
  795. crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
  796. sha_dd->irq = -1;
  797. /* Get the base address */
  798. sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  799. if (!sha_res) {
  800. dev_err(dev, "no MEM resource info\n");
  801. err = -ENODEV;
  802. goto res_err;
  803. }
  804. sha_dd->phys_base = sha_res->start;
  805. sha_phys_size = resource_size(sha_res);
  806. /* Get the IRQ */
  807. sha_dd->irq = platform_get_irq(pdev, 0);
  808. if (sha_dd->irq < 0) {
  809. dev_err(dev, "no IRQ resource info\n");
  810. err = sha_dd->irq;
  811. goto res_err;
  812. }
  813. err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
  814. sha_dd);
  815. if (err) {
  816. dev_err(dev, "unable to request sha irq.\n");
  817. goto res_err;
  818. }
  819. /* Initializing the clock */
  820. sha_dd->iclk = clk_get(&pdev->dev, NULL);
  821. if (IS_ERR(sha_dd->iclk)) {
  822. dev_err(dev, "clock intialization failed.\n");
  823. err = PTR_ERR(sha_dd->iclk);
  824. goto clk_err;
  825. }
  826. sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
  827. if (!sha_dd->io_base) {
  828. dev_err(dev, "can't ioremap\n");
  829. err = -ENOMEM;
  830. goto sha_io_err;
  831. }
  832. spin_lock(&atmel_sha.lock);
  833. list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
  834. spin_unlock(&atmel_sha.lock);
  835. err = atmel_sha_register_algs(sha_dd);
  836. if (err)
  837. goto err_algs;
  838. dev_info(dev, "Atmel SHA1/SHA256\n");
  839. return 0;
  840. err_algs:
  841. spin_lock(&atmel_sha.lock);
  842. list_del(&sha_dd->list);
  843. spin_unlock(&atmel_sha.lock);
  844. iounmap(sha_dd->io_base);
  845. sha_io_err:
  846. clk_put(sha_dd->iclk);
  847. clk_err:
  848. free_irq(sha_dd->irq, sha_dd);
  849. res_err:
  850. tasklet_kill(&sha_dd->done_task);
  851. kfree(sha_dd);
  852. sha_dd = NULL;
  853. sha_dd_err:
  854. dev_err(dev, "initialization failed.\n");
  855. return err;
  856. }
  857. static int __devexit atmel_sha_remove(struct platform_device *pdev)
  858. {
  859. static struct atmel_sha_dev *sha_dd;
  860. sha_dd = platform_get_drvdata(pdev);
  861. if (!sha_dd)
  862. return -ENODEV;
  863. spin_lock(&atmel_sha.lock);
  864. list_del(&sha_dd->list);
  865. spin_unlock(&atmel_sha.lock);
  866. atmel_sha_unregister_algs(sha_dd);
  867. tasklet_kill(&sha_dd->done_task);
  868. iounmap(sha_dd->io_base);
  869. clk_put(sha_dd->iclk);
  870. if (sha_dd->irq >= 0)
  871. free_irq(sha_dd->irq, sha_dd);
  872. kfree(sha_dd);
  873. sha_dd = NULL;
  874. return 0;
  875. }
  876. static struct platform_driver atmel_sha_driver = {
  877. .probe = atmel_sha_probe,
  878. .remove = __devexit_p(atmel_sha_remove),
  879. .driver = {
  880. .name = "atmel_sha",
  881. .owner = THIS_MODULE,
  882. },
  883. };
  884. module_platform_driver(atmel_sha_driver);
  885. MODULE_DESCRIPTION("Atmel SHA1/SHA256 hw acceleration support.");
  886. MODULE_LICENSE("GPL v2");
  887. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");