security.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* Boot-time LSM user choice */
  19. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
  20. /* things that live in capability.c */
  21. extern struct security_operations default_security_ops;
  22. extern void security_fixup_ops(struct security_operations *ops);
  23. struct security_operations *security_ops; /* Initialized to NULL */
  24. /* amount of vm to protect from userspace access */
  25. unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
  26. static inline int verify(struct security_operations *ops)
  27. {
  28. /* verify the security_operations structure exists */
  29. if (!ops)
  30. return -EINVAL;
  31. security_fixup_ops(ops);
  32. return 0;
  33. }
  34. static void __init do_security_initcalls(void)
  35. {
  36. initcall_t *call;
  37. call = __security_initcall_start;
  38. while (call < __security_initcall_end) {
  39. (*call) ();
  40. call++;
  41. }
  42. }
  43. /**
  44. * security_init - initializes the security framework
  45. *
  46. * This should be called early in the kernel initialization sequence.
  47. */
  48. int __init security_init(void)
  49. {
  50. printk(KERN_INFO "Security Framework initialized\n");
  51. security_fixup_ops(&default_security_ops);
  52. security_ops = &default_security_ops;
  53. do_security_initcalls();
  54. return 0;
  55. }
  56. /* Save user chosen LSM */
  57. static int __init choose_lsm(char *str)
  58. {
  59. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  60. return 1;
  61. }
  62. __setup("security=", choose_lsm);
  63. /**
  64. * security_module_enable - Load given security module on boot ?
  65. * @ops: a pointer to the struct security_operations that is to be checked.
  66. *
  67. * Each LSM must pass this method before registering its own operations
  68. * to avoid security registration races. This method may also be used
  69. * to check if your LSM is currently loaded during kernel initialization.
  70. *
  71. * Return true if:
  72. * -The passed LSM is the one chosen by user at boot time,
  73. * -or user didn't specify a specific LSM and we're the first to ask
  74. * for registration permission,
  75. * -or the passed LSM is currently loaded.
  76. * Otherwise, return false.
  77. */
  78. int __init security_module_enable(struct security_operations *ops)
  79. {
  80. if (!*chosen_lsm)
  81. strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
  82. else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
  83. return 0;
  84. return 1;
  85. }
  86. /**
  87. * register_security - registers a security framework with the kernel
  88. * @ops: a pointer to the struct security_options that is to be registered
  89. *
  90. * This function allows a security module to register itself with the
  91. * kernel security subsystem. Some rudimentary checking is done on the @ops
  92. * value passed to this function. You'll need to check first if your LSM
  93. * is allowed to register its @ops by calling security_module_enable(@ops).
  94. *
  95. * If there is already a security module registered with the kernel,
  96. * an error will be returned. Otherwise %0 is returned on success.
  97. */
  98. int register_security(struct security_operations *ops)
  99. {
  100. if (verify(ops)) {
  101. printk(KERN_DEBUG "%s could not verify "
  102. "security_operations structure.\n", __func__);
  103. return -EINVAL;
  104. }
  105. if (security_ops != &default_security_ops)
  106. return -EAGAIN;
  107. security_ops = ops;
  108. return 0;
  109. }
  110. /* Security operations */
  111. int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
  112. {
  113. return security_ops->ptrace_may_access(child, mode);
  114. }
  115. int security_ptrace_traceme(struct task_struct *parent)
  116. {
  117. return security_ops->ptrace_traceme(parent);
  118. }
  119. int security_capget(struct task_struct *target,
  120. kernel_cap_t *effective,
  121. kernel_cap_t *inheritable,
  122. kernel_cap_t *permitted)
  123. {
  124. return security_ops->capget(target, effective, inheritable, permitted);
  125. }
  126. int security_capset(struct cred *new, const struct cred *old,
  127. const kernel_cap_t *effective,
  128. const kernel_cap_t *inheritable,
  129. const kernel_cap_t *permitted)
  130. {
  131. return security_ops->capset(new, old,
  132. effective, inheritable, permitted);
  133. }
  134. int security_capable(struct task_struct *tsk, int cap)
  135. {
  136. return security_ops->capable(tsk, cap, SECURITY_CAP_AUDIT);
  137. }
  138. int security_capable_noaudit(struct task_struct *tsk, int cap)
  139. {
  140. return security_ops->capable(tsk, cap, SECURITY_CAP_NOAUDIT);
  141. }
  142. int security_acct(struct file *file)
  143. {
  144. return security_ops->acct(file);
  145. }
  146. int security_sysctl(struct ctl_table *table, int op)
  147. {
  148. return security_ops->sysctl(table, op);
  149. }
  150. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  151. {
  152. return security_ops->quotactl(cmds, type, id, sb);
  153. }
  154. int security_quota_on(struct dentry *dentry)
  155. {
  156. return security_ops->quota_on(dentry);
  157. }
  158. int security_syslog(int type)
  159. {
  160. return security_ops->syslog(type);
  161. }
  162. int security_settime(struct timespec *ts, struct timezone *tz)
  163. {
  164. return security_ops->settime(ts, tz);
  165. }
  166. int security_vm_enough_memory(long pages)
  167. {
  168. WARN_ON(current->mm == NULL);
  169. return security_ops->vm_enough_memory(current->mm, pages);
  170. }
  171. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  172. {
  173. WARN_ON(mm == NULL);
  174. return security_ops->vm_enough_memory(mm, pages);
  175. }
  176. int security_vm_enough_memory_kern(long pages)
  177. {
  178. /* If current->mm is a kernel thread then we will pass NULL,
  179. for this specific case that is fine */
  180. return security_ops->vm_enough_memory(current->mm, pages);
  181. }
  182. int security_bprm_set_creds(struct linux_binprm *bprm)
  183. {
  184. return security_ops->bprm_set_creds(bprm);
  185. }
  186. int security_bprm_check(struct linux_binprm *bprm)
  187. {
  188. return security_ops->bprm_check_security(bprm);
  189. }
  190. void security_bprm_committing_creds(struct linux_binprm *bprm)
  191. {
  192. return security_ops->bprm_committing_creds(bprm);
  193. }
  194. void security_bprm_committed_creds(struct linux_binprm *bprm)
  195. {
  196. return security_ops->bprm_committed_creds(bprm);
  197. }
  198. int security_bprm_secureexec(struct linux_binprm *bprm)
  199. {
  200. return security_ops->bprm_secureexec(bprm);
  201. }
  202. int security_sb_alloc(struct super_block *sb)
  203. {
  204. return security_ops->sb_alloc_security(sb);
  205. }
  206. void security_sb_free(struct super_block *sb)
  207. {
  208. security_ops->sb_free_security(sb);
  209. }
  210. int security_sb_copy_data(char *orig, char *copy)
  211. {
  212. return security_ops->sb_copy_data(orig, copy);
  213. }
  214. EXPORT_SYMBOL(security_sb_copy_data);
  215. int security_sb_kern_mount(struct super_block *sb, void *data)
  216. {
  217. return security_ops->sb_kern_mount(sb, data);
  218. }
  219. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  220. {
  221. return security_ops->sb_show_options(m, sb);
  222. }
  223. int security_sb_statfs(struct dentry *dentry)
  224. {
  225. return security_ops->sb_statfs(dentry);
  226. }
  227. int security_sb_mount(char *dev_name, struct path *path,
  228. char *type, unsigned long flags, void *data)
  229. {
  230. return security_ops->sb_mount(dev_name, path, type, flags, data);
  231. }
  232. int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
  233. {
  234. return security_ops->sb_check_sb(mnt, path);
  235. }
  236. int security_sb_umount(struct vfsmount *mnt, int flags)
  237. {
  238. return security_ops->sb_umount(mnt, flags);
  239. }
  240. void security_sb_umount_close(struct vfsmount *mnt)
  241. {
  242. security_ops->sb_umount_close(mnt);
  243. }
  244. void security_sb_umount_busy(struct vfsmount *mnt)
  245. {
  246. security_ops->sb_umount_busy(mnt);
  247. }
  248. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  249. {
  250. security_ops->sb_post_remount(mnt, flags, data);
  251. }
  252. void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
  253. {
  254. security_ops->sb_post_addmount(mnt, mountpoint);
  255. }
  256. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  257. {
  258. return security_ops->sb_pivotroot(old_path, new_path);
  259. }
  260. void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
  261. {
  262. security_ops->sb_post_pivotroot(old_path, new_path);
  263. }
  264. int security_sb_set_mnt_opts(struct super_block *sb,
  265. struct security_mnt_opts *opts)
  266. {
  267. return security_ops->sb_set_mnt_opts(sb, opts);
  268. }
  269. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  270. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  271. struct super_block *newsb)
  272. {
  273. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  274. }
  275. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  276. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  277. {
  278. return security_ops->sb_parse_opts_str(options, opts);
  279. }
  280. EXPORT_SYMBOL(security_sb_parse_opts_str);
  281. int security_inode_alloc(struct inode *inode)
  282. {
  283. inode->i_security = NULL;
  284. return security_ops->inode_alloc_security(inode);
  285. }
  286. void security_inode_free(struct inode *inode)
  287. {
  288. security_ops->inode_free_security(inode);
  289. }
  290. int security_inode_init_security(struct inode *inode, struct inode *dir,
  291. char **name, void **value, size_t *len)
  292. {
  293. if (unlikely(IS_PRIVATE(inode)))
  294. return -EOPNOTSUPP;
  295. return security_ops->inode_init_security(inode, dir, name, value, len);
  296. }
  297. EXPORT_SYMBOL(security_inode_init_security);
  298. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  299. {
  300. if (unlikely(IS_PRIVATE(dir)))
  301. return 0;
  302. return security_ops->inode_create(dir, dentry, mode);
  303. }
  304. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  305. struct dentry *new_dentry)
  306. {
  307. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  308. return 0;
  309. return security_ops->inode_link(old_dentry, dir, new_dentry);
  310. }
  311. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  312. {
  313. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  314. return 0;
  315. return security_ops->inode_unlink(dir, dentry);
  316. }
  317. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  318. const char *old_name)
  319. {
  320. if (unlikely(IS_PRIVATE(dir)))
  321. return 0;
  322. return security_ops->inode_symlink(dir, dentry, old_name);
  323. }
  324. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  325. {
  326. if (unlikely(IS_PRIVATE(dir)))
  327. return 0;
  328. return security_ops->inode_mkdir(dir, dentry, mode);
  329. }
  330. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  331. {
  332. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  333. return 0;
  334. return security_ops->inode_rmdir(dir, dentry);
  335. }
  336. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  337. {
  338. if (unlikely(IS_PRIVATE(dir)))
  339. return 0;
  340. return security_ops->inode_mknod(dir, dentry, mode, dev);
  341. }
  342. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  343. struct inode *new_dir, struct dentry *new_dentry)
  344. {
  345. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  346. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  347. return 0;
  348. return security_ops->inode_rename(old_dir, old_dentry,
  349. new_dir, new_dentry);
  350. }
  351. int security_inode_readlink(struct dentry *dentry)
  352. {
  353. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  354. return 0;
  355. return security_ops->inode_readlink(dentry);
  356. }
  357. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  358. {
  359. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  360. return 0;
  361. return security_ops->inode_follow_link(dentry, nd);
  362. }
  363. int security_inode_permission(struct inode *inode, int mask)
  364. {
  365. if (unlikely(IS_PRIVATE(inode)))
  366. return 0;
  367. return security_ops->inode_permission(inode, mask);
  368. }
  369. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  370. {
  371. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  372. return 0;
  373. return security_ops->inode_setattr(dentry, attr);
  374. }
  375. EXPORT_SYMBOL_GPL(security_inode_setattr);
  376. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  377. {
  378. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  379. return 0;
  380. return security_ops->inode_getattr(mnt, dentry);
  381. }
  382. void security_inode_delete(struct inode *inode)
  383. {
  384. if (unlikely(IS_PRIVATE(inode)))
  385. return;
  386. security_ops->inode_delete(inode);
  387. }
  388. int security_inode_setxattr(struct dentry *dentry, const char *name,
  389. const void *value, size_t size, int flags)
  390. {
  391. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  392. return 0;
  393. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  394. }
  395. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  396. const void *value, size_t size, int flags)
  397. {
  398. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  399. return;
  400. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  401. }
  402. int security_inode_getxattr(struct dentry *dentry, const char *name)
  403. {
  404. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  405. return 0;
  406. return security_ops->inode_getxattr(dentry, name);
  407. }
  408. int security_inode_listxattr(struct dentry *dentry)
  409. {
  410. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  411. return 0;
  412. return security_ops->inode_listxattr(dentry);
  413. }
  414. int security_inode_removexattr(struct dentry *dentry, const char *name)
  415. {
  416. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  417. return 0;
  418. return security_ops->inode_removexattr(dentry, name);
  419. }
  420. int security_inode_need_killpriv(struct dentry *dentry)
  421. {
  422. return security_ops->inode_need_killpriv(dentry);
  423. }
  424. int security_inode_killpriv(struct dentry *dentry)
  425. {
  426. return security_ops->inode_killpriv(dentry);
  427. }
  428. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  429. {
  430. if (unlikely(IS_PRIVATE(inode)))
  431. return 0;
  432. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  433. }
  434. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  435. {
  436. if (unlikely(IS_PRIVATE(inode)))
  437. return 0;
  438. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  439. }
  440. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  441. {
  442. if (unlikely(IS_PRIVATE(inode)))
  443. return 0;
  444. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  445. }
  446. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  447. {
  448. security_ops->inode_getsecid(inode, secid);
  449. }
  450. int security_file_permission(struct file *file, int mask)
  451. {
  452. return security_ops->file_permission(file, mask);
  453. }
  454. int security_file_alloc(struct file *file)
  455. {
  456. return security_ops->file_alloc_security(file);
  457. }
  458. void security_file_free(struct file *file)
  459. {
  460. security_ops->file_free_security(file);
  461. }
  462. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  463. {
  464. return security_ops->file_ioctl(file, cmd, arg);
  465. }
  466. int security_file_mmap(struct file *file, unsigned long reqprot,
  467. unsigned long prot, unsigned long flags,
  468. unsigned long addr, unsigned long addr_only)
  469. {
  470. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  471. }
  472. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  473. unsigned long prot)
  474. {
  475. return security_ops->file_mprotect(vma, reqprot, prot);
  476. }
  477. int security_file_lock(struct file *file, unsigned int cmd)
  478. {
  479. return security_ops->file_lock(file, cmd);
  480. }
  481. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  482. {
  483. return security_ops->file_fcntl(file, cmd, arg);
  484. }
  485. int security_file_set_fowner(struct file *file)
  486. {
  487. return security_ops->file_set_fowner(file);
  488. }
  489. int security_file_send_sigiotask(struct task_struct *tsk,
  490. struct fown_struct *fown, int sig)
  491. {
  492. return security_ops->file_send_sigiotask(tsk, fown, sig);
  493. }
  494. int security_file_receive(struct file *file)
  495. {
  496. return security_ops->file_receive(file);
  497. }
  498. int security_dentry_open(struct file *file, const struct cred *cred)
  499. {
  500. return security_ops->dentry_open(file, cred);
  501. }
  502. int security_task_create(unsigned long clone_flags)
  503. {
  504. return security_ops->task_create(clone_flags);
  505. }
  506. void security_cred_free(struct cred *cred)
  507. {
  508. security_ops->cred_free(cred);
  509. }
  510. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  511. {
  512. return security_ops->cred_prepare(new, old, gfp);
  513. }
  514. void security_commit_creds(struct cred *new, const struct cred *old)
  515. {
  516. return security_ops->cred_commit(new, old);
  517. }
  518. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  519. {
  520. return security_ops->task_setuid(id0, id1, id2, flags);
  521. }
  522. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  523. int flags)
  524. {
  525. return security_ops->task_fix_setuid(new, old, flags);
  526. }
  527. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  528. {
  529. return security_ops->task_setgid(id0, id1, id2, flags);
  530. }
  531. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  532. {
  533. return security_ops->task_setpgid(p, pgid);
  534. }
  535. int security_task_getpgid(struct task_struct *p)
  536. {
  537. return security_ops->task_getpgid(p);
  538. }
  539. int security_task_getsid(struct task_struct *p)
  540. {
  541. return security_ops->task_getsid(p);
  542. }
  543. void security_task_getsecid(struct task_struct *p, u32 *secid)
  544. {
  545. security_ops->task_getsecid(p, secid);
  546. }
  547. EXPORT_SYMBOL(security_task_getsecid);
  548. int security_task_setgroups(struct group_info *group_info)
  549. {
  550. return security_ops->task_setgroups(group_info);
  551. }
  552. int security_task_setnice(struct task_struct *p, int nice)
  553. {
  554. return security_ops->task_setnice(p, nice);
  555. }
  556. int security_task_setioprio(struct task_struct *p, int ioprio)
  557. {
  558. return security_ops->task_setioprio(p, ioprio);
  559. }
  560. int security_task_getioprio(struct task_struct *p)
  561. {
  562. return security_ops->task_getioprio(p);
  563. }
  564. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  565. {
  566. return security_ops->task_setrlimit(resource, new_rlim);
  567. }
  568. int security_task_setscheduler(struct task_struct *p,
  569. int policy, struct sched_param *lp)
  570. {
  571. return security_ops->task_setscheduler(p, policy, lp);
  572. }
  573. int security_task_getscheduler(struct task_struct *p)
  574. {
  575. return security_ops->task_getscheduler(p);
  576. }
  577. int security_task_movememory(struct task_struct *p)
  578. {
  579. return security_ops->task_movememory(p);
  580. }
  581. int security_task_kill(struct task_struct *p, struct siginfo *info,
  582. int sig, u32 secid)
  583. {
  584. return security_ops->task_kill(p, info, sig, secid);
  585. }
  586. int security_task_wait(struct task_struct *p)
  587. {
  588. return security_ops->task_wait(p);
  589. }
  590. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  591. unsigned long arg4, unsigned long arg5)
  592. {
  593. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  594. }
  595. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  596. {
  597. security_ops->task_to_inode(p, inode);
  598. }
  599. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  600. {
  601. return security_ops->ipc_permission(ipcp, flag);
  602. }
  603. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  604. {
  605. security_ops->ipc_getsecid(ipcp, secid);
  606. }
  607. int security_msg_msg_alloc(struct msg_msg *msg)
  608. {
  609. return security_ops->msg_msg_alloc_security(msg);
  610. }
  611. void security_msg_msg_free(struct msg_msg *msg)
  612. {
  613. security_ops->msg_msg_free_security(msg);
  614. }
  615. int security_msg_queue_alloc(struct msg_queue *msq)
  616. {
  617. return security_ops->msg_queue_alloc_security(msq);
  618. }
  619. void security_msg_queue_free(struct msg_queue *msq)
  620. {
  621. security_ops->msg_queue_free_security(msq);
  622. }
  623. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  624. {
  625. return security_ops->msg_queue_associate(msq, msqflg);
  626. }
  627. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  628. {
  629. return security_ops->msg_queue_msgctl(msq, cmd);
  630. }
  631. int security_msg_queue_msgsnd(struct msg_queue *msq,
  632. struct msg_msg *msg, int msqflg)
  633. {
  634. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  635. }
  636. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  637. struct task_struct *target, long type, int mode)
  638. {
  639. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  640. }
  641. int security_shm_alloc(struct shmid_kernel *shp)
  642. {
  643. return security_ops->shm_alloc_security(shp);
  644. }
  645. void security_shm_free(struct shmid_kernel *shp)
  646. {
  647. security_ops->shm_free_security(shp);
  648. }
  649. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  650. {
  651. return security_ops->shm_associate(shp, shmflg);
  652. }
  653. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  654. {
  655. return security_ops->shm_shmctl(shp, cmd);
  656. }
  657. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  658. {
  659. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  660. }
  661. int security_sem_alloc(struct sem_array *sma)
  662. {
  663. return security_ops->sem_alloc_security(sma);
  664. }
  665. void security_sem_free(struct sem_array *sma)
  666. {
  667. security_ops->sem_free_security(sma);
  668. }
  669. int security_sem_associate(struct sem_array *sma, int semflg)
  670. {
  671. return security_ops->sem_associate(sma, semflg);
  672. }
  673. int security_sem_semctl(struct sem_array *sma, int cmd)
  674. {
  675. return security_ops->sem_semctl(sma, cmd);
  676. }
  677. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  678. unsigned nsops, int alter)
  679. {
  680. return security_ops->sem_semop(sma, sops, nsops, alter);
  681. }
  682. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  683. {
  684. if (unlikely(inode && IS_PRIVATE(inode)))
  685. return;
  686. security_ops->d_instantiate(dentry, inode);
  687. }
  688. EXPORT_SYMBOL(security_d_instantiate);
  689. int security_getprocattr(struct task_struct *p, char *name, char **value)
  690. {
  691. return security_ops->getprocattr(p, name, value);
  692. }
  693. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  694. {
  695. return security_ops->setprocattr(p, name, value, size);
  696. }
  697. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  698. {
  699. return security_ops->netlink_send(sk, skb);
  700. }
  701. int security_netlink_recv(struct sk_buff *skb, int cap)
  702. {
  703. return security_ops->netlink_recv(skb, cap);
  704. }
  705. EXPORT_SYMBOL(security_netlink_recv);
  706. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  707. {
  708. return security_ops->secid_to_secctx(secid, secdata, seclen);
  709. }
  710. EXPORT_SYMBOL(security_secid_to_secctx);
  711. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  712. {
  713. return security_ops->secctx_to_secid(secdata, seclen, secid);
  714. }
  715. EXPORT_SYMBOL(security_secctx_to_secid);
  716. void security_release_secctx(char *secdata, u32 seclen)
  717. {
  718. security_ops->release_secctx(secdata, seclen);
  719. }
  720. EXPORT_SYMBOL(security_release_secctx);
  721. #ifdef CONFIG_SECURITY_NETWORK
  722. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  723. struct sock *newsk)
  724. {
  725. return security_ops->unix_stream_connect(sock, other, newsk);
  726. }
  727. EXPORT_SYMBOL(security_unix_stream_connect);
  728. int security_unix_may_send(struct socket *sock, struct socket *other)
  729. {
  730. return security_ops->unix_may_send(sock, other);
  731. }
  732. EXPORT_SYMBOL(security_unix_may_send);
  733. int security_socket_create(int family, int type, int protocol, int kern)
  734. {
  735. return security_ops->socket_create(family, type, protocol, kern);
  736. }
  737. int security_socket_post_create(struct socket *sock, int family,
  738. int type, int protocol, int kern)
  739. {
  740. return security_ops->socket_post_create(sock, family, type,
  741. protocol, kern);
  742. }
  743. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  744. {
  745. return security_ops->socket_bind(sock, address, addrlen);
  746. }
  747. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  748. {
  749. return security_ops->socket_connect(sock, address, addrlen);
  750. }
  751. int security_socket_listen(struct socket *sock, int backlog)
  752. {
  753. return security_ops->socket_listen(sock, backlog);
  754. }
  755. int security_socket_accept(struct socket *sock, struct socket *newsock)
  756. {
  757. return security_ops->socket_accept(sock, newsock);
  758. }
  759. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  760. {
  761. security_ops->socket_post_accept(sock, newsock);
  762. }
  763. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  764. {
  765. return security_ops->socket_sendmsg(sock, msg, size);
  766. }
  767. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  768. int size, int flags)
  769. {
  770. return security_ops->socket_recvmsg(sock, msg, size, flags);
  771. }
  772. int security_socket_getsockname(struct socket *sock)
  773. {
  774. return security_ops->socket_getsockname(sock);
  775. }
  776. int security_socket_getpeername(struct socket *sock)
  777. {
  778. return security_ops->socket_getpeername(sock);
  779. }
  780. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  781. {
  782. return security_ops->socket_getsockopt(sock, level, optname);
  783. }
  784. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  785. {
  786. return security_ops->socket_setsockopt(sock, level, optname);
  787. }
  788. int security_socket_shutdown(struct socket *sock, int how)
  789. {
  790. return security_ops->socket_shutdown(sock, how);
  791. }
  792. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  793. {
  794. return security_ops->socket_sock_rcv_skb(sk, skb);
  795. }
  796. EXPORT_SYMBOL(security_sock_rcv_skb);
  797. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  798. int __user *optlen, unsigned len)
  799. {
  800. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  801. }
  802. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  803. {
  804. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  805. }
  806. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  807. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  808. {
  809. return security_ops->sk_alloc_security(sk, family, priority);
  810. }
  811. void security_sk_free(struct sock *sk)
  812. {
  813. security_ops->sk_free_security(sk);
  814. }
  815. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  816. {
  817. security_ops->sk_clone_security(sk, newsk);
  818. }
  819. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  820. {
  821. security_ops->sk_getsecid(sk, &fl->secid);
  822. }
  823. EXPORT_SYMBOL(security_sk_classify_flow);
  824. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  825. {
  826. security_ops->req_classify_flow(req, fl);
  827. }
  828. EXPORT_SYMBOL(security_req_classify_flow);
  829. void security_sock_graft(struct sock *sk, struct socket *parent)
  830. {
  831. security_ops->sock_graft(sk, parent);
  832. }
  833. EXPORT_SYMBOL(security_sock_graft);
  834. int security_inet_conn_request(struct sock *sk,
  835. struct sk_buff *skb, struct request_sock *req)
  836. {
  837. return security_ops->inet_conn_request(sk, skb, req);
  838. }
  839. EXPORT_SYMBOL(security_inet_conn_request);
  840. void security_inet_csk_clone(struct sock *newsk,
  841. const struct request_sock *req)
  842. {
  843. security_ops->inet_csk_clone(newsk, req);
  844. }
  845. void security_inet_conn_established(struct sock *sk,
  846. struct sk_buff *skb)
  847. {
  848. security_ops->inet_conn_established(sk, skb);
  849. }
  850. #endif /* CONFIG_SECURITY_NETWORK */
  851. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  852. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  853. {
  854. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  855. }
  856. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  857. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  858. struct xfrm_sec_ctx **new_ctxp)
  859. {
  860. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  861. }
  862. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  863. {
  864. security_ops->xfrm_policy_free_security(ctx);
  865. }
  866. EXPORT_SYMBOL(security_xfrm_policy_free);
  867. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  868. {
  869. return security_ops->xfrm_policy_delete_security(ctx);
  870. }
  871. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  872. {
  873. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  874. }
  875. EXPORT_SYMBOL(security_xfrm_state_alloc);
  876. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  877. struct xfrm_sec_ctx *polsec, u32 secid)
  878. {
  879. if (!polsec)
  880. return 0;
  881. /*
  882. * We want the context to be taken from secid which is usually
  883. * from the sock.
  884. */
  885. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  886. }
  887. int security_xfrm_state_delete(struct xfrm_state *x)
  888. {
  889. return security_ops->xfrm_state_delete_security(x);
  890. }
  891. EXPORT_SYMBOL(security_xfrm_state_delete);
  892. void security_xfrm_state_free(struct xfrm_state *x)
  893. {
  894. security_ops->xfrm_state_free_security(x);
  895. }
  896. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  897. {
  898. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  899. }
  900. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  901. struct xfrm_policy *xp, struct flowi *fl)
  902. {
  903. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  904. }
  905. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  906. {
  907. return security_ops->xfrm_decode_session(skb, secid, 1);
  908. }
  909. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  910. {
  911. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  912. BUG_ON(rc);
  913. }
  914. EXPORT_SYMBOL(security_skb_classify_flow);
  915. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  916. #ifdef CONFIG_KEYS
  917. int security_key_alloc(struct key *key, const struct cred *cred,
  918. unsigned long flags)
  919. {
  920. return security_ops->key_alloc(key, cred, flags);
  921. }
  922. void security_key_free(struct key *key)
  923. {
  924. security_ops->key_free(key);
  925. }
  926. int security_key_permission(key_ref_t key_ref,
  927. const struct cred *cred, key_perm_t perm)
  928. {
  929. return security_ops->key_permission(key_ref, cred, perm);
  930. }
  931. int security_key_getsecurity(struct key *key, char **_buffer)
  932. {
  933. return security_ops->key_getsecurity(key, _buffer);
  934. }
  935. #endif /* CONFIG_KEYS */
  936. #ifdef CONFIG_AUDIT
  937. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  938. {
  939. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  940. }
  941. int security_audit_rule_known(struct audit_krule *krule)
  942. {
  943. return security_ops->audit_rule_known(krule);
  944. }
  945. void security_audit_rule_free(void *lsmrule)
  946. {
  947. security_ops->audit_rule_free(lsmrule);
  948. }
  949. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  950. struct audit_context *actx)
  951. {
  952. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  953. }
  954. #endif /* CONFIG_AUDIT */