sched_fair.c 109 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. /*
  26. * Targeted preemption latency for CPU-bound tasks:
  27. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  28. *
  29. * NOTE: this latency value is not the same as the concept of
  30. * 'timeslice length' - timeslices in CFS are of variable length
  31. * and have no persistent notion like in traditional, time-slice
  32. * based scheduling concepts.
  33. *
  34. * (to see the precise effective timeslice length of your workload,
  35. * run vmstat and monitor the context-switches (cs) field)
  36. */
  37. unsigned int sysctl_sched_latency = 6000000ULL;
  38. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  39. /*
  40. * The initial- and re-scaling of tunables is configurable
  41. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  42. *
  43. * Options are:
  44. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  45. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  46. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  47. */
  48. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  49. = SCHED_TUNABLESCALING_LOG;
  50. /*
  51. * Minimal preemption granularity for CPU-bound tasks:
  52. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  53. */
  54. unsigned int sysctl_sched_min_granularity = 750000ULL;
  55. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  56. /*
  57. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  58. */
  59. static unsigned int sched_nr_latency = 8;
  60. /*
  61. * After fork, child runs first. If set to 0 (default) then
  62. * parent will (try to) run first.
  63. */
  64. unsigned int sysctl_sched_child_runs_first __read_mostly;
  65. /*
  66. * SCHED_OTHER wake-up granularity.
  67. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68. *
  69. * This option delays the preemption effects of decoupled workloads
  70. * and reduces their over-scheduling. Synchronous workloads will still
  71. * have immediate wakeup/sleep latencies.
  72. */
  73. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  74. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  75. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  76. /*
  77. * The exponential sliding window over which load is averaged for shares
  78. * distribution.
  79. * (default: 10msec)
  80. */
  81. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  126. {
  127. if (!cfs_rq->on_list) {
  128. /*
  129. * Ensure we either appear before our parent (if already
  130. * enqueued) or force our parent to appear after us when it is
  131. * enqueued. The fact that we always enqueue bottom-up
  132. * reduces this to two cases.
  133. */
  134. if (cfs_rq->tg->parent &&
  135. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  136. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  137. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  138. } else {
  139. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  140. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  141. }
  142. cfs_rq->on_list = 1;
  143. }
  144. }
  145. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  146. {
  147. if (cfs_rq->on_list) {
  148. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  149. cfs_rq->on_list = 0;
  150. }
  151. }
  152. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  153. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  154. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  155. /* Do the two (enqueued) entities belong to the same group ? */
  156. static inline int
  157. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  158. {
  159. if (se->cfs_rq == pse->cfs_rq)
  160. return 1;
  161. return 0;
  162. }
  163. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  164. {
  165. return se->parent;
  166. }
  167. /* return depth at which a sched entity is present in the hierarchy */
  168. static inline int depth_se(struct sched_entity *se)
  169. {
  170. int depth = 0;
  171. for_each_sched_entity(se)
  172. depth++;
  173. return depth;
  174. }
  175. static void
  176. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  177. {
  178. int se_depth, pse_depth;
  179. /*
  180. * preemption test can be made between sibling entities who are in the
  181. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  182. * both tasks until we find their ancestors who are siblings of common
  183. * parent.
  184. */
  185. /* First walk up until both entities are at same depth */
  186. se_depth = depth_se(*se);
  187. pse_depth = depth_se(*pse);
  188. while (se_depth > pse_depth) {
  189. se_depth--;
  190. *se = parent_entity(*se);
  191. }
  192. while (pse_depth > se_depth) {
  193. pse_depth--;
  194. *pse = parent_entity(*pse);
  195. }
  196. while (!is_same_group(*se, *pse)) {
  197. *se = parent_entity(*se);
  198. *pse = parent_entity(*pse);
  199. }
  200. }
  201. #else /* !CONFIG_FAIR_GROUP_SCHED */
  202. static inline struct task_struct *task_of(struct sched_entity *se)
  203. {
  204. return container_of(se, struct task_struct, se);
  205. }
  206. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  207. {
  208. return container_of(cfs_rq, struct rq, cfs);
  209. }
  210. #define entity_is_task(se) 1
  211. #define for_each_sched_entity(se) \
  212. for (; se; se = NULL)
  213. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  214. {
  215. return &task_rq(p)->cfs;
  216. }
  217. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  218. {
  219. struct task_struct *p = task_of(se);
  220. struct rq *rq = task_rq(p);
  221. return &rq->cfs;
  222. }
  223. /* runqueue "owned" by this group */
  224. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  225. {
  226. return NULL;
  227. }
  228. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  229. {
  230. return &cpu_rq(this_cpu)->cfs;
  231. }
  232. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  233. {
  234. }
  235. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  236. {
  237. }
  238. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  239. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  240. static inline int
  241. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  242. {
  243. return 1;
  244. }
  245. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  246. {
  247. return NULL;
  248. }
  249. static inline void
  250. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  251. {
  252. }
  253. #endif /* CONFIG_FAIR_GROUP_SCHED */
  254. /**************************************************************
  255. * Scheduling class tree data structure manipulation methods:
  256. */
  257. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  258. {
  259. s64 delta = (s64)(vruntime - min_vruntime);
  260. if (delta > 0)
  261. min_vruntime = vruntime;
  262. return min_vruntime;
  263. }
  264. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  265. {
  266. s64 delta = (s64)(vruntime - min_vruntime);
  267. if (delta < 0)
  268. min_vruntime = vruntime;
  269. return min_vruntime;
  270. }
  271. static inline int entity_before(struct sched_entity *a,
  272. struct sched_entity *b)
  273. {
  274. return (s64)(a->vruntime - b->vruntime) < 0;
  275. }
  276. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  277. {
  278. return se->vruntime - cfs_rq->min_vruntime;
  279. }
  280. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  281. {
  282. u64 vruntime = cfs_rq->min_vruntime;
  283. if (cfs_rq->curr)
  284. vruntime = cfs_rq->curr->vruntime;
  285. if (cfs_rq->rb_leftmost) {
  286. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  287. struct sched_entity,
  288. run_node);
  289. if (!cfs_rq->curr)
  290. vruntime = se->vruntime;
  291. else
  292. vruntime = min_vruntime(vruntime, se->vruntime);
  293. }
  294. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  295. }
  296. /*
  297. * Enqueue an entity into the rb-tree:
  298. */
  299. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  300. {
  301. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  302. struct rb_node *parent = NULL;
  303. struct sched_entity *entry;
  304. s64 key = entity_key(cfs_rq, se);
  305. int leftmost = 1;
  306. /*
  307. * Find the right place in the rbtree:
  308. */
  309. while (*link) {
  310. parent = *link;
  311. entry = rb_entry(parent, struct sched_entity, run_node);
  312. /*
  313. * We dont care about collisions. Nodes with
  314. * the same key stay together.
  315. */
  316. if (key < entity_key(cfs_rq, entry)) {
  317. link = &parent->rb_left;
  318. } else {
  319. link = &parent->rb_right;
  320. leftmost = 0;
  321. }
  322. }
  323. /*
  324. * Maintain a cache of leftmost tree entries (it is frequently
  325. * used):
  326. */
  327. if (leftmost)
  328. cfs_rq->rb_leftmost = &se->run_node;
  329. rb_link_node(&se->run_node, parent, link);
  330. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  331. }
  332. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  333. {
  334. if (cfs_rq->rb_leftmost == &se->run_node) {
  335. struct rb_node *next_node;
  336. next_node = rb_next(&se->run_node);
  337. cfs_rq->rb_leftmost = next_node;
  338. }
  339. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  340. }
  341. static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  342. {
  343. struct rb_node *left = cfs_rq->rb_leftmost;
  344. if (!left)
  345. return NULL;
  346. return rb_entry(left, struct sched_entity, run_node);
  347. }
  348. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  349. {
  350. struct rb_node *next = rb_next(&se->run_node);
  351. if (!next)
  352. return NULL;
  353. return rb_entry(next, struct sched_entity, run_node);
  354. }
  355. #ifdef CONFIG_SCHED_DEBUG
  356. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  357. {
  358. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  359. if (!last)
  360. return NULL;
  361. return rb_entry(last, struct sched_entity, run_node);
  362. }
  363. /**************************************************************
  364. * Scheduling class statistics methods:
  365. */
  366. int sched_proc_update_handler(struct ctl_table *table, int write,
  367. void __user *buffer, size_t *lenp,
  368. loff_t *ppos)
  369. {
  370. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  371. int factor = get_update_sysctl_factor();
  372. if (ret || !write)
  373. return ret;
  374. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  375. sysctl_sched_min_granularity);
  376. #define WRT_SYSCTL(name) \
  377. (normalized_sysctl_##name = sysctl_##name / (factor))
  378. WRT_SYSCTL(sched_min_granularity);
  379. WRT_SYSCTL(sched_latency);
  380. WRT_SYSCTL(sched_wakeup_granularity);
  381. #undef WRT_SYSCTL
  382. return 0;
  383. }
  384. #endif
  385. /*
  386. * delta /= w
  387. */
  388. static inline unsigned long
  389. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  390. {
  391. if (unlikely(se->load.weight != NICE_0_LOAD))
  392. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  393. return delta;
  394. }
  395. /*
  396. * The idea is to set a period in which each task runs once.
  397. *
  398. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  399. * this period because otherwise the slices get too small.
  400. *
  401. * p = (nr <= nl) ? l : l*nr/nl
  402. */
  403. static u64 __sched_period(unsigned long nr_running)
  404. {
  405. u64 period = sysctl_sched_latency;
  406. unsigned long nr_latency = sched_nr_latency;
  407. if (unlikely(nr_running > nr_latency)) {
  408. period = sysctl_sched_min_granularity;
  409. period *= nr_running;
  410. }
  411. return period;
  412. }
  413. /*
  414. * We calculate the wall-time slice from the period by taking a part
  415. * proportional to the weight.
  416. *
  417. * s = p*P[w/rw]
  418. */
  419. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  420. {
  421. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  422. for_each_sched_entity(se) {
  423. struct load_weight *load;
  424. struct load_weight lw;
  425. cfs_rq = cfs_rq_of(se);
  426. load = &cfs_rq->load;
  427. if (unlikely(!se->on_rq)) {
  428. lw = cfs_rq->load;
  429. update_load_add(&lw, se->load.weight);
  430. load = &lw;
  431. }
  432. slice = calc_delta_mine(slice, se->load.weight, load);
  433. }
  434. return slice;
  435. }
  436. /*
  437. * We calculate the vruntime slice of a to be inserted task
  438. *
  439. * vs = s/w
  440. */
  441. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  442. {
  443. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  444. }
  445. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  446. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  447. /*
  448. * Update the current task's runtime statistics. Skip current tasks that
  449. * are not in our scheduling class.
  450. */
  451. static inline void
  452. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  453. unsigned long delta_exec)
  454. {
  455. unsigned long delta_exec_weighted;
  456. schedstat_set(curr->statistics.exec_max,
  457. max((u64)delta_exec, curr->statistics.exec_max));
  458. curr->sum_exec_runtime += delta_exec;
  459. schedstat_add(cfs_rq, exec_clock, delta_exec);
  460. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  461. curr->vruntime += delta_exec_weighted;
  462. update_min_vruntime(cfs_rq);
  463. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  464. cfs_rq->load_unacc_exec_time += delta_exec;
  465. #endif
  466. }
  467. static void update_curr(struct cfs_rq *cfs_rq)
  468. {
  469. struct sched_entity *curr = cfs_rq->curr;
  470. u64 now = rq_of(cfs_rq)->clock_task;
  471. unsigned long delta_exec;
  472. if (unlikely(!curr))
  473. return;
  474. /*
  475. * Get the amount of time the current task was running
  476. * since the last time we changed load (this cannot
  477. * overflow on 32 bits):
  478. */
  479. delta_exec = (unsigned long)(now - curr->exec_start);
  480. if (!delta_exec)
  481. return;
  482. __update_curr(cfs_rq, curr, delta_exec);
  483. curr->exec_start = now;
  484. if (entity_is_task(curr)) {
  485. struct task_struct *curtask = task_of(curr);
  486. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  487. cpuacct_charge(curtask, delta_exec);
  488. account_group_exec_runtime(curtask, delta_exec);
  489. }
  490. }
  491. static inline void
  492. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  493. {
  494. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  495. }
  496. /*
  497. * Task is being enqueued - update stats:
  498. */
  499. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  500. {
  501. /*
  502. * Are we enqueueing a waiting task? (for current tasks
  503. * a dequeue/enqueue event is a NOP)
  504. */
  505. if (se != cfs_rq->curr)
  506. update_stats_wait_start(cfs_rq, se);
  507. }
  508. static void
  509. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  510. {
  511. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  512. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  513. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  514. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  515. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  516. #ifdef CONFIG_SCHEDSTATS
  517. if (entity_is_task(se)) {
  518. trace_sched_stat_wait(task_of(se),
  519. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  520. }
  521. #endif
  522. schedstat_set(se->statistics.wait_start, 0);
  523. }
  524. static inline void
  525. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  526. {
  527. /*
  528. * Mark the end of the wait period if dequeueing a
  529. * waiting task:
  530. */
  531. if (se != cfs_rq->curr)
  532. update_stats_wait_end(cfs_rq, se);
  533. }
  534. /*
  535. * We are picking a new current task - update its stats:
  536. */
  537. static inline void
  538. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  539. {
  540. /*
  541. * We are starting a new run period:
  542. */
  543. se->exec_start = rq_of(cfs_rq)->clock_task;
  544. }
  545. /**************************************************
  546. * Scheduling class queueing methods:
  547. */
  548. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  549. static void
  550. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  551. {
  552. cfs_rq->task_weight += weight;
  553. }
  554. #else
  555. static inline void
  556. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  557. {
  558. }
  559. #endif
  560. static void
  561. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  562. {
  563. update_load_add(&cfs_rq->load, se->load.weight);
  564. if (!parent_entity(se))
  565. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  566. if (entity_is_task(se)) {
  567. add_cfs_task_weight(cfs_rq, se->load.weight);
  568. list_add(&se->group_node, &cfs_rq->tasks);
  569. }
  570. cfs_rq->nr_running++;
  571. }
  572. static void
  573. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  574. {
  575. update_load_sub(&cfs_rq->load, se->load.weight);
  576. if (!parent_entity(se))
  577. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  578. if (entity_is_task(se)) {
  579. add_cfs_task_weight(cfs_rq, -se->load.weight);
  580. list_del_init(&se->group_node);
  581. }
  582. cfs_rq->nr_running--;
  583. }
  584. #ifdef CONFIG_FAIR_GROUP_SCHED
  585. # ifdef CONFIG_SMP
  586. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  587. int global_update)
  588. {
  589. struct task_group *tg = cfs_rq->tg;
  590. long load_avg;
  591. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  592. load_avg -= cfs_rq->load_contribution;
  593. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  594. atomic_add(load_avg, &tg->load_weight);
  595. cfs_rq->load_contribution += load_avg;
  596. }
  597. }
  598. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  599. {
  600. u64 period = sysctl_sched_shares_window;
  601. u64 now, delta;
  602. unsigned long load = cfs_rq->load.weight;
  603. if (cfs_rq->tg == &root_task_group)
  604. return;
  605. now = rq_of(cfs_rq)->clock_task;
  606. delta = now - cfs_rq->load_stamp;
  607. /* truncate load history at 4 idle periods */
  608. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  609. now - cfs_rq->load_last > 4 * period) {
  610. cfs_rq->load_period = 0;
  611. cfs_rq->load_avg = 0;
  612. delta = period - 1;
  613. }
  614. cfs_rq->load_stamp = now;
  615. cfs_rq->load_unacc_exec_time = 0;
  616. cfs_rq->load_period += delta;
  617. if (load) {
  618. cfs_rq->load_last = now;
  619. cfs_rq->load_avg += delta * load;
  620. }
  621. /* consider updating load contribution on each fold or truncate */
  622. if (global_update || cfs_rq->load_period > period
  623. || !cfs_rq->load_period)
  624. update_cfs_rq_load_contribution(cfs_rq, global_update);
  625. while (cfs_rq->load_period > period) {
  626. /*
  627. * Inline assembly required to prevent the compiler
  628. * optimising this loop into a divmod call.
  629. * See __iter_div_u64_rem() for another example of this.
  630. */
  631. asm("" : "+rm" (cfs_rq->load_period));
  632. cfs_rq->load_period /= 2;
  633. cfs_rq->load_avg /= 2;
  634. }
  635. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  636. list_del_leaf_cfs_rq(cfs_rq);
  637. }
  638. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  639. {
  640. long load_weight, load, shares;
  641. load = cfs_rq->load.weight;
  642. load_weight = atomic_read(&tg->load_weight);
  643. load_weight += load;
  644. load_weight -= cfs_rq->load_contribution;
  645. shares = (tg->shares * load);
  646. if (load_weight)
  647. shares /= load_weight;
  648. if (shares < MIN_SHARES)
  649. shares = MIN_SHARES;
  650. if (shares > tg->shares)
  651. shares = tg->shares;
  652. return shares;
  653. }
  654. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  655. {
  656. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  657. update_cfs_load(cfs_rq, 0);
  658. update_cfs_shares(cfs_rq);
  659. }
  660. }
  661. # else /* CONFIG_SMP */
  662. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  663. {
  664. }
  665. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  666. {
  667. return tg->shares;
  668. }
  669. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  670. {
  671. }
  672. # endif /* CONFIG_SMP */
  673. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  674. unsigned long weight)
  675. {
  676. if (se->on_rq) {
  677. /* commit outstanding execution time */
  678. if (cfs_rq->curr == se)
  679. update_curr(cfs_rq);
  680. account_entity_dequeue(cfs_rq, se);
  681. }
  682. update_load_set(&se->load, weight);
  683. if (se->on_rq)
  684. account_entity_enqueue(cfs_rq, se);
  685. }
  686. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  687. {
  688. struct task_group *tg;
  689. struct sched_entity *se;
  690. long shares;
  691. tg = cfs_rq->tg;
  692. se = tg->se[cpu_of(rq_of(cfs_rq))];
  693. if (!se)
  694. return;
  695. #ifndef CONFIG_SMP
  696. if (likely(se->load.weight == tg->shares))
  697. return;
  698. #endif
  699. shares = calc_cfs_shares(cfs_rq, tg);
  700. reweight_entity(cfs_rq_of(se), se, shares);
  701. }
  702. #else /* CONFIG_FAIR_GROUP_SCHED */
  703. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  704. {
  705. }
  706. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  707. {
  708. }
  709. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  710. {
  711. }
  712. #endif /* CONFIG_FAIR_GROUP_SCHED */
  713. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  714. {
  715. #ifdef CONFIG_SCHEDSTATS
  716. struct task_struct *tsk = NULL;
  717. if (entity_is_task(se))
  718. tsk = task_of(se);
  719. if (se->statistics.sleep_start) {
  720. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  721. if ((s64)delta < 0)
  722. delta = 0;
  723. if (unlikely(delta > se->statistics.sleep_max))
  724. se->statistics.sleep_max = delta;
  725. se->statistics.sleep_start = 0;
  726. se->statistics.sum_sleep_runtime += delta;
  727. if (tsk) {
  728. account_scheduler_latency(tsk, delta >> 10, 1);
  729. trace_sched_stat_sleep(tsk, delta);
  730. }
  731. }
  732. if (se->statistics.block_start) {
  733. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  734. if ((s64)delta < 0)
  735. delta = 0;
  736. if (unlikely(delta > se->statistics.block_max))
  737. se->statistics.block_max = delta;
  738. se->statistics.block_start = 0;
  739. se->statistics.sum_sleep_runtime += delta;
  740. if (tsk) {
  741. if (tsk->in_iowait) {
  742. se->statistics.iowait_sum += delta;
  743. se->statistics.iowait_count++;
  744. trace_sched_stat_iowait(tsk, delta);
  745. }
  746. /*
  747. * Blocking time is in units of nanosecs, so shift by
  748. * 20 to get a milliseconds-range estimation of the
  749. * amount of time that the task spent sleeping:
  750. */
  751. if (unlikely(prof_on == SLEEP_PROFILING)) {
  752. profile_hits(SLEEP_PROFILING,
  753. (void *)get_wchan(tsk),
  754. delta >> 20);
  755. }
  756. account_scheduler_latency(tsk, delta >> 10, 0);
  757. }
  758. }
  759. #endif
  760. }
  761. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  762. {
  763. #ifdef CONFIG_SCHED_DEBUG
  764. s64 d = se->vruntime - cfs_rq->min_vruntime;
  765. if (d < 0)
  766. d = -d;
  767. if (d > 3*sysctl_sched_latency)
  768. schedstat_inc(cfs_rq, nr_spread_over);
  769. #endif
  770. }
  771. static void
  772. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  773. {
  774. u64 vruntime = cfs_rq->min_vruntime;
  775. /*
  776. * The 'current' period is already promised to the current tasks,
  777. * however the extra weight of the new task will slow them down a
  778. * little, place the new task so that it fits in the slot that
  779. * stays open at the end.
  780. */
  781. if (initial && sched_feat(START_DEBIT))
  782. vruntime += sched_vslice(cfs_rq, se);
  783. /* sleeps up to a single latency don't count. */
  784. if (!initial) {
  785. unsigned long thresh = sysctl_sched_latency;
  786. /*
  787. * Halve their sleep time's effect, to allow
  788. * for a gentler effect of sleepers:
  789. */
  790. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  791. thresh >>= 1;
  792. vruntime -= thresh;
  793. }
  794. /* ensure we never gain time by being placed backwards. */
  795. vruntime = max_vruntime(se->vruntime, vruntime);
  796. se->vruntime = vruntime;
  797. }
  798. static void
  799. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  800. {
  801. /*
  802. * Update the normalized vruntime before updating min_vruntime
  803. * through callig update_curr().
  804. */
  805. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  806. se->vruntime += cfs_rq->min_vruntime;
  807. /*
  808. * Update run-time statistics of the 'current'.
  809. */
  810. update_curr(cfs_rq);
  811. update_cfs_load(cfs_rq, 0);
  812. account_entity_enqueue(cfs_rq, se);
  813. update_cfs_shares(cfs_rq);
  814. if (flags & ENQUEUE_WAKEUP) {
  815. place_entity(cfs_rq, se, 0);
  816. enqueue_sleeper(cfs_rq, se);
  817. }
  818. update_stats_enqueue(cfs_rq, se);
  819. check_spread(cfs_rq, se);
  820. if (se != cfs_rq->curr)
  821. __enqueue_entity(cfs_rq, se);
  822. se->on_rq = 1;
  823. if (cfs_rq->nr_running == 1)
  824. list_add_leaf_cfs_rq(cfs_rq);
  825. }
  826. static void __clear_buddies_last(struct sched_entity *se)
  827. {
  828. for_each_sched_entity(se) {
  829. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  830. if (cfs_rq->last == se)
  831. cfs_rq->last = NULL;
  832. else
  833. break;
  834. }
  835. }
  836. static void __clear_buddies_next(struct sched_entity *se)
  837. {
  838. for_each_sched_entity(se) {
  839. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  840. if (cfs_rq->next == se)
  841. cfs_rq->next = NULL;
  842. else
  843. break;
  844. }
  845. }
  846. static void __clear_buddies_skip(struct sched_entity *se)
  847. {
  848. for_each_sched_entity(se) {
  849. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  850. if (cfs_rq->skip == se)
  851. cfs_rq->skip = NULL;
  852. else
  853. break;
  854. }
  855. }
  856. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  857. {
  858. if (cfs_rq->last == se)
  859. __clear_buddies_last(se);
  860. if (cfs_rq->next == se)
  861. __clear_buddies_next(se);
  862. if (cfs_rq->skip == se)
  863. __clear_buddies_skip(se);
  864. }
  865. static void
  866. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  867. {
  868. /*
  869. * Update run-time statistics of the 'current'.
  870. */
  871. update_curr(cfs_rq);
  872. update_stats_dequeue(cfs_rq, se);
  873. if (flags & DEQUEUE_SLEEP) {
  874. #ifdef CONFIG_SCHEDSTATS
  875. if (entity_is_task(se)) {
  876. struct task_struct *tsk = task_of(se);
  877. if (tsk->state & TASK_INTERRUPTIBLE)
  878. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  879. if (tsk->state & TASK_UNINTERRUPTIBLE)
  880. se->statistics.block_start = rq_of(cfs_rq)->clock;
  881. }
  882. #endif
  883. }
  884. clear_buddies(cfs_rq, se);
  885. if (se != cfs_rq->curr)
  886. __dequeue_entity(cfs_rq, se);
  887. se->on_rq = 0;
  888. update_cfs_load(cfs_rq, 0);
  889. account_entity_dequeue(cfs_rq, se);
  890. update_min_vruntime(cfs_rq);
  891. update_cfs_shares(cfs_rq);
  892. /*
  893. * Normalize the entity after updating the min_vruntime because the
  894. * update can refer to the ->curr item and we need to reflect this
  895. * movement in our normalized position.
  896. */
  897. if (!(flags & DEQUEUE_SLEEP))
  898. se->vruntime -= cfs_rq->min_vruntime;
  899. }
  900. /*
  901. * Preempt the current task with a newly woken task if needed:
  902. */
  903. static void
  904. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  905. {
  906. unsigned long ideal_runtime, delta_exec;
  907. ideal_runtime = sched_slice(cfs_rq, curr);
  908. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  909. if (delta_exec > ideal_runtime) {
  910. resched_task(rq_of(cfs_rq)->curr);
  911. /*
  912. * The current task ran long enough, ensure it doesn't get
  913. * re-elected due to buddy favours.
  914. */
  915. clear_buddies(cfs_rq, curr);
  916. return;
  917. }
  918. /*
  919. * Ensure that a task that missed wakeup preemption by a
  920. * narrow margin doesn't have to wait for a full slice.
  921. * This also mitigates buddy induced latencies under load.
  922. */
  923. if (!sched_feat(WAKEUP_PREEMPT))
  924. return;
  925. if (delta_exec < sysctl_sched_min_granularity)
  926. return;
  927. if (cfs_rq->nr_running > 1) {
  928. struct sched_entity *se = __pick_first_entity(cfs_rq);
  929. s64 delta = curr->vruntime - se->vruntime;
  930. if (delta < 0)
  931. return;
  932. if (delta > ideal_runtime)
  933. resched_task(rq_of(cfs_rq)->curr);
  934. }
  935. }
  936. static void
  937. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  938. {
  939. /* 'current' is not kept within the tree. */
  940. if (se->on_rq) {
  941. /*
  942. * Any task has to be enqueued before it get to execute on
  943. * a CPU. So account for the time it spent waiting on the
  944. * runqueue.
  945. */
  946. update_stats_wait_end(cfs_rq, se);
  947. __dequeue_entity(cfs_rq, se);
  948. }
  949. update_stats_curr_start(cfs_rq, se);
  950. cfs_rq->curr = se;
  951. #ifdef CONFIG_SCHEDSTATS
  952. /*
  953. * Track our maximum slice length, if the CPU's load is at
  954. * least twice that of our own weight (i.e. dont track it
  955. * when there are only lesser-weight tasks around):
  956. */
  957. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  958. se->statistics.slice_max = max(se->statistics.slice_max,
  959. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  960. }
  961. #endif
  962. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  963. }
  964. static int
  965. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  966. /*
  967. * Pick the next process, keeping these things in mind, in this order:
  968. * 1) keep things fair between processes/task groups
  969. * 2) pick the "next" process, since someone really wants that to run
  970. * 3) pick the "last" process, for cache locality
  971. * 4) do not run the "skip" process, if something else is available
  972. */
  973. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  974. {
  975. struct sched_entity *se = __pick_first_entity(cfs_rq);
  976. struct sched_entity *left = se;
  977. /*
  978. * Avoid running the skip buddy, if running something else can
  979. * be done without getting too unfair.
  980. */
  981. if (cfs_rq->skip == se) {
  982. struct sched_entity *second = __pick_next_entity(se);
  983. if (second && wakeup_preempt_entity(second, left) < 1)
  984. se = second;
  985. }
  986. /*
  987. * Prefer last buddy, try to return the CPU to a preempted task.
  988. */
  989. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  990. se = cfs_rq->last;
  991. /*
  992. * Someone really wants this to run. If it's not unfair, run it.
  993. */
  994. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  995. se = cfs_rq->next;
  996. clear_buddies(cfs_rq, se);
  997. return se;
  998. }
  999. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1000. {
  1001. /*
  1002. * If still on the runqueue then deactivate_task()
  1003. * was not called and update_curr() has to be done:
  1004. */
  1005. if (prev->on_rq)
  1006. update_curr(cfs_rq);
  1007. check_spread(cfs_rq, prev);
  1008. if (prev->on_rq) {
  1009. update_stats_wait_start(cfs_rq, prev);
  1010. /* Put 'current' back into the tree. */
  1011. __enqueue_entity(cfs_rq, prev);
  1012. }
  1013. cfs_rq->curr = NULL;
  1014. }
  1015. static void
  1016. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1017. {
  1018. /*
  1019. * Update run-time statistics of the 'current'.
  1020. */
  1021. update_curr(cfs_rq);
  1022. /*
  1023. * Update share accounting for long-running entities.
  1024. */
  1025. update_entity_shares_tick(cfs_rq);
  1026. #ifdef CONFIG_SCHED_HRTICK
  1027. /*
  1028. * queued ticks are scheduled to match the slice, so don't bother
  1029. * validating it and just reschedule.
  1030. */
  1031. if (queued) {
  1032. resched_task(rq_of(cfs_rq)->curr);
  1033. return;
  1034. }
  1035. /*
  1036. * don't let the period tick interfere with the hrtick preemption
  1037. */
  1038. if (!sched_feat(DOUBLE_TICK) &&
  1039. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1040. return;
  1041. #endif
  1042. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  1043. check_preempt_tick(cfs_rq, curr);
  1044. }
  1045. /**************************************************
  1046. * CFS operations on tasks:
  1047. */
  1048. #ifdef CONFIG_SCHED_HRTICK
  1049. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1050. {
  1051. struct sched_entity *se = &p->se;
  1052. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1053. WARN_ON(task_rq(p) != rq);
  1054. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1055. u64 slice = sched_slice(cfs_rq, se);
  1056. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1057. s64 delta = slice - ran;
  1058. if (delta < 0) {
  1059. if (rq->curr == p)
  1060. resched_task(p);
  1061. return;
  1062. }
  1063. /*
  1064. * Don't schedule slices shorter than 10000ns, that just
  1065. * doesn't make sense. Rely on vruntime for fairness.
  1066. */
  1067. if (rq->curr != p)
  1068. delta = max_t(s64, 10000LL, delta);
  1069. hrtick_start(rq, delta);
  1070. }
  1071. }
  1072. /*
  1073. * called from enqueue/dequeue and updates the hrtick when the
  1074. * current task is from our class and nr_running is low enough
  1075. * to matter.
  1076. */
  1077. static void hrtick_update(struct rq *rq)
  1078. {
  1079. struct task_struct *curr = rq->curr;
  1080. if (curr->sched_class != &fair_sched_class)
  1081. return;
  1082. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1083. hrtick_start_fair(rq, curr);
  1084. }
  1085. #else /* !CONFIG_SCHED_HRTICK */
  1086. static inline void
  1087. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1088. {
  1089. }
  1090. static inline void hrtick_update(struct rq *rq)
  1091. {
  1092. }
  1093. #endif
  1094. /*
  1095. * The enqueue_task method is called before nr_running is
  1096. * increased. Here we update the fair scheduling stats and
  1097. * then put the task into the rbtree:
  1098. */
  1099. static void
  1100. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1101. {
  1102. struct cfs_rq *cfs_rq;
  1103. struct sched_entity *se = &p->se;
  1104. for_each_sched_entity(se) {
  1105. if (se->on_rq)
  1106. break;
  1107. cfs_rq = cfs_rq_of(se);
  1108. enqueue_entity(cfs_rq, se, flags);
  1109. flags = ENQUEUE_WAKEUP;
  1110. }
  1111. for_each_sched_entity(se) {
  1112. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1113. update_cfs_load(cfs_rq, 0);
  1114. update_cfs_shares(cfs_rq);
  1115. }
  1116. hrtick_update(rq);
  1117. }
  1118. /*
  1119. * The dequeue_task method is called before nr_running is
  1120. * decreased. We remove the task from the rbtree and
  1121. * update the fair scheduling stats:
  1122. */
  1123. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1124. {
  1125. struct cfs_rq *cfs_rq;
  1126. struct sched_entity *se = &p->se;
  1127. for_each_sched_entity(se) {
  1128. cfs_rq = cfs_rq_of(se);
  1129. dequeue_entity(cfs_rq, se, flags);
  1130. /* Don't dequeue parent if it has other entities besides us */
  1131. if (cfs_rq->load.weight)
  1132. break;
  1133. flags |= DEQUEUE_SLEEP;
  1134. }
  1135. for_each_sched_entity(se) {
  1136. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1137. update_cfs_load(cfs_rq, 0);
  1138. update_cfs_shares(cfs_rq);
  1139. }
  1140. hrtick_update(rq);
  1141. }
  1142. #ifdef CONFIG_SMP
  1143. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  1144. {
  1145. struct sched_entity *se = &p->se;
  1146. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1147. se->vruntime -= cfs_rq->min_vruntime;
  1148. }
  1149. #ifdef CONFIG_FAIR_GROUP_SCHED
  1150. /*
  1151. * effective_load() calculates the load change as seen from the root_task_group
  1152. *
  1153. * Adding load to a group doesn't make a group heavier, but can cause movement
  1154. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1155. * can calculate the shift in shares.
  1156. */
  1157. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1158. {
  1159. struct sched_entity *se = tg->se[cpu];
  1160. if (!tg->parent)
  1161. return wl;
  1162. for_each_sched_entity(se) {
  1163. long lw, w;
  1164. tg = se->my_q->tg;
  1165. w = se->my_q->load.weight;
  1166. /* use this cpu's instantaneous contribution */
  1167. lw = atomic_read(&tg->load_weight);
  1168. lw -= se->my_q->load_contribution;
  1169. lw += w + wg;
  1170. wl += w;
  1171. if (lw > 0 && wl < lw)
  1172. wl = (wl * tg->shares) / lw;
  1173. else
  1174. wl = tg->shares;
  1175. /* zero point is MIN_SHARES */
  1176. if (wl < MIN_SHARES)
  1177. wl = MIN_SHARES;
  1178. wl -= se->load.weight;
  1179. wg = 0;
  1180. }
  1181. return wl;
  1182. }
  1183. #else
  1184. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1185. unsigned long wl, unsigned long wg)
  1186. {
  1187. return wl;
  1188. }
  1189. #endif
  1190. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1191. {
  1192. s64 this_load, load;
  1193. int idx, this_cpu, prev_cpu;
  1194. unsigned long tl_per_task;
  1195. struct task_group *tg;
  1196. unsigned long weight;
  1197. int balanced;
  1198. idx = sd->wake_idx;
  1199. this_cpu = smp_processor_id();
  1200. prev_cpu = task_cpu(p);
  1201. load = source_load(prev_cpu, idx);
  1202. this_load = target_load(this_cpu, idx);
  1203. /*
  1204. * If sync wakeup then subtract the (maximum possible)
  1205. * effect of the currently running task from the load
  1206. * of the current CPU:
  1207. */
  1208. rcu_read_lock();
  1209. if (sync) {
  1210. tg = task_group(current);
  1211. weight = current->se.load.weight;
  1212. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1213. load += effective_load(tg, prev_cpu, 0, -weight);
  1214. }
  1215. tg = task_group(p);
  1216. weight = p->se.load.weight;
  1217. /*
  1218. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1219. * due to the sync cause above having dropped this_load to 0, we'll
  1220. * always have an imbalance, but there's really nothing you can do
  1221. * about that, so that's good too.
  1222. *
  1223. * Otherwise check if either cpus are near enough in load to allow this
  1224. * task to be woken on this_cpu.
  1225. */
  1226. if (this_load > 0) {
  1227. s64 this_eff_load, prev_eff_load;
  1228. this_eff_load = 100;
  1229. this_eff_load *= power_of(prev_cpu);
  1230. this_eff_load *= this_load +
  1231. effective_load(tg, this_cpu, weight, weight);
  1232. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1233. prev_eff_load *= power_of(this_cpu);
  1234. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1235. balanced = this_eff_load <= prev_eff_load;
  1236. } else
  1237. balanced = true;
  1238. rcu_read_unlock();
  1239. /*
  1240. * If the currently running task will sleep within
  1241. * a reasonable amount of time then attract this newly
  1242. * woken task:
  1243. */
  1244. if (sync && balanced)
  1245. return 1;
  1246. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1247. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1248. if (balanced ||
  1249. (this_load <= load &&
  1250. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1251. /*
  1252. * This domain has SD_WAKE_AFFINE and
  1253. * p is cache cold in this domain, and
  1254. * there is no bad imbalance.
  1255. */
  1256. schedstat_inc(sd, ttwu_move_affine);
  1257. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1258. return 1;
  1259. }
  1260. return 0;
  1261. }
  1262. /*
  1263. * find_idlest_group finds and returns the least busy CPU group within the
  1264. * domain.
  1265. */
  1266. static struct sched_group *
  1267. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1268. int this_cpu, int load_idx)
  1269. {
  1270. struct sched_group *idlest = NULL, *group = sd->groups;
  1271. unsigned long min_load = ULONG_MAX, this_load = 0;
  1272. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1273. do {
  1274. unsigned long load, avg_load;
  1275. int local_group;
  1276. int i;
  1277. /* Skip over this group if it has no CPUs allowed */
  1278. if (!cpumask_intersects(sched_group_cpus(group),
  1279. &p->cpus_allowed))
  1280. continue;
  1281. local_group = cpumask_test_cpu(this_cpu,
  1282. sched_group_cpus(group));
  1283. /* Tally up the load of all CPUs in the group */
  1284. avg_load = 0;
  1285. for_each_cpu(i, sched_group_cpus(group)) {
  1286. /* Bias balancing toward cpus of our domain */
  1287. if (local_group)
  1288. load = source_load(i, load_idx);
  1289. else
  1290. load = target_load(i, load_idx);
  1291. avg_load += load;
  1292. }
  1293. /* Adjust by relative CPU power of the group */
  1294. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1295. if (local_group) {
  1296. this_load = avg_load;
  1297. } else if (avg_load < min_load) {
  1298. min_load = avg_load;
  1299. idlest = group;
  1300. }
  1301. } while (group = group->next, group != sd->groups);
  1302. if (!idlest || 100*this_load < imbalance*min_load)
  1303. return NULL;
  1304. return idlest;
  1305. }
  1306. /*
  1307. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1308. */
  1309. static int
  1310. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1311. {
  1312. unsigned long load, min_load = ULONG_MAX;
  1313. int idlest = -1;
  1314. int i;
  1315. /* Traverse only the allowed CPUs */
  1316. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1317. load = weighted_cpuload(i);
  1318. if (load < min_load || (load == min_load && i == this_cpu)) {
  1319. min_load = load;
  1320. idlest = i;
  1321. }
  1322. }
  1323. return idlest;
  1324. }
  1325. /*
  1326. * Try and locate an idle CPU in the sched_domain.
  1327. */
  1328. static int select_idle_sibling(struct task_struct *p, int target)
  1329. {
  1330. int cpu = smp_processor_id();
  1331. int prev_cpu = task_cpu(p);
  1332. struct sched_domain *sd;
  1333. int i;
  1334. /*
  1335. * If the task is going to be woken-up on this cpu and if it is
  1336. * already idle, then it is the right target.
  1337. */
  1338. if (target == cpu && idle_cpu(cpu))
  1339. return cpu;
  1340. /*
  1341. * If the task is going to be woken-up on the cpu where it previously
  1342. * ran and if it is currently idle, then it the right target.
  1343. */
  1344. if (target == prev_cpu && idle_cpu(prev_cpu))
  1345. return prev_cpu;
  1346. /*
  1347. * Otherwise, iterate the domains and find an elegible idle cpu.
  1348. */
  1349. for_each_domain(target, sd) {
  1350. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1351. break;
  1352. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1353. if (idle_cpu(i)) {
  1354. target = i;
  1355. break;
  1356. }
  1357. }
  1358. /*
  1359. * Lets stop looking for an idle sibling when we reached
  1360. * the domain that spans the current cpu and prev_cpu.
  1361. */
  1362. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1363. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1364. break;
  1365. }
  1366. return target;
  1367. }
  1368. /*
  1369. * sched_balance_self: balance the current task (running on cpu) in domains
  1370. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1371. * SD_BALANCE_EXEC.
  1372. *
  1373. * Balance, ie. select the least loaded group.
  1374. *
  1375. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1376. *
  1377. * preempt must be disabled.
  1378. */
  1379. static int
  1380. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1381. {
  1382. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1383. int cpu = smp_processor_id();
  1384. int prev_cpu = task_cpu(p);
  1385. int new_cpu = cpu;
  1386. int want_affine = 0;
  1387. int want_sd = 1;
  1388. int sync = wake_flags & WF_SYNC;
  1389. if (sd_flag & SD_BALANCE_WAKE) {
  1390. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1391. want_affine = 1;
  1392. new_cpu = prev_cpu;
  1393. }
  1394. for_each_domain(cpu, tmp) {
  1395. if (!(tmp->flags & SD_LOAD_BALANCE))
  1396. continue;
  1397. /*
  1398. * If power savings logic is enabled for a domain, see if we
  1399. * are not overloaded, if so, don't balance wider.
  1400. */
  1401. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1402. unsigned long power = 0;
  1403. unsigned long nr_running = 0;
  1404. unsigned long capacity;
  1405. int i;
  1406. for_each_cpu(i, sched_domain_span(tmp)) {
  1407. power += power_of(i);
  1408. nr_running += cpu_rq(i)->cfs.nr_running;
  1409. }
  1410. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1411. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1412. nr_running /= 2;
  1413. if (nr_running < capacity)
  1414. want_sd = 0;
  1415. }
  1416. /*
  1417. * If both cpu and prev_cpu are part of this domain,
  1418. * cpu is a valid SD_WAKE_AFFINE target.
  1419. */
  1420. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1421. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1422. affine_sd = tmp;
  1423. want_affine = 0;
  1424. }
  1425. if (!want_sd && !want_affine)
  1426. break;
  1427. if (!(tmp->flags & sd_flag))
  1428. continue;
  1429. if (want_sd)
  1430. sd = tmp;
  1431. }
  1432. if (affine_sd) {
  1433. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1434. return select_idle_sibling(p, cpu);
  1435. else
  1436. return select_idle_sibling(p, prev_cpu);
  1437. }
  1438. while (sd) {
  1439. int load_idx = sd->forkexec_idx;
  1440. struct sched_group *group;
  1441. int weight;
  1442. if (!(sd->flags & sd_flag)) {
  1443. sd = sd->child;
  1444. continue;
  1445. }
  1446. if (sd_flag & SD_BALANCE_WAKE)
  1447. load_idx = sd->wake_idx;
  1448. group = find_idlest_group(sd, p, cpu, load_idx);
  1449. if (!group) {
  1450. sd = sd->child;
  1451. continue;
  1452. }
  1453. new_cpu = find_idlest_cpu(group, p, cpu);
  1454. if (new_cpu == -1 || new_cpu == cpu) {
  1455. /* Now try balancing at a lower domain level of cpu */
  1456. sd = sd->child;
  1457. continue;
  1458. }
  1459. /* Now try balancing at a lower domain level of new_cpu */
  1460. cpu = new_cpu;
  1461. weight = sd->span_weight;
  1462. sd = NULL;
  1463. for_each_domain(cpu, tmp) {
  1464. if (weight <= tmp->span_weight)
  1465. break;
  1466. if (tmp->flags & sd_flag)
  1467. sd = tmp;
  1468. }
  1469. /* while loop will break here if sd == NULL */
  1470. }
  1471. return new_cpu;
  1472. }
  1473. #endif /* CONFIG_SMP */
  1474. static unsigned long
  1475. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1476. {
  1477. unsigned long gran = sysctl_sched_wakeup_granularity;
  1478. /*
  1479. * Since its curr running now, convert the gran from real-time
  1480. * to virtual-time in his units.
  1481. *
  1482. * By using 'se' instead of 'curr' we penalize light tasks, so
  1483. * they get preempted easier. That is, if 'se' < 'curr' then
  1484. * the resulting gran will be larger, therefore penalizing the
  1485. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1486. * be smaller, again penalizing the lighter task.
  1487. *
  1488. * This is especially important for buddies when the leftmost
  1489. * task is higher priority than the buddy.
  1490. */
  1491. if (unlikely(se->load.weight != NICE_0_LOAD))
  1492. gran = calc_delta_fair(gran, se);
  1493. return gran;
  1494. }
  1495. /*
  1496. * Should 'se' preempt 'curr'.
  1497. *
  1498. * |s1
  1499. * |s2
  1500. * |s3
  1501. * g
  1502. * |<--->|c
  1503. *
  1504. * w(c, s1) = -1
  1505. * w(c, s2) = 0
  1506. * w(c, s3) = 1
  1507. *
  1508. */
  1509. static int
  1510. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1511. {
  1512. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1513. if (vdiff <= 0)
  1514. return -1;
  1515. gran = wakeup_gran(curr, se);
  1516. if (vdiff > gran)
  1517. return 1;
  1518. return 0;
  1519. }
  1520. static void set_last_buddy(struct sched_entity *se)
  1521. {
  1522. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1523. for_each_sched_entity(se)
  1524. cfs_rq_of(se)->last = se;
  1525. }
  1526. }
  1527. static void set_next_buddy(struct sched_entity *se)
  1528. {
  1529. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1530. for_each_sched_entity(se)
  1531. cfs_rq_of(se)->next = se;
  1532. }
  1533. }
  1534. static void set_skip_buddy(struct sched_entity *se)
  1535. {
  1536. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1537. for_each_sched_entity(se)
  1538. cfs_rq_of(se)->skip = se;
  1539. }
  1540. }
  1541. /*
  1542. * Preempt the current task with a newly woken task if needed:
  1543. */
  1544. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1545. {
  1546. struct task_struct *curr = rq->curr;
  1547. struct sched_entity *se = &curr->se, *pse = &p->se;
  1548. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1549. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1550. if (unlikely(se == pse))
  1551. return;
  1552. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1553. set_next_buddy(pse);
  1554. /*
  1555. * We can come here with TIF_NEED_RESCHED already set from new task
  1556. * wake up path.
  1557. */
  1558. if (test_tsk_need_resched(curr))
  1559. return;
  1560. /* Idle tasks are by definition preempted by non-idle tasks. */
  1561. if (unlikely(curr->policy == SCHED_IDLE) &&
  1562. likely(p->policy != SCHED_IDLE))
  1563. goto preempt;
  1564. /*
  1565. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  1566. * is driven by the tick):
  1567. */
  1568. if (unlikely(p->policy != SCHED_NORMAL))
  1569. return;
  1570. if (!sched_feat(WAKEUP_PREEMPT))
  1571. return;
  1572. update_curr(cfs_rq);
  1573. find_matching_se(&se, &pse);
  1574. BUG_ON(!pse);
  1575. if (wakeup_preempt_entity(se, pse) == 1)
  1576. goto preempt;
  1577. return;
  1578. preempt:
  1579. resched_task(curr);
  1580. /*
  1581. * Only set the backward buddy when the current task is still
  1582. * on the rq. This can happen when a wakeup gets interleaved
  1583. * with schedule on the ->pre_schedule() or idle_balance()
  1584. * point, either of which can * drop the rq lock.
  1585. *
  1586. * Also, during early boot the idle thread is in the fair class,
  1587. * for obvious reasons its a bad idea to schedule back to it.
  1588. */
  1589. if (unlikely(!se->on_rq || curr == rq->idle))
  1590. return;
  1591. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1592. set_last_buddy(se);
  1593. }
  1594. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1595. {
  1596. struct task_struct *p;
  1597. struct cfs_rq *cfs_rq = &rq->cfs;
  1598. struct sched_entity *se;
  1599. if (!cfs_rq->nr_running)
  1600. return NULL;
  1601. do {
  1602. se = pick_next_entity(cfs_rq);
  1603. set_next_entity(cfs_rq, se);
  1604. cfs_rq = group_cfs_rq(se);
  1605. } while (cfs_rq);
  1606. p = task_of(se);
  1607. hrtick_start_fair(rq, p);
  1608. return p;
  1609. }
  1610. /*
  1611. * Account for a descheduled task:
  1612. */
  1613. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1614. {
  1615. struct sched_entity *se = &prev->se;
  1616. struct cfs_rq *cfs_rq;
  1617. for_each_sched_entity(se) {
  1618. cfs_rq = cfs_rq_of(se);
  1619. put_prev_entity(cfs_rq, se);
  1620. }
  1621. }
  1622. /*
  1623. * sched_yield() is very simple
  1624. *
  1625. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  1626. */
  1627. static void yield_task_fair(struct rq *rq)
  1628. {
  1629. struct task_struct *curr = rq->curr;
  1630. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1631. struct sched_entity *se = &curr->se;
  1632. /*
  1633. * Are we the only task in the tree?
  1634. */
  1635. if (unlikely(rq->nr_running == 1))
  1636. return;
  1637. clear_buddies(cfs_rq, se);
  1638. if (curr->policy != SCHED_BATCH) {
  1639. update_rq_clock(rq);
  1640. /*
  1641. * Update run-time statistics of the 'current'.
  1642. */
  1643. update_curr(cfs_rq);
  1644. }
  1645. set_skip_buddy(se);
  1646. }
  1647. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  1648. {
  1649. struct sched_entity *se = &p->se;
  1650. if (!se->on_rq)
  1651. return false;
  1652. /* Tell the scheduler that we'd really like pse to run next. */
  1653. set_next_buddy(se);
  1654. yield_task_fair(rq);
  1655. return true;
  1656. }
  1657. #ifdef CONFIG_SMP
  1658. /**************************************************
  1659. * Fair scheduling class load-balancing methods:
  1660. */
  1661. /*
  1662. * pull_task - move a task from a remote runqueue to the local runqueue.
  1663. * Both runqueues must be locked.
  1664. */
  1665. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1666. struct rq *this_rq, int this_cpu)
  1667. {
  1668. deactivate_task(src_rq, p, 0);
  1669. set_task_cpu(p, this_cpu);
  1670. activate_task(this_rq, p, 0);
  1671. check_preempt_curr(this_rq, p, 0);
  1672. }
  1673. /*
  1674. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1675. */
  1676. static
  1677. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1678. struct sched_domain *sd, enum cpu_idle_type idle,
  1679. int *all_pinned)
  1680. {
  1681. int tsk_cache_hot = 0;
  1682. /*
  1683. * We do not migrate tasks that are:
  1684. * 1) running (obviously), or
  1685. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1686. * 3) are cache-hot on their current CPU.
  1687. */
  1688. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1689. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1690. return 0;
  1691. }
  1692. *all_pinned = 0;
  1693. if (task_running(rq, p)) {
  1694. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1695. return 0;
  1696. }
  1697. /*
  1698. * Aggressive migration if:
  1699. * 1) task is cache cold, or
  1700. * 2) too many balance attempts have failed.
  1701. */
  1702. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1703. if (!tsk_cache_hot ||
  1704. sd->nr_balance_failed > sd->cache_nice_tries) {
  1705. #ifdef CONFIG_SCHEDSTATS
  1706. if (tsk_cache_hot) {
  1707. schedstat_inc(sd, lb_hot_gained[idle]);
  1708. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1709. }
  1710. #endif
  1711. return 1;
  1712. }
  1713. if (tsk_cache_hot) {
  1714. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1715. return 0;
  1716. }
  1717. return 1;
  1718. }
  1719. /*
  1720. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1721. * part of active balancing operations within "domain".
  1722. * Returns 1 if successful and 0 otherwise.
  1723. *
  1724. * Called with both runqueues locked.
  1725. */
  1726. static int
  1727. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1728. struct sched_domain *sd, enum cpu_idle_type idle)
  1729. {
  1730. struct task_struct *p, *n;
  1731. struct cfs_rq *cfs_rq;
  1732. int pinned = 0;
  1733. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1734. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1735. if (!can_migrate_task(p, busiest, this_cpu,
  1736. sd, idle, &pinned))
  1737. continue;
  1738. pull_task(busiest, p, this_rq, this_cpu);
  1739. /*
  1740. * Right now, this is only the second place pull_task()
  1741. * is called, so we can safely collect pull_task()
  1742. * stats here rather than inside pull_task().
  1743. */
  1744. schedstat_inc(sd, lb_gained[idle]);
  1745. return 1;
  1746. }
  1747. }
  1748. return 0;
  1749. }
  1750. static unsigned long
  1751. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1752. unsigned long max_load_move, struct sched_domain *sd,
  1753. enum cpu_idle_type idle, int *all_pinned,
  1754. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1755. {
  1756. int loops = 0, pulled = 0, pinned = 0;
  1757. long rem_load_move = max_load_move;
  1758. struct task_struct *p, *n;
  1759. if (max_load_move == 0)
  1760. goto out;
  1761. pinned = 1;
  1762. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1763. if (loops++ > sysctl_sched_nr_migrate)
  1764. break;
  1765. if ((p->se.load.weight >> 1) > rem_load_move ||
  1766. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1767. continue;
  1768. pull_task(busiest, p, this_rq, this_cpu);
  1769. pulled++;
  1770. rem_load_move -= p->se.load.weight;
  1771. #ifdef CONFIG_PREEMPT
  1772. /*
  1773. * NEWIDLE balancing is a source of latency, so preemptible
  1774. * kernels will stop after the first task is pulled to minimize
  1775. * the critical section.
  1776. */
  1777. if (idle == CPU_NEWLY_IDLE)
  1778. break;
  1779. #endif
  1780. /*
  1781. * We only want to steal up to the prescribed amount of
  1782. * weighted load.
  1783. */
  1784. if (rem_load_move <= 0)
  1785. break;
  1786. if (p->prio < *this_best_prio)
  1787. *this_best_prio = p->prio;
  1788. }
  1789. out:
  1790. /*
  1791. * Right now, this is one of only two places pull_task() is called,
  1792. * so we can safely collect pull_task() stats here rather than
  1793. * inside pull_task().
  1794. */
  1795. schedstat_add(sd, lb_gained[idle], pulled);
  1796. if (all_pinned)
  1797. *all_pinned = pinned;
  1798. return max_load_move - rem_load_move;
  1799. }
  1800. #ifdef CONFIG_FAIR_GROUP_SCHED
  1801. /*
  1802. * update tg->load_weight by folding this cpu's load_avg
  1803. */
  1804. static int update_shares_cpu(struct task_group *tg, int cpu)
  1805. {
  1806. struct cfs_rq *cfs_rq;
  1807. unsigned long flags;
  1808. struct rq *rq;
  1809. if (!tg->se[cpu])
  1810. return 0;
  1811. rq = cpu_rq(cpu);
  1812. cfs_rq = tg->cfs_rq[cpu];
  1813. raw_spin_lock_irqsave(&rq->lock, flags);
  1814. update_rq_clock(rq);
  1815. update_cfs_load(cfs_rq, 1);
  1816. /*
  1817. * We need to update shares after updating tg->load_weight in
  1818. * order to adjust the weight of groups with long running tasks.
  1819. */
  1820. update_cfs_shares(cfs_rq);
  1821. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1822. return 0;
  1823. }
  1824. static void update_shares(int cpu)
  1825. {
  1826. struct cfs_rq *cfs_rq;
  1827. struct rq *rq = cpu_rq(cpu);
  1828. rcu_read_lock();
  1829. for_each_leaf_cfs_rq(rq, cfs_rq)
  1830. update_shares_cpu(cfs_rq->tg, cpu);
  1831. rcu_read_unlock();
  1832. }
  1833. static unsigned long
  1834. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1835. unsigned long max_load_move,
  1836. struct sched_domain *sd, enum cpu_idle_type idle,
  1837. int *all_pinned, int *this_best_prio)
  1838. {
  1839. long rem_load_move = max_load_move;
  1840. int busiest_cpu = cpu_of(busiest);
  1841. struct task_group *tg;
  1842. rcu_read_lock();
  1843. update_h_load(busiest_cpu);
  1844. list_for_each_entry_rcu(tg, &task_groups, list) {
  1845. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1846. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1847. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1848. u64 rem_load, moved_load;
  1849. /*
  1850. * empty group
  1851. */
  1852. if (!busiest_cfs_rq->task_weight)
  1853. continue;
  1854. rem_load = (u64)rem_load_move * busiest_weight;
  1855. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1856. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1857. rem_load, sd, idle, all_pinned, this_best_prio,
  1858. busiest_cfs_rq);
  1859. if (!moved_load)
  1860. continue;
  1861. moved_load *= busiest_h_load;
  1862. moved_load = div_u64(moved_load, busiest_weight + 1);
  1863. rem_load_move -= moved_load;
  1864. if (rem_load_move < 0)
  1865. break;
  1866. }
  1867. rcu_read_unlock();
  1868. return max_load_move - rem_load_move;
  1869. }
  1870. #else
  1871. static inline void update_shares(int cpu)
  1872. {
  1873. }
  1874. static unsigned long
  1875. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1876. unsigned long max_load_move,
  1877. struct sched_domain *sd, enum cpu_idle_type idle,
  1878. int *all_pinned, int *this_best_prio)
  1879. {
  1880. return balance_tasks(this_rq, this_cpu, busiest,
  1881. max_load_move, sd, idle, all_pinned,
  1882. this_best_prio, &busiest->cfs);
  1883. }
  1884. #endif
  1885. /*
  1886. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1887. * this_rq, as part of a balancing operation within domain "sd".
  1888. * Returns 1 if successful and 0 otherwise.
  1889. *
  1890. * Called with both runqueues locked.
  1891. */
  1892. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1893. unsigned long max_load_move,
  1894. struct sched_domain *sd, enum cpu_idle_type idle,
  1895. int *all_pinned)
  1896. {
  1897. unsigned long total_load_moved = 0, load_moved;
  1898. int this_best_prio = this_rq->curr->prio;
  1899. do {
  1900. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1901. max_load_move - total_load_moved,
  1902. sd, idle, all_pinned, &this_best_prio);
  1903. total_load_moved += load_moved;
  1904. #ifdef CONFIG_PREEMPT
  1905. /*
  1906. * NEWIDLE balancing is a source of latency, so preemptible
  1907. * kernels will stop after the first task is pulled to minimize
  1908. * the critical section.
  1909. */
  1910. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1911. break;
  1912. if (raw_spin_is_contended(&this_rq->lock) ||
  1913. raw_spin_is_contended(&busiest->lock))
  1914. break;
  1915. #endif
  1916. } while (load_moved && max_load_move > total_load_moved);
  1917. return total_load_moved > 0;
  1918. }
  1919. /********** Helpers for find_busiest_group ************************/
  1920. /*
  1921. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1922. * during load balancing.
  1923. */
  1924. struct sd_lb_stats {
  1925. struct sched_group *busiest; /* Busiest group in this sd */
  1926. struct sched_group *this; /* Local group in this sd */
  1927. unsigned long total_load; /* Total load of all groups in sd */
  1928. unsigned long total_pwr; /* Total power of all groups in sd */
  1929. unsigned long avg_load; /* Average load across all groups in sd */
  1930. /** Statistics of this group */
  1931. unsigned long this_load;
  1932. unsigned long this_load_per_task;
  1933. unsigned long this_nr_running;
  1934. unsigned long this_has_capacity;
  1935. unsigned int this_idle_cpus;
  1936. /* Statistics of the busiest group */
  1937. unsigned int busiest_idle_cpus;
  1938. unsigned long max_load;
  1939. unsigned long busiest_load_per_task;
  1940. unsigned long busiest_nr_running;
  1941. unsigned long busiest_group_capacity;
  1942. unsigned long busiest_has_capacity;
  1943. unsigned int busiest_group_weight;
  1944. int group_imb; /* Is there imbalance in this sd */
  1945. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1946. int power_savings_balance; /* Is powersave balance needed for this sd */
  1947. struct sched_group *group_min; /* Least loaded group in sd */
  1948. struct sched_group *group_leader; /* Group which relieves group_min */
  1949. unsigned long min_load_per_task; /* load_per_task in group_min */
  1950. unsigned long leader_nr_running; /* Nr running of group_leader */
  1951. unsigned long min_nr_running; /* Nr running of group_min */
  1952. #endif
  1953. };
  1954. /*
  1955. * sg_lb_stats - stats of a sched_group required for load_balancing
  1956. */
  1957. struct sg_lb_stats {
  1958. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1959. unsigned long group_load; /* Total load over the CPUs of the group */
  1960. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1961. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1962. unsigned long group_capacity;
  1963. unsigned long idle_cpus;
  1964. unsigned long group_weight;
  1965. int group_imb; /* Is there an imbalance in the group ? */
  1966. int group_has_capacity; /* Is there extra capacity in the group? */
  1967. };
  1968. /**
  1969. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1970. * @group: The group whose first cpu is to be returned.
  1971. */
  1972. static inline unsigned int group_first_cpu(struct sched_group *group)
  1973. {
  1974. return cpumask_first(sched_group_cpus(group));
  1975. }
  1976. /**
  1977. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1978. * @sd: The sched_domain whose load_idx is to be obtained.
  1979. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1980. */
  1981. static inline int get_sd_load_idx(struct sched_domain *sd,
  1982. enum cpu_idle_type idle)
  1983. {
  1984. int load_idx;
  1985. switch (idle) {
  1986. case CPU_NOT_IDLE:
  1987. load_idx = sd->busy_idx;
  1988. break;
  1989. case CPU_NEWLY_IDLE:
  1990. load_idx = sd->newidle_idx;
  1991. break;
  1992. default:
  1993. load_idx = sd->idle_idx;
  1994. break;
  1995. }
  1996. return load_idx;
  1997. }
  1998. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1999. /**
  2000. * init_sd_power_savings_stats - Initialize power savings statistics for
  2001. * the given sched_domain, during load balancing.
  2002. *
  2003. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2004. * @sds: Variable containing the statistics for sd.
  2005. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2006. */
  2007. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2008. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2009. {
  2010. /*
  2011. * Busy processors will not participate in power savings
  2012. * balance.
  2013. */
  2014. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2015. sds->power_savings_balance = 0;
  2016. else {
  2017. sds->power_savings_balance = 1;
  2018. sds->min_nr_running = ULONG_MAX;
  2019. sds->leader_nr_running = 0;
  2020. }
  2021. }
  2022. /**
  2023. * update_sd_power_savings_stats - Update the power saving stats for a
  2024. * sched_domain while performing load balancing.
  2025. *
  2026. * @group: sched_group belonging to the sched_domain under consideration.
  2027. * @sds: Variable containing the statistics of the sched_domain
  2028. * @local_group: Does group contain the CPU for which we're performing
  2029. * load balancing ?
  2030. * @sgs: Variable containing the statistics of the group.
  2031. */
  2032. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2033. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2034. {
  2035. if (!sds->power_savings_balance)
  2036. return;
  2037. /*
  2038. * If the local group is idle or completely loaded
  2039. * no need to do power savings balance at this domain
  2040. */
  2041. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2042. !sds->this_nr_running))
  2043. sds->power_savings_balance = 0;
  2044. /*
  2045. * If a group is already running at full capacity or idle,
  2046. * don't include that group in power savings calculations
  2047. */
  2048. if (!sds->power_savings_balance ||
  2049. sgs->sum_nr_running >= sgs->group_capacity ||
  2050. !sgs->sum_nr_running)
  2051. return;
  2052. /*
  2053. * Calculate the group which has the least non-idle load.
  2054. * This is the group from where we need to pick up the load
  2055. * for saving power
  2056. */
  2057. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2058. (sgs->sum_nr_running == sds->min_nr_running &&
  2059. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2060. sds->group_min = group;
  2061. sds->min_nr_running = sgs->sum_nr_running;
  2062. sds->min_load_per_task = sgs->sum_weighted_load /
  2063. sgs->sum_nr_running;
  2064. }
  2065. /*
  2066. * Calculate the group which is almost near its
  2067. * capacity but still has some space to pick up some load
  2068. * from other group and save more power
  2069. */
  2070. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2071. return;
  2072. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2073. (sgs->sum_nr_running == sds->leader_nr_running &&
  2074. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2075. sds->group_leader = group;
  2076. sds->leader_nr_running = sgs->sum_nr_running;
  2077. }
  2078. }
  2079. /**
  2080. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2081. * @sds: Variable containing the statistics of the sched_domain
  2082. * under consideration.
  2083. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2084. * @imbalance: Variable to store the imbalance.
  2085. *
  2086. * Description:
  2087. * Check if we have potential to perform some power-savings balance.
  2088. * If yes, set the busiest group to be the least loaded group in the
  2089. * sched_domain, so that it's CPUs can be put to idle.
  2090. *
  2091. * Returns 1 if there is potential to perform power-savings balance.
  2092. * Else returns 0.
  2093. */
  2094. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2095. int this_cpu, unsigned long *imbalance)
  2096. {
  2097. if (!sds->power_savings_balance)
  2098. return 0;
  2099. if (sds->this != sds->group_leader ||
  2100. sds->group_leader == sds->group_min)
  2101. return 0;
  2102. *imbalance = sds->min_load_per_task;
  2103. sds->busiest = sds->group_min;
  2104. return 1;
  2105. }
  2106. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2107. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2108. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2109. {
  2110. return;
  2111. }
  2112. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2113. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2114. {
  2115. return;
  2116. }
  2117. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2118. int this_cpu, unsigned long *imbalance)
  2119. {
  2120. return 0;
  2121. }
  2122. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2123. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2124. {
  2125. return SCHED_LOAD_SCALE;
  2126. }
  2127. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2128. {
  2129. return default_scale_freq_power(sd, cpu);
  2130. }
  2131. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2132. {
  2133. unsigned long weight = sd->span_weight;
  2134. unsigned long smt_gain = sd->smt_gain;
  2135. smt_gain /= weight;
  2136. return smt_gain;
  2137. }
  2138. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2139. {
  2140. return default_scale_smt_power(sd, cpu);
  2141. }
  2142. unsigned long scale_rt_power(int cpu)
  2143. {
  2144. struct rq *rq = cpu_rq(cpu);
  2145. u64 total, available;
  2146. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2147. if (unlikely(total < rq->rt_avg)) {
  2148. /* Ensures that power won't end up being negative */
  2149. available = 0;
  2150. } else {
  2151. available = total - rq->rt_avg;
  2152. }
  2153. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  2154. total = SCHED_LOAD_SCALE;
  2155. total >>= SCHED_LOAD_SHIFT;
  2156. return div_u64(available, total);
  2157. }
  2158. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2159. {
  2160. unsigned long weight = sd->span_weight;
  2161. unsigned long power = SCHED_LOAD_SCALE;
  2162. struct sched_group *sdg = sd->groups;
  2163. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2164. if (sched_feat(ARCH_POWER))
  2165. power *= arch_scale_smt_power(sd, cpu);
  2166. else
  2167. power *= default_scale_smt_power(sd, cpu);
  2168. power >>= SCHED_LOAD_SHIFT;
  2169. }
  2170. sdg->cpu_power_orig = power;
  2171. if (sched_feat(ARCH_POWER))
  2172. power *= arch_scale_freq_power(sd, cpu);
  2173. else
  2174. power *= default_scale_freq_power(sd, cpu);
  2175. power >>= SCHED_LOAD_SHIFT;
  2176. power *= scale_rt_power(cpu);
  2177. power >>= SCHED_LOAD_SHIFT;
  2178. if (!power)
  2179. power = 1;
  2180. cpu_rq(cpu)->cpu_power = power;
  2181. sdg->cpu_power = power;
  2182. }
  2183. static void update_group_power(struct sched_domain *sd, int cpu)
  2184. {
  2185. struct sched_domain *child = sd->child;
  2186. struct sched_group *group, *sdg = sd->groups;
  2187. unsigned long power;
  2188. if (!child) {
  2189. update_cpu_power(sd, cpu);
  2190. return;
  2191. }
  2192. power = 0;
  2193. group = child->groups;
  2194. do {
  2195. power += group->cpu_power;
  2196. group = group->next;
  2197. } while (group != child->groups);
  2198. sdg->cpu_power = power;
  2199. }
  2200. /*
  2201. * Try and fix up capacity for tiny siblings, this is needed when
  2202. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2203. * which on its own isn't powerful enough.
  2204. *
  2205. * See update_sd_pick_busiest() and check_asym_packing().
  2206. */
  2207. static inline int
  2208. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2209. {
  2210. /*
  2211. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  2212. */
  2213. if (sd->level != SD_LV_SIBLING)
  2214. return 0;
  2215. /*
  2216. * If ~90% of the cpu_power is still there, we're good.
  2217. */
  2218. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  2219. return 1;
  2220. return 0;
  2221. }
  2222. /**
  2223. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2224. * @sd: The sched_domain whose statistics are to be updated.
  2225. * @group: sched_group whose statistics are to be updated.
  2226. * @this_cpu: Cpu for which load balance is currently performed.
  2227. * @idle: Idle status of this_cpu
  2228. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2229. * @local_group: Does group contain this_cpu.
  2230. * @cpus: Set of cpus considered for load balancing.
  2231. * @balance: Should we balance.
  2232. * @sgs: variable to hold the statistics for this group.
  2233. */
  2234. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2235. struct sched_group *group, int this_cpu,
  2236. enum cpu_idle_type idle, int load_idx,
  2237. int local_group, const struct cpumask *cpus,
  2238. int *balance, struct sg_lb_stats *sgs)
  2239. {
  2240. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2241. int i;
  2242. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2243. unsigned long avg_load_per_task = 0;
  2244. if (local_group)
  2245. balance_cpu = group_first_cpu(group);
  2246. /* Tally up the load of all CPUs in the group */
  2247. max_cpu_load = 0;
  2248. min_cpu_load = ~0UL;
  2249. max_nr_running = 0;
  2250. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2251. struct rq *rq = cpu_rq(i);
  2252. /* Bias balancing toward cpus of our domain */
  2253. if (local_group) {
  2254. if (idle_cpu(i) && !first_idle_cpu) {
  2255. first_idle_cpu = 1;
  2256. balance_cpu = i;
  2257. }
  2258. load = target_load(i, load_idx);
  2259. } else {
  2260. load = source_load(i, load_idx);
  2261. if (load > max_cpu_load) {
  2262. max_cpu_load = load;
  2263. max_nr_running = rq->nr_running;
  2264. }
  2265. if (min_cpu_load > load)
  2266. min_cpu_load = load;
  2267. }
  2268. sgs->group_load += load;
  2269. sgs->sum_nr_running += rq->nr_running;
  2270. sgs->sum_weighted_load += weighted_cpuload(i);
  2271. if (idle_cpu(i))
  2272. sgs->idle_cpus++;
  2273. }
  2274. /*
  2275. * First idle cpu or the first cpu(busiest) in this sched group
  2276. * is eligible for doing load balancing at this and above
  2277. * domains. In the newly idle case, we will allow all the cpu's
  2278. * to do the newly idle load balance.
  2279. */
  2280. if (idle != CPU_NEWLY_IDLE && local_group) {
  2281. if (balance_cpu != this_cpu) {
  2282. *balance = 0;
  2283. return;
  2284. }
  2285. update_group_power(sd, this_cpu);
  2286. }
  2287. /* Adjust by relative CPU power of the group */
  2288. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2289. /*
  2290. * Consider the group unbalanced when the imbalance is larger
  2291. * than the average weight of a task.
  2292. *
  2293. * APZ: with cgroup the avg task weight can vary wildly and
  2294. * might not be a suitable number - should we keep a
  2295. * normalized nr_running number somewhere that negates
  2296. * the hierarchy?
  2297. */
  2298. if (sgs->sum_nr_running)
  2299. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2300. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  2301. sgs->group_imb = 1;
  2302. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2303. if (!sgs->group_capacity)
  2304. sgs->group_capacity = fix_small_capacity(sd, group);
  2305. sgs->group_weight = group->group_weight;
  2306. if (sgs->group_capacity > sgs->sum_nr_running)
  2307. sgs->group_has_capacity = 1;
  2308. }
  2309. /**
  2310. * update_sd_pick_busiest - return 1 on busiest group
  2311. * @sd: sched_domain whose statistics are to be checked
  2312. * @sds: sched_domain statistics
  2313. * @sg: sched_group candidate to be checked for being the busiest
  2314. * @sgs: sched_group statistics
  2315. * @this_cpu: the current cpu
  2316. *
  2317. * Determine if @sg is a busier group than the previously selected
  2318. * busiest group.
  2319. */
  2320. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2321. struct sd_lb_stats *sds,
  2322. struct sched_group *sg,
  2323. struct sg_lb_stats *sgs,
  2324. int this_cpu)
  2325. {
  2326. if (sgs->avg_load <= sds->max_load)
  2327. return false;
  2328. if (sgs->sum_nr_running > sgs->group_capacity)
  2329. return true;
  2330. if (sgs->group_imb)
  2331. return true;
  2332. /*
  2333. * ASYM_PACKING needs to move all the work to the lowest
  2334. * numbered CPUs in the group, therefore mark all groups
  2335. * higher than ourself as busy.
  2336. */
  2337. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2338. this_cpu < group_first_cpu(sg)) {
  2339. if (!sds->busiest)
  2340. return true;
  2341. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2342. return true;
  2343. }
  2344. return false;
  2345. }
  2346. /**
  2347. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2348. * @sd: sched_domain whose statistics are to be updated.
  2349. * @this_cpu: Cpu for which load balance is currently performed.
  2350. * @idle: Idle status of this_cpu
  2351. * @cpus: Set of cpus considered for load balancing.
  2352. * @balance: Should we balance.
  2353. * @sds: variable to hold the statistics for this sched_domain.
  2354. */
  2355. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2356. enum cpu_idle_type idle, const struct cpumask *cpus,
  2357. int *balance, struct sd_lb_stats *sds)
  2358. {
  2359. struct sched_domain *child = sd->child;
  2360. struct sched_group *sg = sd->groups;
  2361. struct sg_lb_stats sgs;
  2362. int load_idx, prefer_sibling = 0;
  2363. if (child && child->flags & SD_PREFER_SIBLING)
  2364. prefer_sibling = 1;
  2365. init_sd_power_savings_stats(sd, sds, idle);
  2366. load_idx = get_sd_load_idx(sd, idle);
  2367. do {
  2368. int local_group;
  2369. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2370. memset(&sgs, 0, sizeof(sgs));
  2371. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  2372. local_group, cpus, balance, &sgs);
  2373. if (local_group && !(*balance))
  2374. return;
  2375. sds->total_load += sgs.group_load;
  2376. sds->total_pwr += sg->cpu_power;
  2377. /*
  2378. * In case the child domain prefers tasks go to siblings
  2379. * first, lower the sg capacity to one so that we'll try
  2380. * and move all the excess tasks away. We lower the capacity
  2381. * of a group only if the local group has the capacity to fit
  2382. * these excess tasks, i.e. nr_running < group_capacity. The
  2383. * extra check prevents the case where you always pull from the
  2384. * heaviest group when it is already under-utilized (possible
  2385. * with a large weight task outweighs the tasks on the system).
  2386. */
  2387. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2388. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2389. if (local_group) {
  2390. sds->this_load = sgs.avg_load;
  2391. sds->this = sg;
  2392. sds->this_nr_running = sgs.sum_nr_running;
  2393. sds->this_load_per_task = sgs.sum_weighted_load;
  2394. sds->this_has_capacity = sgs.group_has_capacity;
  2395. sds->this_idle_cpus = sgs.idle_cpus;
  2396. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2397. sds->max_load = sgs.avg_load;
  2398. sds->busiest = sg;
  2399. sds->busiest_nr_running = sgs.sum_nr_running;
  2400. sds->busiest_idle_cpus = sgs.idle_cpus;
  2401. sds->busiest_group_capacity = sgs.group_capacity;
  2402. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2403. sds->busiest_has_capacity = sgs.group_has_capacity;
  2404. sds->busiest_group_weight = sgs.group_weight;
  2405. sds->group_imb = sgs.group_imb;
  2406. }
  2407. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2408. sg = sg->next;
  2409. } while (sg != sd->groups);
  2410. }
  2411. int __weak arch_sd_sibling_asym_packing(void)
  2412. {
  2413. return 0*SD_ASYM_PACKING;
  2414. }
  2415. /**
  2416. * check_asym_packing - Check to see if the group is packed into the
  2417. * sched doman.
  2418. *
  2419. * This is primarily intended to used at the sibling level. Some
  2420. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2421. * case of POWER7, it can move to lower SMT modes only when higher
  2422. * threads are idle. When in lower SMT modes, the threads will
  2423. * perform better since they share less core resources. Hence when we
  2424. * have idle threads, we want them to be the higher ones.
  2425. *
  2426. * This packing function is run on idle threads. It checks to see if
  2427. * the busiest CPU in this domain (core in the P7 case) has a higher
  2428. * CPU number than the packing function is being run on. Here we are
  2429. * assuming lower CPU number will be equivalent to lower a SMT thread
  2430. * number.
  2431. *
  2432. * Returns 1 when packing is required and a task should be moved to
  2433. * this CPU. The amount of the imbalance is returned in *imbalance.
  2434. *
  2435. * @sd: The sched_domain whose packing is to be checked.
  2436. * @sds: Statistics of the sched_domain which is to be packed
  2437. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2438. * @imbalance: returns amount of imbalanced due to packing.
  2439. */
  2440. static int check_asym_packing(struct sched_domain *sd,
  2441. struct sd_lb_stats *sds,
  2442. int this_cpu, unsigned long *imbalance)
  2443. {
  2444. int busiest_cpu;
  2445. if (!(sd->flags & SD_ASYM_PACKING))
  2446. return 0;
  2447. if (!sds->busiest)
  2448. return 0;
  2449. busiest_cpu = group_first_cpu(sds->busiest);
  2450. if (this_cpu > busiest_cpu)
  2451. return 0;
  2452. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2453. SCHED_LOAD_SCALE);
  2454. return 1;
  2455. }
  2456. /**
  2457. * fix_small_imbalance - Calculate the minor imbalance that exists
  2458. * amongst the groups of a sched_domain, during
  2459. * load balancing.
  2460. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2461. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2462. * @imbalance: Variable to store the imbalance.
  2463. */
  2464. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2465. int this_cpu, unsigned long *imbalance)
  2466. {
  2467. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2468. unsigned int imbn = 2;
  2469. unsigned long scaled_busy_load_per_task;
  2470. if (sds->this_nr_running) {
  2471. sds->this_load_per_task /= sds->this_nr_running;
  2472. if (sds->busiest_load_per_task >
  2473. sds->this_load_per_task)
  2474. imbn = 1;
  2475. } else
  2476. sds->this_load_per_task =
  2477. cpu_avg_load_per_task(this_cpu);
  2478. scaled_busy_load_per_task = sds->busiest_load_per_task
  2479. * SCHED_LOAD_SCALE;
  2480. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2481. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2482. (scaled_busy_load_per_task * imbn)) {
  2483. *imbalance = sds->busiest_load_per_task;
  2484. return;
  2485. }
  2486. /*
  2487. * OK, we don't have enough imbalance to justify moving tasks,
  2488. * however we may be able to increase total CPU power used by
  2489. * moving them.
  2490. */
  2491. pwr_now += sds->busiest->cpu_power *
  2492. min(sds->busiest_load_per_task, sds->max_load);
  2493. pwr_now += sds->this->cpu_power *
  2494. min(sds->this_load_per_task, sds->this_load);
  2495. pwr_now /= SCHED_LOAD_SCALE;
  2496. /* Amount of load we'd subtract */
  2497. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2498. sds->busiest->cpu_power;
  2499. if (sds->max_load > tmp)
  2500. pwr_move += sds->busiest->cpu_power *
  2501. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2502. /* Amount of load we'd add */
  2503. if (sds->max_load * sds->busiest->cpu_power <
  2504. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2505. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2506. sds->this->cpu_power;
  2507. else
  2508. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2509. sds->this->cpu_power;
  2510. pwr_move += sds->this->cpu_power *
  2511. min(sds->this_load_per_task, sds->this_load + tmp);
  2512. pwr_move /= SCHED_LOAD_SCALE;
  2513. /* Move if we gain throughput */
  2514. if (pwr_move > pwr_now)
  2515. *imbalance = sds->busiest_load_per_task;
  2516. }
  2517. /**
  2518. * calculate_imbalance - Calculate the amount of imbalance present within the
  2519. * groups of a given sched_domain during load balance.
  2520. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2521. * @this_cpu: Cpu for which currently load balance is being performed.
  2522. * @imbalance: The variable to store the imbalance.
  2523. */
  2524. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2525. unsigned long *imbalance)
  2526. {
  2527. unsigned long max_pull, load_above_capacity = ~0UL;
  2528. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2529. if (sds->group_imb) {
  2530. sds->busiest_load_per_task =
  2531. min(sds->busiest_load_per_task, sds->avg_load);
  2532. }
  2533. /*
  2534. * In the presence of smp nice balancing, certain scenarios can have
  2535. * max load less than avg load(as we skip the groups at or below
  2536. * its cpu_power, while calculating max_load..)
  2537. */
  2538. if (sds->max_load < sds->avg_load) {
  2539. *imbalance = 0;
  2540. return fix_small_imbalance(sds, this_cpu, imbalance);
  2541. }
  2542. if (!sds->group_imb) {
  2543. /*
  2544. * Don't want to pull so many tasks that a group would go idle.
  2545. */
  2546. load_above_capacity = (sds->busiest_nr_running -
  2547. sds->busiest_group_capacity);
  2548. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2549. load_above_capacity /= sds->busiest->cpu_power;
  2550. }
  2551. /*
  2552. * We're trying to get all the cpus to the average_load, so we don't
  2553. * want to push ourselves above the average load, nor do we wish to
  2554. * reduce the max loaded cpu below the average load. At the same time,
  2555. * we also don't want to reduce the group load below the group capacity
  2556. * (so that we can implement power-savings policies etc). Thus we look
  2557. * for the minimum possible imbalance.
  2558. * Be careful of negative numbers as they'll appear as very large values
  2559. * with unsigned longs.
  2560. */
  2561. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2562. /* How much load to actually move to equalise the imbalance */
  2563. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2564. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2565. / SCHED_LOAD_SCALE;
  2566. /*
  2567. * if *imbalance is less than the average load per runnable task
  2568. * there is no guarantee that any tasks will be moved so we'll have
  2569. * a think about bumping its value to force at least one task to be
  2570. * moved
  2571. */
  2572. if (*imbalance < sds->busiest_load_per_task)
  2573. return fix_small_imbalance(sds, this_cpu, imbalance);
  2574. }
  2575. /******* find_busiest_group() helpers end here *********************/
  2576. /**
  2577. * find_busiest_group - Returns the busiest group within the sched_domain
  2578. * if there is an imbalance. If there isn't an imbalance, and
  2579. * the user has opted for power-savings, it returns a group whose
  2580. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2581. * such a group exists.
  2582. *
  2583. * Also calculates the amount of weighted load which should be moved
  2584. * to restore balance.
  2585. *
  2586. * @sd: The sched_domain whose busiest group is to be returned.
  2587. * @this_cpu: The cpu for which load balancing is currently being performed.
  2588. * @imbalance: Variable which stores amount of weighted load which should
  2589. * be moved to restore balance/put a group to idle.
  2590. * @idle: The idle status of this_cpu.
  2591. * @cpus: The set of CPUs under consideration for load-balancing.
  2592. * @balance: Pointer to a variable indicating if this_cpu
  2593. * is the appropriate cpu to perform load balancing at this_level.
  2594. *
  2595. * Returns: - the busiest group if imbalance exists.
  2596. * - If no imbalance and user has opted for power-savings balance,
  2597. * return the least loaded group whose CPUs can be
  2598. * put to idle by rebalancing its tasks onto our group.
  2599. */
  2600. static struct sched_group *
  2601. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2602. unsigned long *imbalance, enum cpu_idle_type idle,
  2603. const struct cpumask *cpus, int *balance)
  2604. {
  2605. struct sd_lb_stats sds;
  2606. memset(&sds, 0, sizeof(sds));
  2607. /*
  2608. * Compute the various statistics relavent for load balancing at
  2609. * this level.
  2610. */
  2611. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  2612. /*
  2613. * this_cpu is not the appropriate cpu to perform load balancing at
  2614. * this level.
  2615. */
  2616. if (!(*balance))
  2617. goto ret;
  2618. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2619. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2620. return sds.busiest;
  2621. /* There is no busy sibling group to pull tasks from */
  2622. if (!sds.busiest || sds.busiest_nr_running == 0)
  2623. goto out_balanced;
  2624. /*
  2625. * If the busiest group is imbalanced the below checks don't
  2626. * work because they assumes all things are equal, which typically
  2627. * isn't true due to cpus_allowed constraints and the like.
  2628. */
  2629. if (sds.group_imb)
  2630. goto force_balance;
  2631. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2632. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2633. !sds.busiest_has_capacity)
  2634. goto force_balance;
  2635. /*
  2636. * If the local group is more busy than the selected busiest group
  2637. * don't try and pull any tasks.
  2638. */
  2639. if (sds.this_load >= sds.max_load)
  2640. goto out_balanced;
  2641. /*
  2642. * Don't pull any tasks if this group is already above the domain
  2643. * average load.
  2644. */
  2645. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2646. if (sds.this_load >= sds.avg_load)
  2647. goto out_balanced;
  2648. if (idle == CPU_IDLE) {
  2649. /*
  2650. * This cpu is idle. If the busiest group load doesn't
  2651. * have more tasks than the number of available cpu's and
  2652. * there is no imbalance between this and busiest group
  2653. * wrt to idle cpu's, it is balanced.
  2654. */
  2655. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2656. sds.busiest_nr_running <= sds.busiest_group_weight)
  2657. goto out_balanced;
  2658. } else {
  2659. /*
  2660. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  2661. * imbalance_pct to be conservative.
  2662. */
  2663. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2664. goto out_balanced;
  2665. }
  2666. force_balance:
  2667. /* Looks like there is an imbalance. Compute it */
  2668. calculate_imbalance(&sds, this_cpu, imbalance);
  2669. return sds.busiest;
  2670. out_balanced:
  2671. /*
  2672. * There is no obvious imbalance. But check if we can do some balancing
  2673. * to save power.
  2674. */
  2675. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2676. return sds.busiest;
  2677. ret:
  2678. *imbalance = 0;
  2679. return NULL;
  2680. }
  2681. /*
  2682. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2683. */
  2684. static struct rq *
  2685. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2686. enum cpu_idle_type idle, unsigned long imbalance,
  2687. const struct cpumask *cpus)
  2688. {
  2689. struct rq *busiest = NULL, *rq;
  2690. unsigned long max_load = 0;
  2691. int i;
  2692. for_each_cpu(i, sched_group_cpus(group)) {
  2693. unsigned long power = power_of(i);
  2694. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2695. unsigned long wl;
  2696. if (!capacity)
  2697. capacity = fix_small_capacity(sd, group);
  2698. if (!cpumask_test_cpu(i, cpus))
  2699. continue;
  2700. rq = cpu_rq(i);
  2701. wl = weighted_cpuload(i);
  2702. /*
  2703. * When comparing with imbalance, use weighted_cpuload()
  2704. * which is not scaled with the cpu power.
  2705. */
  2706. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2707. continue;
  2708. /*
  2709. * For the load comparisons with the other cpu's, consider
  2710. * the weighted_cpuload() scaled with the cpu power, so that
  2711. * the load can be moved away from the cpu that is potentially
  2712. * running at a lower capacity.
  2713. */
  2714. wl = (wl * SCHED_LOAD_SCALE) / power;
  2715. if (wl > max_load) {
  2716. max_load = wl;
  2717. busiest = rq;
  2718. }
  2719. }
  2720. return busiest;
  2721. }
  2722. /*
  2723. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2724. * so long as it is large enough.
  2725. */
  2726. #define MAX_PINNED_INTERVAL 512
  2727. /* Working cpumask for load_balance and load_balance_newidle. */
  2728. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2729. static int need_active_balance(struct sched_domain *sd, int idle,
  2730. int busiest_cpu, int this_cpu)
  2731. {
  2732. if (idle == CPU_NEWLY_IDLE) {
  2733. /*
  2734. * ASYM_PACKING needs to force migrate tasks from busy but
  2735. * higher numbered CPUs in order to pack all tasks in the
  2736. * lowest numbered CPUs.
  2737. */
  2738. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2739. return 1;
  2740. /*
  2741. * The only task running in a non-idle cpu can be moved to this
  2742. * cpu in an attempt to completely freeup the other CPU
  2743. * package.
  2744. *
  2745. * The package power saving logic comes from
  2746. * find_busiest_group(). If there are no imbalance, then
  2747. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2748. * f_b_g() will select a group from which a running task may be
  2749. * pulled to this cpu in order to make the other package idle.
  2750. * If there is no opportunity to make a package idle and if
  2751. * there are no imbalance, then f_b_g() will return NULL and no
  2752. * action will be taken in load_balance_newidle().
  2753. *
  2754. * Under normal task pull operation due to imbalance, there
  2755. * will be more than one task in the source run queue and
  2756. * move_tasks() will succeed. ld_moved will be true and this
  2757. * active balance code will not be triggered.
  2758. */
  2759. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2760. return 0;
  2761. }
  2762. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2763. }
  2764. static int active_load_balance_cpu_stop(void *data);
  2765. /*
  2766. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2767. * tasks if there is an imbalance.
  2768. */
  2769. static int load_balance(int this_cpu, struct rq *this_rq,
  2770. struct sched_domain *sd, enum cpu_idle_type idle,
  2771. int *balance)
  2772. {
  2773. int ld_moved, all_pinned = 0, active_balance = 0;
  2774. struct sched_group *group;
  2775. unsigned long imbalance;
  2776. struct rq *busiest;
  2777. unsigned long flags;
  2778. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2779. cpumask_copy(cpus, cpu_active_mask);
  2780. schedstat_inc(sd, lb_count[idle]);
  2781. redo:
  2782. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  2783. cpus, balance);
  2784. if (*balance == 0)
  2785. goto out_balanced;
  2786. if (!group) {
  2787. schedstat_inc(sd, lb_nobusyg[idle]);
  2788. goto out_balanced;
  2789. }
  2790. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2791. if (!busiest) {
  2792. schedstat_inc(sd, lb_nobusyq[idle]);
  2793. goto out_balanced;
  2794. }
  2795. BUG_ON(busiest == this_rq);
  2796. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2797. ld_moved = 0;
  2798. if (busiest->nr_running > 1) {
  2799. /*
  2800. * Attempt to move tasks. If find_busiest_group has found
  2801. * an imbalance but busiest->nr_running <= 1, the group is
  2802. * still unbalanced. ld_moved simply stays zero, so it is
  2803. * correctly treated as an imbalance.
  2804. */
  2805. local_irq_save(flags);
  2806. double_rq_lock(this_rq, busiest);
  2807. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2808. imbalance, sd, idle, &all_pinned);
  2809. double_rq_unlock(this_rq, busiest);
  2810. local_irq_restore(flags);
  2811. /*
  2812. * some other cpu did the load balance for us.
  2813. */
  2814. if (ld_moved && this_cpu != smp_processor_id())
  2815. resched_cpu(this_cpu);
  2816. /* All tasks on this runqueue were pinned by CPU affinity */
  2817. if (unlikely(all_pinned)) {
  2818. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2819. if (!cpumask_empty(cpus))
  2820. goto redo;
  2821. goto out_balanced;
  2822. }
  2823. }
  2824. if (!ld_moved) {
  2825. schedstat_inc(sd, lb_failed[idle]);
  2826. /*
  2827. * Increment the failure counter only on periodic balance.
  2828. * We do not want newidle balance, which can be very
  2829. * frequent, pollute the failure counter causing
  2830. * excessive cache_hot migrations and active balances.
  2831. */
  2832. if (idle != CPU_NEWLY_IDLE)
  2833. sd->nr_balance_failed++;
  2834. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  2835. raw_spin_lock_irqsave(&busiest->lock, flags);
  2836. /* don't kick the active_load_balance_cpu_stop,
  2837. * if the curr task on busiest cpu can't be
  2838. * moved to this_cpu
  2839. */
  2840. if (!cpumask_test_cpu(this_cpu,
  2841. &busiest->curr->cpus_allowed)) {
  2842. raw_spin_unlock_irqrestore(&busiest->lock,
  2843. flags);
  2844. all_pinned = 1;
  2845. goto out_one_pinned;
  2846. }
  2847. /*
  2848. * ->active_balance synchronizes accesses to
  2849. * ->active_balance_work. Once set, it's cleared
  2850. * only after active load balance is finished.
  2851. */
  2852. if (!busiest->active_balance) {
  2853. busiest->active_balance = 1;
  2854. busiest->push_cpu = this_cpu;
  2855. active_balance = 1;
  2856. }
  2857. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2858. if (active_balance)
  2859. stop_one_cpu_nowait(cpu_of(busiest),
  2860. active_load_balance_cpu_stop, busiest,
  2861. &busiest->active_balance_work);
  2862. /*
  2863. * We've kicked active balancing, reset the failure
  2864. * counter.
  2865. */
  2866. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2867. }
  2868. } else
  2869. sd->nr_balance_failed = 0;
  2870. if (likely(!active_balance)) {
  2871. /* We were unbalanced, so reset the balancing interval */
  2872. sd->balance_interval = sd->min_interval;
  2873. } else {
  2874. /*
  2875. * If we've begun active balancing, start to back off. This
  2876. * case may not be covered by the all_pinned logic if there
  2877. * is only 1 task on the busy runqueue (because we don't call
  2878. * move_tasks).
  2879. */
  2880. if (sd->balance_interval < sd->max_interval)
  2881. sd->balance_interval *= 2;
  2882. }
  2883. goto out;
  2884. out_balanced:
  2885. schedstat_inc(sd, lb_balanced[idle]);
  2886. sd->nr_balance_failed = 0;
  2887. out_one_pinned:
  2888. /* tune up the balancing interval */
  2889. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2890. (sd->balance_interval < sd->max_interval))
  2891. sd->balance_interval *= 2;
  2892. ld_moved = 0;
  2893. out:
  2894. return ld_moved;
  2895. }
  2896. /*
  2897. * idle_balance is called by schedule() if this_cpu is about to become
  2898. * idle. Attempts to pull tasks from other CPUs.
  2899. */
  2900. static void idle_balance(int this_cpu, struct rq *this_rq)
  2901. {
  2902. struct sched_domain *sd;
  2903. int pulled_task = 0;
  2904. unsigned long next_balance = jiffies + HZ;
  2905. this_rq->idle_stamp = this_rq->clock;
  2906. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2907. return;
  2908. /*
  2909. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2910. */
  2911. raw_spin_unlock(&this_rq->lock);
  2912. update_shares(this_cpu);
  2913. for_each_domain(this_cpu, sd) {
  2914. unsigned long interval;
  2915. int balance = 1;
  2916. if (!(sd->flags & SD_LOAD_BALANCE))
  2917. continue;
  2918. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2919. /* If we've pulled tasks over stop searching: */
  2920. pulled_task = load_balance(this_cpu, this_rq,
  2921. sd, CPU_NEWLY_IDLE, &balance);
  2922. }
  2923. interval = msecs_to_jiffies(sd->balance_interval);
  2924. if (time_after(next_balance, sd->last_balance + interval))
  2925. next_balance = sd->last_balance + interval;
  2926. if (pulled_task) {
  2927. this_rq->idle_stamp = 0;
  2928. break;
  2929. }
  2930. }
  2931. raw_spin_lock(&this_rq->lock);
  2932. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2933. /*
  2934. * We are going idle. next_balance may be set based on
  2935. * a busy processor. So reset next_balance.
  2936. */
  2937. this_rq->next_balance = next_balance;
  2938. }
  2939. }
  2940. /*
  2941. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2942. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2943. * least 1 task to be running on each physical CPU where possible, and
  2944. * avoids physical / logical imbalances.
  2945. */
  2946. static int active_load_balance_cpu_stop(void *data)
  2947. {
  2948. struct rq *busiest_rq = data;
  2949. int busiest_cpu = cpu_of(busiest_rq);
  2950. int target_cpu = busiest_rq->push_cpu;
  2951. struct rq *target_rq = cpu_rq(target_cpu);
  2952. struct sched_domain *sd;
  2953. raw_spin_lock_irq(&busiest_rq->lock);
  2954. /* make sure the requested cpu hasn't gone down in the meantime */
  2955. if (unlikely(busiest_cpu != smp_processor_id() ||
  2956. !busiest_rq->active_balance))
  2957. goto out_unlock;
  2958. /* Is there any task to move? */
  2959. if (busiest_rq->nr_running <= 1)
  2960. goto out_unlock;
  2961. /*
  2962. * This condition is "impossible", if it occurs
  2963. * we need to fix it. Originally reported by
  2964. * Bjorn Helgaas on a 128-cpu setup.
  2965. */
  2966. BUG_ON(busiest_rq == target_rq);
  2967. /* move a task from busiest_rq to target_rq */
  2968. double_lock_balance(busiest_rq, target_rq);
  2969. /* Search for an sd spanning us and the target CPU. */
  2970. for_each_domain(target_cpu, sd) {
  2971. if ((sd->flags & SD_LOAD_BALANCE) &&
  2972. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2973. break;
  2974. }
  2975. if (likely(sd)) {
  2976. schedstat_inc(sd, alb_count);
  2977. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2978. sd, CPU_IDLE))
  2979. schedstat_inc(sd, alb_pushed);
  2980. else
  2981. schedstat_inc(sd, alb_failed);
  2982. }
  2983. double_unlock_balance(busiest_rq, target_rq);
  2984. out_unlock:
  2985. busiest_rq->active_balance = 0;
  2986. raw_spin_unlock_irq(&busiest_rq->lock);
  2987. return 0;
  2988. }
  2989. #ifdef CONFIG_NO_HZ
  2990. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2991. static void trigger_sched_softirq(void *data)
  2992. {
  2993. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2994. }
  2995. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2996. {
  2997. csd->func = trigger_sched_softirq;
  2998. csd->info = NULL;
  2999. csd->flags = 0;
  3000. csd->priv = 0;
  3001. }
  3002. /*
  3003. * idle load balancing details
  3004. * - One of the idle CPUs nominates itself as idle load_balancer, while
  3005. * entering idle.
  3006. * - This idle load balancer CPU will also go into tickless mode when
  3007. * it is idle, just like all other idle CPUs
  3008. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3009. * needed, they will kick the idle load balancer, which then does idle
  3010. * load balancing for all the idle CPUs.
  3011. */
  3012. static struct {
  3013. atomic_t load_balancer;
  3014. atomic_t first_pick_cpu;
  3015. atomic_t second_pick_cpu;
  3016. cpumask_var_t idle_cpus_mask;
  3017. cpumask_var_t grp_idle_mask;
  3018. unsigned long next_balance; /* in jiffy units */
  3019. } nohz ____cacheline_aligned;
  3020. int get_nohz_load_balancer(void)
  3021. {
  3022. return atomic_read(&nohz.load_balancer);
  3023. }
  3024. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3025. /**
  3026. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3027. * @cpu: The cpu whose lowest level of sched domain is to
  3028. * be returned.
  3029. * @flag: The flag to check for the lowest sched_domain
  3030. * for the given cpu.
  3031. *
  3032. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3033. */
  3034. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3035. {
  3036. struct sched_domain *sd;
  3037. for_each_domain(cpu, sd)
  3038. if (sd && (sd->flags & flag))
  3039. break;
  3040. return sd;
  3041. }
  3042. /**
  3043. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3044. * @cpu: The cpu whose domains we're iterating over.
  3045. * @sd: variable holding the value of the power_savings_sd
  3046. * for cpu.
  3047. * @flag: The flag to filter the sched_domains to be iterated.
  3048. *
  3049. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3050. * set, starting from the lowest sched_domain to the highest.
  3051. */
  3052. #define for_each_flag_domain(cpu, sd, flag) \
  3053. for (sd = lowest_flag_domain(cpu, flag); \
  3054. (sd && (sd->flags & flag)); sd = sd->parent)
  3055. /**
  3056. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3057. * @ilb_group: group to be checked for semi-idleness
  3058. *
  3059. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3060. *
  3061. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3062. * and atleast one non-idle CPU. This helper function checks if the given
  3063. * sched_group is semi-idle or not.
  3064. */
  3065. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3066. {
  3067. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3068. sched_group_cpus(ilb_group));
  3069. /*
  3070. * A sched_group is semi-idle when it has atleast one busy cpu
  3071. * and atleast one idle cpu.
  3072. */
  3073. if (cpumask_empty(nohz.grp_idle_mask))
  3074. return 0;
  3075. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3076. return 0;
  3077. return 1;
  3078. }
  3079. /**
  3080. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3081. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3082. *
  3083. * Returns: Returns the id of the idle load balancer if it exists,
  3084. * Else, returns >= nr_cpu_ids.
  3085. *
  3086. * This algorithm picks the idle load balancer such that it belongs to a
  3087. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3088. * completely idle packages/cores just for the purpose of idle load balancing
  3089. * when there are other idle cpu's which are better suited for that job.
  3090. */
  3091. static int find_new_ilb(int cpu)
  3092. {
  3093. struct sched_domain *sd;
  3094. struct sched_group *ilb_group;
  3095. /*
  3096. * Have idle load balancer selection from semi-idle packages only
  3097. * when power-aware load balancing is enabled
  3098. */
  3099. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3100. goto out_done;
  3101. /*
  3102. * Optimize for the case when we have no idle CPUs or only one
  3103. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3104. */
  3105. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3106. goto out_done;
  3107. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3108. ilb_group = sd->groups;
  3109. do {
  3110. if (is_semi_idle_group(ilb_group))
  3111. return cpumask_first(nohz.grp_idle_mask);
  3112. ilb_group = ilb_group->next;
  3113. } while (ilb_group != sd->groups);
  3114. }
  3115. out_done:
  3116. return nr_cpu_ids;
  3117. }
  3118. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3119. static inline int find_new_ilb(int call_cpu)
  3120. {
  3121. return nr_cpu_ids;
  3122. }
  3123. #endif
  3124. /*
  3125. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3126. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3127. * CPU (if there is one).
  3128. */
  3129. static void nohz_balancer_kick(int cpu)
  3130. {
  3131. int ilb_cpu;
  3132. nohz.next_balance++;
  3133. ilb_cpu = get_nohz_load_balancer();
  3134. if (ilb_cpu >= nr_cpu_ids) {
  3135. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3136. if (ilb_cpu >= nr_cpu_ids)
  3137. return;
  3138. }
  3139. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3140. struct call_single_data *cp;
  3141. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3142. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3143. __smp_call_function_single(ilb_cpu, cp, 0);
  3144. }
  3145. return;
  3146. }
  3147. /*
  3148. * This routine will try to nominate the ilb (idle load balancing)
  3149. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3150. * load balancing on behalf of all those cpus.
  3151. *
  3152. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3153. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3154. * idle load balancing by kicking one of the idle CPUs.
  3155. *
  3156. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3157. * ilb owner CPU in future (when there is a need for idle load balancing on
  3158. * behalf of all idle CPUs).
  3159. */
  3160. void select_nohz_load_balancer(int stop_tick)
  3161. {
  3162. int cpu = smp_processor_id();
  3163. if (stop_tick) {
  3164. if (!cpu_active(cpu)) {
  3165. if (atomic_read(&nohz.load_balancer) != cpu)
  3166. return;
  3167. /*
  3168. * If we are going offline and still the leader,
  3169. * give up!
  3170. */
  3171. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3172. nr_cpu_ids) != cpu)
  3173. BUG();
  3174. return;
  3175. }
  3176. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3177. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3178. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3179. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3180. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3181. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3182. int new_ilb;
  3183. /* make me the ilb owner */
  3184. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3185. cpu) != nr_cpu_ids)
  3186. return;
  3187. /*
  3188. * Check to see if there is a more power-efficient
  3189. * ilb.
  3190. */
  3191. new_ilb = find_new_ilb(cpu);
  3192. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3193. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3194. resched_cpu(new_ilb);
  3195. return;
  3196. }
  3197. return;
  3198. }
  3199. } else {
  3200. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3201. return;
  3202. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3203. if (atomic_read(&nohz.load_balancer) == cpu)
  3204. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3205. nr_cpu_ids) != cpu)
  3206. BUG();
  3207. }
  3208. return;
  3209. }
  3210. #endif
  3211. static DEFINE_SPINLOCK(balancing);
  3212. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3213. /*
  3214. * Scale the max load_balance interval with the number of CPUs in the system.
  3215. * This trades load-balance latency on larger machines for less cross talk.
  3216. */
  3217. static void update_max_interval(void)
  3218. {
  3219. max_load_balance_interval = HZ*num_online_cpus()/10;
  3220. }
  3221. /*
  3222. * It checks each scheduling domain to see if it is due to be balanced,
  3223. * and initiates a balancing operation if so.
  3224. *
  3225. * Balancing parameters are set up in arch_init_sched_domains.
  3226. */
  3227. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3228. {
  3229. int balance = 1;
  3230. struct rq *rq = cpu_rq(cpu);
  3231. unsigned long interval;
  3232. struct sched_domain *sd;
  3233. /* Earliest time when we have to do rebalance again */
  3234. unsigned long next_balance = jiffies + 60*HZ;
  3235. int update_next_balance = 0;
  3236. int need_serialize;
  3237. update_shares(cpu);
  3238. for_each_domain(cpu, sd) {
  3239. if (!(sd->flags & SD_LOAD_BALANCE))
  3240. continue;
  3241. interval = sd->balance_interval;
  3242. if (idle != CPU_IDLE)
  3243. interval *= sd->busy_factor;
  3244. /* scale ms to jiffies */
  3245. interval = msecs_to_jiffies(interval);
  3246. interval = clamp(interval, 1UL, max_load_balance_interval);
  3247. need_serialize = sd->flags & SD_SERIALIZE;
  3248. if (need_serialize) {
  3249. if (!spin_trylock(&balancing))
  3250. goto out;
  3251. }
  3252. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3253. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3254. /*
  3255. * We've pulled tasks over so either we're no
  3256. * longer idle.
  3257. */
  3258. idle = CPU_NOT_IDLE;
  3259. }
  3260. sd->last_balance = jiffies;
  3261. }
  3262. if (need_serialize)
  3263. spin_unlock(&balancing);
  3264. out:
  3265. if (time_after(next_balance, sd->last_balance + interval)) {
  3266. next_balance = sd->last_balance + interval;
  3267. update_next_balance = 1;
  3268. }
  3269. /*
  3270. * Stop the load balance at this level. There is another
  3271. * CPU in our sched group which is doing load balancing more
  3272. * actively.
  3273. */
  3274. if (!balance)
  3275. break;
  3276. }
  3277. /*
  3278. * next_balance will be updated only when there is a need.
  3279. * When the cpu is attached to null domain for ex, it will not be
  3280. * updated.
  3281. */
  3282. if (likely(update_next_balance))
  3283. rq->next_balance = next_balance;
  3284. }
  3285. #ifdef CONFIG_NO_HZ
  3286. /*
  3287. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3288. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3289. */
  3290. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3291. {
  3292. struct rq *this_rq = cpu_rq(this_cpu);
  3293. struct rq *rq;
  3294. int balance_cpu;
  3295. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3296. return;
  3297. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3298. if (balance_cpu == this_cpu)
  3299. continue;
  3300. /*
  3301. * If this cpu gets work to do, stop the load balancing
  3302. * work being done for other cpus. Next load
  3303. * balancing owner will pick it up.
  3304. */
  3305. if (need_resched()) {
  3306. this_rq->nohz_balance_kick = 0;
  3307. break;
  3308. }
  3309. raw_spin_lock_irq(&this_rq->lock);
  3310. update_rq_clock(this_rq);
  3311. update_cpu_load(this_rq);
  3312. raw_spin_unlock_irq(&this_rq->lock);
  3313. rebalance_domains(balance_cpu, CPU_IDLE);
  3314. rq = cpu_rq(balance_cpu);
  3315. if (time_after(this_rq->next_balance, rq->next_balance))
  3316. this_rq->next_balance = rq->next_balance;
  3317. }
  3318. nohz.next_balance = this_rq->next_balance;
  3319. this_rq->nohz_balance_kick = 0;
  3320. }
  3321. /*
  3322. * Current heuristic for kicking the idle load balancer
  3323. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3324. * idle load balancer when it has more than one process active. This
  3325. * eliminates the need for idle load balancing altogether when we have
  3326. * only one running process in the system (common case).
  3327. * - If there are more than one busy CPU, idle load balancer may have
  3328. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3329. * SMT or core siblings and can run better if they move to different
  3330. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3331. * which will kick idle load balancer as soon as it has any load.
  3332. */
  3333. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3334. {
  3335. unsigned long now = jiffies;
  3336. int ret;
  3337. int first_pick_cpu, second_pick_cpu;
  3338. if (time_before(now, nohz.next_balance))
  3339. return 0;
  3340. if (rq->idle_at_tick)
  3341. return 0;
  3342. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3343. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3344. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3345. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3346. return 0;
  3347. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3348. if (ret == nr_cpu_ids || ret == cpu) {
  3349. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3350. if (rq->nr_running > 1)
  3351. return 1;
  3352. } else {
  3353. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3354. if (ret == nr_cpu_ids || ret == cpu) {
  3355. if (rq->nr_running)
  3356. return 1;
  3357. }
  3358. }
  3359. return 0;
  3360. }
  3361. #else
  3362. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3363. #endif
  3364. /*
  3365. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3366. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3367. */
  3368. static void run_rebalance_domains(struct softirq_action *h)
  3369. {
  3370. int this_cpu = smp_processor_id();
  3371. struct rq *this_rq = cpu_rq(this_cpu);
  3372. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3373. CPU_IDLE : CPU_NOT_IDLE;
  3374. rebalance_domains(this_cpu, idle);
  3375. /*
  3376. * If this cpu has a pending nohz_balance_kick, then do the
  3377. * balancing on behalf of the other idle cpus whose ticks are
  3378. * stopped.
  3379. */
  3380. nohz_idle_balance(this_cpu, idle);
  3381. }
  3382. static inline int on_null_domain(int cpu)
  3383. {
  3384. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3385. }
  3386. /*
  3387. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3388. */
  3389. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3390. {
  3391. /* Don't need to rebalance while attached to NULL domain */
  3392. if (time_after_eq(jiffies, rq->next_balance) &&
  3393. likely(!on_null_domain(cpu)))
  3394. raise_softirq(SCHED_SOFTIRQ);
  3395. #ifdef CONFIG_NO_HZ
  3396. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3397. nohz_balancer_kick(cpu);
  3398. #endif
  3399. }
  3400. static void rq_online_fair(struct rq *rq)
  3401. {
  3402. update_sysctl();
  3403. }
  3404. static void rq_offline_fair(struct rq *rq)
  3405. {
  3406. update_sysctl();
  3407. }
  3408. #else /* CONFIG_SMP */
  3409. /*
  3410. * on UP we do not need to balance between CPUs:
  3411. */
  3412. static inline void idle_balance(int cpu, struct rq *rq)
  3413. {
  3414. }
  3415. #endif /* CONFIG_SMP */
  3416. /*
  3417. * scheduler tick hitting a task of our scheduling class:
  3418. */
  3419. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3420. {
  3421. struct cfs_rq *cfs_rq;
  3422. struct sched_entity *se = &curr->se;
  3423. for_each_sched_entity(se) {
  3424. cfs_rq = cfs_rq_of(se);
  3425. entity_tick(cfs_rq, se, queued);
  3426. }
  3427. }
  3428. /*
  3429. * called on fork with the child task as argument from the parent's context
  3430. * - child not yet on the tasklist
  3431. * - preemption disabled
  3432. */
  3433. static void task_fork_fair(struct task_struct *p)
  3434. {
  3435. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3436. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3437. int this_cpu = smp_processor_id();
  3438. struct rq *rq = this_rq();
  3439. unsigned long flags;
  3440. raw_spin_lock_irqsave(&rq->lock, flags);
  3441. update_rq_clock(rq);
  3442. if (unlikely(task_cpu(p) != this_cpu)) {
  3443. rcu_read_lock();
  3444. __set_task_cpu(p, this_cpu);
  3445. rcu_read_unlock();
  3446. }
  3447. update_curr(cfs_rq);
  3448. if (curr)
  3449. se->vruntime = curr->vruntime;
  3450. place_entity(cfs_rq, se, 1);
  3451. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3452. /*
  3453. * Upon rescheduling, sched_class::put_prev_task() will place
  3454. * 'current' within the tree based on its new key value.
  3455. */
  3456. swap(curr->vruntime, se->vruntime);
  3457. resched_task(rq->curr);
  3458. }
  3459. se->vruntime -= cfs_rq->min_vruntime;
  3460. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3461. }
  3462. /*
  3463. * Priority of the task has changed. Check to see if we preempt
  3464. * the current task.
  3465. */
  3466. static void
  3467. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  3468. {
  3469. if (!p->se.on_rq)
  3470. return;
  3471. /*
  3472. * Reschedule if we are currently running on this runqueue and
  3473. * our priority decreased, or if we are not currently running on
  3474. * this runqueue and our priority is higher than the current's
  3475. */
  3476. if (rq->curr == p) {
  3477. if (p->prio > oldprio)
  3478. resched_task(rq->curr);
  3479. } else
  3480. check_preempt_curr(rq, p, 0);
  3481. }
  3482. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  3483. {
  3484. struct sched_entity *se = &p->se;
  3485. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3486. /*
  3487. * Ensure the task's vruntime is normalized, so that when its
  3488. * switched back to the fair class the enqueue_entity(.flags=0) will
  3489. * do the right thing.
  3490. *
  3491. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  3492. * have normalized the vruntime, if it was !on_rq, then only when
  3493. * the task is sleeping will it still have non-normalized vruntime.
  3494. */
  3495. if (!se->on_rq && p->state != TASK_RUNNING) {
  3496. /*
  3497. * Fix up our vruntime so that the current sleep doesn't
  3498. * cause 'unlimited' sleep bonus.
  3499. */
  3500. place_entity(cfs_rq, se, 0);
  3501. se->vruntime -= cfs_rq->min_vruntime;
  3502. }
  3503. }
  3504. /*
  3505. * We switched to the sched_fair class.
  3506. */
  3507. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  3508. {
  3509. if (!p->se.on_rq)
  3510. return;
  3511. /*
  3512. * We were most likely switched from sched_rt, so
  3513. * kick off the schedule if running, otherwise just see
  3514. * if we can still preempt the current task.
  3515. */
  3516. if (rq->curr == p)
  3517. resched_task(rq->curr);
  3518. else
  3519. check_preempt_curr(rq, p, 0);
  3520. }
  3521. /* Account for a task changing its policy or group.
  3522. *
  3523. * This routine is mostly called to set cfs_rq->curr field when a task
  3524. * migrates between groups/classes.
  3525. */
  3526. static void set_curr_task_fair(struct rq *rq)
  3527. {
  3528. struct sched_entity *se = &rq->curr->se;
  3529. for_each_sched_entity(se)
  3530. set_next_entity(cfs_rq_of(se), se);
  3531. }
  3532. #ifdef CONFIG_FAIR_GROUP_SCHED
  3533. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3534. {
  3535. /*
  3536. * If the task was not on the rq at the time of this cgroup movement
  3537. * it must have been asleep, sleeping tasks keep their ->vruntime
  3538. * absolute on their old rq until wakeup (needed for the fair sleeper
  3539. * bonus in place_entity()).
  3540. *
  3541. * If it was on the rq, we've just 'preempted' it, which does convert
  3542. * ->vruntime to a relative base.
  3543. *
  3544. * Make sure both cases convert their relative position when migrating
  3545. * to another cgroup's rq. This does somewhat interfere with the
  3546. * fair sleeper stuff for the first placement, but who cares.
  3547. */
  3548. if (!on_rq)
  3549. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3550. set_task_rq(p, task_cpu(p));
  3551. if (!on_rq)
  3552. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3553. }
  3554. #endif
  3555. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3556. {
  3557. struct sched_entity *se = &task->se;
  3558. unsigned int rr_interval = 0;
  3559. /*
  3560. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3561. * idle runqueue:
  3562. */
  3563. if (rq->cfs.load.weight)
  3564. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3565. return rr_interval;
  3566. }
  3567. /*
  3568. * All the scheduling class methods:
  3569. */
  3570. static const struct sched_class fair_sched_class = {
  3571. .next = &idle_sched_class,
  3572. .enqueue_task = enqueue_task_fair,
  3573. .dequeue_task = dequeue_task_fair,
  3574. .yield_task = yield_task_fair,
  3575. .yield_to_task = yield_to_task_fair,
  3576. .check_preempt_curr = check_preempt_wakeup,
  3577. .pick_next_task = pick_next_task_fair,
  3578. .put_prev_task = put_prev_task_fair,
  3579. #ifdef CONFIG_SMP
  3580. .select_task_rq = select_task_rq_fair,
  3581. .rq_online = rq_online_fair,
  3582. .rq_offline = rq_offline_fair,
  3583. .task_waking = task_waking_fair,
  3584. #endif
  3585. .set_curr_task = set_curr_task_fair,
  3586. .task_tick = task_tick_fair,
  3587. .task_fork = task_fork_fair,
  3588. .prio_changed = prio_changed_fair,
  3589. .switched_from = switched_from_fair,
  3590. .switched_to = switched_to_fair,
  3591. .get_rr_interval = get_rr_interval_fair,
  3592. #ifdef CONFIG_FAIR_GROUP_SCHED
  3593. .task_move_group = task_move_group_fair,
  3594. #endif
  3595. };
  3596. #ifdef CONFIG_SCHED_DEBUG
  3597. static void print_cfs_stats(struct seq_file *m, int cpu)
  3598. {
  3599. struct cfs_rq *cfs_rq;
  3600. rcu_read_lock();
  3601. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3602. print_cfs_rq(m, cpu, cfs_rq);
  3603. rcu_read_unlock();
  3604. }
  3605. #endif