process.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519
  1. /*
  2. * Blackfin architecture-dependent process handling
  3. *
  4. * Copyright 2004-2009 Analog Devices Inc.
  5. *
  6. * Licensed under the GPL-2 or later
  7. */
  8. #include <linux/module.h>
  9. #include <linux/unistd.h>
  10. #include <linux/user.h>
  11. #include <linux/uaccess.h>
  12. #include <linux/slab.h>
  13. #include <linux/sched.h>
  14. #include <linux/tick.h>
  15. #include <linux/fs.h>
  16. #include <linux/err.h>
  17. #include <asm/blackfin.h>
  18. #include <asm/fixed_code.h>
  19. #include <asm/mem_map.h>
  20. #include <asm/irq.h>
  21. asmlinkage void ret_from_fork(void);
  22. /* Points to the SDRAM backup memory for the stack that is currently in
  23. * L1 scratchpad memory.
  24. */
  25. void *current_l1_stack_save;
  26. /* The number of tasks currently using a L1 stack area. The SRAM is
  27. * allocated/deallocated whenever this changes from/to zero.
  28. */
  29. int nr_l1stack_tasks;
  30. /* Start and length of the area in L1 scratchpad memory which we've allocated
  31. * for process stacks.
  32. */
  33. void *l1_stack_base;
  34. unsigned long l1_stack_len;
  35. /*
  36. * Powermanagement idle function, if any..
  37. */
  38. void (*pm_idle)(void) = NULL;
  39. EXPORT_SYMBOL(pm_idle);
  40. void (*pm_power_off)(void) = NULL;
  41. EXPORT_SYMBOL(pm_power_off);
  42. /*
  43. * The idle loop on BFIN
  44. */
  45. #ifdef CONFIG_IDLE_L1
  46. static void default_idle(void)__attribute__((l1_text));
  47. void cpu_idle(void)__attribute__((l1_text));
  48. #endif
  49. /*
  50. * This is our default idle handler. We need to disable
  51. * interrupts here to ensure we don't miss a wakeup call.
  52. */
  53. static void default_idle(void)
  54. {
  55. #ifdef CONFIG_IPIPE
  56. ipipe_suspend_domain();
  57. #endif
  58. hard_local_irq_disable();
  59. if (!need_resched())
  60. idle_with_irq_disabled();
  61. hard_local_irq_enable();
  62. }
  63. /*
  64. * The idle thread. We try to conserve power, while trying to keep
  65. * overall latency low. The architecture specific idle is passed
  66. * a value to indicate the level of "idleness" of the system.
  67. */
  68. void cpu_idle(void)
  69. {
  70. /* endless idle loop with no priority at all */
  71. while (1) {
  72. void (*idle)(void) = pm_idle;
  73. #ifdef CONFIG_HOTPLUG_CPU
  74. if (cpu_is_offline(smp_processor_id()))
  75. cpu_die();
  76. #endif
  77. if (!idle)
  78. idle = default_idle;
  79. tick_nohz_idle_enter();
  80. rcu_idle_enter();
  81. while (!need_resched())
  82. idle();
  83. rcu_idle_exit();
  84. tick_nohz_idle_exit();
  85. preempt_enable_no_resched();
  86. schedule();
  87. preempt_disable();
  88. }
  89. }
  90. /*
  91. * This gets run with P1 containing the
  92. * function to call, and R1 containing
  93. * the "args". Note P0 is clobbered on the way here.
  94. */
  95. void kernel_thread_helper(void);
  96. __asm__(".section .text\n"
  97. ".align 4\n"
  98. "_kernel_thread_helper:\n\t"
  99. "\tsp += -12;\n\t"
  100. "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
  101. /*
  102. * Create a kernel thread.
  103. */
  104. pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
  105. {
  106. struct pt_regs regs;
  107. memset(&regs, 0, sizeof(regs));
  108. regs.r1 = (unsigned long)arg;
  109. regs.p1 = (unsigned long)fn;
  110. regs.pc = (unsigned long)kernel_thread_helper;
  111. regs.orig_p0 = -1;
  112. /* Set bit 2 to tell ret_from_fork we should be returning to kernel
  113. mode. */
  114. regs.ipend = 0x8002;
  115. __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
  116. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
  117. NULL);
  118. }
  119. EXPORT_SYMBOL(kernel_thread);
  120. /*
  121. * Do necessary setup to start up a newly executed thread.
  122. *
  123. * pass the data segment into user programs if it exists,
  124. * it can't hurt anything as far as I can tell
  125. */
  126. void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  127. {
  128. regs->pc = new_ip;
  129. if (current->mm)
  130. regs->p5 = current->mm->start_data;
  131. #ifndef CONFIG_SMP
  132. task_thread_info(current)->l1_task_info.stack_start =
  133. (void *)current->mm->context.stack_start;
  134. task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
  135. memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
  136. sizeof(*L1_SCRATCH_TASK_INFO));
  137. #endif
  138. wrusp(new_sp);
  139. }
  140. EXPORT_SYMBOL_GPL(start_thread);
  141. void flush_thread(void)
  142. {
  143. }
  144. asmlinkage int bfin_vfork(struct pt_regs *regs)
  145. {
  146. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
  147. NULL);
  148. }
  149. asmlinkage int bfin_clone(struct pt_regs *regs)
  150. {
  151. unsigned long clone_flags;
  152. unsigned long newsp;
  153. #ifdef __ARCH_SYNC_CORE_DCACHE
  154. if (current->nr_cpus_allowed == num_possible_cpus())
  155. set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
  156. #endif
  157. /* syscall2 puts clone_flags in r0 and usp in r1 */
  158. clone_flags = regs->r0;
  159. newsp = regs->r1;
  160. if (!newsp)
  161. newsp = rdusp();
  162. else
  163. newsp -= 12;
  164. return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
  165. }
  166. int
  167. copy_thread(unsigned long clone_flags,
  168. unsigned long usp, unsigned long topstk,
  169. struct task_struct *p, struct pt_regs *regs)
  170. {
  171. struct pt_regs *childregs;
  172. childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
  173. *childregs = *regs;
  174. childregs->r0 = 0;
  175. p->thread.usp = usp;
  176. p->thread.ksp = (unsigned long)childregs;
  177. p->thread.pc = (unsigned long)ret_from_fork;
  178. return 0;
  179. }
  180. /*
  181. * sys_execve() executes a new program.
  182. */
  183. asmlinkage int sys_execve(const char __user *name,
  184. const char __user *const __user *argv,
  185. const char __user *const __user *envp)
  186. {
  187. int error;
  188. char *filename;
  189. struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
  190. filename = getname(name);
  191. error = PTR_ERR(filename);
  192. if (IS_ERR(filename))
  193. return error;
  194. error = do_execve(filename, argv, envp, regs);
  195. putname(filename);
  196. return error;
  197. }
  198. unsigned long get_wchan(struct task_struct *p)
  199. {
  200. unsigned long fp, pc;
  201. unsigned long stack_page;
  202. int count = 0;
  203. if (!p || p == current || p->state == TASK_RUNNING)
  204. return 0;
  205. stack_page = (unsigned long)p;
  206. fp = p->thread.usp;
  207. do {
  208. if (fp < stack_page + sizeof(struct thread_info) ||
  209. fp >= 8184 + stack_page)
  210. return 0;
  211. pc = ((unsigned long *)fp)[1];
  212. if (!in_sched_functions(pc))
  213. return pc;
  214. fp = *(unsigned long *)fp;
  215. }
  216. while (count++ < 16);
  217. return 0;
  218. }
  219. void finish_atomic_sections (struct pt_regs *regs)
  220. {
  221. int __user *up0 = (int __user *)regs->p0;
  222. switch (regs->pc) {
  223. default:
  224. /* not in middle of an atomic step, so resume like normal */
  225. return;
  226. case ATOMIC_XCHG32 + 2:
  227. put_user(regs->r1, up0);
  228. break;
  229. case ATOMIC_CAS32 + 2:
  230. case ATOMIC_CAS32 + 4:
  231. if (regs->r0 == regs->r1)
  232. case ATOMIC_CAS32 + 6:
  233. put_user(regs->r2, up0);
  234. break;
  235. case ATOMIC_ADD32 + 2:
  236. regs->r0 = regs->r1 + regs->r0;
  237. /* fall through */
  238. case ATOMIC_ADD32 + 4:
  239. put_user(regs->r0, up0);
  240. break;
  241. case ATOMIC_SUB32 + 2:
  242. regs->r0 = regs->r1 - regs->r0;
  243. /* fall through */
  244. case ATOMIC_SUB32 + 4:
  245. put_user(regs->r0, up0);
  246. break;
  247. case ATOMIC_IOR32 + 2:
  248. regs->r0 = regs->r1 | regs->r0;
  249. /* fall through */
  250. case ATOMIC_IOR32 + 4:
  251. put_user(regs->r0, up0);
  252. break;
  253. case ATOMIC_AND32 + 2:
  254. regs->r0 = regs->r1 & regs->r0;
  255. /* fall through */
  256. case ATOMIC_AND32 + 4:
  257. put_user(regs->r0, up0);
  258. break;
  259. case ATOMIC_XOR32 + 2:
  260. regs->r0 = regs->r1 ^ regs->r0;
  261. /* fall through */
  262. case ATOMIC_XOR32 + 4:
  263. put_user(regs->r0, up0);
  264. break;
  265. }
  266. /*
  267. * We've finished the atomic section, and the only thing left for
  268. * userspace is to do a RTS, so we might as well handle that too
  269. * since we need to update the PC anyways.
  270. */
  271. regs->pc = regs->rets;
  272. }
  273. static inline
  274. int in_mem(unsigned long addr, unsigned long size,
  275. unsigned long start, unsigned long end)
  276. {
  277. return addr >= start && addr + size <= end;
  278. }
  279. static inline
  280. int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
  281. unsigned long const_addr, unsigned long const_size)
  282. {
  283. return const_size &&
  284. in_mem(addr, size, const_addr + off, const_addr + const_size);
  285. }
  286. static inline
  287. int in_mem_const(unsigned long addr, unsigned long size,
  288. unsigned long const_addr, unsigned long const_size)
  289. {
  290. return in_mem_const_off(addr, size, 0, const_addr, const_size);
  291. }
  292. #ifdef CONFIG_BF60x
  293. #define ASYNC_ENABLED(bnum, bctlnum) 1
  294. #else
  295. #define ASYNC_ENABLED(bnum, bctlnum) \
  296. ({ \
  297. (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
  298. bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
  299. 1; \
  300. })
  301. #endif
  302. /*
  303. * We can't read EBIU banks that aren't enabled or we end up hanging
  304. * on the access to the async space. Make sure we validate accesses
  305. * that cross async banks too.
  306. * 0 - found, but unusable
  307. * 1 - found & usable
  308. * 2 - not found
  309. */
  310. static
  311. int in_async(unsigned long addr, unsigned long size)
  312. {
  313. if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
  314. if (!ASYNC_ENABLED(0, 0))
  315. return 0;
  316. if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
  317. return 1;
  318. size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
  319. addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
  320. }
  321. if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
  322. if (!ASYNC_ENABLED(1, 0))
  323. return 0;
  324. if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
  325. return 1;
  326. size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
  327. addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
  328. }
  329. if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
  330. if (!ASYNC_ENABLED(2, 1))
  331. return 0;
  332. if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
  333. return 1;
  334. size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
  335. addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
  336. }
  337. if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
  338. if (ASYNC_ENABLED(3, 1))
  339. return 0;
  340. if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
  341. return 1;
  342. return 0;
  343. }
  344. /* not within async bounds */
  345. return 2;
  346. }
  347. int bfin_mem_access_type(unsigned long addr, unsigned long size)
  348. {
  349. int cpu = raw_smp_processor_id();
  350. /* Check that things do not wrap around */
  351. if (addr > ULONG_MAX - size)
  352. return -EFAULT;
  353. if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
  354. return BFIN_MEM_ACCESS_CORE;
  355. if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
  356. return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
  357. if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
  358. return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
  359. if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
  360. return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
  361. if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
  362. return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
  363. #ifdef COREB_L1_CODE_START
  364. if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
  365. return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
  366. if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
  367. return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
  368. if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
  369. return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
  370. if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
  371. return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
  372. #endif
  373. if (in_mem_const(addr, size, L2_START, L2_LENGTH))
  374. return BFIN_MEM_ACCESS_CORE;
  375. if (addr >= SYSMMR_BASE)
  376. return BFIN_MEM_ACCESS_CORE_ONLY;
  377. switch (in_async(addr, size)) {
  378. case 0: return -EFAULT;
  379. case 1: return BFIN_MEM_ACCESS_CORE;
  380. case 2: /* fall through */;
  381. }
  382. if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
  383. return BFIN_MEM_ACCESS_CORE;
  384. if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
  385. return BFIN_MEM_ACCESS_DMA;
  386. return -EFAULT;
  387. }
  388. #if defined(CONFIG_ACCESS_CHECK)
  389. #ifdef CONFIG_ACCESS_OK_L1
  390. __attribute__((l1_text))
  391. #endif
  392. /* Return 1 if access to memory range is OK, 0 otherwise */
  393. int _access_ok(unsigned long addr, unsigned long size)
  394. {
  395. int aret;
  396. if (size == 0)
  397. return 1;
  398. /* Check that things do not wrap around */
  399. if (addr > ULONG_MAX - size)
  400. return 0;
  401. if (segment_eq(get_fs(), KERNEL_DS))
  402. return 1;
  403. #ifdef CONFIG_MTD_UCLINUX
  404. if (1)
  405. #else
  406. if (0)
  407. #endif
  408. {
  409. if (in_mem(addr, size, memory_start, memory_end))
  410. return 1;
  411. if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
  412. return 1;
  413. # ifndef CONFIG_ROMFS_ON_MTD
  414. if (0)
  415. # endif
  416. /* For XIP, allow user space to use pointers within the ROMFS. */
  417. if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
  418. return 1;
  419. } else {
  420. if (in_mem(addr, size, memory_start, physical_mem_end))
  421. return 1;
  422. }
  423. if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
  424. return 1;
  425. if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
  426. return 1;
  427. if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
  428. return 1;
  429. if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
  430. return 1;
  431. if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
  432. return 1;
  433. #ifdef COREB_L1_CODE_START
  434. if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
  435. return 1;
  436. if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
  437. return 1;
  438. if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
  439. return 1;
  440. if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
  441. return 1;
  442. #endif
  443. #ifndef CONFIG_EXCEPTION_L1_SCRATCH
  444. if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
  445. return 1;
  446. #endif
  447. aret = in_async(addr, size);
  448. if (aret < 2)
  449. return aret;
  450. if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
  451. return 1;
  452. if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
  453. return 1;
  454. if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
  455. return 1;
  456. return 0;
  457. }
  458. EXPORT_SYMBOL(_access_ok);
  459. #endif /* CONFIG_ACCESS_CHECK */