xfs_inode.c 138 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_acl.h"
  51. #include "xfs_filestream.h"
  52. #include <linux/log2.h>
  53. kmem_zone_t *xfs_ifork_zone;
  54. kmem_zone_t *xfs_inode_zone;
  55. kmem_zone_t *xfs_chashlist_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_irec_t irec;
  77. xfs_bmbt_rec_host_t rec;
  78. int i;
  79. for (i = 0; i < nrecs; i++) {
  80. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81. rec.l0 = get_unaligned(&ep->l0);
  82. rec.l1 = get_unaligned(&ep->l1);
  83. xfs_bmbt_get_all(&rec, &irec);
  84. if (fmt == XFS_EXTFMT_NOSTATE)
  85. ASSERT(irec.br_state == XFS_EXT_NORM);
  86. }
  87. }
  88. #else /* DEBUG */
  89. #define xfs_validate_extents(ifp, nrecs, fmt)
  90. #endif /* DEBUG */
  91. /*
  92. * Check that none of the inode's in the buffer have a next
  93. * unlinked field of 0.
  94. */
  95. #if defined(DEBUG)
  96. void
  97. xfs_inobp_check(
  98. xfs_mount_t *mp,
  99. xfs_buf_t *bp)
  100. {
  101. int i;
  102. int j;
  103. xfs_dinode_t *dip;
  104. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  105. for (i = 0; i < j; i++) {
  106. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  107. i * mp->m_sb.sb_inodesize);
  108. if (!dip->di_next_unlinked) {
  109. xfs_fs_cmn_err(CE_ALERT, mp,
  110. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  111. bp);
  112. ASSERT(dip->di_next_unlinked);
  113. }
  114. }
  115. }
  116. #endif
  117. /*
  118. * This routine is called to map an inode number within a file
  119. * system to the buffer containing the on-disk version of the
  120. * inode. It returns a pointer to the buffer containing the
  121. * on-disk inode in the bpp parameter, and in the dip parameter
  122. * it returns a pointer to the on-disk inode within that buffer.
  123. *
  124. * If a non-zero error is returned, then the contents of bpp and
  125. * dipp are undefined.
  126. *
  127. * Use xfs_imap() to determine the size and location of the
  128. * buffer to read from disk.
  129. */
  130. STATIC int
  131. xfs_inotobp(
  132. xfs_mount_t *mp,
  133. xfs_trans_t *tp,
  134. xfs_ino_t ino,
  135. xfs_dinode_t **dipp,
  136. xfs_buf_t **bpp,
  137. int *offset)
  138. {
  139. int di_ok;
  140. xfs_imap_t imap;
  141. xfs_buf_t *bp;
  142. int error;
  143. xfs_dinode_t *dip;
  144. /*
  145. * Call the space management code to find the location of the
  146. * inode on disk.
  147. */
  148. imap.im_blkno = 0;
  149. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  150. if (error != 0) {
  151. cmn_err(CE_WARN,
  152. "xfs_inotobp: xfs_imap() returned an "
  153. "error %d on %s. Returning error.", error, mp->m_fsname);
  154. return error;
  155. }
  156. /*
  157. * If the inode number maps to a block outside the bounds of the
  158. * file system then return NULL rather than calling read_buf
  159. * and panicing when we get an error from the driver.
  160. */
  161. if ((imap.im_blkno + imap.im_len) >
  162. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  163. cmn_err(CE_WARN,
  164. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  165. "of the file system %s. Returning EINVAL.",
  166. (unsigned long long)imap.im_blkno,
  167. imap.im_len, mp->m_fsname);
  168. return XFS_ERROR(EINVAL);
  169. }
  170. /*
  171. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  172. * default to just a read_buf() call.
  173. */
  174. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  175. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  176. if (error) {
  177. cmn_err(CE_WARN,
  178. "xfs_inotobp: xfs_trans_read_buf() returned an "
  179. "error %d on %s. Returning error.", error, mp->m_fsname);
  180. return error;
  181. }
  182. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  183. di_ok =
  184. INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  185. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  186. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  187. XFS_RANDOM_ITOBP_INOTOBP))) {
  188. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  189. xfs_trans_brelse(tp, bp);
  190. cmn_err(CE_WARN,
  191. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  192. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  193. return XFS_ERROR(EFSCORRUPTED);
  194. }
  195. xfs_inobp_check(mp, bp);
  196. /*
  197. * Set *dipp to point to the on-disk inode in the buffer.
  198. */
  199. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  200. *bpp = bp;
  201. *offset = imap.im_boffset;
  202. return 0;
  203. }
  204. /*
  205. * This routine is called to map an inode to the buffer containing
  206. * the on-disk version of the inode. It returns a pointer to the
  207. * buffer containing the on-disk inode in the bpp parameter, and in
  208. * the dip parameter it returns a pointer to the on-disk inode within
  209. * that buffer.
  210. *
  211. * If a non-zero error is returned, then the contents of bpp and
  212. * dipp are undefined.
  213. *
  214. * If the inode is new and has not yet been initialized, use xfs_imap()
  215. * to determine the size and location of the buffer to read from disk.
  216. * If the inode has already been mapped to its buffer and read in once,
  217. * then use the mapping information stored in the inode rather than
  218. * calling xfs_imap(). This allows us to avoid the overhead of looking
  219. * at the inode btree for small block file systems (see xfs_dilocate()).
  220. * We can tell whether the inode has been mapped in before by comparing
  221. * its disk block address to 0. Only uninitialized inodes will have
  222. * 0 for the disk block address.
  223. */
  224. int
  225. xfs_itobp(
  226. xfs_mount_t *mp,
  227. xfs_trans_t *tp,
  228. xfs_inode_t *ip,
  229. xfs_dinode_t **dipp,
  230. xfs_buf_t **bpp,
  231. xfs_daddr_t bno,
  232. uint imap_flags)
  233. {
  234. xfs_imap_t imap;
  235. xfs_buf_t *bp;
  236. int error;
  237. int i;
  238. int ni;
  239. if (ip->i_blkno == (xfs_daddr_t)0) {
  240. /*
  241. * Call the space management code to find the location of the
  242. * inode on disk.
  243. */
  244. imap.im_blkno = bno;
  245. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  246. XFS_IMAP_LOOKUP | imap_flags)))
  247. return error;
  248. /*
  249. * If the inode number maps to a block outside the bounds
  250. * of the file system then return NULL rather than calling
  251. * read_buf and panicing when we get an error from the
  252. * driver.
  253. */
  254. if ((imap.im_blkno + imap.im_len) >
  255. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  256. #ifdef DEBUG
  257. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  258. "(imap.im_blkno (0x%llx) "
  259. "+ imap.im_len (0x%llx)) > "
  260. " XFS_FSB_TO_BB(mp, "
  261. "mp->m_sb.sb_dblocks) (0x%llx)",
  262. (unsigned long long) imap.im_blkno,
  263. (unsigned long long) imap.im_len,
  264. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  265. #endif /* DEBUG */
  266. return XFS_ERROR(EINVAL);
  267. }
  268. /*
  269. * Fill in the fields in the inode that will be used to
  270. * map the inode to its buffer from now on.
  271. */
  272. ip->i_blkno = imap.im_blkno;
  273. ip->i_len = imap.im_len;
  274. ip->i_boffset = imap.im_boffset;
  275. } else {
  276. /*
  277. * We've already mapped the inode once, so just use the
  278. * mapping that we saved the first time.
  279. */
  280. imap.im_blkno = ip->i_blkno;
  281. imap.im_len = ip->i_len;
  282. imap.im_boffset = ip->i_boffset;
  283. }
  284. ASSERT(bno == 0 || bno == imap.im_blkno);
  285. /*
  286. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  287. * default to just a read_buf() call.
  288. */
  289. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  290. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  291. if (error) {
  292. #ifdef DEBUG
  293. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  294. "xfs_trans_read_buf() returned error %d, "
  295. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  296. error, (unsigned long long) imap.im_blkno,
  297. (unsigned long long) imap.im_len);
  298. #endif /* DEBUG */
  299. return error;
  300. }
  301. /*
  302. * Validate the magic number and version of every inode in the buffer
  303. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  304. * No validation is done here in userspace (xfs_repair).
  305. */
  306. #if !defined(__KERNEL__)
  307. ni = 0;
  308. #elif defined(DEBUG)
  309. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  310. #else /* usual case */
  311. ni = 1;
  312. #endif
  313. for (i = 0; i < ni; i++) {
  314. int di_ok;
  315. xfs_dinode_t *dip;
  316. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  317. (i << mp->m_sb.sb_inodelog));
  318. di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  319. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  320. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  321. XFS_ERRTAG_ITOBP_INOTOBP,
  322. XFS_RANDOM_ITOBP_INOTOBP))) {
  323. if (imap_flags & XFS_IMAP_BULKSTAT) {
  324. xfs_trans_brelse(tp, bp);
  325. return XFS_ERROR(EINVAL);
  326. }
  327. #ifdef DEBUG
  328. cmn_err(CE_ALERT,
  329. "Device %s - bad inode magic/vsn "
  330. "daddr %lld #%d (magic=%x)",
  331. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  332. (unsigned long long)imap.im_blkno, i,
  333. INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
  334. #endif
  335. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  336. mp, dip);
  337. xfs_trans_brelse(tp, bp);
  338. return XFS_ERROR(EFSCORRUPTED);
  339. }
  340. }
  341. xfs_inobp_check(mp, bp);
  342. /*
  343. * Mark the buffer as an inode buffer now that it looks good
  344. */
  345. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  346. /*
  347. * Set *dipp to point to the on-disk inode in the buffer.
  348. */
  349. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  350. *bpp = bp;
  351. return 0;
  352. }
  353. /*
  354. * Move inode type and inode format specific information from the
  355. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  356. * this means set if_rdev to the proper value. For files, directories,
  357. * and symlinks this means to bring in the in-line data or extent
  358. * pointers. For a file in B-tree format, only the root is immediately
  359. * brought in-core. The rest will be in-lined in if_extents when it
  360. * is first referenced (see xfs_iread_extents()).
  361. */
  362. STATIC int
  363. xfs_iformat(
  364. xfs_inode_t *ip,
  365. xfs_dinode_t *dip)
  366. {
  367. xfs_attr_shortform_t *atp;
  368. int size;
  369. int error;
  370. xfs_fsize_t di_size;
  371. ip->i_df.if_ext_max =
  372. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  373. error = 0;
  374. if (unlikely(
  375. INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
  376. INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
  377. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
  378. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  379. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  380. (unsigned long long)ip->i_ino,
  381. (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
  382. + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
  383. (unsigned long long)
  384. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
  385. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  386. ip->i_mount, dip);
  387. return XFS_ERROR(EFSCORRUPTED);
  388. }
  389. if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
  390. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  391. "corrupt dinode %Lu, forkoff = 0x%x.",
  392. (unsigned long long)ip->i_ino,
  393. (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
  394. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  395. ip->i_mount, dip);
  396. return XFS_ERROR(EFSCORRUPTED);
  397. }
  398. switch (ip->i_d.di_mode & S_IFMT) {
  399. case S_IFIFO:
  400. case S_IFCHR:
  401. case S_IFBLK:
  402. case S_IFSOCK:
  403. if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
  404. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  405. ip->i_mount, dip);
  406. return XFS_ERROR(EFSCORRUPTED);
  407. }
  408. ip->i_d.di_size = 0;
  409. ip->i_size = 0;
  410. ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
  411. break;
  412. case S_IFREG:
  413. case S_IFLNK:
  414. case S_IFDIR:
  415. switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
  416. case XFS_DINODE_FMT_LOCAL:
  417. /*
  418. * no local regular files yet
  419. */
  420. if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
  421. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  422. "corrupt inode %Lu "
  423. "(local format for regular file).",
  424. (unsigned long long) ip->i_ino);
  425. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  426. XFS_ERRLEVEL_LOW,
  427. ip->i_mount, dip);
  428. return XFS_ERROR(EFSCORRUPTED);
  429. }
  430. di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
  431. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  432. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  433. "corrupt inode %Lu "
  434. "(bad size %Ld for local inode).",
  435. (unsigned long long) ip->i_ino,
  436. (long long) di_size);
  437. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  438. XFS_ERRLEVEL_LOW,
  439. ip->i_mount, dip);
  440. return XFS_ERROR(EFSCORRUPTED);
  441. }
  442. size = (int)di_size;
  443. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  444. break;
  445. case XFS_DINODE_FMT_EXTENTS:
  446. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  447. break;
  448. case XFS_DINODE_FMT_BTREE:
  449. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  450. break;
  451. default:
  452. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  453. ip->i_mount);
  454. return XFS_ERROR(EFSCORRUPTED);
  455. }
  456. break;
  457. default:
  458. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  459. return XFS_ERROR(EFSCORRUPTED);
  460. }
  461. if (error) {
  462. return error;
  463. }
  464. if (!XFS_DFORK_Q(dip))
  465. return 0;
  466. ASSERT(ip->i_afp == NULL);
  467. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  468. ip->i_afp->if_ext_max =
  469. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  470. switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
  471. case XFS_DINODE_FMT_LOCAL:
  472. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  473. size = be16_to_cpu(atp->hdr.totsize);
  474. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  475. break;
  476. case XFS_DINODE_FMT_EXTENTS:
  477. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  478. break;
  479. case XFS_DINODE_FMT_BTREE:
  480. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  481. break;
  482. default:
  483. error = XFS_ERROR(EFSCORRUPTED);
  484. break;
  485. }
  486. if (error) {
  487. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  488. ip->i_afp = NULL;
  489. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  490. }
  491. return error;
  492. }
  493. /*
  494. * The file is in-lined in the on-disk inode.
  495. * If it fits into if_inline_data, then copy
  496. * it there, otherwise allocate a buffer for it
  497. * and copy the data there. Either way, set
  498. * if_data to point at the data.
  499. * If we allocate a buffer for the data, make
  500. * sure that its size is a multiple of 4 and
  501. * record the real size in i_real_bytes.
  502. */
  503. STATIC int
  504. xfs_iformat_local(
  505. xfs_inode_t *ip,
  506. xfs_dinode_t *dip,
  507. int whichfork,
  508. int size)
  509. {
  510. xfs_ifork_t *ifp;
  511. int real_size;
  512. /*
  513. * If the size is unreasonable, then something
  514. * is wrong and we just bail out rather than crash in
  515. * kmem_alloc() or memcpy() below.
  516. */
  517. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  518. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  519. "corrupt inode %Lu "
  520. "(bad size %d for local fork, size = %d).",
  521. (unsigned long long) ip->i_ino, size,
  522. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  523. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  524. ip->i_mount, dip);
  525. return XFS_ERROR(EFSCORRUPTED);
  526. }
  527. ifp = XFS_IFORK_PTR(ip, whichfork);
  528. real_size = 0;
  529. if (size == 0)
  530. ifp->if_u1.if_data = NULL;
  531. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  532. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  533. else {
  534. real_size = roundup(size, 4);
  535. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  536. }
  537. ifp->if_bytes = size;
  538. ifp->if_real_bytes = real_size;
  539. if (size)
  540. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  541. ifp->if_flags &= ~XFS_IFEXTENTS;
  542. ifp->if_flags |= XFS_IFINLINE;
  543. return 0;
  544. }
  545. /*
  546. * The file consists of a set of extents all
  547. * of which fit into the on-disk inode.
  548. * If there are few enough extents to fit into
  549. * the if_inline_ext, then copy them there.
  550. * Otherwise allocate a buffer for them and copy
  551. * them into it. Either way, set if_extents
  552. * to point at the extents.
  553. */
  554. STATIC int
  555. xfs_iformat_extents(
  556. xfs_inode_t *ip,
  557. xfs_dinode_t *dip,
  558. int whichfork)
  559. {
  560. xfs_bmbt_rec_t *dp;
  561. xfs_ifork_t *ifp;
  562. int nex;
  563. int size;
  564. int i;
  565. ifp = XFS_IFORK_PTR(ip, whichfork);
  566. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  567. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  568. /*
  569. * If the number of extents is unreasonable, then something
  570. * is wrong and we just bail out rather than crash in
  571. * kmem_alloc() or memcpy() below.
  572. */
  573. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  574. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  575. "corrupt inode %Lu ((a)extents = %d).",
  576. (unsigned long long) ip->i_ino, nex);
  577. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  578. ip->i_mount, dip);
  579. return XFS_ERROR(EFSCORRUPTED);
  580. }
  581. ifp->if_real_bytes = 0;
  582. if (nex == 0)
  583. ifp->if_u1.if_extents = NULL;
  584. else if (nex <= XFS_INLINE_EXTS)
  585. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  586. else
  587. xfs_iext_add(ifp, 0, nex);
  588. ifp->if_bytes = size;
  589. if (size) {
  590. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  591. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  592. for (i = 0; i < nex; i++, dp++) {
  593. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  594. ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
  595. ARCH_CONVERT);
  596. ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
  597. ARCH_CONVERT);
  598. }
  599. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  600. if (whichfork != XFS_DATA_FORK ||
  601. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  602. if (unlikely(xfs_check_nostate_extents(
  603. ifp, 0, nex))) {
  604. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  605. XFS_ERRLEVEL_LOW,
  606. ip->i_mount);
  607. return XFS_ERROR(EFSCORRUPTED);
  608. }
  609. }
  610. ifp->if_flags |= XFS_IFEXTENTS;
  611. return 0;
  612. }
  613. /*
  614. * The file has too many extents to fit into
  615. * the inode, so they are in B-tree format.
  616. * Allocate a buffer for the root of the B-tree
  617. * and copy the root into it. The i_extents
  618. * field will remain NULL until all of the
  619. * extents are read in (when they are needed).
  620. */
  621. STATIC int
  622. xfs_iformat_btree(
  623. xfs_inode_t *ip,
  624. xfs_dinode_t *dip,
  625. int whichfork)
  626. {
  627. xfs_bmdr_block_t *dfp;
  628. xfs_ifork_t *ifp;
  629. /* REFERENCED */
  630. int nrecs;
  631. int size;
  632. ifp = XFS_IFORK_PTR(ip, whichfork);
  633. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  634. size = XFS_BMAP_BROOT_SPACE(dfp);
  635. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  636. /*
  637. * blow out if -- fork has less extents than can fit in
  638. * fork (fork shouldn't be a btree format), root btree
  639. * block has more records than can fit into the fork,
  640. * or the number of extents is greater than the number of
  641. * blocks.
  642. */
  643. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  644. || XFS_BMDR_SPACE_CALC(nrecs) >
  645. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  646. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  647. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  648. "corrupt inode %Lu (btree).",
  649. (unsigned long long) ip->i_ino);
  650. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  651. ip->i_mount);
  652. return XFS_ERROR(EFSCORRUPTED);
  653. }
  654. ifp->if_broot_bytes = size;
  655. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  656. ASSERT(ifp->if_broot != NULL);
  657. /*
  658. * Copy and convert from the on-disk structure
  659. * to the in-memory structure.
  660. */
  661. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  662. ifp->if_broot, size);
  663. ifp->if_flags &= ~XFS_IFEXTENTS;
  664. ifp->if_flags |= XFS_IFBROOT;
  665. return 0;
  666. }
  667. /*
  668. * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
  669. * and native format
  670. *
  671. * buf = on-disk representation
  672. * dip = native representation
  673. * dir = direction - +ve -> disk to native
  674. * -ve -> native to disk
  675. */
  676. void
  677. xfs_xlate_dinode_core(
  678. xfs_caddr_t buf,
  679. xfs_dinode_core_t *dip,
  680. int dir)
  681. {
  682. xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
  683. xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
  684. xfs_arch_t arch = ARCH_CONVERT;
  685. ASSERT(dir);
  686. INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
  687. INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
  688. INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
  689. INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
  690. INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
  691. INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
  692. INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
  693. INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
  694. INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
  695. if (dir > 0) {
  696. memcpy(mem_core->di_pad, buf_core->di_pad,
  697. sizeof(buf_core->di_pad));
  698. } else {
  699. memcpy(buf_core->di_pad, mem_core->di_pad,
  700. sizeof(buf_core->di_pad));
  701. }
  702. INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
  703. INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
  704. dir, arch);
  705. INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
  706. dir, arch);
  707. INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
  708. dir, arch);
  709. INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
  710. dir, arch);
  711. INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
  712. dir, arch);
  713. INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
  714. dir, arch);
  715. INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
  716. INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
  717. INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
  718. INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
  719. INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
  720. INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
  721. INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
  722. INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
  723. INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
  724. INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
  725. INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
  726. }
  727. STATIC uint
  728. _xfs_dic2xflags(
  729. __uint16_t di_flags)
  730. {
  731. uint flags = 0;
  732. if (di_flags & XFS_DIFLAG_ANY) {
  733. if (di_flags & XFS_DIFLAG_REALTIME)
  734. flags |= XFS_XFLAG_REALTIME;
  735. if (di_flags & XFS_DIFLAG_PREALLOC)
  736. flags |= XFS_XFLAG_PREALLOC;
  737. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  738. flags |= XFS_XFLAG_IMMUTABLE;
  739. if (di_flags & XFS_DIFLAG_APPEND)
  740. flags |= XFS_XFLAG_APPEND;
  741. if (di_flags & XFS_DIFLAG_SYNC)
  742. flags |= XFS_XFLAG_SYNC;
  743. if (di_flags & XFS_DIFLAG_NOATIME)
  744. flags |= XFS_XFLAG_NOATIME;
  745. if (di_flags & XFS_DIFLAG_NODUMP)
  746. flags |= XFS_XFLAG_NODUMP;
  747. if (di_flags & XFS_DIFLAG_RTINHERIT)
  748. flags |= XFS_XFLAG_RTINHERIT;
  749. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  750. flags |= XFS_XFLAG_PROJINHERIT;
  751. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  752. flags |= XFS_XFLAG_NOSYMLINKS;
  753. if (di_flags & XFS_DIFLAG_EXTSIZE)
  754. flags |= XFS_XFLAG_EXTSIZE;
  755. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  756. flags |= XFS_XFLAG_EXTSZINHERIT;
  757. if (di_flags & XFS_DIFLAG_NODEFRAG)
  758. flags |= XFS_XFLAG_NODEFRAG;
  759. if (di_flags & XFS_DIFLAG_FILESTREAM)
  760. flags |= XFS_XFLAG_FILESTREAM;
  761. }
  762. return flags;
  763. }
  764. uint
  765. xfs_ip2xflags(
  766. xfs_inode_t *ip)
  767. {
  768. xfs_dinode_core_t *dic = &ip->i_d;
  769. return _xfs_dic2xflags(dic->di_flags) |
  770. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  771. }
  772. uint
  773. xfs_dic2xflags(
  774. xfs_dinode_core_t *dic)
  775. {
  776. return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
  777. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  778. }
  779. /*
  780. * Given a mount structure and an inode number, return a pointer
  781. * to a newly allocated in-core inode corresponding to the given
  782. * inode number.
  783. *
  784. * Initialize the inode's attributes and extent pointers if it
  785. * already has them (it will not if the inode has no links).
  786. */
  787. int
  788. xfs_iread(
  789. xfs_mount_t *mp,
  790. xfs_trans_t *tp,
  791. xfs_ino_t ino,
  792. xfs_inode_t **ipp,
  793. xfs_daddr_t bno,
  794. uint imap_flags)
  795. {
  796. xfs_buf_t *bp;
  797. xfs_dinode_t *dip;
  798. xfs_inode_t *ip;
  799. int error;
  800. ASSERT(xfs_inode_zone != NULL);
  801. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  802. ip->i_ino = ino;
  803. ip->i_mount = mp;
  804. spin_lock_init(&ip->i_flags_lock);
  805. /*
  806. * Get pointer's to the on-disk inode and the buffer containing it.
  807. * If the inode number refers to a block outside the file system
  808. * then xfs_itobp() will return NULL. In this case we should
  809. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  810. * know that this is a new incore inode.
  811. */
  812. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  813. if (error) {
  814. kmem_zone_free(xfs_inode_zone, ip);
  815. return error;
  816. }
  817. /*
  818. * Initialize inode's trace buffers.
  819. * Do this before xfs_iformat in case it adds entries.
  820. */
  821. #ifdef XFS_BMAP_TRACE
  822. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  823. #endif
  824. #ifdef XFS_BMBT_TRACE
  825. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  826. #endif
  827. #ifdef XFS_RW_TRACE
  828. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  829. #endif
  830. #ifdef XFS_ILOCK_TRACE
  831. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  832. #endif
  833. #ifdef XFS_DIR2_TRACE
  834. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  835. #endif
  836. /*
  837. * If we got something that isn't an inode it means someone
  838. * (nfs or dmi) has a stale handle.
  839. */
  840. if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
  841. kmem_zone_free(xfs_inode_zone, ip);
  842. xfs_trans_brelse(tp, bp);
  843. #ifdef DEBUG
  844. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  845. "dip->di_core.di_magic (0x%x) != "
  846. "XFS_DINODE_MAGIC (0x%x)",
  847. INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
  848. XFS_DINODE_MAGIC);
  849. #endif /* DEBUG */
  850. return XFS_ERROR(EINVAL);
  851. }
  852. /*
  853. * If the on-disk inode is already linked to a directory
  854. * entry, copy all of the inode into the in-core inode.
  855. * xfs_iformat() handles copying in the inode format
  856. * specific information.
  857. * Otherwise, just get the truly permanent information.
  858. */
  859. if (dip->di_core.di_mode) {
  860. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  861. &(ip->i_d), 1);
  862. error = xfs_iformat(ip, dip);
  863. if (error) {
  864. kmem_zone_free(xfs_inode_zone, ip);
  865. xfs_trans_brelse(tp, bp);
  866. #ifdef DEBUG
  867. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  868. "xfs_iformat() returned error %d",
  869. error);
  870. #endif /* DEBUG */
  871. return error;
  872. }
  873. } else {
  874. ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
  875. ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
  876. ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
  877. ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
  878. /*
  879. * Make sure to pull in the mode here as well in
  880. * case the inode is released without being used.
  881. * This ensures that xfs_inactive() will see that
  882. * the inode is already free and not try to mess
  883. * with the uninitialized part of it.
  884. */
  885. ip->i_d.di_mode = 0;
  886. /*
  887. * Initialize the per-fork minima and maxima for a new
  888. * inode here. xfs_iformat will do it for old inodes.
  889. */
  890. ip->i_df.if_ext_max =
  891. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  892. }
  893. INIT_LIST_HEAD(&ip->i_reclaim);
  894. /*
  895. * The inode format changed when we moved the link count and
  896. * made it 32 bits long. If this is an old format inode,
  897. * convert it in memory to look like a new one. If it gets
  898. * flushed to disk we will convert back before flushing or
  899. * logging it. We zero out the new projid field and the old link
  900. * count field. We'll handle clearing the pad field (the remains
  901. * of the old uuid field) when we actually convert the inode to
  902. * the new format. We don't change the version number so that we
  903. * can distinguish this from a real new format inode.
  904. */
  905. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  906. ip->i_d.di_nlink = ip->i_d.di_onlink;
  907. ip->i_d.di_onlink = 0;
  908. ip->i_d.di_projid = 0;
  909. }
  910. ip->i_delayed_blks = 0;
  911. ip->i_size = ip->i_d.di_size;
  912. /*
  913. * Mark the buffer containing the inode as something to keep
  914. * around for a while. This helps to keep recently accessed
  915. * meta-data in-core longer.
  916. */
  917. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  918. /*
  919. * Use xfs_trans_brelse() to release the buffer containing the
  920. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  921. * in xfs_itobp() above. If tp is NULL, this is just a normal
  922. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  923. * will only release the buffer if it is not dirty within the
  924. * transaction. It will be OK to release the buffer in this case,
  925. * because inodes on disk are never destroyed and we will be
  926. * locking the new in-core inode before putting it in the hash
  927. * table where other processes can find it. Thus we don't have
  928. * to worry about the inode being changed just because we released
  929. * the buffer.
  930. */
  931. xfs_trans_brelse(tp, bp);
  932. *ipp = ip;
  933. return 0;
  934. }
  935. /*
  936. * Read in extents from a btree-format inode.
  937. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  938. */
  939. int
  940. xfs_iread_extents(
  941. xfs_trans_t *tp,
  942. xfs_inode_t *ip,
  943. int whichfork)
  944. {
  945. int error;
  946. xfs_ifork_t *ifp;
  947. xfs_extnum_t nextents;
  948. size_t size;
  949. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  950. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  951. ip->i_mount);
  952. return XFS_ERROR(EFSCORRUPTED);
  953. }
  954. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  955. size = nextents * sizeof(xfs_bmbt_rec_t);
  956. ifp = XFS_IFORK_PTR(ip, whichfork);
  957. /*
  958. * We know that the size is valid (it's checked in iformat_btree)
  959. */
  960. ifp->if_lastex = NULLEXTNUM;
  961. ifp->if_bytes = ifp->if_real_bytes = 0;
  962. ifp->if_flags |= XFS_IFEXTENTS;
  963. xfs_iext_add(ifp, 0, nextents);
  964. error = xfs_bmap_read_extents(tp, ip, whichfork);
  965. if (error) {
  966. xfs_iext_destroy(ifp);
  967. ifp->if_flags &= ~XFS_IFEXTENTS;
  968. return error;
  969. }
  970. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  971. return 0;
  972. }
  973. /*
  974. * Allocate an inode on disk and return a copy of its in-core version.
  975. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  976. * appropriately within the inode. The uid and gid for the inode are
  977. * set according to the contents of the given cred structure.
  978. *
  979. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  980. * has a free inode available, call xfs_iget()
  981. * to obtain the in-core version of the allocated inode. Finally,
  982. * fill in the inode and log its initial contents. In this case,
  983. * ialloc_context would be set to NULL and call_again set to false.
  984. *
  985. * If xfs_dialloc() does not have an available inode,
  986. * it will replenish its supply by doing an allocation. Since we can
  987. * only do one allocation within a transaction without deadlocks, we
  988. * must commit the current transaction before returning the inode itself.
  989. * In this case, therefore, we will set call_again to true and return.
  990. * The caller should then commit the current transaction, start a new
  991. * transaction, and call xfs_ialloc() again to actually get the inode.
  992. *
  993. * To ensure that some other process does not grab the inode that
  994. * was allocated during the first call to xfs_ialloc(), this routine
  995. * also returns the [locked] bp pointing to the head of the freelist
  996. * as ialloc_context. The caller should hold this buffer across
  997. * the commit and pass it back into this routine on the second call.
  998. *
  999. * If we are allocating quota inodes, we do not have a parent inode
  1000. * to attach to or associate with (i.e. pip == NULL) because they
  1001. * are not linked into the directory structure - they are attached
  1002. * directly to the superblock - and so have no parent.
  1003. */
  1004. int
  1005. xfs_ialloc(
  1006. xfs_trans_t *tp,
  1007. xfs_inode_t *pip,
  1008. mode_t mode,
  1009. xfs_nlink_t nlink,
  1010. xfs_dev_t rdev,
  1011. cred_t *cr,
  1012. xfs_prid_t prid,
  1013. int okalloc,
  1014. xfs_buf_t **ialloc_context,
  1015. boolean_t *call_again,
  1016. xfs_inode_t **ipp)
  1017. {
  1018. xfs_ino_t ino;
  1019. xfs_inode_t *ip;
  1020. bhv_vnode_t *vp;
  1021. uint flags;
  1022. int error;
  1023. /*
  1024. * Call the space management code to pick
  1025. * the on-disk inode to be allocated.
  1026. */
  1027. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1028. ialloc_context, call_again, &ino);
  1029. if (error != 0) {
  1030. return error;
  1031. }
  1032. if (*call_again || ino == NULLFSINO) {
  1033. *ipp = NULL;
  1034. return 0;
  1035. }
  1036. ASSERT(*ialloc_context == NULL);
  1037. /*
  1038. * Get the in-core inode with the lock held exclusively.
  1039. * This is because we're setting fields here we need
  1040. * to prevent others from looking at until we're done.
  1041. */
  1042. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1043. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1044. if (error != 0) {
  1045. return error;
  1046. }
  1047. ASSERT(ip != NULL);
  1048. vp = XFS_ITOV(ip);
  1049. ip->i_d.di_mode = (__uint16_t)mode;
  1050. ip->i_d.di_onlink = 0;
  1051. ip->i_d.di_nlink = nlink;
  1052. ASSERT(ip->i_d.di_nlink == nlink);
  1053. ip->i_d.di_uid = current_fsuid(cr);
  1054. ip->i_d.di_gid = current_fsgid(cr);
  1055. ip->i_d.di_projid = prid;
  1056. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1057. /*
  1058. * If the superblock version is up to where we support new format
  1059. * inodes and this is currently an old format inode, then change
  1060. * the inode version number now. This way we only do the conversion
  1061. * here rather than here and in the flush/logging code.
  1062. */
  1063. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1064. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1065. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1066. /*
  1067. * We've already zeroed the old link count, the projid field,
  1068. * and the pad field.
  1069. */
  1070. }
  1071. /*
  1072. * Project ids won't be stored on disk if we are using a version 1 inode.
  1073. */
  1074. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1075. xfs_bump_ino_vers2(tp, ip);
  1076. if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1077. ip->i_d.di_gid = pip->i_d.di_gid;
  1078. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1079. ip->i_d.di_mode |= S_ISGID;
  1080. }
  1081. }
  1082. /*
  1083. * If the group ID of the new file does not match the effective group
  1084. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1085. * (and only if the irix_sgid_inherit compatibility variable is set).
  1086. */
  1087. if ((irix_sgid_inherit) &&
  1088. (ip->i_d.di_mode & S_ISGID) &&
  1089. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1090. ip->i_d.di_mode &= ~S_ISGID;
  1091. }
  1092. ip->i_d.di_size = 0;
  1093. ip->i_size = 0;
  1094. ip->i_d.di_nextents = 0;
  1095. ASSERT(ip->i_d.di_nblocks == 0);
  1096. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1097. /*
  1098. * di_gen will have been taken care of in xfs_iread.
  1099. */
  1100. ip->i_d.di_extsize = 0;
  1101. ip->i_d.di_dmevmask = 0;
  1102. ip->i_d.di_dmstate = 0;
  1103. ip->i_d.di_flags = 0;
  1104. flags = XFS_ILOG_CORE;
  1105. switch (mode & S_IFMT) {
  1106. case S_IFIFO:
  1107. case S_IFCHR:
  1108. case S_IFBLK:
  1109. case S_IFSOCK:
  1110. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1111. ip->i_df.if_u2.if_rdev = rdev;
  1112. ip->i_df.if_flags = 0;
  1113. flags |= XFS_ILOG_DEV;
  1114. break;
  1115. case S_IFREG:
  1116. if (pip && xfs_inode_is_filestream(pip)) {
  1117. error = xfs_filestream_associate(pip, ip);
  1118. if (error < 0)
  1119. return -error;
  1120. if (!error)
  1121. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1122. }
  1123. /* fall through */
  1124. case S_IFDIR:
  1125. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1126. uint di_flags = 0;
  1127. if ((mode & S_IFMT) == S_IFDIR) {
  1128. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1129. di_flags |= XFS_DIFLAG_RTINHERIT;
  1130. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1131. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1132. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1133. }
  1134. } else if ((mode & S_IFMT) == S_IFREG) {
  1135. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1136. di_flags |= XFS_DIFLAG_REALTIME;
  1137. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1138. }
  1139. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1140. di_flags |= XFS_DIFLAG_EXTSIZE;
  1141. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1142. }
  1143. }
  1144. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1145. xfs_inherit_noatime)
  1146. di_flags |= XFS_DIFLAG_NOATIME;
  1147. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1148. xfs_inherit_nodump)
  1149. di_flags |= XFS_DIFLAG_NODUMP;
  1150. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1151. xfs_inherit_sync)
  1152. di_flags |= XFS_DIFLAG_SYNC;
  1153. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1154. xfs_inherit_nosymlinks)
  1155. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1156. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1157. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1158. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1159. xfs_inherit_nodefrag)
  1160. di_flags |= XFS_DIFLAG_NODEFRAG;
  1161. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1162. di_flags |= XFS_DIFLAG_FILESTREAM;
  1163. ip->i_d.di_flags |= di_flags;
  1164. }
  1165. /* FALLTHROUGH */
  1166. case S_IFLNK:
  1167. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1168. ip->i_df.if_flags = XFS_IFEXTENTS;
  1169. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1170. ip->i_df.if_u1.if_extents = NULL;
  1171. break;
  1172. default:
  1173. ASSERT(0);
  1174. }
  1175. /*
  1176. * Attribute fork settings for new inode.
  1177. */
  1178. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1179. ip->i_d.di_anextents = 0;
  1180. /*
  1181. * Log the new values stuffed into the inode.
  1182. */
  1183. xfs_trans_log_inode(tp, ip, flags);
  1184. /* now that we have an i_mode we can setup inode ops and unlock */
  1185. bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1186. *ipp = ip;
  1187. return 0;
  1188. }
  1189. /*
  1190. * Check to make sure that there are no blocks allocated to the
  1191. * file beyond the size of the file. We don't check this for
  1192. * files with fixed size extents or real time extents, but we
  1193. * at least do it for regular files.
  1194. */
  1195. #ifdef DEBUG
  1196. void
  1197. xfs_isize_check(
  1198. xfs_mount_t *mp,
  1199. xfs_inode_t *ip,
  1200. xfs_fsize_t isize)
  1201. {
  1202. xfs_fileoff_t map_first;
  1203. int nimaps;
  1204. xfs_bmbt_irec_t imaps[2];
  1205. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1206. return;
  1207. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1208. return;
  1209. nimaps = 2;
  1210. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1211. /*
  1212. * The filesystem could be shutting down, so bmapi may return
  1213. * an error.
  1214. */
  1215. if (xfs_bmapi(NULL, ip, map_first,
  1216. (XFS_B_TO_FSB(mp,
  1217. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1218. map_first),
  1219. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1220. NULL, NULL))
  1221. return;
  1222. ASSERT(nimaps == 1);
  1223. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1224. }
  1225. #endif /* DEBUG */
  1226. /*
  1227. * Calculate the last possible buffered byte in a file. This must
  1228. * include data that was buffered beyond the EOF by the write code.
  1229. * This also needs to deal with overflowing the xfs_fsize_t type
  1230. * which can happen for sizes near the limit.
  1231. *
  1232. * We also need to take into account any blocks beyond the EOF. It
  1233. * may be the case that they were buffered by a write which failed.
  1234. * In that case the pages will still be in memory, but the inode size
  1235. * will never have been updated.
  1236. */
  1237. xfs_fsize_t
  1238. xfs_file_last_byte(
  1239. xfs_inode_t *ip)
  1240. {
  1241. xfs_mount_t *mp;
  1242. xfs_fsize_t last_byte;
  1243. xfs_fileoff_t last_block;
  1244. xfs_fileoff_t size_last_block;
  1245. int error;
  1246. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1247. mp = ip->i_mount;
  1248. /*
  1249. * Only check for blocks beyond the EOF if the extents have
  1250. * been read in. This eliminates the need for the inode lock,
  1251. * and it also saves us from looking when it really isn't
  1252. * necessary.
  1253. */
  1254. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1255. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1256. XFS_DATA_FORK);
  1257. if (error) {
  1258. last_block = 0;
  1259. }
  1260. } else {
  1261. last_block = 0;
  1262. }
  1263. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1264. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1265. last_byte = XFS_FSB_TO_B(mp, last_block);
  1266. if (last_byte < 0) {
  1267. return XFS_MAXIOFFSET(mp);
  1268. }
  1269. last_byte += (1 << mp->m_writeio_log);
  1270. if (last_byte < 0) {
  1271. return XFS_MAXIOFFSET(mp);
  1272. }
  1273. return last_byte;
  1274. }
  1275. #if defined(XFS_RW_TRACE)
  1276. STATIC void
  1277. xfs_itrunc_trace(
  1278. int tag,
  1279. xfs_inode_t *ip,
  1280. int flag,
  1281. xfs_fsize_t new_size,
  1282. xfs_off_t toss_start,
  1283. xfs_off_t toss_finish)
  1284. {
  1285. if (ip->i_rwtrace == NULL) {
  1286. return;
  1287. }
  1288. ktrace_enter(ip->i_rwtrace,
  1289. (void*)((long)tag),
  1290. (void*)ip,
  1291. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1292. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1293. (void*)((long)flag),
  1294. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1295. (void*)(unsigned long)(new_size & 0xffffffff),
  1296. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1297. (void*)(unsigned long)(toss_start & 0xffffffff),
  1298. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1299. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1300. (void*)(unsigned long)current_cpu(),
  1301. (void*)(unsigned long)current_pid(),
  1302. (void*)NULL,
  1303. (void*)NULL,
  1304. (void*)NULL);
  1305. }
  1306. #else
  1307. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1308. #endif
  1309. /*
  1310. * Start the truncation of the file to new_size. The new size
  1311. * must be smaller than the current size. This routine will
  1312. * clear the buffer and page caches of file data in the removed
  1313. * range, and xfs_itruncate_finish() will remove the underlying
  1314. * disk blocks.
  1315. *
  1316. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1317. * must NOT have the inode lock held at all. This is because we're
  1318. * calling into the buffer/page cache code and we can't hold the
  1319. * inode lock when we do so.
  1320. *
  1321. * We need to wait for any direct I/Os in flight to complete before we
  1322. * proceed with the truncate. This is needed to prevent the extents
  1323. * being read or written by the direct I/Os from being removed while the
  1324. * I/O is in flight as there is no other method of synchronising
  1325. * direct I/O with the truncate operation. Also, because we hold
  1326. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1327. * started until the truncate completes and drops the lock. Essentially,
  1328. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1329. * between direct I/Os and the truncate operation.
  1330. *
  1331. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1332. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1333. * in the case that the caller is locking things out of order and
  1334. * may not be able to call xfs_itruncate_finish() with the inode lock
  1335. * held without dropping the I/O lock. If the caller must drop the
  1336. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1337. * must be called again with all the same restrictions as the initial
  1338. * call.
  1339. */
  1340. int
  1341. xfs_itruncate_start(
  1342. xfs_inode_t *ip,
  1343. uint flags,
  1344. xfs_fsize_t new_size)
  1345. {
  1346. xfs_fsize_t last_byte;
  1347. xfs_off_t toss_start;
  1348. xfs_mount_t *mp;
  1349. bhv_vnode_t *vp;
  1350. int error = 0;
  1351. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1352. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1353. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1354. (flags == XFS_ITRUNC_MAYBE));
  1355. mp = ip->i_mount;
  1356. vp = XFS_ITOV(ip);
  1357. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1358. /*
  1359. * Call toss_pages or flushinval_pages to get rid of pages
  1360. * overlapping the region being removed. We have to use
  1361. * the less efficient flushinval_pages in the case that the
  1362. * caller may not be able to finish the truncate without
  1363. * dropping the inode's I/O lock. Make sure
  1364. * to catch any pages brought in by buffers overlapping
  1365. * the EOF by searching out beyond the isize by our
  1366. * block size. We round new_size up to a block boundary
  1367. * so that we don't toss things on the same block as
  1368. * new_size but before it.
  1369. *
  1370. * Before calling toss_page or flushinval_pages, make sure to
  1371. * call remapf() over the same region if the file is mapped.
  1372. * This frees up mapped file references to the pages in the
  1373. * given range and for the flushinval_pages case it ensures
  1374. * that we get the latest mapped changes flushed out.
  1375. */
  1376. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1377. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1378. if (toss_start < 0) {
  1379. /*
  1380. * The place to start tossing is beyond our maximum
  1381. * file size, so there is no way that the data extended
  1382. * out there.
  1383. */
  1384. return 0;
  1385. }
  1386. last_byte = xfs_file_last_byte(ip);
  1387. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1388. last_byte);
  1389. if (last_byte > toss_start) {
  1390. if (flags & XFS_ITRUNC_DEFINITE) {
  1391. bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1392. } else {
  1393. error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1394. }
  1395. }
  1396. #ifdef DEBUG
  1397. if (new_size == 0) {
  1398. ASSERT(VN_CACHED(vp) == 0);
  1399. }
  1400. #endif
  1401. return error;
  1402. }
  1403. /*
  1404. * Shrink the file to the given new_size. The new
  1405. * size must be smaller than the current size.
  1406. * This will free up the underlying blocks
  1407. * in the removed range after a call to xfs_itruncate_start()
  1408. * or xfs_atruncate_start().
  1409. *
  1410. * The transaction passed to this routine must have made
  1411. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1412. * This routine may commit the given transaction and
  1413. * start new ones, so make sure everything involved in
  1414. * the transaction is tidy before calling here.
  1415. * Some transaction will be returned to the caller to be
  1416. * committed. The incoming transaction must already include
  1417. * the inode, and both inode locks must be held exclusively.
  1418. * The inode must also be "held" within the transaction. On
  1419. * return the inode will be "held" within the returned transaction.
  1420. * This routine does NOT require any disk space to be reserved
  1421. * for it within the transaction.
  1422. *
  1423. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1424. * and it indicates the fork which is to be truncated. For the
  1425. * attribute fork we only support truncation to size 0.
  1426. *
  1427. * We use the sync parameter to indicate whether or not the first
  1428. * transaction we perform might have to be synchronous. For the attr fork,
  1429. * it needs to be so if the unlink of the inode is not yet known to be
  1430. * permanent in the log. This keeps us from freeing and reusing the
  1431. * blocks of the attribute fork before the unlink of the inode becomes
  1432. * permanent.
  1433. *
  1434. * For the data fork, we normally have to run synchronously if we're
  1435. * being called out of the inactive path or we're being called
  1436. * out of the create path where we're truncating an existing file.
  1437. * Either way, the truncate needs to be sync so blocks don't reappear
  1438. * in the file with altered data in case of a crash. wsync filesystems
  1439. * can run the first case async because anything that shrinks the inode
  1440. * has to run sync so by the time we're called here from inactive, the
  1441. * inode size is permanently set to 0.
  1442. *
  1443. * Calls from the truncate path always need to be sync unless we're
  1444. * in a wsync filesystem and the file has already been unlinked.
  1445. *
  1446. * The caller is responsible for correctly setting the sync parameter.
  1447. * It gets too hard for us to guess here which path we're being called
  1448. * out of just based on inode state.
  1449. */
  1450. int
  1451. xfs_itruncate_finish(
  1452. xfs_trans_t **tp,
  1453. xfs_inode_t *ip,
  1454. xfs_fsize_t new_size,
  1455. int fork,
  1456. int sync)
  1457. {
  1458. xfs_fsblock_t first_block;
  1459. xfs_fileoff_t first_unmap_block;
  1460. xfs_fileoff_t last_block;
  1461. xfs_filblks_t unmap_len=0;
  1462. xfs_mount_t *mp;
  1463. xfs_trans_t *ntp;
  1464. int done;
  1465. int committed;
  1466. xfs_bmap_free_t free_list;
  1467. int error;
  1468. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1469. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1470. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1471. ASSERT(*tp != NULL);
  1472. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1473. ASSERT(ip->i_transp == *tp);
  1474. ASSERT(ip->i_itemp != NULL);
  1475. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1476. ntp = *tp;
  1477. mp = (ntp)->t_mountp;
  1478. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1479. /*
  1480. * We only support truncating the entire attribute fork.
  1481. */
  1482. if (fork == XFS_ATTR_FORK) {
  1483. new_size = 0LL;
  1484. }
  1485. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1486. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1487. /*
  1488. * The first thing we do is set the size to new_size permanently
  1489. * on disk. This way we don't have to worry about anyone ever
  1490. * being able to look at the data being freed even in the face
  1491. * of a crash. What we're getting around here is the case where
  1492. * we free a block, it is allocated to another file, it is written
  1493. * to, and then we crash. If the new data gets written to the
  1494. * file but the log buffers containing the free and reallocation
  1495. * don't, then we'd end up with garbage in the blocks being freed.
  1496. * As long as we make the new_size permanent before actually
  1497. * freeing any blocks it doesn't matter if they get writtten to.
  1498. *
  1499. * The callers must signal into us whether or not the size
  1500. * setting here must be synchronous. There are a few cases
  1501. * where it doesn't have to be synchronous. Those cases
  1502. * occur if the file is unlinked and we know the unlink is
  1503. * permanent or if the blocks being truncated are guaranteed
  1504. * to be beyond the inode eof (regardless of the link count)
  1505. * and the eof value is permanent. Both of these cases occur
  1506. * only on wsync-mounted filesystems. In those cases, we're
  1507. * guaranteed that no user will ever see the data in the blocks
  1508. * that are being truncated so the truncate can run async.
  1509. * In the free beyond eof case, the file may wind up with
  1510. * more blocks allocated to it than it needs if we crash
  1511. * and that won't get fixed until the next time the file
  1512. * is re-opened and closed but that's ok as that shouldn't
  1513. * be too many blocks.
  1514. *
  1515. * However, we can't just make all wsync xactions run async
  1516. * because there's one call out of the create path that needs
  1517. * to run sync where it's truncating an existing file to size
  1518. * 0 whose size is > 0.
  1519. *
  1520. * It's probably possible to come up with a test in this
  1521. * routine that would correctly distinguish all the above
  1522. * cases from the values of the function parameters and the
  1523. * inode state but for sanity's sake, I've decided to let the
  1524. * layers above just tell us. It's simpler to correctly figure
  1525. * out in the layer above exactly under what conditions we
  1526. * can run async and I think it's easier for others read and
  1527. * follow the logic in case something has to be changed.
  1528. * cscope is your friend -- rcc.
  1529. *
  1530. * The attribute fork is much simpler.
  1531. *
  1532. * For the attribute fork we allow the caller to tell us whether
  1533. * the unlink of the inode that led to this call is yet permanent
  1534. * in the on disk log. If it is not and we will be freeing extents
  1535. * in this inode then we make the first transaction synchronous
  1536. * to make sure that the unlink is permanent by the time we free
  1537. * the blocks.
  1538. */
  1539. if (fork == XFS_DATA_FORK) {
  1540. if (ip->i_d.di_nextents > 0) {
  1541. /*
  1542. * If we are not changing the file size then do
  1543. * not update the on-disk file size - we may be
  1544. * called from xfs_inactive_free_eofblocks(). If we
  1545. * update the on-disk file size and then the system
  1546. * crashes before the contents of the file are
  1547. * flushed to disk then the files may be full of
  1548. * holes (ie NULL files bug).
  1549. */
  1550. if (ip->i_size != new_size) {
  1551. ip->i_d.di_size = new_size;
  1552. ip->i_size = new_size;
  1553. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1554. }
  1555. }
  1556. } else if (sync) {
  1557. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1558. if (ip->i_d.di_anextents > 0)
  1559. xfs_trans_set_sync(ntp);
  1560. }
  1561. ASSERT(fork == XFS_DATA_FORK ||
  1562. (fork == XFS_ATTR_FORK &&
  1563. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1564. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1565. /*
  1566. * Since it is possible for space to become allocated beyond
  1567. * the end of the file (in a crash where the space is allocated
  1568. * but the inode size is not yet updated), simply remove any
  1569. * blocks which show up between the new EOF and the maximum
  1570. * possible file size. If the first block to be removed is
  1571. * beyond the maximum file size (ie it is the same as last_block),
  1572. * then there is nothing to do.
  1573. */
  1574. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1575. ASSERT(first_unmap_block <= last_block);
  1576. done = 0;
  1577. if (last_block == first_unmap_block) {
  1578. done = 1;
  1579. } else {
  1580. unmap_len = last_block - first_unmap_block + 1;
  1581. }
  1582. while (!done) {
  1583. /*
  1584. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1585. * will tell us whether it freed the entire range or
  1586. * not. If this is a synchronous mount (wsync),
  1587. * then we can tell bunmapi to keep all the
  1588. * transactions asynchronous since the unlink
  1589. * transaction that made this inode inactive has
  1590. * already hit the disk. There's no danger of
  1591. * the freed blocks being reused, there being a
  1592. * crash, and the reused blocks suddenly reappearing
  1593. * in this file with garbage in them once recovery
  1594. * runs.
  1595. */
  1596. XFS_BMAP_INIT(&free_list, &first_block);
  1597. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1598. first_unmap_block, unmap_len,
  1599. XFS_BMAPI_AFLAG(fork) |
  1600. (sync ? 0 : XFS_BMAPI_ASYNC),
  1601. XFS_ITRUNC_MAX_EXTENTS,
  1602. &first_block, &free_list,
  1603. NULL, &done);
  1604. if (error) {
  1605. /*
  1606. * If the bunmapi call encounters an error,
  1607. * return to the caller where the transaction
  1608. * can be properly aborted. We just need to
  1609. * make sure we're not holding any resources
  1610. * that we were not when we came in.
  1611. */
  1612. xfs_bmap_cancel(&free_list);
  1613. return error;
  1614. }
  1615. /*
  1616. * Duplicate the transaction that has the permanent
  1617. * reservation and commit the old transaction.
  1618. */
  1619. error = xfs_bmap_finish(tp, &free_list, &committed);
  1620. ntp = *tp;
  1621. if (error) {
  1622. /*
  1623. * If the bmap finish call encounters an error,
  1624. * return to the caller where the transaction
  1625. * can be properly aborted. We just need to
  1626. * make sure we're not holding any resources
  1627. * that we were not when we came in.
  1628. *
  1629. * Aborting from this point might lose some
  1630. * blocks in the file system, but oh well.
  1631. */
  1632. xfs_bmap_cancel(&free_list);
  1633. if (committed) {
  1634. /*
  1635. * If the passed in transaction committed
  1636. * in xfs_bmap_finish(), then we want to
  1637. * add the inode to this one before returning.
  1638. * This keeps things simple for the higher
  1639. * level code, because it always knows that
  1640. * the inode is locked and held in the
  1641. * transaction that returns to it whether
  1642. * errors occur or not. We don't mark the
  1643. * inode dirty so that this transaction can
  1644. * be easily aborted if possible.
  1645. */
  1646. xfs_trans_ijoin(ntp, ip,
  1647. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1648. xfs_trans_ihold(ntp, ip);
  1649. }
  1650. return error;
  1651. }
  1652. if (committed) {
  1653. /*
  1654. * The first xact was committed,
  1655. * so add the inode to the new one.
  1656. * Mark it dirty so it will be logged
  1657. * and moved forward in the log as
  1658. * part of every commit.
  1659. */
  1660. xfs_trans_ijoin(ntp, ip,
  1661. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1662. xfs_trans_ihold(ntp, ip);
  1663. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1664. }
  1665. ntp = xfs_trans_dup(ntp);
  1666. (void) xfs_trans_commit(*tp, 0);
  1667. *tp = ntp;
  1668. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1669. XFS_TRANS_PERM_LOG_RES,
  1670. XFS_ITRUNCATE_LOG_COUNT);
  1671. /*
  1672. * Add the inode being truncated to the next chained
  1673. * transaction.
  1674. */
  1675. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1676. xfs_trans_ihold(ntp, ip);
  1677. if (error)
  1678. return (error);
  1679. }
  1680. /*
  1681. * Only update the size in the case of the data fork, but
  1682. * always re-log the inode so that our permanent transaction
  1683. * can keep on rolling it forward in the log.
  1684. */
  1685. if (fork == XFS_DATA_FORK) {
  1686. xfs_isize_check(mp, ip, new_size);
  1687. /*
  1688. * If we are not changing the file size then do
  1689. * not update the on-disk file size - we may be
  1690. * called from xfs_inactive_free_eofblocks(). If we
  1691. * update the on-disk file size and then the system
  1692. * crashes before the contents of the file are
  1693. * flushed to disk then the files may be full of
  1694. * holes (ie NULL files bug).
  1695. */
  1696. if (ip->i_size != new_size) {
  1697. ip->i_d.di_size = new_size;
  1698. ip->i_size = new_size;
  1699. }
  1700. }
  1701. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1702. ASSERT((new_size != 0) ||
  1703. (fork == XFS_ATTR_FORK) ||
  1704. (ip->i_delayed_blks == 0));
  1705. ASSERT((new_size != 0) ||
  1706. (fork == XFS_ATTR_FORK) ||
  1707. (ip->i_d.di_nextents == 0));
  1708. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1709. return 0;
  1710. }
  1711. /*
  1712. * xfs_igrow_start
  1713. *
  1714. * Do the first part of growing a file: zero any data in the last
  1715. * block that is beyond the old EOF. We need to do this before
  1716. * the inode is joined to the transaction to modify the i_size.
  1717. * That way we can drop the inode lock and call into the buffer
  1718. * cache to get the buffer mapping the EOF.
  1719. */
  1720. int
  1721. xfs_igrow_start(
  1722. xfs_inode_t *ip,
  1723. xfs_fsize_t new_size,
  1724. cred_t *credp)
  1725. {
  1726. int error;
  1727. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1728. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1729. ASSERT(new_size > ip->i_size);
  1730. /*
  1731. * Zero any pages that may have been created by
  1732. * xfs_write_file() beyond the end of the file
  1733. * and any blocks between the old and new file sizes.
  1734. */
  1735. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1736. ip->i_size);
  1737. return error;
  1738. }
  1739. /*
  1740. * xfs_igrow_finish
  1741. *
  1742. * This routine is called to extend the size of a file.
  1743. * The inode must have both the iolock and the ilock locked
  1744. * for update and it must be a part of the current transaction.
  1745. * The xfs_igrow_start() function must have been called previously.
  1746. * If the change_flag is not zero, the inode change timestamp will
  1747. * be updated.
  1748. */
  1749. void
  1750. xfs_igrow_finish(
  1751. xfs_trans_t *tp,
  1752. xfs_inode_t *ip,
  1753. xfs_fsize_t new_size,
  1754. int change_flag)
  1755. {
  1756. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1757. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1758. ASSERT(ip->i_transp == tp);
  1759. ASSERT(new_size > ip->i_size);
  1760. /*
  1761. * Update the file size. Update the inode change timestamp
  1762. * if change_flag set.
  1763. */
  1764. ip->i_d.di_size = new_size;
  1765. ip->i_size = new_size;
  1766. if (change_flag)
  1767. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1768. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1769. }
  1770. /*
  1771. * This is called when the inode's link count goes to 0.
  1772. * We place the on-disk inode on a list in the AGI. It
  1773. * will be pulled from this list when the inode is freed.
  1774. */
  1775. int
  1776. xfs_iunlink(
  1777. xfs_trans_t *tp,
  1778. xfs_inode_t *ip)
  1779. {
  1780. xfs_mount_t *mp;
  1781. xfs_agi_t *agi;
  1782. xfs_dinode_t *dip;
  1783. xfs_buf_t *agibp;
  1784. xfs_buf_t *ibp;
  1785. xfs_agnumber_t agno;
  1786. xfs_daddr_t agdaddr;
  1787. xfs_agino_t agino;
  1788. short bucket_index;
  1789. int offset;
  1790. int error;
  1791. int agi_ok;
  1792. ASSERT(ip->i_d.di_nlink == 0);
  1793. ASSERT(ip->i_d.di_mode != 0);
  1794. ASSERT(ip->i_transp == tp);
  1795. mp = tp->t_mountp;
  1796. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1797. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1798. /*
  1799. * Get the agi buffer first. It ensures lock ordering
  1800. * on the list.
  1801. */
  1802. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1803. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1804. if (error) {
  1805. return error;
  1806. }
  1807. /*
  1808. * Validate the magic number of the agi block.
  1809. */
  1810. agi = XFS_BUF_TO_AGI(agibp);
  1811. agi_ok =
  1812. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1813. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1814. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1815. XFS_RANDOM_IUNLINK))) {
  1816. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1817. xfs_trans_brelse(tp, agibp);
  1818. return XFS_ERROR(EFSCORRUPTED);
  1819. }
  1820. /*
  1821. * Get the index into the agi hash table for the
  1822. * list this inode will go on.
  1823. */
  1824. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1825. ASSERT(agino != 0);
  1826. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1827. ASSERT(agi->agi_unlinked[bucket_index]);
  1828. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1829. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1830. /*
  1831. * There is already another inode in the bucket we need
  1832. * to add ourselves to. Add us at the front of the list.
  1833. * Here we put the head pointer into our next pointer,
  1834. * and then we fall through to point the head at us.
  1835. */
  1836. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1837. if (error) {
  1838. return error;
  1839. }
  1840. ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
  1841. ASSERT(dip->di_next_unlinked);
  1842. /* both on-disk, don't endian flip twice */
  1843. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1844. offset = ip->i_boffset +
  1845. offsetof(xfs_dinode_t, di_next_unlinked);
  1846. xfs_trans_inode_buf(tp, ibp);
  1847. xfs_trans_log_buf(tp, ibp, offset,
  1848. (offset + sizeof(xfs_agino_t) - 1));
  1849. xfs_inobp_check(mp, ibp);
  1850. }
  1851. /*
  1852. * Point the bucket head pointer at the inode being inserted.
  1853. */
  1854. ASSERT(agino != 0);
  1855. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1856. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1857. (sizeof(xfs_agino_t) * bucket_index);
  1858. xfs_trans_log_buf(tp, agibp, offset,
  1859. (offset + sizeof(xfs_agino_t) - 1));
  1860. return 0;
  1861. }
  1862. /*
  1863. * Pull the on-disk inode from the AGI unlinked list.
  1864. */
  1865. STATIC int
  1866. xfs_iunlink_remove(
  1867. xfs_trans_t *tp,
  1868. xfs_inode_t *ip)
  1869. {
  1870. xfs_ino_t next_ino;
  1871. xfs_mount_t *mp;
  1872. xfs_agi_t *agi;
  1873. xfs_dinode_t *dip;
  1874. xfs_buf_t *agibp;
  1875. xfs_buf_t *ibp;
  1876. xfs_agnumber_t agno;
  1877. xfs_daddr_t agdaddr;
  1878. xfs_agino_t agino;
  1879. xfs_agino_t next_agino;
  1880. xfs_buf_t *last_ibp;
  1881. xfs_dinode_t *last_dip = NULL;
  1882. short bucket_index;
  1883. int offset, last_offset = 0;
  1884. int error;
  1885. int agi_ok;
  1886. /*
  1887. * First pull the on-disk inode from the AGI unlinked list.
  1888. */
  1889. mp = tp->t_mountp;
  1890. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1891. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1892. /*
  1893. * Get the agi buffer first. It ensures lock ordering
  1894. * on the list.
  1895. */
  1896. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1897. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1898. if (error) {
  1899. cmn_err(CE_WARN,
  1900. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1901. error, mp->m_fsname);
  1902. return error;
  1903. }
  1904. /*
  1905. * Validate the magic number of the agi block.
  1906. */
  1907. agi = XFS_BUF_TO_AGI(agibp);
  1908. agi_ok =
  1909. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1910. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1911. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1912. XFS_RANDOM_IUNLINK_REMOVE))) {
  1913. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1914. mp, agi);
  1915. xfs_trans_brelse(tp, agibp);
  1916. cmn_err(CE_WARN,
  1917. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1918. mp->m_fsname);
  1919. return XFS_ERROR(EFSCORRUPTED);
  1920. }
  1921. /*
  1922. * Get the index into the agi hash table for the
  1923. * list this inode will go on.
  1924. */
  1925. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1926. ASSERT(agino != 0);
  1927. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1928. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1929. ASSERT(agi->agi_unlinked[bucket_index]);
  1930. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1931. /*
  1932. * We're at the head of the list. Get the inode's
  1933. * on-disk buffer to see if there is anyone after us
  1934. * on the list. Only modify our next pointer if it
  1935. * is not already NULLAGINO. This saves us the overhead
  1936. * of dealing with the buffer when there is no need to
  1937. * change it.
  1938. */
  1939. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1940. if (error) {
  1941. cmn_err(CE_WARN,
  1942. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1943. error, mp->m_fsname);
  1944. return error;
  1945. }
  1946. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1947. ASSERT(next_agino != 0);
  1948. if (next_agino != NULLAGINO) {
  1949. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1950. offset = ip->i_boffset +
  1951. offsetof(xfs_dinode_t, di_next_unlinked);
  1952. xfs_trans_inode_buf(tp, ibp);
  1953. xfs_trans_log_buf(tp, ibp, offset,
  1954. (offset + sizeof(xfs_agino_t) - 1));
  1955. xfs_inobp_check(mp, ibp);
  1956. } else {
  1957. xfs_trans_brelse(tp, ibp);
  1958. }
  1959. /*
  1960. * Point the bucket head pointer at the next inode.
  1961. */
  1962. ASSERT(next_agino != 0);
  1963. ASSERT(next_agino != agino);
  1964. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1965. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1966. (sizeof(xfs_agino_t) * bucket_index);
  1967. xfs_trans_log_buf(tp, agibp, offset,
  1968. (offset + sizeof(xfs_agino_t) - 1));
  1969. } else {
  1970. /*
  1971. * We need to search the list for the inode being freed.
  1972. */
  1973. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1974. last_ibp = NULL;
  1975. while (next_agino != agino) {
  1976. /*
  1977. * If the last inode wasn't the one pointing to
  1978. * us, then release its buffer since we're not
  1979. * going to do anything with it.
  1980. */
  1981. if (last_ibp != NULL) {
  1982. xfs_trans_brelse(tp, last_ibp);
  1983. }
  1984. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1985. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1986. &last_ibp, &last_offset);
  1987. if (error) {
  1988. cmn_err(CE_WARN,
  1989. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1990. error, mp->m_fsname);
  1991. return error;
  1992. }
  1993. next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
  1994. ASSERT(next_agino != NULLAGINO);
  1995. ASSERT(next_agino != 0);
  1996. }
  1997. /*
  1998. * Now last_ibp points to the buffer previous to us on
  1999. * the unlinked list. Pull us from the list.
  2000. */
  2001. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  2002. if (error) {
  2003. cmn_err(CE_WARN,
  2004. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  2005. error, mp->m_fsname);
  2006. return error;
  2007. }
  2008. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  2009. ASSERT(next_agino != 0);
  2010. ASSERT(next_agino != agino);
  2011. if (next_agino != NULLAGINO) {
  2012. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  2013. offset = ip->i_boffset +
  2014. offsetof(xfs_dinode_t, di_next_unlinked);
  2015. xfs_trans_inode_buf(tp, ibp);
  2016. xfs_trans_log_buf(tp, ibp, offset,
  2017. (offset + sizeof(xfs_agino_t) - 1));
  2018. xfs_inobp_check(mp, ibp);
  2019. } else {
  2020. xfs_trans_brelse(tp, ibp);
  2021. }
  2022. /*
  2023. * Point the previous inode on the list to the next inode.
  2024. */
  2025. INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
  2026. ASSERT(next_agino != 0);
  2027. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  2028. xfs_trans_inode_buf(tp, last_ibp);
  2029. xfs_trans_log_buf(tp, last_ibp, offset,
  2030. (offset + sizeof(xfs_agino_t) - 1));
  2031. xfs_inobp_check(mp, last_ibp);
  2032. }
  2033. return 0;
  2034. }
  2035. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  2036. {
  2037. return (((ip->i_itemp == NULL) ||
  2038. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2039. (ip->i_update_core == 0));
  2040. }
  2041. STATIC void
  2042. xfs_ifree_cluster(
  2043. xfs_inode_t *free_ip,
  2044. xfs_trans_t *tp,
  2045. xfs_ino_t inum)
  2046. {
  2047. xfs_mount_t *mp = free_ip->i_mount;
  2048. int blks_per_cluster;
  2049. int nbufs;
  2050. int ninodes;
  2051. int i, j, found, pre_flushed;
  2052. xfs_daddr_t blkno;
  2053. xfs_buf_t *bp;
  2054. xfs_ihash_t *ih;
  2055. xfs_inode_t *ip, **ip_found;
  2056. xfs_inode_log_item_t *iip;
  2057. xfs_log_item_t *lip;
  2058. SPLDECL(s);
  2059. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2060. blks_per_cluster = 1;
  2061. ninodes = mp->m_sb.sb_inopblock;
  2062. nbufs = XFS_IALLOC_BLOCKS(mp);
  2063. } else {
  2064. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2065. mp->m_sb.sb_blocksize;
  2066. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2067. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2068. }
  2069. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2070. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2071. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2072. XFS_INO_TO_AGBNO(mp, inum));
  2073. /*
  2074. * Look for each inode in memory and attempt to lock it,
  2075. * we can be racing with flush and tail pushing here.
  2076. * any inode we get the locks on, add to an array of
  2077. * inode items to process later.
  2078. *
  2079. * The get the buffer lock, we could beat a flush
  2080. * or tail pushing thread to the lock here, in which
  2081. * case they will go looking for the inode buffer
  2082. * and fail, we need some other form of interlock
  2083. * here.
  2084. */
  2085. found = 0;
  2086. for (i = 0; i < ninodes; i++) {
  2087. ih = XFS_IHASH(mp, inum + i);
  2088. read_lock(&ih->ih_lock);
  2089. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2090. if (ip->i_ino == inum + i)
  2091. break;
  2092. }
  2093. /* Inode not in memory or we found it already,
  2094. * nothing to do
  2095. */
  2096. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2097. read_unlock(&ih->ih_lock);
  2098. continue;
  2099. }
  2100. if (xfs_inode_clean(ip)) {
  2101. read_unlock(&ih->ih_lock);
  2102. continue;
  2103. }
  2104. /* If we can get the locks then add it to the
  2105. * list, otherwise by the time we get the bp lock
  2106. * below it will already be attached to the
  2107. * inode buffer.
  2108. */
  2109. /* This inode will already be locked - by us, lets
  2110. * keep it that way.
  2111. */
  2112. if (ip == free_ip) {
  2113. if (xfs_iflock_nowait(ip)) {
  2114. xfs_iflags_set(ip, XFS_ISTALE);
  2115. if (xfs_inode_clean(ip)) {
  2116. xfs_ifunlock(ip);
  2117. } else {
  2118. ip_found[found++] = ip;
  2119. }
  2120. }
  2121. read_unlock(&ih->ih_lock);
  2122. continue;
  2123. }
  2124. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2125. if (xfs_iflock_nowait(ip)) {
  2126. xfs_iflags_set(ip, XFS_ISTALE);
  2127. if (xfs_inode_clean(ip)) {
  2128. xfs_ifunlock(ip);
  2129. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2130. } else {
  2131. ip_found[found++] = ip;
  2132. }
  2133. } else {
  2134. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2135. }
  2136. }
  2137. read_unlock(&ih->ih_lock);
  2138. }
  2139. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2140. mp->m_bsize * blks_per_cluster,
  2141. XFS_BUF_LOCK);
  2142. pre_flushed = 0;
  2143. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2144. while (lip) {
  2145. if (lip->li_type == XFS_LI_INODE) {
  2146. iip = (xfs_inode_log_item_t *)lip;
  2147. ASSERT(iip->ili_logged == 1);
  2148. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2149. AIL_LOCK(mp,s);
  2150. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2151. AIL_UNLOCK(mp, s);
  2152. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2153. pre_flushed++;
  2154. }
  2155. lip = lip->li_bio_list;
  2156. }
  2157. for (i = 0; i < found; i++) {
  2158. ip = ip_found[i];
  2159. iip = ip->i_itemp;
  2160. if (!iip) {
  2161. ip->i_update_core = 0;
  2162. xfs_ifunlock(ip);
  2163. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2164. continue;
  2165. }
  2166. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2167. iip->ili_format.ilf_fields = 0;
  2168. iip->ili_logged = 1;
  2169. AIL_LOCK(mp,s);
  2170. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2171. AIL_UNLOCK(mp, s);
  2172. xfs_buf_attach_iodone(bp,
  2173. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2174. xfs_istale_done, (xfs_log_item_t *)iip);
  2175. if (ip != free_ip) {
  2176. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2177. }
  2178. }
  2179. if (found || pre_flushed)
  2180. xfs_trans_stale_inode_buf(tp, bp);
  2181. xfs_trans_binval(tp, bp);
  2182. }
  2183. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2184. }
  2185. /*
  2186. * This is called to return an inode to the inode free list.
  2187. * The inode should already be truncated to 0 length and have
  2188. * no pages associated with it. This routine also assumes that
  2189. * the inode is already a part of the transaction.
  2190. *
  2191. * The on-disk copy of the inode will have been added to the list
  2192. * of unlinked inodes in the AGI. We need to remove the inode from
  2193. * that list atomically with respect to freeing it here.
  2194. */
  2195. int
  2196. xfs_ifree(
  2197. xfs_trans_t *tp,
  2198. xfs_inode_t *ip,
  2199. xfs_bmap_free_t *flist)
  2200. {
  2201. int error;
  2202. int delete;
  2203. xfs_ino_t first_ino;
  2204. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2205. ASSERT(ip->i_transp == tp);
  2206. ASSERT(ip->i_d.di_nlink == 0);
  2207. ASSERT(ip->i_d.di_nextents == 0);
  2208. ASSERT(ip->i_d.di_anextents == 0);
  2209. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2210. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2211. ASSERT(ip->i_d.di_nblocks == 0);
  2212. /*
  2213. * Pull the on-disk inode from the AGI unlinked list.
  2214. */
  2215. error = xfs_iunlink_remove(tp, ip);
  2216. if (error != 0) {
  2217. return error;
  2218. }
  2219. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2220. if (error != 0) {
  2221. return error;
  2222. }
  2223. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2224. ip->i_d.di_flags = 0;
  2225. ip->i_d.di_dmevmask = 0;
  2226. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2227. ip->i_df.if_ext_max =
  2228. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2229. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2230. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2231. /*
  2232. * Bump the generation count so no one will be confused
  2233. * by reincarnations of this inode.
  2234. */
  2235. ip->i_d.di_gen++;
  2236. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2237. if (delete) {
  2238. xfs_ifree_cluster(ip, tp, first_ino);
  2239. }
  2240. return 0;
  2241. }
  2242. /*
  2243. * Reallocate the space for if_broot based on the number of records
  2244. * being added or deleted as indicated in rec_diff. Move the records
  2245. * and pointers in if_broot to fit the new size. When shrinking this
  2246. * will eliminate holes between the records and pointers created by
  2247. * the caller. When growing this will create holes to be filled in
  2248. * by the caller.
  2249. *
  2250. * The caller must not request to add more records than would fit in
  2251. * the on-disk inode root. If the if_broot is currently NULL, then
  2252. * if we adding records one will be allocated. The caller must also
  2253. * not request that the number of records go below zero, although
  2254. * it can go to zero.
  2255. *
  2256. * ip -- the inode whose if_broot area is changing
  2257. * ext_diff -- the change in the number of records, positive or negative,
  2258. * requested for the if_broot array.
  2259. */
  2260. void
  2261. xfs_iroot_realloc(
  2262. xfs_inode_t *ip,
  2263. int rec_diff,
  2264. int whichfork)
  2265. {
  2266. int cur_max;
  2267. xfs_ifork_t *ifp;
  2268. xfs_bmbt_block_t *new_broot;
  2269. int new_max;
  2270. size_t new_size;
  2271. char *np;
  2272. char *op;
  2273. /*
  2274. * Handle the degenerate case quietly.
  2275. */
  2276. if (rec_diff == 0) {
  2277. return;
  2278. }
  2279. ifp = XFS_IFORK_PTR(ip, whichfork);
  2280. if (rec_diff > 0) {
  2281. /*
  2282. * If there wasn't any memory allocated before, just
  2283. * allocate it now and get out.
  2284. */
  2285. if (ifp->if_broot_bytes == 0) {
  2286. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2287. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2288. KM_SLEEP);
  2289. ifp->if_broot_bytes = (int)new_size;
  2290. return;
  2291. }
  2292. /*
  2293. * If there is already an existing if_broot, then we need
  2294. * to realloc() it and shift the pointers to their new
  2295. * location. The records don't change location because
  2296. * they are kept butted up against the btree block header.
  2297. */
  2298. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2299. new_max = cur_max + rec_diff;
  2300. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2301. ifp->if_broot = (xfs_bmbt_block_t *)
  2302. kmem_realloc(ifp->if_broot,
  2303. new_size,
  2304. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2305. KM_SLEEP);
  2306. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2307. ifp->if_broot_bytes);
  2308. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2309. (int)new_size);
  2310. ifp->if_broot_bytes = (int)new_size;
  2311. ASSERT(ifp->if_broot_bytes <=
  2312. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2313. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2314. return;
  2315. }
  2316. /*
  2317. * rec_diff is less than 0. In this case, we are shrinking the
  2318. * if_broot buffer. It must already exist. If we go to zero
  2319. * records, just get rid of the root and clear the status bit.
  2320. */
  2321. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2322. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2323. new_max = cur_max + rec_diff;
  2324. ASSERT(new_max >= 0);
  2325. if (new_max > 0)
  2326. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2327. else
  2328. new_size = 0;
  2329. if (new_size > 0) {
  2330. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2331. /*
  2332. * First copy over the btree block header.
  2333. */
  2334. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2335. } else {
  2336. new_broot = NULL;
  2337. ifp->if_flags &= ~XFS_IFBROOT;
  2338. }
  2339. /*
  2340. * Only copy the records and pointers if there are any.
  2341. */
  2342. if (new_max > 0) {
  2343. /*
  2344. * First copy the records.
  2345. */
  2346. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2347. ifp->if_broot_bytes);
  2348. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2349. (int)new_size);
  2350. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2351. /*
  2352. * Then copy the pointers.
  2353. */
  2354. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2355. ifp->if_broot_bytes);
  2356. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2357. (int)new_size);
  2358. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2359. }
  2360. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2361. ifp->if_broot = new_broot;
  2362. ifp->if_broot_bytes = (int)new_size;
  2363. ASSERT(ifp->if_broot_bytes <=
  2364. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2365. return;
  2366. }
  2367. /*
  2368. * This is called when the amount of space needed for if_data
  2369. * is increased or decreased. The change in size is indicated by
  2370. * the number of bytes that need to be added or deleted in the
  2371. * byte_diff parameter.
  2372. *
  2373. * If the amount of space needed has decreased below the size of the
  2374. * inline buffer, then switch to using the inline buffer. Otherwise,
  2375. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2376. * to what is needed.
  2377. *
  2378. * ip -- the inode whose if_data area is changing
  2379. * byte_diff -- the change in the number of bytes, positive or negative,
  2380. * requested for the if_data array.
  2381. */
  2382. void
  2383. xfs_idata_realloc(
  2384. xfs_inode_t *ip,
  2385. int byte_diff,
  2386. int whichfork)
  2387. {
  2388. xfs_ifork_t *ifp;
  2389. int new_size;
  2390. int real_size;
  2391. if (byte_diff == 0) {
  2392. return;
  2393. }
  2394. ifp = XFS_IFORK_PTR(ip, whichfork);
  2395. new_size = (int)ifp->if_bytes + byte_diff;
  2396. ASSERT(new_size >= 0);
  2397. if (new_size == 0) {
  2398. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2399. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2400. }
  2401. ifp->if_u1.if_data = NULL;
  2402. real_size = 0;
  2403. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2404. /*
  2405. * If the valid extents/data can fit in if_inline_ext/data,
  2406. * copy them from the malloc'd vector and free it.
  2407. */
  2408. if (ifp->if_u1.if_data == NULL) {
  2409. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2410. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2411. ASSERT(ifp->if_real_bytes != 0);
  2412. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2413. new_size);
  2414. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2415. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2416. }
  2417. real_size = 0;
  2418. } else {
  2419. /*
  2420. * Stuck with malloc/realloc.
  2421. * For inline data, the underlying buffer must be
  2422. * a multiple of 4 bytes in size so that it can be
  2423. * logged and stay on word boundaries. We enforce
  2424. * that here.
  2425. */
  2426. real_size = roundup(new_size, 4);
  2427. if (ifp->if_u1.if_data == NULL) {
  2428. ASSERT(ifp->if_real_bytes == 0);
  2429. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2430. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2431. /*
  2432. * Only do the realloc if the underlying size
  2433. * is really changing.
  2434. */
  2435. if (ifp->if_real_bytes != real_size) {
  2436. ifp->if_u1.if_data =
  2437. kmem_realloc(ifp->if_u1.if_data,
  2438. real_size,
  2439. ifp->if_real_bytes,
  2440. KM_SLEEP);
  2441. }
  2442. } else {
  2443. ASSERT(ifp->if_real_bytes == 0);
  2444. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2445. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2446. ifp->if_bytes);
  2447. }
  2448. }
  2449. ifp->if_real_bytes = real_size;
  2450. ifp->if_bytes = new_size;
  2451. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2452. }
  2453. /*
  2454. * Map inode to disk block and offset.
  2455. *
  2456. * mp -- the mount point structure for the current file system
  2457. * tp -- the current transaction
  2458. * ino -- the inode number of the inode to be located
  2459. * imap -- this structure is filled in with the information necessary
  2460. * to retrieve the given inode from disk
  2461. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2462. * lookups in the inode btree were OK or not
  2463. */
  2464. int
  2465. xfs_imap(
  2466. xfs_mount_t *mp,
  2467. xfs_trans_t *tp,
  2468. xfs_ino_t ino,
  2469. xfs_imap_t *imap,
  2470. uint flags)
  2471. {
  2472. xfs_fsblock_t fsbno;
  2473. int len;
  2474. int off;
  2475. int error;
  2476. fsbno = imap->im_blkno ?
  2477. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2478. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2479. if (error != 0) {
  2480. return error;
  2481. }
  2482. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2483. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2484. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2485. imap->im_ioffset = (ushort)off;
  2486. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2487. return 0;
  2488. }
  2489. void
  2490. xfs_idestroy_fork(
  2491. xfs_inode_t *ip,
  2492. int whichfork)
  2493. {
  2494. xfs_ifork_t *ifp;
  2495. ifp = XFS_IFORK_PTR(ip, whichfork);
  2496. if (ifp->if_broot != NULL) {
  2497. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2498. ifp->if_broot = NULL;
  2499. }
  2500. /*
  2501. * If the format is local, then we can't have an extents
  2502. * array so just look for an inline data array. If we're
  2503. * not local then we may or may not have an extents list,
  2504. * so check and free it up if we do.
  2505. */
  2506. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2507. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2508. (ifp->if_u1.if_data != NULL)) {
  2509. ASSERT(ifp->if_real_bytes != 0);
  2510. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2511. ifp->if_u1.if_data = NULL;
  2512. ifp->if_real_bytes = 0;
  2513. }
  2514. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2515. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2516. ((ifp->if_u1.if_extents != NULL) &&
  2517. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2518. ASSERT(ifp->if_real_bytes != 0);
  2519. xfs_iext_destroy(ifp);
  2520. }
  2521. ASSERT(ifp->if_u1.if_extents == NULL ||
  2522. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2523. ASSERT(ifp->if_real_bytes == 0);
  2524. if (whichfork == XFS_ATTR_FORK) {
  2525. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2526. ip->i_afp = NULL;
  2527. }
  2528. }
  2529. /*
  2530. * This is called free all the memory associated with an inode.
  2531. * It must free the inode itself and any buffers allocated for
  2532. * if_extents/if_data and if_broot. It must also free the lock
  2533. * associated with the inode.
  2534. */
  2535. void
  2536. xfs_idestroy(
  2537. xfs_inode_t *ip)
  2538. {
  2539. switch (ip->i_d.di_mode & S_IFMT) {
  2540. case S_IFREG:
  2541. case S_IFDIR:
  2542. case S_IFLNK:
  2543. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2544. break;
  2545. }
  2546. if (ip->i_afp)
  2547. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2548. mrfree(&ip->i_lock);
  2549. mrfree(&ip->i_iolock);
  2550. freesema(&ip->i_flock);
  2551. #ifdef XFS_BMAP_TRACE
  2552. ktrace_free(ip->i_xtrace);
  2553. #endif
  2554. #ifdef XFS_BMBT_TRACE
  2555. ktrace_free(ip->i_btrace);
  2556. #endif
  2557. #ifdef XFS_RW_TRACE
  2558. ktrace_free(ip->i_rwtrace);
  2559. #endif
  2560. #ifdef XFS_ILOCK_TRACE
  2561. ktrace_free(ip->i_lock_trace);
  2562. #endif
  2563. #ifdef XFS_DIR2_TRACE
  2564. ktrace_free(ip->i_dir_trace);
  2565. #endif
  2566. if (ip->i_itemp) {
  2567. /*
  2568. * Only if we are shutting down the fs will we see an
  2569. * inode still in the AIL. If it is there, we should remove
  2570. * it to prevent a use-after-free from occurring.
  2571. */
  2572. xfs_mount_t *mp = ip->i_mount;
  2573. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2574. int s;
  2575. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2576. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2577. if (lip->li_flags & XFS_LI_IN_AIL) {
  2578. AIL_LOCK(mp, s);
  2579. if (lip->li_flags & XFS_LI_IN_AIL)
  2580. xfs_trans_delete_ail(mp, lip, s);
  2581. else
  2582. AIL_UNLOCK(mp, s);
  2583. }
  2584. xfs_inode_item_destroy(ip);
  2585. }
  2586. kmem_zone_free(xfs_inode_zone, ip);
  2587. }
  2588. /*
  2589. * Increment the pin count of the given buffer.
  2590. * This value is protected by ipinlock spinlock in the mount structure.
  2591. */
  2592. void
  2593. xfs_ipin(
  2594. xfs_inode_t *ip)
  2595. {
  2596. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2597. atomic_inc(&ip->i_pincount);
  2598. }
  2599. /*
  2600. * Decrement the pin count of the given inode, and wake up
  2601. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2602. * inode must have been previously pinned with a call to xfs_ipin().
  2603. */
  2604. void
  2605. xfs_iunpin(
  2606. xfs_inode_t *ip)
  2607. {
  2608. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2609. if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
  2610. /*
  2611. * If the inode is currently being reclaimed, the link between
  2612. * the bhv_vnode and the xfs_inode will be broken after the
  2613. * XFS_IRECLAIM* flag is set. Hence, if these flags are not
  2614. * set, then we can move forward and mark the linux inode dirty
  2615. * knowing that it is still valid as it won't freed until after
  2616. * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
  2617. * i_flags_lock is used to synchronise the setting of the
  2618. * XFS_IRECLAIM* flags and the breaking of the link, and so we
  2619. * can execute atomically w.r.t to reclaim by holding this lock
  2620. * here.
  2621. *
  2622. * However, we still need to issue the unpin wakeup call as the
  2623. * inode reclaim may be blocked waiting for the inode to become
  2624. * unpinned.
  2625. */
  2626. if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
  2627. bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
  2628. struct inode *inode = NULL;
  2629. BUG_ON(vp == NULL);
  2630. inode = vn_to_inode(vp);
  2631. BUG_ON(inode->i_state & I_CLEAR);
  2632. /* make sync come back and flush this inode */
  2633. if (!(inode->i_state & (I_NEW|I_FREEING)))
  2634. mark_inode_dirty_sync(inode);
  2635. }
  2636. spin_unlock(&ip->i_flags_lock);
  2637. wake_up(&ip->i_ipin_wait);
  2638. }
  2639. }
  2640. /*
  2641. * This is called to wait for the given inode to be unpinned.
  2642. * It will sleep until this happens. The caller must have the
  2643. * inode locked in at least shared mode so that the buffer cannot
  2644. * be subsequently pinned once someone is waiting for it to be
  2645. * unpinned.
  2646. */
  2647. STATIC void
  2648. xfs_iunpin_wait(
  2649. xfs_inode_t *ip)
  2650. {
  2651. xfs_inode_log_item_t *iip;
  2652. xfs_lsn_t lsn;
  2653. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2654. if (atomic_read(&ip->i_pincount) == 0) {
  2655. return;
  2656. }
  2657. iip = ip->i_itemp;
  2658. if (iip && iip->ili_last_lsn) {
  2659. lsn = iip->ili_last_lsn;
  2660. } else {
  2661. lsn = (xfs_lsn_t)0;
  2662. }
  2663. /*
  2664. * Give the log a push so we don't wait here too long.
  2665. */
  2666. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2667. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2668. }
  2669. /*
  2670. * xfs_iextents_copy()
  2671. *
  2672. * This is called to copy the REAL extents (as opposed to the delayed
  2673. * allocation extents) from the inode into the given buffer. It
  2674. * returns the number of bytes copied into the buffer.
  2675. *
  2676. * If there are no delayed allocation extents, then we can just
  2677. * memcpy() the extents into the buffer. Otherwise, we need to
  2678. * examine each extent in turn and skip those which are delayed.
  2679. */
  2680. int
  2681. xfs_iextents_copy(
  2682. xfs_inode_t *ip,
  2683. xfs_bmbt_rec_t *dp,
  2684. int whichfork)
  2685. {
  2686. int copied;
  2687. int i;
  2688. xfs_ifork_t *ifp;
  2689. int nrecs;
  2690. xfs_fsblock_t start_block;
  2691. ifp = XFS_IFORK_PTR(ip, whichfork);
  2692. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2693. ASSERT(ifp->if_bytes > 0);
  2694. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2695. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2696. ASSERT(nrecs > 0);
  2697. /*
  2698. * There are some delayed allocation extents in the
  2699. * inode, so copy the extents one at a time and skip
  2700. * the delayed ones. There must be at least one
  2701. * non-delayed extent.
  2702. */
  2703. copied = 0;
  2704. for (i = 0; i < nrecs; i++) {
  2705. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2706. start_block = xfs_bmbt_get_startblock(ep);
  2707. if (ISNULLSTARTBLOCK(start_block)) {
  2708. /*
  2709. * It's a delayed allocation extent, so skip it.
  2710. */
  2711. continue;
  2712. }
  2713. /* Translate to on disk format */
  2714. put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
  2715. (__uint64_t*)&dp->l0);
  2716. put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
  2717. (__uint64_t*)&dp->l1);
  2718. dp++;
  2719. copied++;
  2720. }
  2721. ASSERT(copied != 0);
  2722. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2723. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2724. }
  2725. /*
  2726. * Each of the following cases stores data into the same region
  2727. * of the on-disk inode, so only one of them can be valid at
  2728. * any given time. While it is possible to have conflicting formats
  2729. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2730. * in EXTENTS format, this can only happen when the fork has
  2731. * changed formats after being modified but before being flushed.
  2732. * In these cases, the format always takes precedence, because the
  2733. * format indicates the current state of the fork.
  2734. */
  2735. /*ARGSUSED*/
  2736. STATIC int
  2737. xfs_iflush_fork(
  2738. xfs_inode_t *ip,
  2739. xfs_dinode_t *dip,
  2740. xfs_inode_log_item_t *iip,
  2741. int whichfork,
  2742. xfs_buf_t *bp)
  2743. {
  2744. char *cp;
  2745. xfs_ifork_t *ifp;
  2746. xfs_mount_t *mp;
  2747. #ifdef XFS_TRANS_DEBUG
  2748. int first;
  2749. #endif
  2750. static const short brootflag[2] =
  2751. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2752. static const short dataflag[2] =
  2753. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2754. static const short extflag[2] =
  2755. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2756. if (iip == NULL)
  2757. return 0;
  2758. ifp = XFS_IFORK_PTR(ip, whichfork);
  2759. /*
  2760. * This can happen if we gave up in iformat in an error path,
  2761. * for the attribute fork.
  2762. */
  2763. if (ifp == NULL) {
  2764. ASSERT(whichfork == XFS_ATTR_FORK);
  2765. return 0;
  2766. }
  2767. cp = XFS_DFORK_PTR(dip, whichfork);
  2768. mp = ip->i_mount;
  2769. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2770. case XFS_DINODE_FMT_LOCAL:
  2771. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2772. (ifp->if_bytes > 0)) {
  2773. ASSERT(ifp->if_u1.if_data != NULL);
  2774. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2775. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2776. }
  2777. break;
  2778. case XFS_DINODE_FMT_EXTENTS:
  2779. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2780. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2781. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2782. (ifp->if_bytes == 0));
  2783. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2784. (ifp->if_bytes > 0));
  2785. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2786. (ifp->if_bytes > 0)) {
  2787. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2788. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2789. whichfork);
  2790. }
  2791. break;
  2792. case XFS_DINODE_FMT_BTREE:
  2793. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2794. (ifp->if_broot_bytes > 0)) {
  2795. ASSERT(ifp->if_broot != NULL);
  2796. ASSERT(ifp->if_broot_bytes <=
  2797. (XFS_IFORK_SIZE(ip, whichfork) +
  2798. XFS_BROOT_SIZE_ADJ));
  2799. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2800. (xfs_bmdr_block_t *)cp,
  2801. XFS_DFORK_SIZE(dip, mp, whichfork));
  2802. }
  2803. break;
  2804. case XFS_DINODE_FMT_DEV:
  2805. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2806. ASSERT(whichfork == XFS_DATA_FORK);
  2807. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
  2808. }
  2809. break;
  2810. case XFS_DINODE_FMT_UUID:
  2811. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2812. ASSERT(whichfork == XFS_DATA_FORK);
  2813. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2814. sizeof(uuid_t));
  2815. }
  2816. break;
  2817. default:
  2818. ASSERT(0);
  2819. break;
  2820. }
  2821. return 0;
  2822. }
  2823. /*
  2824. * xfs_iflush() will write a modified inode's changes out to the
  2825. * inode's on disk home. The caller must have the inode lock held
  2826. * in at least shared mode and the inode flush semaphore must be
  2827. * held as well. The inode lock will still be held upon return from
  2828. * the call and the caller is free to unlock it.
  2829. * The inode flush lock will be unlocked when the inode reaches the disk.
  2830. * The flags indicate how the inode's buffer should be written out.
  2831. */
  2832. int
  2833. xfs_iflush(
  2834. xfs_inode_t *ip,
  2835. uint flags)
  2836. {
  2837. xfs_inode_log_item_t *iip;
  2838. xfs_buf_t *bp;
  2839. xfs_dinode_t *dip;
  2840. xfs_mount_t *mp;
  2841. int error;
  2842. /* REFERENCED */
  2843. xfs_chash_t *ch;
  2844. xfs_inode_t *iq;
  2845. int clcount; /* count of inodes clustered */
  2846. int bufwasdelwri;
  2847. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2848. SPLDECL(s);
  2849. XFS_STATS_INC(xs_iflush_count);
  2850. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2851. ASSERT(issemalocked(&(ip->i_flock)));
  2852. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2853. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2854. iip = ip->i_itemp;
  2855. mp = ip->i_mount;
  2856. /*
  2857. * If the inode isn't dirty, then just release the inode
  2858. * flush lock and do nothing.
  2859. */
  2860. if ((ip->i_update_core == 0) &&
  2861. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2862. ASSERT((iip != NULL) ?
  2863. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2864. xfs_ifunlock(ip);
  2865. return 0;
  2866. }
  2867. /*
  2868. * We can't flush the inode until it is unpinned, so
  2869. * wait for it. We know noone new can pin it, because
  2870. * we are holding the inode lock shared and you need
  2871. * to hold it exclusively to pin the inode.
  2872. */
  2873. xfs_iunpin_wait(ip);
  2874. /*
  2875. * This may have been unpinned because the filesystem is shutting
  2876. * down forcibly. If that's the case we must not write this inode
  2877. * to disk, because the log record didn't make it to disk!
  2878. */
  2879. if (XFS_FORCED_SHUTDOWN(mp)) {
  2880. ip->i_update_core = 0;
  2881. if (iip)
  2882. iip->ili_format.ilf_fields = 0;
  2883. xfs_ifunlock(ip);
  2884. return XFS_ERROR(EIO);
  2885. }
  2886. /*
  2887. * Get the buffer containing the on-disk inode.
  2888. */
  2889. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2890. if (error) {
  2891. xfs_ifunlock(ip);
  2892. return error;
  2893. }
  2894. /*
  2895. * Decide how buffer will be flushed out. This is done before
  2896. * the call to xfs_iflush_int because this field is zeroed by it.
  2897. */
  2898. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2899. /*
  2900. * Flush out the inode buffer according to the directions
  2901. * of the caller. In the cases where the caller has given
  2902. * us a choice choose the non-delwri case. This is because
  2903. * the inode is in the AIL and we need to get it out soon.
  2904. */
  2905. switch (flags) {
  2906. case XFS_IFLUSH_SYNC:
  2907. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2908. flags = 0;
  2909. break;
  2910. case XFS_IFLUSH_ASYNC:
  2911. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2912. flags = INT_ASYNC;
  2913. break;
  2914. case XFS_IFLUSH_DELWRI:
  2915. flags = INT_DELWRI;
  2916. break;
  2917. default:
  2918. ASSERT(0);
  2919. flags = 0;
  2920. break;
  2921. }
  2922. } else {
  2923. switch (flags) {
  2924. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2925. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2926. case XFS_IFLUSH_DELWRI:
  2927. flags = INT_DELWRI;
  2928. break;
  2929. case XFS_IFLUSH_ASYNC:
  2930. flags = INT_ASYNC;
  2931. break;
  2932. case XFS_IFLUSH_SYNC:
  2933. flags = 0;
  2934. break;
  2935. default:
  2936. ASSERT(0);
  2937. flags = 0;
  2938. break;
  2939. }
  2940. }
  2941. /*
  2942. * First flush out the inode that xfs_iflush was called with.
  2943. */
  2944. error = xfs_iflush_int(ip, bp);
  2945. if (error) {
  2946. goto corrupt_out;
  2947. }
  2948. /*
  2949. * inode clustering:
  2950. * see if other inodes can be gathered into this write
  2951. */
  2952. ip->i_chash->chl_buf = bp;
  2953. ch = XFS_CHASH(mp, ip->i_blkno);
  2954. s = mutex_spinlock(&ch->ch_lock);
  2955. clcount = 0;
  2956. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2957. /*
  2958. * Do an un-protected check to see if the inode is dirty and
  2959. * is a candidate for flushing. These checks will be repeated
  2960. * later after the appropriate locks are acquired.
  2961. */
  2962. iip = iq->i_itemp;
  2963. if ((iq->i_update_core == 0) &&
  2964. ((iip == NULL) ||
  2965. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2966. xfs_ipincount(iq) == 0) {
  2967. continue;
  2968. }
  2969. /*
  2970. * Try to get locks. If any are unavailable,
  2971. * then this inode cannot be flushed and is skipped.
  2972. */
  2973. /* get inode locks (just i_lock) */
  2974. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2975. /* get inode flush lock */
  2976. if (xfs_iflock_nowait(iq)) {
  2977. /* check if pinned */
  2978. if (xfs_ipincount(iq) == 0) {
  2979. /* arriving here means that
  2980. * this inode can be flushed.
  2981. * first re-check that it's
  2982. * dirty
  2983. */
  2984. iip = iq->i_itemp;
  2985. if ((iq->i_update_core != 0)||
  2986. ((iip != NULL) &&
  2987. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2988. clcount++;
  2989. error = xfs_iflush_int(iq, bp);
  2990. if (error) {
  2991. xfs_iunlock(iq,
  2992. XFS_ILOCK_SHARED);
  2993. goto cluster_corrupt_out;
  2994. }
  2995. } else {
  2996. xfs_ifunlock(iq);
  2997. }
  2998. } else {
  2999. xfs_ifunlock(iq);
  3000. }
  3001. }
  3002. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  3003. }
  3004. }
  3005. mutex_spinunlock(&ch->ch_lock, s);
  3006. if (clcount) {
  3007. XFS_STATS_INC(xs_icluster_flushcnt);
  3008. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  3009. }
  3010. /*
  3011. * If the buffer is pinned then push on the log so we won't
  3012. * get stuck waiting in the write for too long.
  3013. */
  3014. if (XFS_BUF_ISPINNED(bp)){
  3015. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3016. }
  3017. if (flags & INT_DELWRI) {
  3018. xfs_bdwrite(mp, bp);
  3019. } else if (flags & INT_ASYNC) {
  3020. xfs_bawrite(mp, bp);
  3021. } else {
  3022. error = xfs_bwrite(mp, bp);
  3023. }
  3024. return error;
  3025. corrupt_out:
  3026. xfs_buf_relse(bp);
  3027. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3028. xfs_iflush_abort(ip);
  3029. /*
  3030. * Unlocks the flush lock
  3031. */
  3032. return XFS_ERROR(EFSCORRUPTED);
  3033. cluster_corrupt_out:
  3034. /* Corruption detected in the clustering loop. Invalidate the
  3035. * inode buffer and shut down the filesystem.
  3036. */
  3037. mutex_spinunlock(&ch->ch_lock, s);
  3038. /*
  3039. * Clean up the buffer. If it was B_DELWRI, just release it --
  3040. * brelse can handle it with no problems. If not, shut down the
  3041. * filesystem before releasing the buffer.
  3042. */
  3043. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3044. xfs_buf_relse(bp);
  3045. }
  3046. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3047. if(!bufwasdelwri) {
  3048. /*
  3049. * Just like incore_relse: if we have b_iodone functions,
  3050. * mark the buffer as an error and call them. Otherwise
  3051. * mark it as stale and brelse.
  3052. */
  3053. if (XFS_BUF_IODONE_FUNC(bp)) {
  3054. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3055. XFS_BUF_UNDONE(bp);
  3056. XFS_BUF_STALE(bp);
  3057. XFS_BUF_SHUT(bp);
  3058. XFS_BUF_ERROR(bp,EIO);
  3059. xfs_biodone(bp);
  3060. } else {
  3061. XFS_BUF_STALE(bp);
  3062. xfs_buf_relse(bp);
  3063. }
  3064. }
  3065. xfs_iflush_abort(iq);
  3066. /*
  3067. * Unlocks the flush lock
  3068. */
  3069. return XFS_ERROR(EFSCORRUPTED);
  3070. }
  3071. STATIC int
  3072. xfs_iflush_int(
  3073. xfs_inode_t *ip,
  3074. xfs_buf_t *bp)
  3075. {
  3076. xfs_inode_log_item_t *iip;
  3077. xfs_dinode_t *dip;
  3078. xfs_mount_t *mp;
  3079. #ifdef XFS_TRANS_DEBUG
  3080. int first;
  3081. #endif
  3082. SPLDECL(s);
  3083. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3084. ASSERT(issemalocked(&(ip->i_flock)));
  3085. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3086. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3087. iip = ip->i_itemp;
  3088. mp = ip->i_mount;
  3089. /*
  3090. * If the inode isn't dirty, then just release the inode
  3091. * flush lock and do nothing.
  3092. */
  3093. if ((ip->i_update_core == 0) &&
  3094. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3095. xfs_ifunlock(ip);
  3096. return 0;
  3097. }
  3098. /* set *dip = inode's place in the buffer */
  3099. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3100. /*
  3101. * Clear i_update_core before copying out the data.
  3102. * This is for coordination with our timestamp updates
  3103. * that don't hold the inode lock. They will always
  3104. * update the timestamps BEFORE setting i_update_core,
  3105. * so if we clear i_update_core after they set it we
  3106. * are guaranteed to see their updates to the timestamps.
  3107. * I believe that this depends on strongly ordered memory
  3108. * semantics, but we have that. We use the SYNCHRONIZE
  3109. * macro to make sure that the compiler does not reorder
  3110. * the i_update_core access below the data copy below.
  3111. */
  3112. ip->i_update_core = 0;
  3113. SYNCHRONIZE();
  3114. /*
  3115. * Make sure to get the latest atime from the Linux inode.
  3116. */
  3117. xfs_synchronize_atime(ip);
  3118. if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
  3119. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3120. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3121. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3122. ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
  3123. goto corrupt_out;
  3124. }
  3125. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3126. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3127. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3128. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3129. ip->i_ino, ip, ip->i_d.di_magic);
  3130. goto corrupt_out;
  3131. }
  3132. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3133. if (XFS_TEST_ERROR(
  3134. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3135. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3136. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3137. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3138. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3139. ip->i_ino, ip);
  3140. goto corrupt_out;
  3141. }
  3142. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3143. if (XFS_TEST_ERROR(
  3144. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3145. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3146. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3147. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3148. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3149. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3150. ip->i_ino, ip);
  3151. goto corrupt_out;
  3152. }
  3153. }
  3154. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3155. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3156. XFS_RANDOM_IFLUSH_5)) {
  3157. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3158. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3159. ip->i_ino,
  3160. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3161. ip->i_d.di_nblocks,
  3162. ip);
  3163. goto corrupt_out;
  3164. }
  3165. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3166. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3167. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3168. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3169. ip->i_ino, ip->i_d.di_forkoff, ip);
  3170. goto corrupt_out;
  3171. }
  3172. /*
  3173. * bump the flush iteration count, used to detect flushes which
  3174. * postdate a log record during recovery.
  3175. */
  3176. ip->i_d.di_flushiter++;
  3177. /*
  3178. * Copy the dirty parts of the inode into the on-disk
  3179. * inode. We always copy out the core of the inode,
  3180. * because if the inode is dirty at all the core must
  3181. * be.
  3182. */
  3183. xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
  3184. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3185. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3186. ip->i_d.di_flushiter = 0;
  3187. /*
  3188. * If this is really an old format inode and the superblock version
  3189. * has not been updated to support only new format inodes, then
  3190. * convert back to the old inode format. If the superblock version
  3191. * has been updated, then make the conversion permanent.
  3192. */
  3193. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3194. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3195. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3196. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3197. /*
  3198. * Convert it back.
  3199. */
  3200. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3201. INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
  3202. } else {
  3203. /*
  3204. * The superblock version has already been bumped,
  3205. * so just make the conversion to the new inode
  3206. * format permanent.
  3207. */
  3208. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3209. INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
  3210. ip->i_d.di_onlink = 0;
  3211. dip->di_core.di_onlink = 0;
  3212. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3213. memset(&(dip->di_core.di_pad[0]), 0,
  3214. sizeof(dip->di_core.di_pad));
  3215. ASSERT(ip->i_d.di_projid == 0);
  3216. }
  3217. }
  3218. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3219. goto corrupt_out;
  3220. }
  3221. if (XFS_IFORK_Q(ip)) {
  3222. /*
  3223. * The only error from xfs_iflush_fork is on the data fork.
  3224. */
  3225. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3226. }
  3227. xfs_inobp_check(mp, bp);
  3228. /*
  3229. * We've recorded everything logged in the inode, so we'd
  3230. * like to clear the ilf_fields bits so we don't log and
  3231. * flush things unnecessarily. However, we can't stop
  3232. * logging all this information until the data we've copied
  3233. * into the disk buffer is written to disk. If we did we might
  3234. * overwrite the copy of the inode in the log with all the
  3235. * data after re-logging only part of it, and in the face of
  3236. * a crash we wouldn't have all the data we need to recover.
  3237. *
  3238. * What we do is move the bits to the ili_last_fields field.
  3239. * When logging the inode, these bits are moved back to the
  3240. * ilf_fields field. In the xfs_iflush_done() routine we
  3241. * clear ili_last_fields, since we know that the information
  3242. * those bits represent is permanently on disk. As long as
  3243. * the flush completes before the inode is logged again, then
  3244. * both ilf_fields and ili_last_fields will be cleared.
  3245. *
  3246. * We can play with the ilf_fields bits here, because the inode
  3247. * lock must be held exclusively in order to set bits there
  3248. * and the flush lock protects the ili_last_fields bits.
  3249. * Set ili_logged so the flush done
  3250. * routine can tell whether or not to look in the AIL.
  3251. * Also, store the current LSN of the inode so that we can tell
  3252. * whether the item has moved in the AIL from xfs_iflush_done().
  3253. * In order to read the lsn we need the AIL lock, because
  3254. * it is a 64 bit value that cannot be read atomically.
  3255. */
  3256. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3257. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3258. iip->ili_format.ilf_fields = 0;
  3259. iip->ili_logged = 1;
  3260. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3261. AIL_LOCK(mp,s);
  3262. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3263. AIL_UNLOCK(mp, s);
  3264. /*
  3265. * Attach the function xfs_iflush_done to the inode's
  3266. * buffer. This will remove the inode from the AIL
  3267. * and unlock the inode's flush lock when the inode is
  3268. * completely written to disk.
  3269. */
  3270. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3271. xfs_iflush_done, (xfs_log_item_t *)iip);
  3272. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3273. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3274. } else {
  3275. /*
  3276. * We're flushing an inode which is not in the AIL and has
  3277. * not been logged but has i_update_core set. For this
  3278. * case we can use a B_DELWRI flush and immediately drop
  3279. * the inode flush lock because we can avoid the whole
  3280. * AIL state thing. It's OK to drop the flush lock now,
  3281. * because we've already locked the buffer and to do anything
  3282. * you really need both.
  3283. */
  3284. if (iip != NULL) {
  3285. ASSERT(iip->ili_logged == 0);
  3286. ASSERT(iip->ili_last_fields == 0);
  3287. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3288. }
  3289. xfs_ifunlock(ip);
  3290. }
  3291. return 0;
  3292. corrupt_out:
  3293. return XFS_ERROR(EFSCORRUPTED);
  3294. }
  3295. /*
  3296. * Flush all inactive inodes in mp.
  3297. */
  3298. void
  3299. xfs_iflush_all(
  3300. xfs_mount_t *mp)
  3301. {
  3302. xfs_inode_t *ip;
  3303. bhv_vnode_t *vp;
  3304. again:
  3305. XFS_MOUNT_ILOCK(mp);
  3306. ip = mp->m_inodes;
  3307. if (ip == NULL)
  3308. goto out;
  3309. do {
  3310. /* Make sure we skip markers inserted by sync */
  3311. if (ip->i_mount == NULL) {
  3312. ip = ip->i_mnext;
  3313. continue;
  3314. }
  3315. vp = XFS_ITOV_NULL(ip);
  3316. if (!vp) {
  3317. XFS_MOUNT_IUNLOCK(mp);
  3318. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3319. goto again;
  3320. }
  3321. ASSERT(vn_count(vp) == 0);
  3322. ip = ip->i_mnext;
  3323. } while (ip != mp->m_inodes);
  3324. out:
  3325. XFS_MOUNT_IUNLOCK(mp);
  3326. }
  3327. /*
  3328. * xfs_iaccess: check accessibility of inode for mode.
  3329. */
  3330. int
  3331. xfs_iaccess(
  3332. xfs_inode_t *ip,
  3333. mode_t mode,
  3334. cred_t *cr)
  3335. {
  3336. int error;
  3337. mode_t orgmode = mode;
  3338. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3339. if (mode & S_IWUSR) {
  3340. umode_t imode = inode->i_mode;
  3341. if (IS_RDONLY(inode) &&
  3342. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3343. return XFS_ERROR(EROFS);
  3344. if (IS_IMMUTABLE(inode))
  3345. return XFS_ERROR(EACCES);
  3346. }
  3347. /*
  3348. * If there's an Access Control List it's used instead of
  3349. * the mode bits.
  3350. */
  3351. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3352. return error ? XFS_ERROR(error) : 0;
  3353. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3354. mode >>= 3;
  3355. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3356. mode >>= 3;
  3357. }
  3358. /*
  3359. * If the DACs are ok we don't need any capability check.
  3360. */
  3361. if ((ip->i_d.di_mode & mode) == mode)
  3362. return 0;
  3363. /*
  3364. * Read/write DACs are always overridable.
  3365. * Executable DACs are overridable if at least one exec bit is set.
  3366. */
  3367. if (!(orgmode & S_IXUSR) ||
  3368. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3369. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3370. return 0;
  3371. if ((orgmode == S_IRUSR) ||
  3372. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3373. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3374. return 0;
  3375. #ifdef NOISE
  3376. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3377. #endif /* NOISE */
  3378. return XFS_ERROR(EACCES);
  3379. }
  3380. return XFS_ERROR(EACCES);
  3381. }
  3382. /*
  3383. * xfs_iroundup: round up argument to next power of two
  3384. */
  3385. uint
  3386. xfs_iroundup(
  3387. uint v)
  3388. {
  3389. int i;
  3390. uint m;
  3391. if ((v & (v - 1)) == 0)
  3392. return v;
  3393. ASSERT((v & 0x80000000) == 0);
  3394. if ((v & (v + 1)) == 0)
  3395. return v + 1;
  3396. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3397. if (v & m)
  3398. continue;
  3399. v |= m;
  3400. if ((v & (v + 1)) == 0)
  3401. return v + 1;
  3402. }
  3403. ASSERT(0);
  3404. return( 0 );
  3405. }
  3406. #ifdef XFS_ILOCK_TRACE
  3407. ktrace_t *xfs_ilock_trace_buf;
  3408. void
  3409. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3410. {
  3411. ktrace_enter(ip->i_lock_trace,
  3412. (void *)ip,
  3413. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3414. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3415. (void *)ra, /* caller of ilock */
  3416. (void *)(unsigned long)current_cpu(),
  3417. (void *)(unsigned long)current_pid(),
  3418. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3419. }
  3420. #endif
  3421. /*
  3422. * Return a pointer to the extent record at file index idx.
  3423. */
  3424. xfs_bmbt_rec_host_t *
  3425. xfs_iext_get_ext(
  3426. xfs_ifork_t *ifp, /* inode fork pointer */
  3427. xfs_extnum_t idx) /* index of target extent */
  3428. {
  3429. ASSERT(idx >= 0);
  3430. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3431. return ifp->if_u1.if_ext_irec->er_extbuf;
  3432. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3433. xfs_ext_irec_t *erp; /* irec pointer */
  3434. int erp_idx = 0; /* irec index */
  3435. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3436. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3437. return &erp->er_extbuf[page_idx];
  3438. } else if (ifp->if_bytes) {
  3439. return &ifp->if_u1.if_extents[idx];
  3440. } else {
  3441. return NULL;
  3442. }
  3443. }
  3444. /*
  3445. * Insert new item(s) into the extent records for incore inode
  3446. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3447. */
  3448. void
  3449. xfs_iext_insert(
  3450. xfs_ifork_t *ifp, /* inode fork pointer */
  3451. xfs_extnum_t idx, /* starting index of new items */
  3452. xfs_extnum_t count, /* number of inserted items */
  3453. xfs_bmbt_irec_t *new) /* items to insert */
  3454. {
  3455. xfs_extnum_t i; /* extent record index */
  3456. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3457. xfs_iext_add(ifp, idx, count);
  3458. for (i = idx; i < idx + count; i++, new++)
  3459. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3460. }
  3461. /*
  3462. * This is called when the amount of space required for incore file
  3463. * extents needs to be increased. The ext_diff parameter stores the
  3464. * number of new extents being added and the idx parameter contains
  3465. * the extent index where the new extents will be added. If the new
  3466. * extents are being appended, then we just need to (re)allocate and
  3467. * initialize the space. Otherwise, if the new extents are being
  3468. * inserted into the middle of the existing entries, a bit more work
  3469. * is required to make room for the new extents to be inserted. The
  3470. * caller is responsible for filling in the new extent entries upon
  3471. * return.
  3472. */
  3473. void
  3474. xfs_iext_add(
  3475. xfs_ifork_t *ifp, /* inode fork pointer */
  3476. xfs_extnum_t idx, /* index to begin adding exts */
  3477. int ext_diff) /* number of extents to add */
  3478. {
  3479. int byte_diff; /* new bytes being added */
  3480. int new_size; /* size of extents after adding */
  3481. xfs_extnum_t nextents; /* number of extents in file */
  3482. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3483. ASSERT((idx >= 0) && (idx <= nextents));
  3484. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3485. new_size = ifp->if_bytes + byte_diff;
  3486. /*
  3487. * If the new number of extents (nextents + ext_diff)
  3488. * fits inside the inode, then continue to use the inline
  3489. * extent buffer.
  3490. */
  3491. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3492. if (idx < nextents) {
  3493. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3494. &ifp->if_u2.if_inline_ext[idx],
  3495. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3496. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3497. }
  3498. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3499. ifp->if_real_bytes = 0;
  3500. ifp->if_lastex = nextents + ext_diff;
  3501. }
  3502. /*
  3503. * Otherwise use a linear (direct) extent list.
  3504. * If the extents are currently inside the inode,
  3505. * xfs_iext_realloc_direct will switch us from
  3506. * inline to direct extent allocation mode.
  3507. */
  3508. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3509. xfs_iext_realloc_direct(ifp, new_size);
  3510. if (idx < nextents) {
  3511. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3512. &ifp->if_u1.if_extents[idx],
  3513. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3514. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3515. }
  3516. }
  3517. /* Indirection array */
  3518. else {
  3519. xfs_ext_irec_t *erp;
  3520. int erp_idx = 0;
  3521. int page_idx = idx;
  3522. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3523. if (ifp->if_flags & XFS_IFEXTIREC) {
  3524. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3525. } else {
  3526. xfs_iext_irec_init(ifp);
  3527. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3528. erp = ifp->if_u1.if_ext_irec;
  3529. }
  3530. /* Extents fit in target extent page */
  3531. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3532. if (page_idx < erp->er_extcount) {
  3533. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3534. &erp->er_extbuf[page_idx],
  3535. (erp->er_extcount - page_idx) *
  3536. sizeof(xfs_bmbt_rec_t));
  3537. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3538. }
  3539. erp->er_extcount += ext_diff;
  3540. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3541. }
  3542. /* Insert a new extent page */
  3543. else if (erp) {
  3544. xfs_iext_add_indirect_multi(ifp,
  3545. erp_idx, page_idx, ext_diff);
  3546. }
  3547. /*
  3548. * If extent(s) are being appended to the last page in
  3549. * the indirection array and the new extent(s) don't fit
  3550. * in the page, then erp is NULL and erp_idx is set to
  3551. * the next index needed in the indirection array.
  3552. */
  3553. else {
  3554. int count = ext_diff;
  3555. while (count) {
  3556. erp = xfs_iext_irec_new(ifp, erp_idx);
  3557. erp->er_extcount = count;
  3558. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3559. if (count) {
  3560. erp_idx++;
  3561. }
  3562. }
  3563. }
  3564. }
  3565. ifp->if_bytes = new_size;
  3566. }
  3567. /*
  3568. * This is called when incore extents are being added to the indirection
  3569. * array and the new extents do not fit in the target extent list. The
  3570. * erp_idx parameter contains the irec index for the target extent list
  3571. * in the indirection array, and the idx parameter contains the extent
  3572. * index within the list. The number of extents being added is stored
  3573. * in the count parameter.
  3574. *
  3575. * |-------| |-------|
  3576. * | | | | idx - number of extents before idx
  3577. * | idx | | count |
  3578. * | | | | count - number of extents being inserted at idx
  3579. * |-------| |-------|
  3580. * | count | | nex2 | nex2 - number of extents after idx + count
  3581. * |-------| |-------|
  3582. */
  3583. void
  3584. xfs_iext_add_indirect_multi(
  3585. xfs_ifork_t *ifp, /* inode fork pointer */
  3586. int erp_idx, /* target extent irec index */
  3587. xfs_extnum_t idx, /* index within target list */
  3588. int count) /* new extents being added */
  3589. {
  3590. int byte_diff; /* new bytes being added */
  3591. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3592. xfs_extnum_t ext_diff; /* number of extents to add */
  3593. xfs_extnum_t ext_cnt; /* new extents still needed */
  3594. xfs_extnum_t nex2; /* extents after idx + count */
  3595. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3596. int nlists; /* number of irec's (lists) */
  3597. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3598. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3599. nex2 = erp->er_extcount - idx;
  3600. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3601. /*
  3602. * Save second part of target extent list
  3603. * (all extents past */
  3604. if (nex2) {
  3605. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3606. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3607. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3608. erp->er_extcount -= nex2;
  3609. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3610. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3611. }
  3612. /*
  3613. * Add the new extents to the end of the target
  3614. * list, then allocate new irec record(s) and
  3615. * extent buffer(s) as needed to store the rest
  3616. * of the new extents.
  3617. */
  3618. ext_cnt = count;
  3619. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3620. if (ext_diff) {
  3621. erp->er_extcount += ext_diff;
  3622. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3623. ext_cnt -= ext_diff;
  3624. }
  3625. while (ext_cnt) {
  3626. erp_idx++;
  3627. erp = xfs_iext_irec_new(ifp, erp_idx);
  3628. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3629. erp->er_extcount = ext_diff;
  3630. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3631. ext_cnt -= ext_diff;
  3632. }
  3633. /* Add nex2 extents back to indirection array */
  3634. if (nex2) {
  3635. xfs_extnum_t ext_avail;
  3636. int i;
  3637. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3638. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3639. i = 0;
  3640. /*
  3641. * If nex2 extents fit in the current page, append
  3642. * nex2_ep after the new extents.
  3643. */
  3644. if (nex2 <= ext_avail) {
  3645. i = erp->er_extcount;
  3646. }
  3647. /*
  3648. * Otherwise, check if space is available in the
  3649. * next page.
  3650. */
  3651. else if ((erp_idx < nlists - 1) &&
  3652. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3653. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3654. erp_idx++;
  3655. erp++;
  3656. /* Create a hole for nex2 extents */
  3657. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3658. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3659. }
  3660. /*
  3661. * Final choice, create a new extent page for
  3662. * nex2 extents.
  3663. */
  3664. else {
  3665. erp_idx++;
  3666. erp = xfs_iext_irec_new(ifp, erp_idx);
  3667. }
  3668. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3669. kmem_free(nex2_ep, byte_diff);
  3670. erp->er_extcount += nex2;
  3671. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3672. }
  3673. }
  3674. /*
  3675. * This is called when the amount of space required for incore file
  3676. * extents needs to be decreased. The ext_diff parameter stores the
  3677. * number of extents to be removed and the idx parameter contains
  3678. * the extent index where the extents will be removed from.
  3679. *
  3680. * If the amount of space needed has decreased below the linear
  3681. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3682. * extent array. Otherwise, use kmem_realloc() to adjust the
  3683. * size to what is needed.
  3684. */
  3685. void
  3686. xfs_iext_remove(
  3687. xfs_ifork_t *ifp, /* inode fork pointer */
  3688. xfs_extnum_t idx, /* index to begin removing exts */
  3689. int ext_diff) /* number of extents to remove */
  3690. {
  3691. xfs_extnum_t nextents; /* number of extents in file */
  3692. int new_size; /* size of extents after removal */
  3693. ASSERT(ext_diff > 0);
  3694. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3695. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3696. if (new_size == 0) {
  3697. xfs_iext_destroy(ifp);
  3698. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3699. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3700. } else if (ifp->if_real_bytes) {
  3701. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3702. } else {
  3703. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3704. }
  3705. ifp->if_bytes = new_size;
  3706. }
  3707. /*
  3708. * This removes ext_diff extents from the inline buffer, beginning
  3709. * at extent index idx.
  3710. */
  3711. void
  3712. xfs_iext_remove_inline(
  3713. xfs_ifork_t *ifp, /* inode fork pointer */
  3714. xfs_extnum_t idx, /* index to begin removing exts */
  3715. int ext_diff) /* number of extents to remove */
  3716. {
  3717. int nextents; /* number of extents in file */
  3718. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3719. ASSERT(idx < XFS_INLINE_EXTS);
  3720. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3721. ASSERT(((nextents - ext_diff) > 0) &&
  3722. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3723. if (idx + ext_diff < nextents) {
  3724. memmove(&ifp->if_u2.if_inline_ext[idx],
  3725. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3726. (nextents - (idx + ext_diff)) *
  3727. sizeof(xfs_bmbt_rec_t));
  3728. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3729. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3730. } else {
  3731. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3732. ext_diff * sizeof(xfs_bmbt_rec_t));
  3733. }
  3734. }
  3735. /*
  3736. * This removes ext_diff extents from a linear (direct) extent list,
  3737. * beginning at extent index idx. If the extents are being removed
  3738. * from the end of the list (ie. truncate) then we just need to re-
  3739. * allocate the list to remove the extra space. Otherwise, if the
  3740. * extents are being removed from the middle of the existing extent
  3741. * entries, then we first need to move the extent records beginning
  3742. * at idx + ext_diff up in the list to overwrite the records being
  3743. * removed, then remove the extra space via kmem_realloc.
  3744. */
  3745. void
  3746. xfs_iext_remove_direct(
  3747. xfs_ifork_t *ifp, /* inode fork pointer */
  3748. xfs_extnum_t idx, /* index to begin removing exts */
  3749. int ext_diff) /* number of extents to remove */
  3750. {
  3751. xfs_extnum_t nextents; /* number of extents in file */
  3752. int new_size; /* size of extents after removal */
  3753. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3754. new_size = ifp->if_bytes -
  3755. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3756. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3757. if (new_size == 0) {
  3758. xfs_iext_destroy(ifp);
  3759. return;
  3760. }
  3761. /* Move extents up in the list (if needed) */
  3762. if (idx + ext_diff < nextents) {
  3763. memmove(&ifp->if_u1.if_extents[idx],
  3764. &ifp->if_u1.if_extents[idx + ext_diff],
  3765. (nextents - (idx + ext_diff)) *
  3766. sizeof(xfs_bmbt_rec_t));
  3767. }
  3768. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3769. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3770. /*
  3771. * Reallocate the direct extent list. If the extents
  3772. * will fit inside the inode then xfs_iext_realloc_direct
  3773. * will switch from direct to inline extent allocation
  3774. * mode for us.
  3775. */
  3776. xfs_iext_realloc_direct(ifp, new_size);
  3777. ifp->if_bytes = new_size;
  3778. }
  3779. /*
  3780. * This is called when incore extents are being removed from the
  3781. * indirection array and the extents being removed span multiple extent
  3782. * buffers. The idx parameter contains the file extent index where we
  3783. * want to begin removing extents, and the count parameter contains
  3784. * how many extents need to be removed.
  3785. *
  3786. * |-------| |-------|
  3787. * | nex1 | | | nex1 - number of extents before idx
  3788. * |-------| | count |
  3789. * | | | | count - number of extents being removed at idx
  3790. * | count | |-------|
  3791. * | | | nex2 | nex2 - number of extents after idx + count
  3792. * |-------| |-------|
  3793. */
  3794. void
  3795. xfs_iext_remove_indirect(
  3796. xfs_ifork_t *ifp, /* inode fork pointer */
  3797. xfs_extnum_t idx, /* index to begin removing extents */
  3798. int count) /* number of extents to remove */
  3799. {
  3800. xfs_ext_irec_t *erp; /* indirection array pointer */
  3801. int erp_idx = 0; /* indirection array index */
  3802. xfs_extnum_t ext_cnt; /* extents left to remove */
  3803. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3804. xfs_extnum_t nex1; /* number of extents before idx */
  3805. xfs_extnum_t nex2; /* extents after idx + count */
  3806. int nlists; /* entries in indirection array */
  3807. int page_idx = idx; /* index in target extent list */
  3808. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3809. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3810. ASSERT(erp != NULL);
  3811. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3812. nex1 = page_idx;
  3813. ext_cnt = count;
  3814. while (ext_cnt) {
  3815. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3816. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3817. /*
  3818. * Check for deletion of entire list;
  3819. * xfs_iext_irec_remove() updates extent offsets.
  3820. */
  3821. if (ext_diff == erp->er_extcount) {
  3822. xfs_iext_irec_remove(ifp, erp_idx);
  3823. ext_cnt -= ext_diff;
  3824. nex1 = 0;
  3825. if (ext_cnt) {
  3826. ASSERT(erp_idx < ifp->if_real_bytes /
  3827. XFS_IEXT_BUFSZ);
  3828. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3829. nex1 = 0;
  3830. continue;
  3831. } else {
  3832. break;
  3833. }
  3834. }
  3835. /* Move extents up (if needed) */
  3836. if (nex2) {
  3837. memmove(&erp->er_extbuf[nex1],
  3838. &erp->er_extbuf[nex1 + ext_diff],
  3839. nex2 * sizeof(xfs_bmbt_rec_t));
  3840. }
  3841. /* Zero out rest of page */
  3842. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3843. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3844. /* Update remaining counters */
  3845. erp->er_extcount -= ext_diff;
  3846. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3847. ext_cnt -= ext_diff;
  3848. nex1 = 0;
  3849. erp_idx++;
  3850. erp++;
  3851. }
  3852. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3853. xfs_iext_irec_compact(ifp);
  3854. }
  3855. /*
  3856. * Create, destroy, or resize a linear (direct) block of extents.
  3857. */
  3858. void
  3859. xfs_iext_realloc_direct(
  3860. xfs_ifork_t *ifp, /* inode fork pointer */
  3861. int new_size) /* new size of extents */
  3862. {
  3863. int rnew_size; /* real new size of extents */
  3864. rnew_size = new_size;
  3865. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3866. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3867. (new_size != ifp->if_real_bytes)));
  3868. /* Free extent records */
  3869. if (new_size == 0) {
  3870. xfs_iext_destroy(ifp);
  3871. }
  3872. /* Resize direct extent list and zero any new bytes */
  3873. else if (ifp->if_real_bytes) {
  3874. /* Check if extents will fit inside the inode */
  3875. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3876. xfs_iext_direct_to_inline(ifp, new_size /
  3877. (uint)sizeof(xfs_bmbt_rec_t));
  3878. ifp->if_bytes = new_size;
  3879. return;
  3880. }
  3881. if (!is_power_of_2(new_size)){
  3882. rnew_size = xfs_iroundup(new_size);
  3883. }
  3884. if (rnew_size != ifp->if_real_bytes) {
  3885. ifp->if_u1.if_extents =
  3886. kmem_realloc(ifp->if_u1.if_extents,
  3887. rnew_size,
  3888. ifp->if_real_bytes,
  3889. KM_SLEEP);
  3890. }
  3891. if (rnew_size > ifp->if_real_bytes) {
  3892. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3893. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3894. rnew_size - ifp->if_real_bytes);
  3895. }
  3896. }
  3897. /*
  3898. * Switch from the inline extent buffer to a direct
  3899. * extent list. Be sure to include the inline extent
  3900. * bytes in new_size.
  3901. */
  3902. else {
  3903. new_size += ifp->if_bytes;
  3904. if (!is_power_of_2(new_size)) {
  3905. rnew_size = xfs_iroundup(new_size);
  3906. }
  3907. xfs_iext_inline_to_direct(ifp, rnew_size);
  3908. }
  3909. ifp->if_real_bytes = rnew_size;
  3910. ifp->if_bytes = new_size;
  3911. }
  3912. /*
  3913. * Switch from linear (direct) extent records to inline buffer.
  3914. */
  3915. void
  3916. xfs_iext_direct_to_inline(
  3917. xfs_ifork_t *ifp, /* inode fork pointer */
  3918. xfs_extnum_t nextents) /* number of extents in file */
  3919. {
  3920. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3921. ASSERT(nextents <= XFS_INLINE_EXTS);
  3922. /*
  3923. * The inline buffer was zeroed when we switched
  3924. * from inline to direct extent allocation mode,
  3925. * so we don't need to clear it here.
  3926. */
  3927. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3928. nextents * sizeof(xfs_bmbt_rec_t));
  3929. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3930. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3931. ifp->if_real_bytes = 0;
  3932. }
  3933. /*
  3934. * Switch from inline buffer to linear (direct) extent records.
  3935. * new_size should already be rounded up to the next power of 2
  3936. * by the caller (when appropriate), so use new_size as it is.
  3937. * However, since new_size may be rounded up, we can't update
  3938. * if_bytes here. It is the caller's responsibility to update
  3939. * if_bytes upon return.
  3940. */
  3941. void
  3942. xfs_iext_inline_to_direct(
  3943. xfs_ifork_t *ifp, /* inode fork pointer */
  3944. int new_size) /* number of extents in file */
  3945. {
  3946. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
  3947. memset(ifp->if_u1.if_extents, 0, new_size);
  3948. if (ifp->if_bytes) {
  3949. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3950. ifp->if_bytes);
  3951. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3952. sizeof(xfs_bmbt_rec_t));
  3953. }
  3954. ifp->if_real_bytes = new_size;
  3955. }
  3956. /*
  3957. * Resize an extent indirection array to new_size bytes.
  3958. */
  3959. void
  3960. xfs_iext_realloc_indirect(
  3961. xfs_ifork_t *ifp, /* inode fork pointer */
  3962. int new_size) /* new indirection array size */
  3963. {
  3964. int nlists; /* number of irec's (ex lists) */
  3965. int size; /* current indirection array size */
  3966. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3967. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3968. size = nlists * sizeof(xfs_ext_irec_t);
  3969. ASSERT(ifp->if_real_bytes);
  3970. ASSERT((new_size >= 0) && (new_size != size));
  3971. if (new_size == 0) {
  3972. xfs_iext_destroy(ifp);
  3973. } else {
  3974. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3975. kmem_realloc(ifp->if_u1.if_ext_irec,
  3976. new_size, size, KM_SLEEP);
  3977. }
  3978. }
  3979. /*
  3980. * Switch from indirection array to linear (direct) extent allocations.
  3981. */
  3982. void
  3983. xfs_iext_indirect_to_direct(
  3984. xfs_ifork_t *ifp) /* inode fork pointer */
  3985. {
  3986. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3987. xfs_extnum_t nextents; /* number of extents in file */
  3988. int size; /* size of file extents */
  3989. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3990. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3991. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3992. size = nextents * sizeof(xfs_bmbt_rec_t);
  3993. xfs_iext_irec_compact_full(ifp);
  3994. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3995. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3996. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3997. ifp->if_flags &= ~XFS_IFEXTIREC;
  3998. ifp->if_u1.if_extents = ep;
  3999. ifp->if_bytes = size;
  4000. if (nextents < XFS_LINEAR_EXTS) {
  4001. xfs_iext_realloc_direct(ifp, size);
  4002. }
  4003. }
  4004. /*
  4005. * Free incore file extents.
  4006. */
  4007. void
  4008. xfs_iext_destroy(
  4009. xfs_ifork_t *ifp) /* inode fork pointer */
  4010. {
  4011. if (ifp->if_flags & XFS_IFEXTIREC) {
  4012. int erp_idx;
  4013. int nlists;
  4014. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4015. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  4016. xfs_iext_irec_remove(ifp, erp_idx);
  4017. }
  4018. ifp->if_flags &= ~XFS_IFEXTIREC;
  4019. } else if (ifp->if_real_bytes) {
  4020. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  4021. } else if (ifp->if_bytes) {
  4022. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  4023. sizeof(xfs_bmbt_rec_t));
  4024. }
  4025. ifp->if_u1.if_extents = NULL;
  4026. ifp->if_real_bytes = 0;
  4027. ifp->if_bytes = 0;
  4028. }
  4029. /*
  4030. * Return a pointer to the extent record for file system block bno.
  4031. */
  4032. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  4033. xfs_iext_bno_to_ext(
  4034. xfs_ifork_t *ifp, /* inode fork pointer */
  4035. xfs_fileoff_t bno, /* block number to search for */
  4036. xfs_extnum_t *idxp) /* index of target extent */
  4037. {
  4038. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  4039. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  4040. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  4041. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4042. int high; /* upper boundary in search */
  4043. xfs_extnum_t idx = 0; /* index of target extent */
  4044. int low; /* lower boundary in search */
  4045. xfs_extnum_t nextents; /* number of file extents */
  4046. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4047. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4048. if (nextents == 0) {
  4049. *idxp = 0;
  4050. return NULL;
  4051. }
  4052. low = 0;
  4053. if (ifp->if_flags & XFS_IFEXTIREC) {
  4054. /* Find target extent list */
  4055. int erp_idx = 0;
  4056. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4057. base = erp->er_extbuf;
  4058. high = erp->er_extcount - 1;
  4059. } else {
  4060. base = ifp->if_u1.if_extents;
  4061. high = nextents - 1;
  4062. }
  4063. /* Binary search extent records */
  4064. while (low <= high) {
  4065. idx = (low + high) >> 1;
  4066. ep = base + idx;
  4067. startoff = xfs_bmbt_get_startoff(ep);
  4068. blockcount = xfs_bmbt_get_blockcount(ep);
  4069. if (bno < startoff) {
  4070. high = idx - 1;
  4071. } else if (bno >= startoff + blockcount) {
  4072. low = idx + 1;
  4073. } else {
  4074. /* Convert back to file-based extent index */
  4075. if (ifp->if_flags & XFS_IFEXTIREC) {
  4076. idx += erp->er_extoff;
  4077. }
  4078. *idxp = idx;
  4079. return ep;
  4080. }
  4081. }
  4082. /* Convert back to file-based extent index */
  4083. if (ifp->if_flags & XFS_IFEXTIREC) {
  4084. idx += erp->er_extoff;
  4085. }
  4086. if (bno >= startoff + blockcount) {
  4087. if (++idx == nextents) {
  4088. ep = NULL;
  4089. } else {
  4090. ep = xfs_iext_get_ext(ifp, idx);
  4091. }
  4092. }
  4093. *idxp = idx;
  4094. return ep;
  4095. }
  4096. /*
  4097. * Return a pointer to the indirection array entry containing the
  4098. * extent record for filesystem block bno. Store the index of the
  4099. * target irec in *erp_idxp.
  4100. */
  4101. xfs_ext_irec_t * /* pointer to found extent record */
  4102. xfs_iext_bno_to_irec(
  4103. xfs_ifork_t *ifp, /* inode fork pointer */
  4104. xfs_fileoff_t bno, /* block number to search for */
  4105. int *erp_idxp) /* irec index of target ext list */
  4106. {
  4107. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4108. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4109. int erp_idx; /* indirection array index */
  4110. int nlists; /* number of extent irec's (lists) */
  4111. int high; /* binary search upper limit */
  4112. int low; /* binary search lower limit */
  4113. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4114. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4115. erp_idx = 0;
  4116. low = 0;
  4117. high = nlists - 1;
  4118. while (low <= high) {
  4119. erp_idx = (low + high) >> 1;
  4120. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4121. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4122. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4123. high = erp_idx - 1;
  4124. } else if (erp_next && bno >=
  4125. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4126. low = erp_idx + 1;
  4127. } else {
  4128. break;
  4129. }
  4130. }
  4131. *erp_idxp = erp_idx;
  4132. return erp;
  4133. }
  4134. /*
  4135. * Return a pointer to the indirection array entry containing the
  4136. * extent record at file extent index *idxp. Store the index of the
  4137. * target irec in *erp_idxp and store the page index of the target
  4138. * extent record in *idxp.
  4139. */
  4140. xfs_ext_irec_t *
  4141. xfs_iext_idx_to_irec(
  4142. xfs_ifork_t *ifp, /* inode fork pointer */
  4143. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4144. int *erp_idxp, /* pointer to target irec */
  4145. int realloc) /* new bytes were just added */
  4146. {
  4147. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4148. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4149. int erp_idx; /* indirection array index */
  4150. int nlists; /* number of irec's (ex lists) */
  4151. int high; /* binary search upper limit */
  4152. int low; /* binary search lower limit */
  4153. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4154. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4155. ASSERT(page_idx >= 0 && page_idx <=
  4156. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4157. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4158. erp_idx = 0;
  4159. low = 0;
  4160. high = nlists - 1;
  4161. /* Binary search extent irec's */
  4162. while (low <= high) {
  4163. erp_idx = (low + high) >> 1;
  4164. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4165. prev = erp_idx > 0 ? erp - 1 : NULL;
  4166. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4167. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4168. high = erp_idx - 1;
  4169. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4170. (page_idx == erp->er_extoff + erp->er_extcount &&
  4171. !realloc)) {
  4172. low = erp_idx + 1;
  4173. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4174. erp->er_extcount == XFS_LINEAR_EXTS) {
  4175. ASSERT(realloc);
  4176. page_idx = 0;
  4177. erp_idx++;
  4178. erp = erp_idx < nlists ? erp + 1 : NULL;
  4179. break;
  4180. } else {
  4181. page_idx -= erp->er_extoff;
  4182. break;
  4183. }
  4184. }
  4185. *idxp = page_idx;
  4186. *erp_idxp = erp_idx;
  4187. return(erp);
  4188. }
  4189. /*
  4190. * Allocate and initialize an indirection array once the space needed
  4191. * for incore extents increases above XFS_IEXT_BUFSZ.
  4192. */
  4193. void
  4194. xfs_iext_irec_init(
  4195. xfs_ifork_t *ifp) /* inode fork pointer */
  4196. {
  4197. xfs_ext_irec_t *erp; /* indirection array pointer */
  4198. xfs_extnum_t nextents; /* number of extents in file */
  4199. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4200. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4201. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4202. erp = (xfs_ext_irec_t *)
  4203. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4204. if (nextents == 0) {
  4205. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4206. } else if (!ifp->if_real_bytes) {
  4207. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4208. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4209. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4210. }
  4211. erp->er_extbuf = ifp->if_u1.if_extents;
  4212. erp->er_extcount = nextents;
  4213. erp->er_extoff = 0;
  4214. ifp->if_flags |= XFS_IFEXTIREC;
  4215. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4216. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4217. ifp->if_u1.if_ext_irec = erp;
  4218. return;
  4219. }
  4220. /*
  4221. * Allocate and initialize a new entry in the indirection array.
  4222. */
  4223. xfs_ext_irec_t *
  4224. xfs_iext_irec_new(
  4225. xfs_ifork_t *ifp, /* inode fork pointer */
  4226. int erp_idx) /* index for new irec */
  4227. {
  4228. xfs_ext_irec_t *erp; /* indirection array pointer */
  4229. int i; /* loop counter */
  4230. int nlists; /* number of irec's (ex lists) */
  4231. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4232. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4233. /* Resize indirection array */
  4234. xfs_iext_realloc_indirect(ifp, ++nlists *
  4235. sizeof(xfs_ext_irec_t));
  4236. /*
  4237. * Move records down in the array so the
  4238. * new page can use erp_idx.
  4239. */
  4240. erp = ifp->if_u1.if_ext_irec;
  4241. for (i = nlists - 1; i > erp_idx; i--) {
  4242. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4243. }
  4244. ASSERT(i == erp_idx);
  4245. /* Initialize new extent record */
  4246. erp = ifp->if_u1.if_ext_irec;
  4247. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4248. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4249. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4250. erp[erp_idx].er_extcount = 0;
  4251. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4252. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4253. return (&erp[erp_idx]);
  4254. }
  4255. /*
  4256. * Remove a record from the indirection array.
  4257. */
  4258. void
  4259. xfs_iext_irec_remove(
  4260. xfs_ifork_t *ifp, /* inode fork pointer */
  4261. int erp_idx) /* irec index to remove */
  4262. {
  4263. xfs_ext_irec_t *erp; /* indirection array pointer */
  4264. int i; /* loop counter */
  4265. int nlists; /* number of irec's (ex lists) */
  4266. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4267. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4268. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4269. if (erp->er_extbuf) {
  4270. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4271. -erp->er_extcount);
  4272. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4273. }
  4274. /* Compact extent records */
  4275. erp = ifp->if_u1.if_ext_irec;
  4276. for (i = erp_idx; i < nlists - 1; i++) {
  4277. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4278. }
  4279. /*
  4280. * Manually free the last extent record from the indirection
  4281. * array. A call to xfs_iext_realloc_indirect() with a size
  4282. * of zero would result in a call to xfs_iext_destroy() which
  4283. * would in turn call this function again, creating a nasty
  4284. * infinite loop.
  4285. */
  4286. if (--nlists) {
  4287. xfs_iext_realloc_indirect(ifp,
  4288. nlists * sizeof(xfs_ext_irec_t));
  4289. } else {
  4290. kmem_free(ifp->if_u1.if_ext_irec,
  4291. sizeof(xfs_ext_irec_t));
  4292. }
  4293. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4294. }
  4295. /*
  4296. * This is called to clean up large amounts of unused memory allocated
  4297. * by the indirection array. Before compacting anything though, verify
  4298. * that the indirection array is still needed and switch back to the
  4299. * linear extent list (or even the inline buffer) if possible. The
  4300. * compaction policy is as follows:
  4301. *
  4302. * Full Compaction: Extents fit into a single page (or inline buffer)
  4303. * Full Compaction: Extents occupy less than 10% of allocated space
  4304. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4305. * No Compaction: Extents occupy at least 50% of allocated space
  4306. */
  4307. void
  4308. xfs_iext_irec_compact(
  4309. xfs_ifork_t *ifp) /* inode fork pointer */
  4310. {
  4311. xfs_extnum_t nextents; /* number of extents in file */
  4312. int nlists; /* number of irec's (ex lists) */
  4313. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4314. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4315. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4316. if (nextents == 0) {
  4317. xfs_iext_destroy(ifp);
  4318. } else if (nextents <= XFS_INLINE_EXTS) {
  4319. xfs_iext_indirect_to_direct(ifp);
  4320. xfs_iext_direct_to_inline(ifp, nextents);
  4321. } else if (nextents <= XFS_LINEAR_EXTS) {
  4322. xfs_iext_indirect_to_direct(ifp);
  4323. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4324. xfs_iext_irec_compact_full(ifp);
  4325. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4326. xfs_iext_irec_compact_pages(ifp);
  4327. }
  4328. }
  4329. /*
  4330. * Combine extents from neighboring extent pages.
  4331. */
  4332. void
  4333. xfs_iext_irec_compact_pages(
  4334. xfs_ifork_t *ifp) /* inode fork pointer */
  4335. {
  4336. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4337. int erp_idx = 0; /* indirection array index */
  4338. int nlists; /* number of irec's (ex lists) */
  4339. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4340. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4341. while (erp_idx < nlists - 1) {
  4342. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4343. erp_next = erp + 1;
  4344. if (erp_next->er_extcount <=
  4345. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4346. memmove(&erp->er_extbuf[erp->er_extcount],
  4347. erp_next->er_extbuf, erp_next->er_extcount *
  4348. sizeof(xfs_bmbt_rec_t));
  4349. erp->er_extcount += erp_next->er_extcount;
  4350. /*
  4351. * Free page before removing extent record
  4352. * so er_extoffs don't get modified in
  4353. * xfs_iext_irec_remove.
  4354. */
  4355. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4356. erp_next->er_extbuf = NULL;
  4357. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4358. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4359. } else {
  4360. erp_idx++;
  4361. }
  4362. }
  4363. }
  4364. /*
  4365. * Fully compact the extent records managed by the indirection array.
  4366. */
  4367. void
  4368. xfs_iext_irec_compact_full(
  4369. xfs_ifork_t *ifp) /* inode fork pointer */
  4370. {
  4371. xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
  4372. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4373. int erp_idx = 0; /* extent irec index */
  4374. int ext_avail; /* empty entries in ex list */
  4375. int ext_diff; /* number of exts to add */
  4376. int nlists; /* number of irec's (ex lists) */
  4377. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4378. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4379. erp = ifp->if_u1.if_ext_irec;
  4380. ep = &erp->er_extbuf[erp->er_extcount];
  4381. erp_next = erp + 1;
  4382. ep_next = erp_next->er_extbuf;
  4383. while (erp_idx < nlists - 1) {
  4384. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4385. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4386. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4387. erp->er_extcount += ext_diff;
  4388. erp_next->er_extcount -= ext_diff;
  4389. /* Remove next page */
  4390. if (erp_next->er_extcount == 0) {
  4391. /*
  4392. * Free page before removing extent record
  4393. * so er_extoffs don't get modified in
  4394. * xfs_iext_irec_remove.
  4395. */
  4396. kmem_free(erp_next->er_extbuf,
  4397. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4398. erp_next->er_extbuf = NULL;
  4399. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4400. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4401. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4402. /* Update next page */
  4403. } else {
  4404. /* Move rest of page up to become next new page */
  4405. memmove(erp_next->er_extbuf, ep_next,
  4406. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4407. ep_next = erp_next->er_extbuf;
  4408. memset(&ep_next[erp_next->er_extcount], 0,
  4409. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4410. sizeof(xfs_bmbt_rec_t));
  4411. }
  4412. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4413. erp_idx++;
  4414. if (erp_idx < nlists)
  4415. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4416. else
  4417. break;
  4418. }
  4419. ep = &erp->er_extbuf[erp->er_extcount];
  4420. erp_next = erp + 1;
  4421. ep_next = erp_next->er_extbuf;
  4422. }
  4423. }
  4424. /*
  4425. * This is called to update the er_extoff field in the indirection
  4426. * array when extents have been added or removed from one of the
  4427. * extent lists. erp_idx contains the irec index to begin updating
  4428. * at and ext_diff contains the number of extents that were added
  4429. * or removed.
  4430. */
  4431. void
  4432. xfs_iext_irec_update_extoffs(
  4433. xfs_ifork_t *ifp, /* inode fork pointer */
  4434. int erp_idx, /* irec index to update */
  4435. int ext_diff) /* number of new extents */
  4436. {
  4437. int i; /* loop counter */
  4438. int nlists; /* number of irec's (ex lists */
  4439. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4440. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4441. for (i = erp_idx; i < nlists; i++) {
  4442. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4443. }
  4444. }