irq.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465
  1. /*
  2. * linux/arch/arm/mach-mmp/irq.c
  3. *
  4. * Generic IRQ handling, GPIO IRQ demultiplexing, etc.
  5. * Copyright (C) 2008 - 2012 Marvell Technology Group Ltd.
  6. *
  7. * Author: Bin Yang <bin.yang@marvell.com>
  8. * Haojian Zhuang <haojian.zhuang@gmail.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/irq.h>
  17. #include <linux/irqdomain.h>
  18. #include <linux/io.h>
  19. #include <linux/ioport.h>
  20. #include <linux/of_address.h>
  21. #include <linux/of_irq.h>
  22. #include <mach/irqs.h>
  23. #ifdef CONFIG_CPU_MMP2
  24. #include <mach/pm-mmp2.h>
  25. #endif
  26. #ifdef CONFIG_CPU_PXA910
  27. #include <mach/pm-pxa910.h>
  28. #endif
  29. #include "common.h"
  30. #define MAX_ICU_NR 16
  31. struct icu_chip_data {
  32. int nr_irqs;
  33. unsigned int virq_base;
  34. unsigned int cascade_irq;
  35. void __iomem *reg_status;
  36. void __iomem *reg_mask;
  37. unsigned int conf_enable;
  38. unsigned int conf_disable;
  39. unsigned int conf_mask;
  40. unsigned int clr_mfp_irq_base;
  41. unsigned int clr_mfp_hwirq;
  42. struct irq_domain *domain;
  43. };
  44. struct mmp_intc_conf {
  45. unsigned int conf_enable;
  46. unsigned int conf_disable;
  47. unsigned int conf_mask;
  48. };
  49. void __iomem *mmp_icu_base;
  50. static struct icu_chip_data icu_data[MAX_ICU_NR];
  51. static int max_icu_nr;
  52. extern void mmp2_clear_pmic_int(void);
  53. static void icu_mask_ack_irq(struct irq_data *d)
  54. {
  55. struct irq_domain *domain = d->domain;
  56. struct icu_chip_data *data = (struct icu_chip_data *)domain->host_data;
  57. int hwirq;
  58. u32 r;
  59. hwirq = d->irq - data->virq_base;
  60. if (data == &icu_data[0]) {
  61. r = readl_relaxed(mmp_icu_base + (hwirq << 2));
  62. r &= ~data->conf_mask;
  63. r |= data->conf_disable;
  64. writel_relaxed(r, mmp_icu_base + (hwirq << 2));
  65. } else {
  66. #ifdef CONFIG_CPU_MMP2
  67. if ((data->virq_base == data->clr_mfp_irq_base)
  68. && (hwirq == data->clr_mfp_hwirq))
  69. mmp2_clear_pmic_int();
  70. #endif
  71. r = readl_relaxed(data->reg_mask) | (1 << hwirq);
  72. writel_relaxed(r, data->reg_mask);
  73. }
  74. }
  75. static void icu_mask_irq(struct irq_data *d)
  76. {
  77. struct irq_domain *domain = d->domain;
  78. struct icu_chip_data *data = (struct icu_chip_data *)domain->host_data;
  79. int hwirq;
  80. u32 r;
  81. hwirq = d->irq - data->virq_base;
  82. if (data == &icu_data[0]) {
  83. r = readl_relaxed(mmp_icu_base + (hwirq << 2));
  84. r &= ~data->conf_mask;
  85. r |= data->conf_disable;
  86. writel_relaxed(r, mmp_icu_base + (hwirq << 2));
  87. } else {
  88. r = readl_relaxed(data->reg_mask) | (1 << hwirq);
  89. writel_relaxed(r, data->reg_mask);
  90. }
  91. }
  92. static void icu_unmask_irq(struct irq_data *d)
  93. {
  94. struct irq_domain *domain = d->domain;
  95. struct icu_chip_data *data = (struct icu_chip_data *)domain->host_data;
  96. int hwirq;
  97. u32 r;
  98. hwirq = d->irq - data->virq_base;
  99. if (data == &icu_data[0]) {
  100. r = readl_relaxed(mmp_icu_base + (hwirq << 2));
  101. r &= ~data->conf_mask;
  102. r |= data->conf_enable;
  103. writel_relaxed(r, mmp_icu_base + (hwirq << 2));
  104. } else {
  105. r = readl_relaxed(data->reg_mask) & ~(1 << hwirq);
  106. writel_relaxed(r, data->reg_mask);
  107. }
  108. }
  109. static struct irq_chip icu_irq_chip = {
  110. .name = "icu_irq",
  111. .irq_mask = icu_mask_irq,
  112. .irq_mask_ack = icu_mask_ack_irq,
  113. .irq_unmask = icu_unmask_irq,
  114. };
  115. static void icu_mux_irq_demux(unsigned int irq, struct irq_desc *desc)
  116. {
  117. struct irq_domain *domain;
  118. struct icu_chip_data *data;
  119. int i;
  120. unsigned long mask, status, n;
  121. for (i = 1; i < max_icu_nr; i++) {
  122. if (irq == icu_data[i].cascade_irq) {
  123. domain = icu_data[i].domain;
  124. data = (struct icu_chip_data *)domain->host_data;
  125. break;
  126. }
  127. }
  128. if (i >= max_icu_nr) {
  129. pr_err("Spurious irq %d in MMP INTC\n", irq);
  130. return;
  131. }
  132. mask = readl_relaxed(data->reg_mask);
  133. while (1) {
  134. status = readl_relaxed(data->reg_status) & ~mask;
  135. if (status == 0)
  136. break;
  137. n = find_first_bit(&status, BITS_PER_LONG);
  138. while (n < BITS_PER_LONG) {
  139. generic_handle_irq(icu_data[i].virq_base + n);
  140. n = find_next_bit(&status, BITS_PER_LONG, n + 1);
  141. }
  142. }
  143. }
  144. static int mmp_irq_domain_map(struct irq_domain *d, unsigned int irq,
  145. irq_hw_number_t hw)
  146. {
  147. irq_set_chip_and_handler(irq, &icu_irq_chip, handle_level_irq);
  148. set_irq_flags(irq, IRQF_VALID);
  149. return 0;
  150. }
  151. static int mmp_irq_domain_xlate(struct irq_domain *d, struct device_node *node,
  152. const u32 *intspec, unsigned int intsize,
  153. unsigned long *out_hwirq,
  154. unsigned int *out_type)
  155. {
  156. *out_hwirq = intspec[0];
  157. return 0;
  158. }
  159. const struct irq_domain_ops mmp_irq_domain_ops = {
  160. .map = mmp_irq_domain_map,
  161. .xlate = mmp_irq_domain_xlate,
  162. };
  163. static struct mmp_intc_conf mmp_conf = {
  164. .conf_enable = 0x51,
  165. .conf_disable = 0x0,
  166. .conf_mask = 0x7f,
  167. };
  168. static struct mmp_intc_conf mmp2_conf = {
  169. .conf_enable = 0x20,
  170. .conf_disable = 0x0,
  171. .conf_mask = 0x7f,
  172. };
  173. /* MMP (ARMv5) */
  174. void __init icu_init_irq(void)
  175. {
  176. int irq;
  177. max_icu_nr = 1;
  178. mmp_icu_base = ioremap(0xd4282000, 0x1000);
  179. icu_data[0].conf_enable = mmp_conf.conf_enable;
  180. icu_data[0].conf_disable = mmp_conf.conf_disable;
  181. icu_data[0].conf_mask = mmp_conf.conf_mask;
  182. icu_data[0].nr_irqs = 64;
  183. icu_data[0].virq_base = 0;
  184. icu_data[0].domain = irq_domain_add_legacy(NULL, 64, 0, 0,
  185. &irq_domain_simple_ops,
  186. &icu_data[0]);
  187. for (irq = 0; irq < 64; irq++) {
  188. icu_mask_irq(irq_get_irq_data(irq));
  189. irq_set_chip_and_handler(irq, &icu_irq_chip, handle_level_irq);
  190. set_irq_flags(irq, IRQF_VALID);
  191. }
  192. irq_set_default_host(icu_data[0].domain);
  193. #ifdef CONFIG_CPU_PXA910
  194. icu_irq_chip.irq_set_wake = pxa910_set_wake;
  195. #endif
  196. }
  197. /* MMP2 (ARMv7) */
  198. void __init mmp2_init_icu(void)
  199. {
  200. int irq;
  201. max_icu_nr = 8;
  202. mmp_icu_base = ioremap(0xd4282000, 0x1000);
  203. icu_data[0].conf_enable = mmp2_conf.conf_enable;
  204. icu_data[0].conf_disable = mmp2_conf.conf_disable;
  205. icu_data[0].conf_mask = mmp2_conf.conf_mask;
  206. icu_data[0].nr_irqs = 64;
  207. icu_data[0].virq_base = 0;
  208. icu_data[0].domain = irq_domain_add_legacy(NULL, 64, 0, 0,
  209. &irq_domain_simple_ops,
  210. &icu_data[0]);
  211. icu_data[1].reg_status = mmp_icu_base + 0x150;
  212. icu_data[1].reg_mask = mmp_icu_base + 0x168;
  213. icu_data[1].clr_mfp_irq_base = IRQ_MMP2_PMIC_BASE;
  214. icu_data[1].clr_mfp_hwirq = IRQ_MMP2_PMIC - IRQ_MMP2_PMIC_BASE;
  215. icu_data[1].nr_irqs = 2;
  216. icu_data[1].cascade_irq = 4;
  217. icu_data[1].virq_base = IRQ_MMP2_PMIC_BASE;
  218. icu_data[1].domain = irq_domain_add_legacy(NULL, icu_data[1].nr_irqs,
  219. icu_data[1].virq_base, 0,
  220. &irq_domain_simple_ops,
  221. &icu_data[1]);
  222. icu_data[2].reg_status = mmp_icu_base + 0x154;
  223. icu_data[2].reg_mask = mmp_icu_base + 0x16c;
  224. icu_data[2].nr_irqs = 2;
  225. icu_data[2].cascade_irq = 5;
  226. icu_data[2].virq_base = IRQ_MMP2_RTC_BASE;
  227. icu_data[2].domain = irq_domain_add_legacy(NULL, icu_data[2].nr_irqs,
  228. icu_data[2].virq_base, 0,
  229. &irq_domain_simple_ops,
  230. &icu_data[2]);
  231. icu_data[3].reg_status = mmp_icu_base + 0x180;
  232. icu_data[3].reg_mask = mmp_icu_base + 0x17c;
  233. icu_data[3].nr_irqs = 3;
  234. icu_data[3].cascade_irq = 9;
  235. icu_data[3].virq_base = IRQ_MMP2_KEYPAD_BASE;
  236. icu_data[3].domain = irq_domain_add_legacy(NULL, icu_data[3].nr_irqs,
  237. icu_data[3].virq_base, 0,
  238. &irq_domain_simple_ops,
  239. &icu_data[3]);
  240. icu_data[4].reg_status = mmp_icu_base + 0x158;
  241. icu_data[4].reg_mask = mmp_icu_base + 0x170;
  242. icu_data[4].nr_irqs = 5;
  243. icu_data[4].cascade_irq = 17;
  244. icu_data[4].virq_base = IRQ_MMP2_TWSI_BASE;
  245. icu_data[4].domain = irq_domain_add_legacy(NULL, icu_data[4].nr_irqs,
  246. icu_data[4].virq_base, 0,
  247. &irq_domain_simple_ops,
  248. &icu_data[4]);
  249. icu_data[5].reg_status = mmp_icu_base + 0x15c;
  250. icu_data[5].reg_mask = mmp_icu_base + 0x174;
  251. icu_data[5].nr_irqs = 15;
  252. icu_data[5].cascade_irq = 35;
  253. icu_data[5].virq_base = IRQ_MMP2_MISC_BASE;
  254. icu_data[5].domain = irq_domain_add_legacy(NULL, icu_data[5].nr_irqs,
  255. icu_data[5].virq_base, 0,
  256. &irq_domain_simple_ops,
  257. &icu_data[5]);
  258. icu_data[6].reg_status = mmp_icu_base + 0x160;
  259. icu_data[6].reg_mask = mmp_icu_base + 0x178;
  260. icu_data[6].nr_irqs = 2;
  261. icu_data[6].cascade_irq = 51;
  262. icu_data[6].virq_base = IRQ_MMP2_MIPI_HSI1_BASE;
  263. icu_data[6].domain = irq_domain_add_legacy(NULL, icu_data[6].nr_irqs,
  264. icu_data[6].virq_base, 0,
  265. &irq_domain_simple_ops,
  266. &icu_data[6]);
  267. icu_data[7].reg_status = mmp_icu_base + 0x188;
  268. icu_data[7].reg_mask = mmp_icu_base + 0x184;
  269. icu_data[7].nr_irqs = 2;
  270. icu_data[7].cascade_irq = 55;
  271. icu_data[7].virq_base = IRQ_MMP2_MIPI_HSI0_BASE;
  272. icu_data[7].domain = irq_domain_add_legacy(NULL, icu_data[7].nr_irqs,
  273. icu_data[7].virq_base, 0,
  274. &irq_domain_simple_ops,
  275. &icu_data[7]);
  276. for (irq = 0; irq < IRQ_MMP2_MUX_END; irq++) {
  277. icu_mask_irq(irq_get_irq_data(irq));
  278. switch (irq) {
  279. case IRQ_MMP2_PMIC_MUX:
  280. case IRQ_MMP2_RTC_MUX:
  281. case IRQ_MMP2_KEYPAD_MUX:
  282. case IRQ_MMP2_TWSI_MUX:
  283. case IRQ_MMP2_MISC_MUX:
  284. case IRQ_MMP2_MIPI_HSI1_MUX:
  285. case IRQ_MMP2_MIPI_HSI0_MUX:
  286. irq_set_chip(irq, &icu_irq_chip);
  287. irq_set_chained_handler(irq, icu_mux_irq_demux);
  288. break;
  289. default:
  290. irq_set_chip_and_handler(irq, &icu_irq_chip,
  291. handle_level_irq);
  292. break;
  293. }
  294. set_irq_flags(irq, IRQF_VALID);
  295. }
  296. irq_set_default_host(icu_data[0].domain);
  297. #ifdef CONFIG_CPU_MMP2
  298. icu_irq_chip.irq_set_wake = mmp2_set_wake;
  299. #endif
  300. }
  301. #ifdef CONFIG_OF
  302. static const struct of_device_id intc_ids[] __initconst = {
  303. { .compatible = "mrvl,mmp-intc", .data = &mmp_conf },
  304. { .compatible = "mrvl,mmp2-intc", .data = &mmp2_conf },
  305. {}
  306. };
  307. static const struct of_device_id mmp_mux_irq_match[] __initconst = {
  308. { .compatible = "mrvl,mmp2-mux-intc" },
  309. {}
  310. };
  311. int __init mmp2_mux_init(struct device_node *parent)
  312. {
  313. struct device_node *node;
  314. const struct of_device_id *of_id;
  315. struct resource res;
  316. int i, irq_base, ret, irq;
  317. u32 nr_irqs, mfp_irq;
  318. node = parent;
  319. max_icu_nr = 1;
  320. for (i = 1; i < MAX_ICU_NR; i++) {
  321. node = of_find_matching_node(node, mmp_mux_irq_match);
  322. if (!node)
  323. break;
  324. of_id = of_match_node(&mmp_mux_irq_match[0], node);
  325. ret = of_property_read_u32(node, "mrvl,intc-nr-irqs",
  326. &nr_irqs);
  327. if (ret) {
  328. pr_err("Not found mrvl,intc-nr-irqs property\n");
  329. ret = -EINVAL;
  330. goto err;
  331. }
  332. ret = of_address_to_resource(node, 0, &res);
  333. if (ret < 0) {
  334. pr_err("Not found reg property\n");
  335. ret = -EINVAL;
  336. goto err;
  337. }
  338. icu_data[i].reg_status = mmp_icu_base + res.start;
  339. ret = of_address_to_resource(node, 1, &res);
  340. if (ret < 0) {
  341. pr_err("Not found reg property\n");
  342. ret = -EINVAL;
  343. goto err;
  344. }
  345. icu_data[i].reg_mask = mmp_icu_base + res.start;
  346. icu_data[i].cascade_irq = irq_of_parse_and_map(node, 0);
  347. if (!icu_data[i].cascade_irq) {
  348. ret = -EINVAL;
  349. goto err;
  350. }
  351. irq_base = irq_alloc_descs(-1, 0, nr_irqs, 0);
  352. if (irq_base < 0) {
  353. pr_err("Failed to allocate IRQ numbers for mux intc\n");
  354. ret = irq_base;
  355. goto err;
  356. }
  357. if (!of_property_read_u32(node, "mrvl,clr-mfp-irq",
  358. &mfp_irq)) {
  359. icu_data[i].clr_mfp_irq_base = irq_base;
  360. icu_data[i].clr_mfp_hwirq = mfp_irq;
  361. }
  362. irq_set_chained_handler(icu_data[i].cascade_irq,
  363. icu_mux_irq_demux);
  364. icu_data[i].nr_irqs = nr_irqs;
  365. icu_data[i].virq_base = irq_base;
  366. icu_data[i].domain = irq_domain_add_legacy(node, nr_irqs,
  367. irq_base, 0,
  368. &mmp_irq_domain_ops,
  369. &icu_data[i]);
  370. for (irq = irq_base; irq < irq_base + nr_irqs; irq++)
  371. icu_mask_irq(irq_get_irq_data(irq));
  372. }
  373. max_icu_nr = i;
  374. return 0;
  375. err:
  376. of_node_put(node);
  377. max_icu_nr = i;
  378. return ret;
  379. }
  380. void __init mmp_dt_irq_init(void)
  381. {
  382. struct device_node *node;
  383. const struct of_device_id *of_id;
  384. struct mmp_intc_conf *conf;
  385. int nr_irqs, irq_base, ret, irq;
  386. node = of_find_matching_node(NULL, intc_ids);
  387. if (!node) {
  388. pr_err("Failed to find interrupt controller in arch-mmp\n");
  389. return;
  390. }
  391. of_id = of_match_node(intc_ids, node);
  392. conf = of_id->data;
  393. ret = of_property_read_u32(node, "mrvl,intc-nr-irqs", &nr_irqs);
  394. if (ret) {
  395. pr_err("Not found mrvl,intc-nr-irqs property\n");
  396. return;
  397. }
  398. mmp_icu_base = of_iomap(node, 0);
  399. if (!mmp_icu_base) {
  400. pr_err("Failed to get interrupt controller register\n");
  401. return;
  402. }
  403. irq_base = irq_alloc_descs(-1, 0, nr_irqs - NR_IRQS_LEGACY, 0);
  404. if (irq_base < 0) {
  405. pr_err("Failed to allocate IRQ numbers\n");
  406. goto err;
  407. } else if (irq_base != NR_IRQS_LEGACY) {
  408. pr_err("ICU's irqbase should be started from 0\n");
  409. goto err;
  410. }
  411. icu_data[0].conf_enable = conf->conf_enable;
  412. icu_data[0].conf_disable = conf->conf_disable;
  413. icu_data[0].conf_mask = conf->conf_mask;
  414. icu_data[0].nr_irqs = nr_irqs;
  415. icu_data[0].virq_base = 0;
  416. icu_data[0].domain = irq_domain_add_legacy(node, nr_irqs, 0, 0,
  417. &mmp_irq_domain_ops,
  418. &icu_data[0]);
  419. irq_set_default_host(icu_data[0].domain);
  420. for (irq = 0; irq < nr_irqs; irq++)
  421. icu_mask_irq(irq_get_irq_data(irq));
  422. mmp2_mux_init(node);
  423. return;
  424. err:
  425. iounmap(mmp_icu_base);
  426. }
  427. #endif