random.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/spinlock.h>
  251. #include <linux/percpu.h>
  252. #include <linux/cryptohash.h>
  253. #include <linux/fips.h>
  254. #include <linux/ptrace.h>
  255. #include <linux/kmemcheck.h>
  256. #ifdef CONFIG_GENERIC_HARDIRQS
  257. # include <linux/irq.h>
  258. #endif
  259. #include <asm/processor.h>
  260. #include <asm/uaccess.h>
  261. #include <asm/irq.h>
  262. #include <asm/irq_regs.h>
  263. #include <asm/io.h>
  264. #define CREATE_TRACE_POINTS
  265. #include <trace/events/random.h>
  266. /*
  267. * Configuration information
  268. */
  269. #define INPUT_POOL_WORDS 128
  270. #define OUTPUT_POOL_WORDS 32
  271. #define SEC_XFER_SIZE 512
  272. #define EXTRACT_SIZE 10
  273. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  274. /*
  275. * The minimum number of bits of entropy before we wake up a read on
  276. * /dev/random. Should be enough to do a significant reseed.
  277. */
  278. static int random_read_wakeup_thresh = 64;
  279. /*
  280. * If the entropy count falls under this number of bits, then we
  281. * should wake up processes which are selecting or polling on write
  282. * access to /dev/random.
  283. */
  284. static int random_write_wakeup_thresh = 128;
  285. /*
  286. * When the input pool goes over trickle_thresh, start dropping most
  287. * samples to avoid wasting CPU time and reduce lock contention.
  288. */
  289. static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
  290. static DEFINE_PER_CPU(int, trickle_count);
  291. /*
  292. * A pool of size .poolwords is stirred with a primitive polynomial
  293. * of degree .poolwords over GF(2). The taps for various sizes are
  294. * defined below. They are chosen to be evenly spaced (minimum RMS
  295. * distance from evenly spaced; the numbers in the comments are a
  296. * scaled squared error sum) except for the last tap, which is 1 to
  297. * get the twisting happening as fast as possible.
  298. */
  299. static struct poolinfo {
  300. int poolwords;
  301. int tap1, tap2, tap3, tap4, tap5;
  302. } poolinfo_table[] = {
  303. /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
  304. { 128, 103, 76, 51, 25, 1 },
  305. /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
  306. { 32, 26, 20, 14, 7, 1 },
  307. #if 0
  308. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  309. { 2048, 1638, 1231, 819, 411, 1 },
  310. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  311. { 1024, 817, 615, 412, 204, 1 },
  312. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  313. { 1024, 819, 616, 410, 207, 2 },
  314. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  315. { 512, 411, 308, 208, 104, 1 },
  316. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  317. { 512, 409, 307, 206, 102, 2 },
  318. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  319. { 512, 409, 309, 205, 103, 2 },
  320. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  321. { 256, 205, 155, 101, 52, 1 },
  322. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  323. { 128, 103, 78, 51, 27, 2 },
  324. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  325. { 64, 52, 39, 26, 14, 1 },
  326. #endif
  327. };
  328. #define POOLBITS poolwords*32
  329. #define POOLBYTES poolwords*4
  330. /*
  331. * For the purposes of better mixing, we use the CRC-32 polynomial as
  332. * well to make a twisted Generalized Feedback Shift Reigster
  333. *
  334. * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
  335. * Transactions on Modeling and Computer Simulation 2(3):179-194.
  336. * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
  337. * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
  338. *
  339. * Thanks to Colin Plumb for suggesting this.
  340. *
  341. * We have not analyzed the resultant polynomial to prove it primitive;
  342. * in fact it almost certainly isn't. Nonetheless, the irreducible factors
  343. * of a random large-degree polynomial over GF(2) are more than large enough
  344. * that periodicity is not a concern.
  345. *
  346. * The input hash is much less sensitive than the output hash. All
  347. * that we want of it is that it be a good non-cryptographic hash;
  348. * i.e. it not produce collisions when fed "random" data of the sort
  349. * we expect to see. As long as the pool state differs for different
  350. * inputs, we have preserved the input entropy and done a good job.
  351. * The fact that an intelligent attacker can construct inputs that
  352. * will produce controlled alterations to the pool's state is not
  353. * important because we don't consider such inputs to contribute any
  354. * randomness. The only property we need with respect to them is that
  355. * the attacker can't increase his/her knowledge of the pool's state.
  356. * Since all additions are reversible (knowing the final state and the
  357. * input, you can reconstruct the initial state), if an attacker has
  358. * any uncertainty about the initial state, he/she can only shuffle
  359. * that uncertainty about, but never cause any collisions (which would
  360. * decrease the uncertainty).
  361. *
  362. * The chosen system lets the state of the pool be (essentially) the input
  363. * modulo the generator polymnomial. Now, for random primitive polynomials,
  364. * this is a universal class of hash functions, meaning that the chance
  365. * of a collision is limited by the attacker's knowledge of the generator
  366. * polynomail, so if it is chosen at random, an attacker can never force
  367. * a collision. Here, we use a fixed polynomial, but we *can* assume that
  368. * ###--> it is unknown to the processes generating the input entropy. <-###
  369. * Because of this important property, this is a good, collision-resistant
  370. * hash; hash collisions will occur no more often than chance.
  371. */
  372. /*
  373. * Static global variables
  374. */
  375. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  376. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  377. static struct fasync_struct *fasync;
  378. #if 0
  379. static bool debug;
  380. module_param(debug, bool, 0644);
  381. #define DEBUG_ENT(fmt, arg...) do { \
  382. if (debug) \
  383. printk(KERN_DEBUG "random %04d %04d %04d: " \
  384. fmt,\
  385. input_pool.entropy_count,\
  386. blocking_pool.entropy_count,\
  387. nonblocking_pool.entropy_count,\
  388. ## arg); } while (0)
  389. #else
  390. #define DEBUG_ENT(fmt, arg...) do {} while (0)
  391. #endif
  392. /**********************************************************************
  393. *
  394. * OS independent entropy store. Here are the functions which handle
  395. * storing entropy in an entropy pool.
  396. *
  397. **********************************************************************/
  398. struct entropy_store;
  399. struct entropy_store {
  400. /* read-only data: */
  401. struct poolinfo *poolinfo;
  402. __u32 *pool;
  403. const char *name;
  404. struct entropy_store *pull;
  405. int limit;
  406. /* read-write data: */
  407. spinlock_t lock;
  408. unsigned add_ptr;
  409. unsigned input_rotate;
  410. int entropy_count;
  411. int entropy_total;
  412. unsigned int initialized:1;
  413. __u8 last_data[EXTRACT_SIZE];
  414. };
  415. static __u32 input_pool_data[INPUT_POOL_WORDS];
  416. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  417. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  418. static struct entropy_store input_pool = {
  419. .poolinfo = &poolinfo_table[0],
  420. .name = "input",
  421. .limit = 1,
  422. .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
  423. .pool = input_pool_data
  424. };
  425. static struct entropy_store blocking_pool = {
  426. .poolinfo = &poolinfo_table[1],
  427. .name = "blocking",
  428. .limit = 1,
  429. .pull = &input_pool,
  430. .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
  431. .pool = blocking_pool_data
  432. };
  433. static struct entropy_store nonblocking_pool = {
  434. .poolinfo = &poolinfo_table[1],
  435. .name = "nonblocking",
  436. .pull = &input_pool,
  437. .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
  438. .pool = nonblocking_pool_data
  439. };
  440. static __u32 const twist_table[8] = {
  441. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  442. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  443. /*
  444. * This function adds bytes into the entropy "pool". It does not
  445. * update the entropy estimate. The caller should call
  446. * credit_entropy_bits if this is appropriate.
  447. *
  448. * The pool is stirred with a primitive polynomial of the appropriate
  449. * degree, and then twisted. We twist by three bits at a time because
  450. * it's cheap to do so and helps slightly in the expected case where
  451. * the entropy is concentrated in the low-order bits.
  452. */
  453. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  454. int nbytes, __u8 out[64])
  455. {
  456. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  457. int input_rotate;
  458. int wordmask = r->poolinfo->poolwords - 1;
  459. const char *bytes = in;
  460. __u32 w;
  461. tap1 = r->poolinfo->tap1;
  462. tap2 = r->poolinfo->tap2;
  463. tap3 = r->poolinfo->tap3;
  464. tap4 = r->poolinfo->tap4;
  465. tap5 = r->poolinfo->tap5;
  466. smp_rmb();
  467. input_rotate = ACCESS_ONCE(r->input_rotate);
  468. i = ACCESS_ONCE(r->add_ptr);
  469. /* mix one byte at a time to simplify size handling and churn faster */
  470. while (nbytes--) {
  471. w = rol32(*bytes++, input_rotate & 31);
  472. i = (i - 1) & wordmask;
  473. /* XOR in the various taps */
  474. w ^= r->pool[i];
  475. w ^= r->pool[(i + tap1) & wordmask];
  476. w ^= r->pool[(i + tap2) & wordmask];
  477. w ^= r->pool[(i + tap3) & wordmask];
  478. w ^= r->pool[(i + tap4) & wordmask];
  479. w ^= r->pool[(i + tap5) & wordmask];
  480. /* Mix the result back in with a twist */
  481. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  482. /*
  483. * Normally, we add 7 bits of rotation to the pool.
  484. * At the beginning of the pool, add an extra 7 bits
  485. * rotation, so that successive passes spread the
  486. * input bits across the pool evenly.
  487. */
  488. input_rotate += i ? 7 : 14;
  489. }
  490. ACCESS_ONCE(r->input_rotate) = input_rotate;
  491. ACCESS_ONCE(r->add_ptr) = i;
  492. smp_wmb();
  493. if (out)
  494. for (j = 0; j < 16; j++)
  495. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  496. }
  497. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  498. int nbytes, __u8 out[64])
  499. {
  500. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  501. _mix_pool_bytes(r, in, nbytes, out);
  502. }
  503. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  504. int nbytes, __u8 out[64])
  505. {
  506. unsigned long flags;
  507. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  508. spin_lock_irqsave(&r->lock, flags);
  509. _mix_pool_bytes(r, in, nbytes, out);
  510. spin_unlock_irqrestore(&r->lock, flags);
  511. }
  512. struct fast_pool {
  513. __u32 pool[4];
  514. unsigned long last;
  515. unsigned short count;
  516. unsigned char rotate;
  517. unsigned char last_timer_intr;
  518. };
  519. /*
  520. * This is a fast mixing routine used by the interrupt randomness
  521. * collector. It's hardcoded for an 128 bit pool and assumes that any
  522. * locks that might be needed are taken by the caller.
  523. */
  524. static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
  525. {
  526. const char *bytes = in;
  527. __u32 w;
  528. unsigned i = f->count;
  529. unsigned input_rotate = f->rotate;
  530. while (nbytes--) {
  531. w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
  532. f->pool[(i + 1) & 3];
  533. f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
  534. input_rotate += (i++ & 3) ? 7 : 14;
  535. }
  536. f->count = i;
  537. f->rotate = input_rotate;
  538. }
  539. /*
  540. * Credit (or debit) the entropy store with n bits of entropy
  541. */
  542. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  543. {
  544. int entropy_count, orig;
  545. if (!nbits)
  546. return;
  547. DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
  548. retry:
  549. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  550. entropy_count += nbits;
  551. if (entropy_count < 0) {
  552. DEBUG_ENT("negative entropy/overflow\n");
  553. entropy_count = 0;
  554. } else if (entropy_count > r->poolinfo->POOLBITS)
  555. entropy_count = r->poolinfo->POOLBITS;
  556. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  557. goto retry;
  558. if (!r->initialized && nbits > 0) {
  559. r->entropy_total += nbits;
  560. if (r->entropy_total > 128)
  561. r->initialized = 1;
  562. }
  563. trace_credit_entropy_bits(r->name, nbits, entropy_count,
  564. r->entropy_total, _RET_IP_);
  565. /* should we wake readers? */
  566. if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
  567. wake_up_interruptible(&random_read_wait);
  568. kill_fasync(&fasync, SIGIO, POLL_IN);
  569. }
  570. }
  571. /*********************************************************************
  572. *
  573. * Entropy input management
  574. *
  575. *********************************************************************/
  576. /* There is one of these per entropy source */
  577. struct timer_rand_state {
  578. cycles_t last_time;
  579. long last_delta, last_delta2;
  580. unsigned dont_count_entropy:1;
  581. };
  582. /*
  583. * Add device- or boot-specific data to the input and nonblocking
  584. * pools to help initialize them to unique values.
  585. *
  586. * None of this adds any entropy, it is meant to avoid the
  587. * problem of the nonblocking pool having similar initial state
  588. * across largely identical devices.
  589. */
  590. void add_device_randomness(const void *buf, unsigned int size)
  591. {
  592. unsigned long time = get_cycles() ^ jiffies;
  593. mix_pool_bytes(&input_pool, buf, size, NULL);
  594. mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
  595. mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
  596. mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
  597. }
  598. EXPORT_SYMBOL(add_device_randomness);
  599. static struct timer_rand_state input_timer_state;
  600. /*
  601. * This function adds entropy to the entropy "pool" by using timing
  602. * delays. It uses the timer_rand_state structure to make an estimate
  603. * of how many bits of entropy this call has added to the pool.
  604. *
  605. * The number "num" is also added to the pool - it should somehow describe
  606. * the type of event which just happened. This is currently 0-255 for
  607. * keyboard scan codes, and 256 upwards for interrupts.
  608. *
  609. */
  610. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  611. {
  612. struct {
  613. long jiffies;
  614. unsigned cycles;
  615. unsigned num;
  616. } sample;
  617. long delta, delta2, delta3;
  618. preempt_disable();
  619. /* if over the trickle threshold, use only 1 in 4096 samples */
  620. if (input_pool.entropy_count > trickle_thresh &&
  621. ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
  622. goto out;
  623. sample.jiffies = jiffies;
  624. sample.cycles = get_cycles();
  625. sample.num = num;
  626. mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
  627. /*
  628. * Calculate number of bits of randomness we probably added.
  629. * We take into account the first, second and third-order deltas
  630. * in order to make our estimate.
  631. */
  632. if (!state->dont_count_entropy) {
  633. delta = sample.jiffies - state->last_time;
  634. state->last_time = sample.jiffies;
  635. delta2 = delta - state->last_delta;
  636. state->last_delta = delta;
  637. delta3 = delta2 - state->last_delta2;
  638. state->last_delta2 = delta2;
  639. if (delta < 0)
  640. delta = -delta;
  641. if (delta2 < 0)
  642. delta2 = -delta2;
  643. if (delta3 < 0)
  644. delta3 = -delta3;
  645. if (delta > delta2)
  646. delta = delta2;
  647. if (delta > delta3)
  648. delta = delta3;
  649. /*
  650. * delta is now minimum absolute delta.
  651. * Round down by 1 bit on general principles,
  652. * and limit entropy entimate to 12 bits.
  653. */
  654. credit_entropy_bits(&input_pool,
  655. min_t(int, fls(delta>>1), 11));
  656. }
  657. out:
  658. preempt_enable();
  659. }
  660. void add_input_randomness(unsigned int type, unsigned int code,
  661. unsigned int value)
  662. {
  663. static unsigned char last_value;
  664. /* ignore autorepeat and the like */
  665. if (value == last_value)
  666. return;
  667. DEBUG_ENT("input event\n");
  668. last_value = value;
  669. add_timer_randomness(&input_timer_state,
  670. (type << 4) ^ code ^ (code >> 4) ^ value);
  671. }
  672. EXPORT_SYMBOL_GPL(add_input_randomness);
  673. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  674. void add_interrupt_randomness(int irq, int irq_flags)
  675. {
  676. struct entropy_store *r;
  677. struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
  678. struct pt_regs *regs = get_irq_regs();
  679. unsigned long now = jiffies;
  680. __u32 input[4], cycles = get_cycles();
  681. input[0] = cycles ^ jiffies;
  682. input[1] = irq;
  683. if (regs) {
  684. __u64 ip = instruction_pointer(regs);
  685. input[2] = ip;
  686. input[3] = ip >> 32;
  687. }
  688. fast_mix(fast_pool, input, sizeof(input));
  689. if ((fast_pool->count & 1023) &&
  690. !time_after(now, fast_pool->last + HZ))
  691. return;
  692. fast_pool->last = now;
  693. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  694. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
  695. /*
  696. * If we don't have a valid cycle counter, and we see
  697. * back-to-back timer interrupts, then skip giving credit for
  698. * any entropy.
  699. */
  700. if (cycles == 0) {
  701. if (irq_flags & __IRQF_TIMER) {
  702. if (fast_pool->last_timer_intr)
  703. return;
  704. fast_pool->last_timer_intr = 1;
  705. } else
  706. fast_pool->last_timer_intr = 0;
  707. }
  708. credit_entropy_bits(r, 1);
  709. }
  710. #ifdef CONFIG_BLOCK
  711. void add_disk_randomness(struct gendisk *disk)
  712. {
  713. if (!disk || !disk->random)
  714. return;
  715. /* first major is 1, so we get >= 0x200 here */
  716. DEBUG_ENT("disk event %d:%d\n",
  717. MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
  718. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  719. }
  720. #endif
  721. /*********************************************************************
  722. *
  723. * Entropy extraction routines
  724. *
  725. *********************************************************************/
  726. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  727. size_t nbytes, int min, int rsvd);
  728. /*
  729. * This utility inline function is responsible for transferring entropy
  730. * from the primary pool to the secondary extraction pool. We make
  731. * sure we pull enough for a 'catastrophic reseed'.
  732. */
  733. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  734. {
  735. __u32 tmp[OUTPUT_POOL_WORDS];
  736. if (r->pull && r->entropy_count < nbytes * 8 &&
  737. r->entropy_count < r->poolinfo->POOLBITS) {
  738. /* If we're limited, always leave two wakeup worth's BITS */
  739. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  740. int bytes = nbytes;
  741. /* pull at least as many as BYTES as wakeup BITS */
  742. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  743. /* but never more than the buffer size */
  744. bytes = min_t(int, bytes, sizeof(tmp));
  745. DEBUG_ENT("going to reseed %s with %d bits "
  746. "(%d of %d requested)\n",
  747. r->name, bytes * 8, nbytes * 8, r->entropy_count);
  748. bytes = extract_entropy(r->pull, tmp, bytes,
  749. random_read_wakeup_thresh / 8, rsvd);
  750. mix_pool_bytes(r, tmp, bytes, NULL);
  751. credit_entropy_bits(r, bytes*8);
  752. }
  753. }
  754. /*
  755. * These functions extracts randomness from the "entropy pool", and
  756. * returns it in a buffer.
  757. *
  758. * The min parameter specifies the minimum amount we can pull before
  759. * failing to avoid races that defeat catastrophic reseeding while the
  760. * reserved parameter indicates how much entropy we must leave in the
  761. * pool after each pull to avoid starving other readers.
  762. *
  763. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  764. */
  765. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  766. int reserved)
  767. {
  768. unsigned long flags;
  769. /* Hold lock while accounting */
  770. spin_lock_irqsave(&r->lock, flags);
  771. BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
  772. DEBUG_ENT("trying to extract %d bits from %s\n",
  773. nbytes * 8, r->name);
  774. /* Can we pull enough? */
  775. if (r->entropy_count / 8 < min + reserved) {
  776. nbytes = 0;
  777. } else {
  778. /* If limited, never pull more than available */
  779. if (r->limit && nbytes + reserved >= r->entropy_count / 8)
  780. nbytes = r->entropy_count/8 - reserved;
  781. if (r->entropy_count / 8 >= nbytes + reserved)
  782. r->entropy_count -= nbytes*8;
  783. else
  784. r->entropy_count = reserved;
  785. if (r->entropy_count < random_write_wakeup_thresh) {
  786. wake_up_interruptible(&random_write_wait);
  787. kill_fasync(&fasync, SIGIO, POLL_OUT);
  788. }
  789. }
  790. DEBUG_ENT("debiting %d entropy credits from %s%s\n",
  791. nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
  792. spin_unlock_irqrestore(&r->lock, flags);
  793. return nbytes;
  794. }
  795. static void extract_buf(struct entropy_store *r, __u8 *out)
  796. {
  797. int i;
  798. union {
  799. __u32 w[5];
  800. unsigned long l[LONGS(EXTRACT_SIZE)];
  801. } hash;
  802. __u32 workspace[SHA_WORKSPACE_WORDS];
  803. __u8 extract[64];
  804. unsigned long flags;
  805. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  806. sha_init(hash.w);
  807. spin_lock_irqsave(&r->lock, flags);
  808. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  809. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  810. /*
  811. * We mix the hash back into the pool to prevent backtracking
  812. * attacks (where the attacker knows the state of the pool
  813. * plus the current outputs, and attempts to find previous
  814. * ouputs), unless the hash function can be inverted. By
  815. * mixing at least a SHA1 worth of hash data back, we make
  816. * brute-forcing the feedback as hard as brute-forcing the
  817. * hash.
  818. */
  819. __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
  820. spin_unlock_irqrestore(&r->lock, flags);
  821. /*
  822. * To avoid duplicates, we atomically extract a portion of the
  823. * pool while mixing, and hash one final time.
  824. */
  825. sha_transform(hash.w, extract, workspace);
  826. memset(extract, 0, sizeof(extract));
  827. memset(workspace, 0, sizeof(workspace));
  828. /*
  829. * In case the hash function has some recognizable output
  830. * pattern, we fold it in half. Thus, we always feed back
  831. * twice as much data as we output.
  832. */
  833. hash.w[0] ^= hash.w[3];
  834. hash.w[1] ^= hash.w[4];
  835. hash.w[2] ^= rol32(hash.w[2], 16);
  836. /*
  837. * If we have a architectural hardware random number
  838. * generator, mix that in, too.
  839. */
  840. for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
  841. unsigned long v;
  842. if (!arch_get_random_long(&v))
  843. break;
  844. hash.l[i] ^= v;
  845. }
  846. memcpy(out, &hash, EXTRACT_SIZE);
  847. memset(&hash, 0, sizeof(hash));
  848. }
  849. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  850. size_t nbytes, int min, int reserved)
  851. {
  852. ssize_t ret = 0, i;
  853. __u8 tmp[EXTRACT_SIZE];
  854. trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
  855. xfer_secondary_pool(r, nbytes);
  856. nbytes = account(r, nbytes, min, reserved);
  857. while (nbytes) {
  858. extract_buf(r, tmp);
  859. if (fips_enabled) {
  860. unsigned long flags;
  861. spin_lock_irqsave(&r->lock, flags);
  862. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  863. panic("Hardware RNG duplicated output!\n");
  864. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  865. spin_unlock_irqrestore(&r->lock, flags);
  866. }
  867. i = min_t(int, nbytes, EXTRACT_SIZE);
  868. memcpy(buf, tmp, i);
  869. nbytes -= i;
  870. buf += i;
  871. ret += i;
  872. }
  873. /* Wipe data just returned from memory */
  874. memset(tmp, 0, sizeof(tmp));
  875. return ret;
  876. }
  877. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  878. size_t nbytes)
  879. {
  880. ssize_t ret = 0, i;
  881. __u8 tmp[EXTRACT_SIZE];
  882. trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
  883. xfer_secondary_pool(r, nbytes);
  884. nbytes = account(r, nbytes, 0, 0);
  885. while (nbytes) {
  886. if (need_resched()) {
  887. if (signal_pending(current)) {
  888. if (ret == 0)
  889. ret = -ERESTARTSYS;
  890. break;
  891. }
  892. schedule();
  893. }
  894. extract_buf(r, tmp);
  895. i = min_t(int, nbytes, EXTRACT_SIZE);
  896. if (copy_to_user(buf, tmp, i)) {
  897. ret = -EFAULT;
  898. break;
  899. }
  900. nbytes -= i;
  901. buf += i;
  902. ret += i;
  903. }
  904. /* Wipe data just returned from memory */
  905. memset(tmp, 0, sizeof(tmp));
  906. return ret;
  907. }
  908. /*
  909. * This function is the exported kernel interface. It returns some
  910. * number of good random numbers, suitable for key generation, seeding
  911. * TCP sequence numbers, etc. It does not use the hw random number
  912. * generator, if available; use get_random_bytes_arch() for that.
  913. */
  914. void get_random_bytes(void *buf, int nbytes)
  915. {
  916. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  917. }
  918. EXPORT_SYMBOL(get_random_bytes);
  919. /*
  920. * This function will use the architecture-specific hardware random
  921. * number generator if it is available. The arch-specific hw RNG will
  922. * almost certainly be faster than what we can do in software, but it
  923. * is impossible to verify that it is implemented securely (as
  924. * opposed, to, say, the AES encryption of a sequence number using a
  925. * key known by the NSA). So it's useful if we need the speed, but
  926. * only if we're willing to trust the hardware manufacturer not to
  927. * have put in a back door.
  928. */
  929. void get_random_bytes_arch(void *buf, int nbytes)
  930. {
  931. char *p = buf;
  932. trace_get_random_bytes(nbytes, _RET_IP_);
  933. while (nbytes) {
  934. unsigned long v;
  935. int chunk = min(nbytes, (int)sizeof(unsigned long));
  936. if (!arch_get_random_long(&v))
  937. break;
  938. memcpy(p, &v, chunk);
  939. p += chunk;
  940. nbytes -= chunk;
  941. }
  942. if (nbytes)
  943. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  944. }
  945. EXPORT_SYMBOL(get_random_bytes_arch);
  946. /*
  947. * init_std_data - initialize pool with system data
  948. *
  949. * @r: pool to initialize
  950. *
  951. * This function clears the pool's entropy count and mixes some system
  952. * data into the pool to prepare it for use. The pool is not cleared
  953. * as that can only decrease the entropy in the pool.
  954. */
  955. static void init_std_data(struct entropy_store *r)
  956. {
  957. int i;
  958. ktime_t now = ktime_get_real();
  959. unsigned long rv;
  960. r->entropy_count = 0;
  961. r->entropy_total = 0;
  962. mix_pool_bytes(r, &now, sizeof(now), NULL);
  963. for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
  964. if (!arch_get_random_long(&rv))
  965. break;
  966. mix_pool_bytes(r, &rv, sizeof(rv), NULL);
  967. }
  968. mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
  969. }
  970. /*
  971. * Note that setup_arch() may call add_device_randomness()
  972. * long before we get here. This allows seeding of the pools
  973. * with some platform dependent data very early in the boot
  974. * process. But it limits our options here. We must use
  975. * statically allocated structures that already have all
  976. * initializations complete at compile time. We should also
  977. * take care not to overwrite the precious per platform data
  978. * we were given.
  979. */
  980. static int rand_initialize(void)
  981. {
  982. init_std_data(&input_pool);
  983. init_std_data(&blocking_pool);
  984. init_std_data(&nonblocking_pool);
  985. return 0;
  986. }
  987. module_init(rand_initialize);
  988. #ifdef CONFIG_BLOCK
  989. void rand_initialize_disk(struct gendisk *disk)
  990. {
  991. struct timer_rand_state *state;
  992. /*
  993. * If kzalloc returns null, we just won't use that entropy
  994. * source.
  995. */
  996. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  997. if (state)
  998. disk->random = state;
  999. }
  1000. #endif
  1001. static ssize_t
  1002. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1003. {
  1004. ssize_t n, retval = 0, count = 0;
  1005. if (nbytes == 0)
  1006. return 0;
  1007. while (nbytes > 0) {
  1008. n = nbytes;
  1009. if (n > SEC_XFER_SIZE)
  1010. n = SEC_XFER_SIZE;
  1011. DEBUG_ENT("reading %d bits\n", n*8);
  1012. n = extract_entropy_user(&blocking_pool, buf, n);
  1013. DEBUG_ENT("read got %d bits (%d still needed)\n",
  1014. n*8, (nbytes-n)*8);
  1015. if (n == 0) {
  1016. if (file->f_flags & O_NONBLOCK) {
  1017. retval = -EAGAIN;
  1018. break;
  1019. }
  1020. DEBUG_ENT("sleeping?\n");
  1021. wait_event_interruptible(random_read_wait,
  1022. input_pool.entropy_count >=
  1023. random_read_wakeup_thresh);
  1024. DEBUG_ENT("awake\n");
  1025. if (signal_pending(current)) {
  1026. retval = -ERESTARTSYS;
  1027. break;
  1028. }
  1029. continue;
  1030. }
  1031. if (n < 0) {
  1032. retval = n;
  1033. break;
  1034. }
  1035. count += n;
  1036. buf += n;
  1037. nbytes -= n;
  1038. break; /* This break makes the device work */
  1039. /* like a named pipe */
  1040. }
  1041. return (count ? count : retval);
  1042. }
  1043. static ssize_t
  1044. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1045. {
  1046. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  1047. }
  1048. static unsigned int
  1049. random_poll(struct file *file, poll_table * wait)
  1050. {
  1051. unsigned int mask;
  1052. poll_wait(file, &random_read_wait, wait);
  1053. poll_wait(file, &random_write_wait, wait);
  1054. mask = 0;
  1055. if (input_pool.entropy_count >= random_read_wakeup_thresh)
  1056. mask |= POLLIN | POLLRDNORM;
  1057. if (input_pool.entropy_count < random_write_wakeup_thresh)
  1058. mask |= POLLOUT | POLLWRNORM;
  1059. return mask;
  1060. }
  1061. static int
  1062. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1063. {
  1064. size_t bytes;
  1065. __u32 buf[16];
  1066. const char __user *p = buffer;
  1067. while (count > 0) {
  1068. bytes = min(count, sizeof(buf));
  1069. if (copy_from_user(&buf, p, bytes))
  1070. return -EFAULT;
  1071. count -= bytes;
  1072. p += bytes;
  1073. mix_pool_bytes(r, buf, bytes, NULL);
  1074. cond_resched();
  1075. }
  1076. return 0;
  1077. }
  1078. static ssize_t random_write(struct file *file, const char __user *buffer,
  1079. size_t count, loff_t *ppos)
  1080. {
  1081. size_t ret;
  1082. ret = write_pool(&blocking_pool, buffer, count);
  1083. if (ret)
  1084. return ret;
  1085. ret = write_pool(&nonblocking_pool, buffer, count);
  1086. if (ret)
  1087. return ret;
  1088. return (ssize_t)count;
  1089. }
  1090. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1091. {
  1092. int size, ent_count;
  1093. int __user *p = (int __user *)arg;
  1094. int retval;
  1095. switch (cmd) {
  1096. case RNDGETENTCNT:
  1097. /* inherently racy, no point locking */
  1098. if (put_user(input_pool.entropy_count, p))
  1099. return -EFAULT;
  1100. return 0;
  1101. case RNDADDTOENTCNT:
  1102. if (!capable(CAP_SYS_ADMIN))
  1103. return -EPERM;
  1104. if (get_user(ent_count, p))
  1105. return -EFAULT;
  1106. credit_entropy_bits(&input_pool, ent_count);
  1107. return 0;
  1108. case RNDADDENTROPY:
  1109. if (!capable(CAP_SYS_ADMIN))
  1110. return -EPERM;
  1111. if (get_user(ent_count, p++))
  1112. return -EFAULT;
  1113. if (ent_count < 0)
  1114. return -EINVAL;
  1115. if (get_user(size, p++))
  1116. return -EFAULT;
  1117. retval = write_pool(&input_pool, (const char __user *)p,
  1118. size);
  1119. if (retval < 0)
  1120. return retval;
  1121. credit_entropy_bits(&input_pool, ent_count);
  1122. return 0;
  1123. case RNDZAPENTCNT:
  1124. case RNDCLEARPOOL:
  1125. /* Clear the entropy pool counters. */
  1126. if (!capable(CAP_SYS_ADMIN))
  1127. return -EPERM;
  1128. rand_initialize();
  1129. return 0;
  1130. default:
  1131. return -EINVAL;
  1132. }
  1133. }
  1134. static int random_fasync(int fd, struct file *filp, int on)
  1135. {
  1136. return fasync_helper(fd, filp, on, &fasync);
  1137. }
  1138. const struct file_operations random_fops = {
  1139. .read = random_read,
  1140. .write = random_write,
  1141. .poll = random_poll,
  1142. .unlocked_ioctl = random_ioctl,
  1143. .fasync = random_fasync,
  1144. .llseek = noop_llseek,
  1145. };
  1146. const struct file_operations urandom_fops = {
  1147. .read = urandom_read,
  1148. .write = random_write,
  1149. .unlocked_ioctl = random_ioctl,
  1150. .fasync = random_fasync,
  1151. .llseek = noop_llseek,
  1152. };
  1153. /***************************************************************
  1154. * Random UUID interface
  1155. *
  1156. * Used here for a Boot ID, but can be useful for other kernel
  1157. * drivers.
  1158. ***************************************************************/
  1159. /*
  1160. * Generate random UUID
  1161. */
  1162. void generate_random_uuid(unsigned char uuid_out[16])
  1163. {
  1164. get_random_bytes(uuid_out, 16);
  1165. /* Set UUID version to 4 --- truly random generation */
  1166. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1167. /* Set the UUID variant to DCE */
  1168. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1169. }
  1170. EXPORT_SYMBOL(generate_random_uuid);
  1171. /********************************************************************
  1172. *
  1173. * Sysctl interface
  1174. *
  1175. ********************************************************************/
  1176. #ifdef CONFIG_SYSCTL
  1177. #include <linux/sysctl.h>
  1178. static int min_read_thresh = 8, min_write_thresh;
  1179. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1180. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1181. static char sysctl_bootid[16];
  1182. /*
  1183. * These functions is used to return both the bootid UUID, and random
  1184. * UUID. The difference is in whether table->data is NULL; if it is,
  1185. * then a new UUID is generated and returned to the user.
  1186. *
  1187. * If the user accesses this via the proc interface, it will be returned
  1188. * as an ASCII string in the standard UUID format. If accesses via the
  1189. * sysctl system call, it is returned as 16 bytes of binary data.
  1190. */
  1191. static int proc_do_uuid(ctl_table *table, int write,
  1192. void __user *buffer, size_t *lenp, loff_t *ppos)
  1193. {
  1194. ctl_table fake_table;
  1195. unsigned char buf[64], tmp_uuid[16], *uuid;
  1196. uuid = table->data;
  1197. if (!uuid) {
  1198. uuid = tmp_uuid;
  1199. generate_random_uuid(uuid);
  1200. } else {
  1201. static DEFINE_SPINLOCK(bootid_spinlock);
  1202. spin_lock(&bootid_spinlock);
  1203. if (!uuid[8])
  1204. generate_random_uuid(uuid);
  1205. spin_unlock(&bootid_spinlock);
  1206. }
  1207. sprintf(buf, "%pU", uuid);
  1208. fake_table.data = buf;
  1209. fake_table.maxlen = sizeof(buf);
  1210. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1211. }
  1212. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1213. extern ctl_table random_table[];
  1214. ctl_table random_table[] = {
  1215. {
  1216. .procname = "poolsize",
  1217. .data = &sysctl_poolsize,
  1218. .maxlen = sizeof(int),
  1219. .mode = 0444,
  1220. .proc_handler = proc_dointvec,
  1221. },
  1222. {
  1223. .procname = "entropy_avail",
  1224. .maxlen = sizeof(int),
  1225. .mode = 0444,
  1226. .proc_handler = proc_dointvec,
  1227. .data = &input_pool.entropy_count,
  1228. },
  1229. {
  1230. .procname = "read_wakeup_threshold",
  1231. .data = &random_read_wakeup_thresh,
  1232. .maxlen = sizeof(int),
  1233. .mode = 0644,
  1234. .proc_handler = proc_dointvec_minmax,
  1235. .extra1 = &min_read_thresh,
  1236. .extra2 = &max_read_thresh,
  1237. },
  1238. {
  1239. .procname = "write_wakeup_threshold",
  1240. .data = &random_write_wakeup_thresh,
  1241. .maxlen = sizeof(int),
  1242. .mode = 0644,
  1243. .proc_handler = proc_dointvec_minmax,
  1244. .extra1 = &min_write_thresh,
  1245. .extra2 = &max_write_thresh,
  1246. },
  1247. {
  1248. .procname = "boot_id",
  1249. .data = &sysctl_bootid,
  1250. .maxlen = 16,
  1251. .mode = 0444,
  1252. .proc_handler = proc_do_uuid,
  1253. },
  1254. {
  1255. .procname = "uuid",
  1256. .maxlen = 16,
  1257. .mode = 0444,
  1258. .proc_handler = proc_do_uuid,
  1259. },
  1260. { }
  1261. };
  1262. #endif /* CONFIG_SYSCTL */
  1263. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1264. static int __init random_int_secret_init(void)
  1265. {
  1266. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1267. return 0;
  1268. }
  1269. late_initcall(random_int_secret_init);
  1270. /*
  1271. * Get a random word for internal kernel use only. Similar to urandom but
  1272. * with the goal of minimal entropy pool depletion. As a result, the random
  1273. * value is not cryptographically secure but for several uses the cost of
  1274. * depleting entropy is too high
  1275. */
  1276. static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1277. unsigned int get_random_int(void)
  1278. {
  1279. __u32 *hash;
  1280. unsigned int ret;
  1281. if (arch_get_random_int(&ret))
  1282. return ret;
  1283. hash = get_cpu_var(get_random_int_hash);
  1284. hash[0] += current->pid + jiffies + get_cycles();
  1285. md5_transform(hash, random_int_secret);
  1286. ret = hash[0];
  1287. put_cpu_var(get_random_int_hash);
  1288. return ret;
  1289. }
  1290. /*
  1291. * randomize_range() returns a start address such that
  1292. *
  1293. * [...... <range> .....]
  1294. * start end
  1295. *
  1296. * a <range> with size "len" starting at the return value is inside in the
  1297. * area defined by [start, end], but is otherwise randomized.
  1298. */
  1299. unsigned long
  1300. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1301. {
  1302. unsigned long range = end - len - start;
  1303. if (end <= start + len)
  1304. return 0;
  1305. return PAGE_ALIGN(get_random_int() % range + start);
  1306. }