enlighten.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/smp.h>
  16. #include <linux/preempt.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/percpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/start_kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <linux/mm.h>
  26. #include <linux/page-flags.h>
  27. #include <linux/highmem.h>
  28. #include <linux/console.h>
  29. #include <linux/pci.h>
  30. #include <linux/gfp.h>
  31. #include <xen/xen.h>
  32. #include <xen/interface/xen.h>
  33. #include <xen/interface/version.h>
  34. #include <xen/interface/physdev.h>
  35. #include <xen/interface/vcpu.h>
  36. #include <xen/features.h>
  37. #include <xen/page.h>
  38. #include <xen/hvc-console.h>
  39. #include <asm/paravirt.h>
  40. #include <asm/apic.h>
  41. #include <asm/page.h>
  42. #include <asm/xen/hypercall.h>
  43. #include <asm/xen/hypervisor.h>
  44. #include <asm/fixmap.h>
  45. #include <asm/processor.h>
  46. #include <asm/proto.h>
  47. #include <asm/msr-index.h>
  48. #include <asm/traps.h>
  49. #include <asm/setup.h>
  50. #include <asm/desc.h>
  51. #include <asm/pgalloc.h>
  52. #include <asm/pgtable.h>
  53. #include <asm/tlbflush.h>
  54. #include <asm/reboot.h>
  55. #include <asm/stackprotector.h>
  56. #include "xen-ops.h"
  57. #include "mmu.h"
  58. #include "multicalls.h"
  59. EXPORT_SYMBOL_GPL(hypercall_page);
  60. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  61. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  62. enum xen_domain_type xen_domain_type = XEN_NATIVE;
  63. EXPORT_SYMBOL_GPL(xen_domain_type);
  64. struct start_info *xen_start_info;
  65. EXPORT_SYMBOL_GPL(xen_start_info);
  66. struct shared_info xen_dummy_shared_info;
  67. void *xen_initial_gdt;
  68. /*
  69. * Point at some empty memory to start with. We map the real shared_info
  70. * page as soon as fixmap is up and running.
  71. */
  72. struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
  73. /*
  74. * Flag to determine whether vcpu info placement is available on all
  75. * VCPUs. We assume it is to start with, and then set it to zero on
  76. * the first failure. This is because it can succeed on some VCPUs
  77. * and not others, since it can involve hypervisor memory allocation,
  78. * or because the guest failed to guarantee all the appropriate
  79. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  80. *
  81. * Note that any particular CPU may be using a placed vcpu structure,
  82. * but we can only optimise if the all are.
  83. *
  84. * 0: not available, 1: available
  85. */
  86. static int have_vcpu_info_placement = 1;
  87. static void clamp_max_cpus(void)
  88. {
  89. #ifdef CONFIG_SMP
  90. if (setup_max_cpus > MAX_VIRT_CPUS)
  91. setup_max_cpus = MAX_VIRT_CPUS;
  92. #endif
  93. }
  94. static void xen_vcpu_setup(int cpu)
  95. {
  96. struct vcpu_register_vcpu_info info;
  97. int err;
  98. struct vcpu_info *vcpup;
  99. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  100. if (cpu < MAX_VIRT_CPUS)
  101. per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  102. if (!have_vcpu_info_placement) {
  103. if (cpu >= MAX_VIRT_CPUS)
  104. clamp_max_cpus();
  105. return;
  106. }
  107. vcpup = &per_cpu(xen_vcpu_info, cpu);
  108. info.mfn = arbitrary_virt_to_mfn(vcpup);
  109. info.offset = offset_in_page(vcpup);
  110. printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
  111. cpu, vcpup, info.mfn, info.offset);
  112. /* Check to see if the hypervisor will put the vcpu_info
  113. structure where we want it, which allows direct access via
  114. a percpu-variable. */
  115. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  116. if (err) {
  117. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  118. have_vcpu_info_placement = 0;
  119. clamp_max_cpus();
  120. } else {
  121. /* This cpu is using the registered vcpu info, even if
  122. later ones fail to. */
  123. per_cpu(xen_vcpu, cpu) = vcpup;
  124. printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
  125. cpu, vcpup);
  126. }
  127. }
  128. /*
  129. * On restore, set the vcpu placement up again.
  130. * If it fails, then we're in a bad state, since
  131. * we can't back out from using it...
  132. */
  133. void xen_vcpu_restore(void)
  134. {
  135. int cpu;
  136. for_each_online_cpu(cpu) {
  137. bool other_cpu = (cpu != smp_processor_id());
  138. if (other_cpu &&
  139. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  140. BUG();
  141. xen_setup_runstate_info(cpu);
  142. if (have_vcpu_info_placement)
  143. xen_vcpu_setup(cpu);
  144. if (other_cpu &&
  145. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  146. BUG();
  147. }
  148. }
  149. static void __init xen_banner(void)
  150. {
  151. unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
  152. struct xen_extraversion extra;
  153. HYPERVISOR_xen_version(XENVER_extraversion, &extra);
  154. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  155. pv_info.name);
  156. printk(KERN_INFO "Xen version: %d.%d%s%s\n",
  157. version >> 16, version & 0xffff, extra.extraversion,
  158. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  159. }
  160. static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
  161. static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
  162. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  163. unsigned int *cx, unsigned int *dx)
  164. {
  165. unsigned maskebx = ~0;
  166. unsigned maskecx = ~0;
  167. unsigned maskedx = ~0;
  168. /*
  169. * Mask out inconvenient features, to try and disable as many
  170. * unsupported kernel subsystems as possible.
  171. */
  172. switch (*ax) {
  173. case 1:
  174. maskecx = cpuid_leaf1_ecx_mask;
  175. maskedx = cpuid_leaf1_edx_mask;
  176. break;
  177. case 0xb:
  178. /* Suppress extended topology stuff */
  179. maskebx = 0;
  180. break;
  181. }
  182. asm(XEN_EMULATE_PREFIX "cpuid"
  183. : "=a" (*ax),
  184. "=b" (*bx),
  185. "=c" (*cx),
  186. "=d" (*dx)
  187. : "0" (*ax), "2" (*cx));
  188. *bx &= maskebx;
  189. *cx &= maskecx;
  190. *dx &= maskedx;
  191. }
  192. static __init void xen_init_cpuid_mask(void)
  193. {
  194. unsigned int ax, bx, cx, dx;
  195. cpuid_leaf1_edx_mask =
  196. ~((1 << X86_FEATURE_MCE) | /* disable MCE */
  197. (1 << X86_FEATURE_MCA) | /* disable MCA */
  198. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  199. if (!xen_initial_domain())
  200. cpuid_leaf1_edx_mask &=
  201. ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
  202. (1 << X86_FEATURE_ACPI)); /* disable ACPI */
  203. ax = 1;
  204. cx = 0;
  205. xen_cpuid(&ax, &bx, &cx, &dx);
  206. /* cpuid claims we support xsave; try enabling it to see what happens */
  207. if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
  208. unsigned long cr4;
  209. set_in_cr4(X86_CR4_OSXSAVE);
  210. cr4 = read_cr4();
  211. if ((cr4 & X86_CR4_OSXSAVE) == 0)
  212. cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
  213. clear_in_cr4(X86_CR4_OSXSAVE);
  214. }
  215. }
  216. static void xen_set_debugreg(int reg, unsigned long val)
  217. {
  218. HYPERVISOR_set_debugreg(reg, val);
  219. }
  220. static unsigned long xen_get_debugreg(int reg)
  221. {
  222. return HYPERVISOR_get_debugreg(reg);
  223. }
  224. static void xen_end_context_switch(struct task_struct *next)
  225. {
  226. xen_mc_flush();
  227. paravirt_end_context_switch(next);
  228. }
  229. static unsigned long xen_store_tr(void)
  230. {
  231. return 0;
  232. }
  233. /*
  234. * Set the page permissions for a particular virtual address. If the
  235. * address is a vmalloc mapping (or other non-linear mapping), then
  236. * find the linear mapping of the page and also set its protections to
  237. * match.
  238. */
  239. static void set_aliased_prot(void *v, pgprot_t prot)
  240. {
  241. int level;
  242. pte_t *ptep;
  243. pte_t pte;
  244. unsigned long pfn;
  245. struct page *page;
  246. ptep = lookup_address((unsigned long)v, &level);
  247. BUG_ON(ptep == NULL);
  248. pfn = pte_pfn(*ptep);
  249. page = pfn_to_page(pfn);
  250. pte = pfn_pte(pfn, prot);
  251. if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
  252. BUG();
  253. if (!PageHighMem(page)) {
  254. void *av = __va(PFN_PHYS(pfn));
  255. if (av != v)
  256. if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
  257. BUG();
  258. } else
  259. kmap_flush_unused();
  260. }
  261. static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
  262. {
  263. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  264. int i;
  265. for(i = 0; i < entries; i += entries_per_page)
  266. set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
  267. }
  268. static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
  269. {
  270. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  271. int i;
  272. for(i = 0; i < entries; i += entries_per_page)
  273. set_aliased_prot(ldt + i, PAGE_KERNEL);
  274. }
  275. static void xen_set_ldt(const void *addr, unsigned entries)
  276. {
  277. struct mmuext_op *op;
  278. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  279. op = mcs.args;
  280. op->cmd = MMUEXT_SET_LDT;
  281. op->arg1.linear_addr = (unsigned long)addr;
  282. op->arg2.nr_ents = entries;
  283. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  284. xen_mc_issue(PARAVIRT_LAZY_CPU);
  285. }
  286. static void xen_load_gdt(const struct desc_ptr *dtr)
  287. {
  288. unsigned long va = dtr->address;
  289. unsigned int size = dtr->size + 1;
  290. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  291. unsigned long frames[pages];
  292. int f;
  293. /*
  294. * A GDT can be up to 64k in size, which corresponds to 8192
  295. * 8-byte entries, or 16 4k pages..
  296. */
  297. BUG_ON(size > 65536);
  298. BUG_ON(va & ~PAGE_MASK);
  299. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  300. int level;
  301. pte_t *ptep;
  302. unsigned long pfn, mfn;
  303. void *virt;
  304. /*
  305. * The GDT is per-cpu and is in the percpu data area.
  306. * That can be virtually mapped, so we need to do a
  307. * page-walk to get the underlying MFN for the
  308. * hypercall. The page can also be in the kernel's
  309. * linear range, so we need to RO that mapping too.
  310. */
  311. ptep = lookup_address(va, &level);
  312. BUG_ON(ptep == NULL);
  313. pfn = pte_pfn(*ptep);
  314. mfn = pfn_to_mfn(pfn);
  315. virt = __va(PFN_PHYS(pfn));
  316. frames[f] = mfn;
  317. make_lowmem_page_readonly((void *)va);
  318. make_lowmem_page_readonly(virt);
  319. }
  320. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  321. BUG();
  322. }
  323. /*
  324. * load_gdt for early boot, when the gdt is only mapped once
  325. */
  326. static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
  327. {
  328. unsigned long va = dtr->address;
  329. unsigned int size = dtr->size + 1;
  330. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  331. unsigned long frames[pages];
  332. int f;
  333. /*
  334. * A GDT can be up to 64k in size, which corresponds to 8192
  335. * 8-byte entries, or 16 4k pages..
  336. */
  337. BUG_ON(size > 65536);
  338. BUG_ON(va & ~PAGE_MASK);
  339. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  340. pte_t pte;
  341. unsigned long pfn, mfn;
  342. pfn = virt_to_pfn(va);
  343. mfn = pfn_to_mfn(pfn);
  344. pte = pfn_pte(pfn, PAGE_KERNEL_RO);
  345. if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
  346. BUG();
  347. frames[f] = mfn;
  348. }
  349. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  350. BUG();
  351. }
  352. static void load_TLS_descriptor(struct thread_struct *t,
  353. unsigned int cpu, unsigned int i)
  354. {
  355. struct desc_struct *gdt = get_cpu_gdt_table(cpu);
  356. xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  357. struct multicall_space mc = __xen_mc_entry(0);
  358. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  359. }
  360. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  361. {
  362. /*
  363. * XXX sleazy hack: If we're being called in a lazy-cpu zone
  364. * and lazy gs handling is enabled, it means we're in a
  365. * context switch, and %gs has just been saved. This means we
  366. * can zero it out to prevent faults on exit from the
  367. * hypervisor if the next process has no %gs. Either way, it
  368. * has been saved, and the new value will get loaded properly.
  369. * This will go away as soon as Xen has been modified to not
  370. * save/restore %gs for normal hypercalls.
  371. *
  372. * On x86_64, this hack is not used for %gs, because gs points
  373. * to KERNEL_GS_BASE (and uses it for PDA references), so we
  374. * must not zero %gs on x86_64
  375. *
  376. * For x86_64, we need to zero %fs, otherwise we may get an
  377. * exception between the new %fs descriptor being loaded and
  378. * %fs being effectively cleared at __switch_to().
  379. */
  380. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
  381. #ifdef CONFIG_X86_32
  382. lazy_load_gs(0);
  383. #else
  384. loadsegment(fs, 0);
  385. #endif
  386. }
  387. xen_mc_batch();
  388. load_TLS_descriptor(t, cpu, 0);
  389. load_TLS_descriptor(t, cpu, 1);
  390. load_TLS_descriptor(t, cpu, 2);
  391. xen_mc_issue(PARAVIRT_LAZY_CPU);
  392. }
  393. #ifdef CONFIG_X86_64
  394. static void xen_load_gs_index(unsigned int idx)
  395. {
  396. if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
  397. BUG();
  398. }
  399. #endif
  400. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  401. const void *ptr)
  402. {
  403. xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
  404. u64 entry = *(u64 *)ptr;
  405. preempt_disable();
  406. xen_mc_flush();
  407. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  408. BUG();
  409. preempt_enable();
  410. }
  411. static int cvt_gate_to_trap(int vector, const gate_desc *val,
  412. struct trap_info *info)
  413. {
  414. unsigned long addr;
  415. if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
  416. return 0;
  417. info->vector = vector;
  418. addr = gate_offset(*val);
  419. #ifdef CONFIG_X86_64
  420. /*
  421. * Look for known traps using IST, and substitute them
  422. * appropriately. The debugger ones are the only ones we care
  423. * about. Xen will handle faults like double_fault and
  424. * machine_check, so we should never see them. Warn if
  425. * there's an unexpected IST-using fault handler.
  426. */
  427. if (addr == (unsigned long)debug)
  428. addr = (unsigned long)xen_debug;
  429. else if (addr == (unsigned long)int3)
  430. addr = (unsigned long)xen_int3;
  431. else if (addr == (unsigned long)stack_segment)
  432. addr = (unsigned long)xen_stack_segment;
  433. else if (addr == (unsigned long)double_fault ||
  434. addr == (unsigned long)nmi) {
  435. /* Don't need to handle these */
  436. return 0;
  437. #ifdef CONFIG_X86_MCE
  438. } else if (addr == (unsigned long)machine_check) {
  439. return 0;
  440. #endif
  441. } else {
  442. /* Some other trap using IST? */
  443. if (WARN_ON(val->ist != 0))
  444. return 0;
  445. }
  446. #endif /* CONFIG_X86_64 */
  447. info->address = addr;
  448. info->cs = gate_segment(*val);
  449. info->flags = val->dpl;
  450. /* interrupt gates clear IF */
  451. if (val->type == GATE_INTERRUPT)
  452. info->flags |= 1 << 2;
  453. return 1;
  454. }
  455. /* Locations of each CPU's IDT */
  456. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  457. /* Set an IDT entry. If the entry is part of the current IDT, then
  458. also update Xen. */
  459. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  460. {
  461. unsigned long p = (unsigned long)&dt[entrynum];
  462. unsigned long start, end;
  463. preempt_disable();
  464. start = __get_cpu_var(idt_desc).address;
  465. end = start + __get_cpu_var(idt_desc).size + 1;
  466. xen_mc_flush();
  467. native_write_idt_entry(dt, entrynum, g);
  468. if (p >= start && (p + 8) <= end) {
  469. struct trap_info info[2];
  470. info[1].address = 0;
  471. if (cvt_gate_to_trap(entrynum, g, &info[0]))
  472. if (HYPERVISOR_set_trap_table(info))
  473. BUG();
  474. }
  475. preempt_enable();
  476. }
  477. static void xen_convert_trap_info(const struct desc_ptr *desc,
  478. struct trap_info *traps)
  479. {
  480. unsigned in, out, count;
  481. count = (desc->size+1) / sizeof(gate_desc);
  482. BUG_ON(count > 256);
  483. for (in = out = 0; in < count; in++) {
  484. gate_desc *entry = (gate_desc*)(desc->address) + in;
  485. if (cvt_gate_to_trap(in, entry, &traps[out]))
  486. out++;
  487. }
  488. traps[out].address = 0;
  489. }
  490. void xen_copy_trap_info(struct trap_info *traps)
  491. {
  492. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  493. xen_convert_trap_info(desc, traps);
  494. }
  495. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  496. hold a spinlock to protect the static traps[] array (static because
  497. it avoids allocation, and saves stack space). */
  498. static void xen_load_idt(const struct desc_ptr *desc)
  499. {
  500. static DEFINE_SPINLOCK(lock);
  501. static struct trap_info traps[257];
  502. spin_lock(&lock);
  503. __get_cpu_var(idt_desc) = *desc;
  504. xen_convert_trap_info(desc, traps);
  505. xen_mc_flush();
  506. if (HYPERVISOR_set_trap_table(traps))
  507. BUG();
  508. spin_unlock(&lock);
  509. }
  510. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  511. they're handled differently. */
  512. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  513. const void *desc, int type)
  514. {
  515. preempt_disable();
  516. switch (type) {
  517. case DESC_LDT:
  518. case DESC_TSS:
  519. /* ignore */
  520. break;
  521. default: {
  522. xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
  523. xen_mc_flush();
  524. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  525. BUG();
  526. }
  527. }
  528. preempt_enable();
  529. }
  530. /*
  531. * Version of write_gdt_entry for use at early boot-time needed to
  532. * update an entry as simply as possible.
  533. */
  534. static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
  535. const void *desc, int type)
  536. {
  537. switch (type) {
  538. case DESC_LDT:
  539. case DESC_TSS:
  540. /* ignore */
  541. break;
  542. default: {
  543. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  544. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  545. dt[entry] = *(struct desc_struct *)desc;
  546. }
  547. }
  548. }
  549. static void xen_load_sp0(struct tss_struct *tss,
  550. struct thread_struct *thread)
  551. {
  552. struct multicall_space mcs = xen_mc_entry(0);
  553. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  554. xen_mc_issue(PARAVIRT_LAZY_CPU);
  555. }
  556. static void xen_set_iopl_mask(unsigned mask)
  557. {
  558. struct physdev_set_iopl set_iopl;
  559. /* Force the change at ring 0. */
  560. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  561. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  562. }
  563. static void xen_io_delay(void)
  564. {
  565. }
  566. #ifdef CONFIG_X86_LOCAL_APIC
  567. static u32 xen_apic_read(u32 reg)
  568. {
  569. return 0;
  570. }
  571. static void xen_apic_write(u32 reg, u32 val)
  572. {
  573. /* Warn to see if there's any stray references */
  574. WARN_ON(1);
  575. }
  576. static u64 xen_apic_icr_read(void)
  577. {
  578. return 0;
  579. }
  580. static void xen_apic_icr_write(u32 low, u32 id)
  581. {
  582. /* Warn to see if there's any stray references */
  583. WARN_ON(1);
  584. }
  585. static void xen_apic_wait_icr_idle(void)
  586. {
  587. return;
  588. }
  589. static u32 xen_safe_apic_wait_icr_idle(void)
  590. {
  591. return 0;
  592. }
  593. static void set_xen_basic_apic_ops(void)
  594. {
  595. apic->read = xen_apic_read;
  596. apic->write = xen_apic_write;
  597. apic->icr_read = xen_apic_icr_read;
  598. apic->icr_write = xen_apic_icr_write;
  599. apic->wait_icr_idle = xen_apic_wait_icr_idle;
  600. apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
  601. }
  602. #endif
  603. static void xen_clts(void)
  604. {
  605. struct multicall_space mcs;
  606. mcs = xen_mc_entry(0);
  607. MULTI_fpu_taskswitch(mcs.mc, 0);
  608. xen_mc_issue(PARAVIRT_LAZY_CPU);
  609. }
  610. static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
  611. static unsigned long xen_read_cr0(void)
  612. {
  613. unsigned long cr0 = percpu_read(xen_cr0_value);
  614. if (unlikely(cr0 == 0)) {
  615. cr0 = native_read_cr0();
  616. percpu_write(xen_cr0_value, cr0);
  617. }
  618. return cr0;
  619. }
  620. static void xen_write_cr0(unsigned long cr0)
  621. {
  622. struct multicall_space mcs;
  623. percpu_write(xen_cr0_value, cr0);
  624. /* Only pay attention to cr0.TS; everything else is
  625. ignored. */
  626. mcs = xen_mc_entry(0);
  627. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  628. xen_mc_issue(PARAVIRT_LAZY_CPU);
  629. }
  630. static void xen_write_cr4(unsigned long cr4)
  631. {
  632. cr4 &= ~X86_CR4_PGE;
  633. cr4 &= ~X86_CR4_PSE;
  634. native_write_cr4(cr4);
  635. }
  636. static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
  637. {
  638. int ret;
  639. ret = 0;
  640. switch (msr) {
  641. #ifdef CONFIG_X86_64
  642. unsigned which;
  643. u64 base;
  644. case MSR_FS_BASE: which = SEGBASE_FS; goto set;
  645. case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
  646. case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
  647. set:
  648. base = ((u64)high << 32) | low;
  649. if (HYPERVISOR_set_segment_base(which, base) != 0)
  650. ret = -EIO;
  651. break;
  652. #endif
  653. case MSR_STAR:
  654. case MSR_CSTAR:
  655. case MSR_LSTAR:
  656. case MSR_SYSCALL_MASK:
  657. case MSR_IA32_SYSENTER_CS:
  658. case MSR_IA32_SYSENTER_ESP:
  659. case MSR_IA32_SYSENTER_EIP:
  660. /* Fast syscall setup is all done in hypercalls, so
  661. these are all ignored. Stub them out here to stop
  662. Xen console noise. */
  663. break;
  664. default:
  665. ret = native_write_msr_safe(msr, low, high);
  666. }
  667. return ret;
  668. }
  669. void xen_setup_shared_info(void)
  670. {
  671. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  672. set_fixmap(FIX_PARAVIRT_BOOTMAP,
  673. xen_start_info->shared_info);
  674. HYPERVISOR_shared_info =
  675. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  676. } else
  677. HYPERVISOR_shared_info =
  678. (struct shared_info *)__va(xen_start_info->shared_info);
  679. #ifndef CONFIG_SMP
  680. /* In UP this is as good a place as any to set up shared info */
  681. xen_setup_vcpu_info_placement();
  682. #endif
  683. xen_setup_mfn_list_list();
  684. }
  685. /* This is called once we have the cpu_possible_map */
  686. void xen_setup_vcpu_info_placement(void)
  687. {
  688. int cpu;
  689. for_each_possible_cpu(cpu)
  690. xen_vcpu_setup(cpu);
  691. /* xen_vcpu_setup managed to place the vcpu_info within the
  692. percpu area for all cpus, so make use of it */
  693. if (have_vcpu_info_placement) {
  694. printk(KERN_INFO "Xen: using vcpu_info placement\n");
  695. pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
  696. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
  697. pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
  698. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
  699. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  700. }
  701. }
  702. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  703. unsigned long addr, unsigned len)
  704. {
  705. char *start, *end, *reloc;
  706. unsigned ret;
  707. start = end = reloc = NULL;
  708. #define SITE(op, x) \
  709. case PARAVIRT_PATCH(op.x): \
  710. if (have_vcpu_info_placement) { \
  711. start = (char *)xen_##x##_direct; \
  712. end = xen_##x##_direct_end; \
  713. reloc = xen_##x##_direct_reloc; \
  714. } \
  715. goto patch_site
  716. switch (type) {
  717. SITE(pv_irq_ops, irq_enable);
  718. SITE(pv_irq_ops, irq_disable);
  719. SITE(pv_irq_ops, save_fl);
  720. SITE(pv_irq_ops, restore_fl);
  721. #undef SITE
  722. patch_site:
  723. if (start == NULL || (end-start) > len)
  724. goto default_patch;
  725. ret = paravirt_patch_insns(insnbuf, len, start, end);
  726. /* Note: because reloc is assigned from something that
  727. appears to be an array, gcc assumes it's non-null,
  728. but doesn't know its relationship with start and
  729. end. */
  730. if (reloc > start && reloc < end) {
  731. int reloc_off = reloc - start;
  732. long *relocp = (long *)(insnbuf + reloc_off);
  733. long delta = start - (char *)addr;
  734. *relocp += delta;
  735. }
  736. break;
  737. default_patch:
  738. default:
  739. ret = paravirt_patch_default(type, clobbers, insnbuf,
  740. addr, len);
  741. break;
  742. }
  743. return ret;
  744. }
  745. static const struct pv_info xen_info __initdata = {
  746. .paravirt_enabled = 1,
  747. .shared_kernel_pmd = 0,
  748. .name = "Xen",
  749. };
  750. static const struct pv_init_ops xen_init_ops __initdata = {
  751. .patch = xen_patch,
  752. };
  753. static const struct pv_time_ops xen_time_ops __initdata = {
  754. .sched_clock = xen_clocksource_read,
  755. };
  756. static const struct pv_cpu_ops xen_cpu_ops __initdata = {
  757. .cpuid = xen_cpuid,
  758. .set_debugreg = xen_set_debugreg,
  759. .get_debugreg = xen_get_debugreg,
  760. .clts = xen_clts,
  761. .read_cr0 = xen_read_cr0,
  762. .write_cr0 = xen_write_cr0,
  763. .read_cr4 = native_read_cr4,
  764. .read_cr4_safe = native_read_cr4_safe,
  765. .write_cr4 = xen_write_cr4,
  766. .wbinvd = native_wbinvd,
  767. .read_msr = native_read_msr_safe,
  768. .write_msr = xen_write_msr_safe,
  769. .read_tsc = native_read_tsc,
  770. .read_pmc = native_read_pmc,
  771. .iret = xen_iret,
  772. .irq_enable_sysexit = xen_sysexit,
  773. #ifdef CONFIG_X86_64
  774. .usergs_sysret32 = xen_sysret32,
  775. .usergs_sysret64 = xen_sysret64,
  776. #endif
  777. .load_tr_desc = paravirt_nop,
  778. .set_ldt = xen_set_ldt,
  779. .load_gdt = xen_load_gdt,
  780. .load_idt = xen_load_idt,
  781. .load_tls = xen_load_tls,
  782. #ifdef CONFIG_X86_64
  783. .load_gs_index = xen_load_gs_index,
  784. #endif
  785. .alloc_ldt = xen_alloc_ldt,
  786. .free_ldt = xen_free_ldt,
  787. .store_gdt = native_store_gdt,
  788. .store_idt = native_store_idt,
  789. .store_tr = xen_store_tr,
  790. .write_ldt_entry = xen_write_ldt_entry,
  791. .write_gdt_entry = xen_write_gdt_entry,
  792. .write_idt_entry = xen_write_idt_entry,
  793. .load_sp0 = xen_load_sp0,
  794. .set_iopl_mask = xen_set_iopl_mask,
  795. .io_delay = xen_io_delay,
  796. /* Xen takes care of %gs when switching to usermode for us */
  797. .swapgs = paravirt_nop,
  798. .start_context_switch = paravirt_start_context_switch,
  799. .end_context_switch = xen_end_context_switch,
  800. };
  801. static const struct pv_apic_ops xen_apic_ops __initdata = {
  802. #ifdef CONFIG_X86_LOCAL_APIC
  803. .startup_ipi_hook = paravirt_nop,
  804. #endif
  805. };
  806. static void xen_reboot(int reason)
  807. {
  808. struct sched_shutdown r = { .reason = reason };
  809. #ifdef CONFIG_SMP
  810. smp_send_stop();
  811. #endif
  812. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  813. BUG();
  814. }
  815. static void xen_restart(char *msg)
  816. {
  817. xen_reboot(SHUTDOWN_reboot);
  818. }
  819. static void xen_emergency_restart(void)
  820. {
  821. xen_reboot(SHUTDOWN_reboot);
  822. }
  823. static void xen_machine_halt(void)
  824. {
  825. xen_reboot(SHUTDOWN_poweroff);
  826. }
  827. static void xen_crash_shutdown(struct pt_regs *regs)
  828. {
  829. xen_reboot(SHUTDOWN_crash);
  830. }
  831. static int
  832. xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
  833. {
  834. xen_reboot(SHUTDOWN_crash);
  835. return NOTIFY_DONE;
  836. }
  837. static struct notifier_block xen_panic_block = {
  838. .notifier_call= xen_panic_event,
  839. };
  840. int xen_panic_handler_init(void)
  841. {
  842. atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
  843. return 0;
  844. }
  845. static const struct machine_ops __initdata xen_machine_ops = {
  846. .restart = xen_restart,
  847. .halt = xen_machine_halt,
  848. .power_off = xen_machine_halt,
  849. .shutdown = xen_machine_halt,
  850. .crash_shutdown = xen_crash_shutdown,
  851. .emergency_restart = xen_emergency_restart,
  852. };
  853. /*
  854. * Set up the GDT and segment registers for -fstack-protector. Until
  855. * we do this, we have to be careful not to call any stack-protected
  856. * function, which is most of the kernel.
  857. */
  858. static void __init xen_setup_stackprotector(void)
  859. {
  860. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
  861. pv_cpu_ops.load_gdt = xen_load_gdt_boot;
  862. setup_stack_canary_segment(0);
  863. switch_to_new_gdt(0);
  864. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
  865. pv_cpu_ops.load_gdt = xen_load_gdt;
  866. }
  867. /* First C function to be called on Xen boot */
  868. asmlinkage void __init xen_start_kernel(void)
  869. {
  870. pgd_t *pgd;
  871. if (!xen_start_info)
  872. return;
  873. xen_domain_type = XEN_PV_DOMAIN;
  874. /* Install Xen paravirt ops */
  875. pv_info = xen_info;
  876. pv_init_ops = xen_init_ops;
  877. pv_time_ops = xen_time_ops;
  878. pv_cpu_ops = xen_cpu_ops;
  879. pv_apic_ops = xen_apic_ops;
  880. x86_init.resources.memory_setup = xen_memory_setup;
  881. x86_init.oem.arch_setup = xen_arch_setup;
  882. x86_init.oem.banner = xen_banner;
  883. x86_init.timers.timer_init = xen_time_init;
  884. x86_init.timers.setup_percpu_clockev = x86_init_noop;
  885. x86_cpuinit.setup_percpu_clockev = x86_init_noop;
  886. x86_platform.calibrate_tsc = xen_tsc_khz;
  887. x86_platform.get_wallclock = xen_get_wallclock;
  888. x86_platform.set_wallclock = xen_set_wallclock;
  889. /*
  890. * Set up some pagetable state before starting to set any ptes.
  891. */
  892. xen_init_mmu_ops();
  893. /* Prevent unwanted bits from being set in PTEs. */
  894. __supported_pte_mask &= ~_PAGE_GLOBAL;
  895. if (!xen_initial_domain())
  896. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  897. __supported_pte_mask |= _PAGE_IOMAP;
  898. /*
  899. * Prevent page tables from being allocated in highmem, even
  900. * if CONFIG_HIGHPTE is enabled.
  901. */
  902. __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
  903. /* Work out if we support NX */
  904. x86_configure_nx();
  905. xen_setup_features();
  906. /* Get mfn list */
  907. if (!xen_feature(XENFEAT_auto_translated_physmap))
  908. xen_build_dynamic_phys_to_machine();
  909. /*
  910. * Set up kernel GDT and segment registers, mainly so that
  911. * -fstack-protector code can be executed.
  912. */
  913. xen_setup_stackprotector();
  914. xen_init_irq_ops();
  915. xen_init_cpuid_mask();
  916. #ifdef CONFIG_X86_LOCAL_APIC
  917. /*
  918. * set up the basic apic ops.
  919. */
  920. set_xen_basic_apic_ops();
  921. #endif
  922. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  923. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  924. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  925. }
  926. machine_ops = xen_machine_ops;
  927. /*
  928. * The only reliable way to retain the initial address of the
  929. * percpu gdt_page is to remember it here, so we can go and
  930. * mark it RW later, when the initial percpu area is freed.
  931. */
  932. xen_initial_gdt = &per_cpu(gdt_page, 0);
  933. xen_smp_init();
  934. pgd = (pgd_t *)xen_start_info->pt_base;
  935. /* Don't do the full vcpu_info placement stuff until we have a
  936. possible map and a non-dummy shared_info. */
  937. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  938. local_irq_disable();
  939. early_boot_irqs_off();
  940. xen_raw_console_write("mapping kernel into physical memory\n");
  941. pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
  942. init_mm.pgd = pgd;
  943. /* keep using Xen gdt for now; no urgent need to change it */
  944. #ifdef CONFIG_X86_32
  945. pv_info.kernel_rpl = 1;
  946. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  947. pv_info.kernel_rpl = 0;
  948. #else
  949. pv_info.kernel_rpl = 0;
  950. #endif
  951. /* set the limit of our address space */
  952. xen_reserve_top();
  953. #ifdef CONFIG_X86_32
  954. /* set up basic CPUID stuff */
  955. cpu_detect(&new_cpu_data);
  956. new_cpu_data.hard_math = 1;
  957. new_cpu_data.wp_works_ok = 1;
  958. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  959. #endif
  960. /* Poke various useful things into boot_params */
  961. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  962. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  963. ? __pa(xen_start_info->mod_start) : 0;
  964. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  965. boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
  966. if (!xen_initial_domain()) {
  967. add_preferred_console("xenboot", 0, NULL);
  968. add_preferred_console("tty", 0, NULL);
  969. add_preferred_console("hvc", 0, NULL);
  970. } else {
  971. /* Make sure ACS will be enabled */
  972. pci_request_acs();
  973. }
  974. xen_raw_console_write("about to get started...\n");
  975. xen_setup_runstate_info(0);
  976. /* Start the world */
  977. #ifdef CONFIG_X86_32
  978. i386_start_kernel();
  979. #else
  980. x86_64_start_reservations((char *)__pa_symbol(&boot_params));
  981. #endif
  982. }