clk-imx28.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343
  1. /*
  2. * Copyright 2012 Freescale Semiconductor, Inc.
  3. *
  4. * The code contained herein is licensed under the GNU General Public
  5. * License. You may obtain a copy of the GNU General Public License
  6. * Version 2 or later at the following locations:
  7. *
  8. * http://www.opensource.org/licenses/gpl-license.html
  9. * http://www.gnu.org/copyleft/gpl.html
  10. */
  11. #include <linux/clk.h>
  12. #include <linux/clkdev.h>
  13. #include <linux/err.h>
  14. #include <linux/init.h>
  15. #include <linux/io.h>
  16. #include <mach/common.h>
  17. #include <mach/mx28.h>
  18. #include "clk.h"
  19. #define CLKCTRL MX28_IO_ADDRESS(MX28_CLKCTRL_BASE_ADDR)
  20. #define PLL0CTRL0 (CLKCTRL + 0x0000)
  21. #define PLL1CTRL0 (CLKCTRL + 0x0020)
  22. #define PLL2CTRL0 (CLKCTRL + 0x0040)
  23. #define CPU (CLKCTRL + 0x0050)
  24. #define HBUS (CLKCTRL + 0x0060)
  25. #define XBUS (CLKCTRL + 0x0070)
  26. #define XTAL (CLKCTRL + 0x0080)
  27. #define SSP0 (CLKCTRL + 0x0090)
  28. #define SSP1 (CLKCTRL + 0x00a0)
  29. #define SSP2 (CLKCTRL + 0x00b0)
  30. #define SSP3 (CLKCTRL + 0x00c0)
  31. #define GPMI (CLKCTRL + 0x00d0)
  32. #define SPDIF (CLKCTRL + 0x00e0)
  33. #define EMI (CLKCTRL + 0x00f0)
  34. #define SAIF0 (CLKCTRL + 0x0100)
  35. #define SAIF1 (CLKCTRL + 0x0110)
  36. #define LCDIF (CLKCTRL + 0x0120)
  37. #define ETM (CLKCTRL + 0x0130)
  38. #define ENET (CLKCTRL + 0x0140)
  39. #define FLEXCAN (CLKCTRL + 0x0160)
  40. #define FRAC0 (CLKCTRL + 0x01b0)
  41. #define FRAC1 (CLKCTRL + 0x01c0)
  42. #define CLKSEQ (CLKCTRL + 0x01d0)
  43. #define BP_CPU_INTERRUPT_WAIT 12
  44. #define BP_SAIF_DIV_FRAC_EN 16
  45. #define BP_ENET_DIV_TIME 21
  46. #define BP_ENET_SLEEP 31
  47. #define BP_CLKSEQ_BYPASS_SAIF0 0
  48. #define BP_CLKSEQ_BYPASS_SSP0 3
  49. #define BP_FRAC0_IO1FRAC 16
  50. #define BP_FRAC0_IO0FRAC 24
  51. #define DIGCTRL MX28_IO_ADDRESS(MX28_DIGCTL_BASE_ADDR)
  52. #define BP_SAIF_CLKMUX 10
  53. /*
  54. * HW_SAIF_CLKMUX_SEL:
  55. * DIRECT(0x0): SAIF0 clock pins selected for SAIF0 input clocks, and SAIF1
  56. * clock pins selected for SAIF1 input clocks.
  57. * CROSSINPUT(0x1): SAIF1 clock inputs selected for SAIF0 input clocks, and
  58. * SAIF0 clock inputs selected for SAIF1 input clocks.
  59. * EXTMSTR0(0x2): SAIF0 clock pin selected for both SAIF0 and SAIF1 input
  60. * clocks.
  61. * EXTMSTR1(0x3): SAIF1 clock pin selected for both SAIF0 and SAIF1 input
  62. * clocks.
  63. */
  64. int mxs_saif_clkmux_select(unsigned int clkmux)
  65. {
  66. if (clkmux > 0x3)
  67. return -EINVAL;
  68. __mxs_clrl(0x3 << BP_SAIF_CLKMUX, DIGCTRL);
  69. __mxs_setl(clkmux << BP_SAIF_CLKMUX, DIGCTRL);
  70. return 0;
  71. }
  72. static void __init clk_misc_init(void)
  73. {
  74. u32 val;
  75. /* Gate off cpu clock in WFI for power saving */
  76. __mxs_setl(1 << BP_CPU_INTERRUPT_WAIT, CPU);
  77. /* 0 is a bad default value for a divider */
  78. __mxs_setl(1 << BP_ENET_DIV_TIME, ENET);
  79. /* Clear BYPASS for SAIF */
  80. __mxs_clrl(0x3 << BP_CLKSEQ_BYPASS_SAIF0, CLKSEQ);
  81. /* SAIF has to use frac div for functional operation */
  82. val = readl_relaxed(SAIF0);
  83. val |= 1 << BP_SAIF_DIV_FRAC_EN;
  84. writel_relaxed(val, SAIF0);
  85. val = readl_relaxed(SAIF1);
  86. val |= 1 << BP_SAIF_DIV_FRAC_EN;
  87. writel_relaxed(val, SAIF1);
  88. /* Extra fec clock setting */
  89. val = readl_relaxed(ENET);
  90. val &= ~(1 << BP_ENET_SLEEP);
  91. writel_relaxed(val, ENET);
  92. /*
  93. * Source ssp clock from ref_io than ref_xtal,
  94. * as ref_xtal only provides 24 MHz as maximum.
  95. */
  96. __mxs_clrl(0xf << BP_CLKSEQ_BYPASS_SSP0, CLKSEQ);
  97. /*
  98. * 480 MHz seems too high to be ssp clock source directly,
  99. * so set frac0 to get a 288 MHz ref_io0 and ref_io1.
  100. */
  101. val = readl_relaxed(FRAC0);
  102. val &= ~((0x3f << BP_FRAC0_IO0FRAC) | (0x3f << BP_FRAC0_IO1FRAC));
  103. val |= (30 << BP_FRAC0_IO0FRAC) | (30 << BP_FRAC0_IO1FRAC);
  104. writel_relaxed(val, FRAC0);
  105. }
  106. static struct clk_lookup uart_lookups[] = {
  107. { .dev_id = "duart", },
  108. { .dev_id = "mxs-auart.0", },
  109. { .dev_id = "mxs-auart.1", },
  110. { .dev_id = "mxs-auart.2", },
  111. { .dev_id = "mxs-auart.3", },
  112. { .dev_id = "mxs-auart.4", },
  113. { .dev_id = "8006a000.serial", },
  114. { .dev_id = "8006c000.serial", },
  115. { .dev_id = "8006e000.serial", },
  116. { .dev_id = "80070000.serial", },
  117. { .dev_id = "80072000.serial", },
  118. { .dev_id = "80074000.serial", },
  119. };
  120. static struct clk_lookup hbus_lookups[] = {
  121. { .dev_id = "imx28-dma-apbh", },
  122. { .dev_id = "80004000.dma-apbh", },
  123. };
  124. static struct clk_lookup xbus_lookups[] = {
  125. { .dev_id = "duart", .con_id = "apb_pclk"},
  126. { .dev_id = "80074000.serial", .con_id = "apb_pclk"},
  127. { .dev_id = "imx28-dma-apbx", },
  128. { .dev_id = "80024000.dma-apbx", },
  129. };
  130. static struct clk_lookup ssp0_lookups[] = {
  131. { .dev_id = "imx28-mmc.0", },
  132. { .dev_id = "80010000.ssp", },
  133. };
  134. static struct clk_lookup ssp1_lookups[] = {
  135. { .dev_id = "imx28-mmc.1", },
  136. { .dev_id = "80012000.ssp", },
  137. };
  138. static struct clk_lookup ssp2_lookups[] = {
  139. { .dev_id = "imx28-mmc.2", },
  140. { .dev_id = "80014000.ssp", },
  141. };
  142. static struct clk_lookup ssp3_lookups[] = {
  143. { .dev_id = "imx28-mmc.3", },
  144. { .dev_id = "80016000.ssp", },
  145. };
  146. static struct clk_lookup lcdif_lookups[] = {
  147. { .dev_id = "imx28-fb", },
  148. { .dev_id = "80030000.lcdif", },
  149. };
  150. static struct clk_lookup gpmi_lookups[] = {
  151. { .dev_id = "imx28-gpmi-nand", },
  152. { .dev_id = "8000c000.gpmi-nand", },
  153. };
  154. static struct clk_lookup fec_lookups[] = {
  155. { .dev_id = "imx28-fec.0", },
  156. { .dev_id = "imx28-fec.1", },
  157. { .dev_id = "800f0000.ethernet", },
  158. { .dev_id = "800f4000.ethernet", },
  159. };
  160. static struct clk_lookup can0_lookups[] = {
  161. { .dev_id = "flexcan.0", },
  162. { .dev_id = "80032000.can", },
  163. };
  164. static struct clk_lookup can1_lookups[] = {
  165. { .dev_id = "flexcan.1", },
  166. { .dev_id = "80034000.can", },
  167. };
  168. static struct clk_lookup saif0_lookups[] = {
  169. { .dev_id = "mxs-saif.0", },
  170. { .dev_id = "80042000.saif", },
  171. };
  172. static struct clk_lookup saif1_lookups[] = {
  173. { .dev_id = "mxs-saif.1", },
  174. { .dev_id = "80046000.saif", },
  175. };
  176. static const char *sel_cpu[] __initconst = { "ref_cpu", "ref_xtal", };
  177. static const char *sel_io0[] __initconst = { "ref_io0", "ref_xtal", };
  178. static const char *sel_io1[] __initconst = { "ref_io1", "ref_xtal", };
  179. static const char *sel_pix[] __initconst = { "ref_pix", "ref_xtal", };
  180. static const char *sel_gpmi[] __initconst = { "ref_gpmi", "ref_xtal", };
  181. static const char *sel_pll0[] __initconst = { "pll0", "ref_xtal", };
  182. static const char *cpu_sels[] __initconst = { "cpu_pll", "cpu_xtal", };
  183. static const char *emi_sels[] __initconst = { "emi_pll", "emi_xtal", };
  184. static const char *ptp_sels[] __initconst = { "ref_xtal", "pll0", };
  185. enum imx28_clk {
  186. ref_xtal, pll0, pll1, pll2, ref_cpu, ref_emi, ref_io0, ref_io1,
  187. ref_pix, ref_hsadc, ref_gpmi, saif0_sel, saif1_sel, gpmi_sel,
  188. ssp0_sel, ssp1_sel, ssp2_sel, ssp3_sel, emi_sel, etm_sel,
  189. lcdif_sel, cpu, ptp_sel, cpu_pll, cpu_xtal, hbus, xbus,
  190. ssp0_div, ssp1_div, ssp2_div, ssp3_div, gpmi_div, emi_pll,
  191. emi_xtal, lcdif_div, etm_div, ptp, saif0_div, saif1_div,
  192. clk32k_div, rtc, lradc, spdif_div, clk32k, pwm, uart, ssp0,
  193. ssp1, ssp2, ssp3, gpmi, spdif, emi, saif0, saif1, lcdif, etm,
  194. fec, can0, can1, usb0, usb1, usb0_pwr, usb1_pwr, enet_out,
  195. clk_max
  196. };
  197. static struct clk *clks[clk_max];
  198. static enum imx28_clk clks_init_on[] __initdata = {
  199. cpu, hbus, xbus, emi, uart,
  200. };
  201. int __init mx28_clocks_init(void)
  202. {
  203. int i;
  204. clk_misc_init();
  205. clks[ref_xtal] = mxs_clk_fixed("ref_xtal", 24000000);
  206. clks[pll0] = mxs_clk_pll("pll0", "ref_xtal", PLL0CTRL0, 17, 480000000);
  207. clks[pll1] = mxs_clk_pll("pll1", "ref_xtal", PLL1CTRL0, 17, 480000000);
  208. clks[pll2] = mxs_clk_pll("pll2", "ref_xtal", PLL2CTRL0, 23, 50000000);
  209. clks[ref_cpu] = mxs_clk_ref("ref_cpu", "pll0", FRAC0, 0);
  210. clks[ref_emi] = mxs_clk_ref("ref_emi", "pll0", FRAC0, 1);
  211. clks[ref_io1] = mxs_clk_ref("ref_io1", "pll0", FRAC0, 2);
  212. clks[ref_io0] = mxs_clk_ref("ref_io0", "pll0", FRAC0, 3);
  213. clks[ref_pix] = mxs_clk_ref("ref_pix", "pll0", FRAC1, 0);
  214. clks[ref_hsadc] = mxs_clk_ref("ref_hsadc", "pll0", FRAC1, 1);
  215. clks[ref_gpmi] = mxs_clk_ref("ref_gpmi", "pll0", FRAC1, 2);
  216. clks[saif0_sel] = mxs_clk_mux("saif0_sel", CLKSEQ, 0, 1, sel_pll0, ARRAY_SIZE(sel_pll0));
  217. clks[saif1_sel] = mxs_clk_mux("saif1_sel", CLKSEQ, 1, 1, sel_pll0, ARRAY_SIZE(sel_pll0));
  218. clks[gpmi_sel] = mxs_clk_mux("gpmi_sel", CLKSEQ, 2, 1, sel_gpmi, ARRAY_SIZE(sel_gpmi));
  219. clks[ssp0_sel] = mxs_clk_mux("ssp0_sel", CLKSEQ, 3, 1, sel_io0, ARRAY_SIZE(sel_io0));
  220. clks[ssp1_sel] = mxs_clk_mux("ssp1_sel", CLKSEQ, 4, 1, sel_io0, ARRAY_SIZE(sel_io0));
  221. clks[ssp2_sel] = mxs_clk_mux("ssp2_sel", CLKSEQ, 5, 1, sel_io1, ARRAY_SIZE(sel_io1));
  222. clks[ssp3_sel] = mxs_clk_mux("ssp3_sel", CLKSEQ, 6, 1, sel_io1, ARRAY_SIZE(sel_io1));
  223. clks[emi_sel] = mxs_clk_mux("emi_sel", CLKSEQ, 7, 1, emi_sels, ARRAY_SIZE(emi_sels));
  224. clks[etm_sel] = mxs_clk_mux("etm_sel", CLKSEQ, 8, 1, sel_cpu, ARRAY_SIZE(sel_cpu));
  225. clks[lcdif_sel] = mxs_clk_mux("lcdif_sel", CLKSEQ, 14, 1, sel_pix, ARRAY_SIZE(sel_pix));
  226. clks[cpu] = mxs_clk_mux("cpu", CLKSEQ, 18, 1, cpu_sels, ARRAY_SIZE(cpu_sels));
  227. clks[ptp_sel] = mxs_clk_mux("ptp_sel", ENET, 19, 1, ptp_sels, ARRAY_SIZE(ptp_sels));
  228. clks[cpu_pll] = mxs_clk_div("cpu_pll", "ref_cpu", CPU, 0, 6, 28);
  229. clks[cpu_xtal] = mxs_clk_div("cpu_xtal", "ref_xtal", CPU, 16, 10, 29);
  230. clks[hbus] = mxs_clk_div("hbus", "cpu", HBUS, 0, 5, 31);
  231. clks[xbus] = mxs_clk_div("xbus", "ref_xtal", XBUS, 0, 10, 31);
  232. clks[ssp0_div] = mxs_clk_div("ssp0_div", "ssp0_sel", SSP0, 0, 9, 29);
  233. clks[ssp1_div] = mxs_clk_div("ssp1_div", "ssp1_sel", SSP1, 0, 9, 29);
  234. clks[ssp2_div] = mxs_clk_div("ssp2_div", "ssp2_sel", SSP2, 0, 9, 29);
  235. clks[ssp3_div] = mxs_clk_div("ssp3_div", "ssp3_sel", SSP3, 0, 9, 29);
  236. clks[gpmi_div] = mxs_clk_div("gpmi_div", "gpmi_sel", GPMI, 0, 10, 29);
  237. clks[emi_pll] = mxs_clk_div("emi_pll", "ref_emi", EMI, 0, 6, 28);
  238. clks[emi_xtal] = mxs_clk_div("emi_xtal", "ref_xtal", EMI, 8, 4, 29);
  239. clks[lcdif_div] = mxs_clk_div("lcdif_div", "lcdif_sel", LCDIF, 0, 13, 29);
  240. clks[etm_div] = mxs_clk_div("etm_div", "etm_sel", ETM, 0, 7, 29);
  241. clks[ptp] = mxs_clk_div("ptp", "ptp_sel", ENET, 21, 6, 27);
  242. clks[saif0_div] = mxs_clk_frac("saif0_div", "saif0_sel", SAIF0, 0, 16, 29);
  243. clks[saif1_div] = mxs_clk_frac("saif1_div", "saif1_sel", SAIF1, 0, 16, 29);
  244. clks[clk32k_div] = mxs_clk_fixed_factor("clk32k_div", "ref_xtal", 1, 750);
  245. clks[rtc] = mxs_clk_fixed_factor("rtc", "ref_xtal", 1, 768);
  246. clks[lradc] = mxs_clk_fixed_factor("lradc", "clk32k", 1, 16);
  247. clks[spdif_div] = mxs_clk_fixed_factor("spdif_div", "pll0", 1, 4);
  248. clks[clk32k] = mxs_clk_gate("clk32k", "clk32k_div", XTAL, 26);
  249. clks[pwm] = mxs_clk_gate("pwm", "ref_xtal", XTAL, 29);
  250. clks[uart] = mxs_clk_gate("uart", "ref_xtal", XTAL, 31);
  251. clks[ssp0] = mxs_clk_gate("ssp0", "ssp0_div", SSP0, 31);
  252. clks[ssp1] = mxs_clk_gate("ssp1", "ssp1_div", SSP1, 31);
  253. clks[ssp2] = mxs_clk_gate("ssp2", "ssp2_div", SSP2, 31);
  254. clks[ssp3] = mxs_clk_gate("ssp3", "ssp3_div", SSP3, 31);
  255. clks[gpmi] = mxs_clk_gate("gpmi", "gpmi_div", GPMI, 31);
  256. clks[spdif] = mxs_clk_gate("spdif", "spdif_div", SPDIF, 31);
  257. clks[emi] = mxs_clk_gate("emi", "emi_sel", EMI, 31);
  258. clks[saif0] = mxs_clk_gate("saif0", "saif0_div", SAIF0, 31);
  259. clks[saif1] = mxs_clk_gate("saif1", "saif1_div", SAIF1, 31);
  260. clks[lcdif] = mxs_clk_gate("lcdif", "lcdif_div", LCDIF, 31);
  261. clks[etm] = mxs_clk_gate("etm", "etm_div", ETM, 31);
  262. clks[fec] = mxs_clk_gate("fec", "hbus", ENET, 30);
  263. clks[can0] = mxs_clk_gate("can0", "ref_xtal", FLEXCAN, 30);
  264. clks[can1] = mxs_clk_gate("can1", "ref_xtal", FLEXCAN, 28);
  265. clks[usb0] = mxs_clk_gate("usb0", "usb0_pwr", DIGCTRL, 2);
  266. clks[usb1] = mxs_clk_gate("usb1", "usb1_pwr", DIGCTRL, 16);
  267. clks[usb0_pwr] = clk_register_gate(NULL, "usb0_pwr", "pll0", 0, PLL0CTRL0, 18, 0, &mxs_lock);
  268. clks[usb1_pwr] = clk_register_gate(NULL, "usb1_pwr", "pll1", 0, PLL1CTRL0, 18, 0, &mxs_lock);
  269. clks[enet_out] = clk_register_gate(NULL, "enet_out", "pll2", 0, ENET, 18, 0, &mxs_lock);
  270. for (i = 0; i < ARRAY_SIZE(clks); i++)
  271. if (IS_ERR(clks[i])) {
  272. pr_err("i.MX28 clk %d: register failed with %ld\n",
  273. i, PTR_ERR(clks[i]));
  274. return PTR_ERR(clks[i]);
  275. }
  276. clk_register_clkdev(clks[clk32k], NULL, "timrot");
  277. clk_register_clkdev(clks[enet_out], NULL, "enet_out");
  278. clk_register_clkdev(clks[pwm], NULL, "80064000.pwm");
  279. clk_register_clkdevs(clks[hbus], hbus_lookups, ARRAY_SIZE(hbus_lookups));
  280. clk_register_clkdevs(clks[xbus], xbus_lookups, ARRAY_SIZE(xbus_lookups));
  281. clk_register_clkdevs(clks[uart], uart_lookups, ARRAY_SIZE(uart_lookups));
  282. clk_register_clkdevs(clks[ssp0], ssp0_lookups, ARRAY_SIZE(ssp0_lookups));
  283. clk_register_clkdevs(clks[ssp1], ssp1_lookups, ARRAY_SIZE(ssp1_lookups));
  284. clk_register_clkdevs(clks[ssp2], ssp2_lookups, ARRAY_SIZE(ssp2_lookups));
  285. clk_register_clkdevs(clks[ssp3], ssp3_lookups, ARRAY_SIZE(ssp3_lookups));
  286. clk_register_clkdevs(clks[gpmi], gpmi_lookups, ARRAY_SIZE(gpmi_lookups));
  287. clk_register_clkdevs(clks[saif0], saif0_lookups, ARRAY_SIZE(saif0_lookups));
  288. clk_register_clkdevs(clks[saif1], saif1_lookups, ARRAY_SIZE(saif1_lookups));
  289. clk_register_clkdevs(clks[lcdif], lcdif_lookups, ARRAY_SIZE(lcdif_lookups));
  290. clk_register_clkdevs(clks[fec], fec_lookups, ARRAY_SIZE(fec_lookups));
  291. clk_register_clkdevs(clks[can0], can0_lookups, ARRAY_SIZE(can0_lookups));
  292. clk_register_clkdevs(clks[can1], can1_lookups, ARRAY_SIZE(can1_lookups));
  293. clk_register_clkdev(clks[usb0_pwr], NULL, "8007c000.usbphy");
  294. clk_register_clkdev(clks[usb1_pwr], NULL, "8007e000.usbphy");
  295. clk_register_clkdev(clks[usb0], NULL, "80080000.usb");
  296. clk_register_clkdev(clks[usb1], NULL, "80090000.usb");
  297. for (i = 0; i < ARRAY_SIZE(clks_init_on); i++)
  298. clk_prepare_enable(clks[clks_init_on[i]]);
  299. mxs_timer_init(MX28_INT_TIMER0);
  300. return 0;
  301. }