i915_gem.c 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static LIST_HEAD(shrink_list);
  58. static DEFINE_SPINLOCK(shrink_list_lock);
  59. static inline bool
  60. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  61. {
  62. return obj_priv->gtt_space &&
  63. !obj_priv->active &&
  64. obj_priv->pin_count == 0;
  65. }
  66. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  67. unsigned long end)
  68. {
  69. drm_i915_private_t *dev_priv = dev->dev_private;
  70. if (start >= end ||
  71. (start & (PAGE_SIZE - 1)) != 0 ||
  72. (end & (PAGE_SIZE - 1)) != 0) {
  73. return -EINVAL;
  74. }
  75. drm_mm_init(&dev_priv->mm.gtt_space, start,
  76. end - start);
  77. dev->gtt_total = (uint32_t) (end - start);
  78. return 0;
  79. }
  80. int
  81. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  82. struct drm_file *file_priv)
  83. {
  84. struct drm_i915_gem_init *args = data;
  85. int ret;
  86. mutex_lock(&dev->struct_mutex);
  87. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  88. mutex_unlock(&dev->struct_mutex);
  89. return ret;
  90. }
  91. int
  92. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  93. struct drm_file *file_priv)
  94. {
  95. struct drm_i915_gem_get_aperture *args = data;
  96. if (!(dev->driver->driver_features & DRIVER_GEM))
  97. return -ENODEV;
  98. args->aper_size = dev->gtt_total;
  99. args->aper_available_size = (args->aper_size -
  100. atomic_read(&dev->pin_memory));
  101. return 0;
  102. }
  103. /**
  104. * Creates a new mm object and returns a handle to it.
  105. */
  106. int
  107. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  108. struct drm_file *file_priv)
  109. {
  110. struct drm_i915_gem_create *args = data;
  111. struct drm_gem_object *obj;
  112. int ret;
  113. u32 handle;
  114. args->size = roundup(args->size, PAGE_SIZE);
  115. /* Allocate the new object */
  116. obj = i915_gem_alloc_object(dev, args->size);
  117. if (obj == NULL)
  118. return -ENOMEM;
  119. ret = drm_gem_handle_create(file_priv, obj, &handle);
  120. if (ret) {
  121. drm_gem_object_unreference_unlocked(obj);
  122. return ret;
  123. }
  124. /* Sink the floating reference from kref_init(handlecount) */
  125. drm_gem_object_handle_unreference_unlocked(obj);
  126. args->handle = handle;
  127. return 0;
  128. }
  129. static inline int
  130. fast_shmem_read(struct page **pages,
  131. loff_t page_base, int page_offset,
  132. char __user *data,
  133. int length)
  134. {
  135. char __iomem *vaddr;
  136. int unwritten;
  137. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  138. if (vaddr == NULL)
  139. return -ENOMEM;
  140. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  141. kunmap_atomic(vaddr, KM_USER0);
  142. if (unwritten)
  143. return -EFAULT;
  144. return 0;
  145. }
  146. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  147. {
  148. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  149. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  150. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  151. obj_priv->tiling_mode != I915_TILING_NONE;
  152. }
  153. static inline void
  154. slow_shmem_copy(struct page *dst_page,
  155. int dst_offset,
  156. struct page *src_page,
  157. int src_offset,
  158. int length)
  159. {
  160. char *dst_vaddr, *src_vaddr;
  161. dst_vaddr = kmap(dst_page);
  162. src_vaddr = kmap(src_page);
  163. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  164. kunmap(src_page);
  165. kunmap(dst_page);
  166. }
  167. static inline void
  168. slow_shmem_bit17_copy(struct page *gpu_page,
  169. int gpu_offset,
  170. struct page *cpu_page,
  171. int cpu_offset,
  172. int length,
  173. int is_read)
  174. {
  175. char *gpu_vaddr, *cpu_vaddr;
  176. /* Use the unswizzled path if this page isn't affected. */
  177. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  178. if (is_read)
  179. return slow_shmem_copy(cpu_page, cpu_offset,
  180. gpu_page, gpu_offset, length);
  181. else
  182. return slow_shmem_copy(gpu_page, gpu_offset,
  183. cpu_page, cpu_offset, length);
  184. }
  185. gpu_vaddr = kmap(gpu_page);
  186. cpu_vaddr = kmap(cpu_page);
  187. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  188. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  189. */
  190. while (length > 0) {
  191. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  192. int this_length = min(cacheline_end - gpu_offset, length);
  193. int swizzled_gpu_offset = gpu_offset ^ 64;
  194. if (is_read) {
  195. memcpy(cpu_vaddr + cpu_offset,
  196. gpu_vaddr + swizzled_gpu_offset,
  197. this_length);
  198. } else {
  199. memcpy(gpu_vaddr + swizzled_gpu_offset,
  200. cpu_vaddr + cpu_offset,
  201. this_length);
  202. }
  203. cpu_offset += this_length;
  204. gpu_offset += this_length;
  205. length -= this_length;
  206. }
  207. kunmap(cpu_page);
  208. kunmap(gpu_page);
  209. }
  210. /**
  211. * This is the fast shmem pread path, which attempts to copy_from_user directly
  212. * from the backing pages of the object to the user's address space. On a
  213. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  214. */
  215. static int
  216. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  217. struct drm_i915_gem_pread *args,
  218. struct drm_file *file_priv)
  219. {
  220. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  221. ssize_t remain;
  222. loff_t offset, page_base;
  223. char __user *user_data;
  224. int page_offset, page_length;
  225. int ret;
  226. user_data = (char __user *) (uintptr_t) args->data_ptr;
  227. remain = args->size;
  228. mutex_lock(&dev->struct_mutex);
  229. ret = i915_gem_object_get_pages(obj, 0);
  230. if (ret != 0)
  231. goto fail_unlock;
  232. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  233. args->size);
  234. if (ret != 0)
  235. goto fail_put_pages;
  236. obj_priv = to_intel_bo(obj);
  237. offset = args->offset;
  238. while (remain > 0) {
  239. /* Operation in this page
  240. *
  241. * page_base = page offset within aperture
  242. * page_offset = offset within page
  243. * page_length = bytes to copy for this page
  244. */
  245. page_base = (offset & ~(PAGE_SIZE-1));
  246. page_offset = offset & (PAGE_SIZE-1);
  247. page_length = remain;
  248. if ((page_offset + remain) > PAGE_SIZE)
  249. page_length = PAGE_SIZE - page_offset;
  250. ret = fast_shmem_read(obj_priv->pages,
  251. page_base, page_offset,
  252. user_data, page_length);
  253. if (ret)
  254. goto fail_put_pages;
  255. remain -= page_length;
  256. user_data += page_length;
  257. offset += page_length;
  258. }
  259. fail_put_pages:
  260. i915_gem_object_put_pages(obj);
  261. fail_unlock:
  262. mutex_unlock(&dev->struct_mutex);
  263. return ret;
  264. }
  265. static int
  266. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  267. {
  268. int ret;
  269. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  270. /* If we've insufficient memory to map in the pages, attempt
  271. * to make some space by throwing out some old buffers.
  272. */
  273. if (ret == -ENOMEM) {
  274. struct drm_device *dev = obj->dev;
  275. ret = i915_gem_evict_something(dev, obj->size,
  276. i915_gem_get_gtt_alignment(obj));
  277. if (ret)
  278. return ret;
  279. ret = i915_gem_object_get_pages(obj, 0);
  280. }
  281. return ret;
  282. }
  283. /**
  284. * This is the fallback shmem pread path, which allocates temporary storage
  285. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  286. * can copy out of the object's backing pages while holding the struct mutex
  287. * and not take page faults.
  288. */
  289. static int
  290. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  291. struct drm_i915_gem_pread *args,
  292. struct drm_file *file_priv)
  293. {
  294. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  295. struct mm_struct *mm = current->mm;
  296. struct page **user_pages;
  297. ssize_t remain;
  298. loff_t offset, pinned_pages, i;
  299. loff_t first_data_page, last_data_page, num_pages;
  300. int shmem_page_index, shmem_page_offset;
  301. int data_page_index, data_page_offset;
  302. int page_length;
  303. int ret;
  304. uint64_t data_ptr = args->data_ptr;
  305. int do_bit17_swizzling;
  306. remain = args->size;
  307. /* Pin the user pages containing the data. We can't fault while
  308. * holding the struct mutex, yet we want to hold it while
  309. * dereferencing the user data.
  310. */
  311. first_data_page = data_ptr / PAGE_SIZE;
  312. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  313. num_pages = last_data_page - first_data_page + 1;
  314. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  315. if (user_pages == NULL)
  316. return -ENOMEM;
  317. down_read(&mm->mmap_sem);
  318. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  319. num_pages, 1, 0, user_pages, NULL);
  320. up_read(&mm->mmap_sem);
  321. if (pinned_pages < num_pages) {
  322. ret = -EFAULT;
  323. goto fail_put_user_pages;
  324. }
  325. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  326. mutex_lock(&dev->struct_mutex);
  327. ret = i915_gem_object_get_pages_or_evict(obj);
  328. if (ret)
  329. goto fail_unlock;
  330. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  331. args->size);
  332. if (ret != 0)
  333. goto fail_put_pages;
  334. obj_priv = to_intel_bo(obj);
  335. offset = args->offset;
  336. while (remain > 0) {
  337. /* Operation in this page
  338. *
  339. * shmem_page_index = page number within shmem file
  340. * shmem_page_offset = offset within page in shmem file
  341. * data_page_index = page number in get_user_pages return
  342. * data_page_offset = offset with data_page_index page.
  343. * page_length = bytes to copy for this page
  344. */
  345. shmem_page_index = offset / PAGE_SIZE;
  346. shmem_page_offset = offset & ~PAGE_MASK;
  347. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  348. data_page_offset = data_ptr & ~PAGE_MASK;
  349. page_length = remain;
  350. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  351. page_length = PAGE_SIZE - shmem_page_offset;
  352. if ((data_page_offset + page_length) > PAGE_SIZE)
  353. page_length = PAGE_SIZE - data_page_offset;
  354. if (do_bit17_swizzling) {
  355. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  356. shmem_page_offset,
  357. user_pages[data_page_index],
  358. data_page_offset,
  359. page_length,
  360. 1);
  361. } else {
  362. slow_shmem_copy(user_pages[data_page_index],
  363. data_page_offset,
  364. obj_priv->pages[shmem_page_index],
  365. shmem_page_offset,
  366. page_length);
  367. }
  368. remain -= page_length;
  369. data_ptr += page_length;
  370. offset += page_length;
  371. }
  372. fail_put_pages:
  373. i915_gem_object_put_pages(obj);
  374. fail_unlock:
  375. mutex_unlock(&dev->struct_mutex);
  376. fail_put_user_pages:
  377. for (i = 0; i < pinned_pages; i++) {
  378. SetPageDirty(user_pages[i]);
  379. page_cache_release(user_pages[i]);
  380. }
  381. drm_free_large(user_pages);
  382. return ret;
  383. }
  384. /**
  385. * Reads data from the object referenced by handle.
  386. *
  387. * On error, the contents of *data are undefined.
  388. */
  389. int
  390. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  391. struct drm_file *file_priv)
  392. {
  393. struct drm_i915_gem_pread *args = data;
  394. struct drm_gem_object *obj;
  395. struct drm_i915_gem_object *obj_priv;
  396. int ret;
  397. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  398. if (obj == NULL)
  399. return -ENOENT;
  400. obj_priv = to_intel_bo(obj);
  401. /* Bounds check source.
  402. *
  403. * XXX: This could use review for overflow issues...
  404. */
  405. if (args->offset > obj->size || args->size > obj->size ||
  406. args->offset + args->size > obj->size) {
  407. drm_gem_object_unreference_unlocked(obj);
  408. return -EINVAL;
  409. }
  410. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  411. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  412. } else {
  413. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  414. if (ret != 0)
  415. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  416. file_priv);
  417. }
  418. drm_gem_object_unreference_unlocked(obj);
  419. return ret;
  420. }
  421. /* This is the fast write path which cannot handle
  422. * page faults in the source data
  423. */
  424. static inline int
  425. fast_user_write(struct io_mapping *mapping,
  426. loff_t page_base, int page_offset,
  427. char __user *user_data,
  428. int length)
  429. {
  430. char *vaddr_atomic;
  431. unsigned long unwritten;
  432. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  433. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  434. user_data, length);
  435. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  436. if (unwritten)
  437. return -EFAULT;
  438. return 0;
  439. }
  440. /* Here's the write path which can sleep for
  441. * page faults
  442. */
  443. static inline void
  444. slow_kernel_write(struct io_mapping *mapping,
  445. loff_t gtt_base, int gtt_offset,
  446. struct page *user_page, int user_offset,
  447. int length)
  448. {
  449. char __iomem *dst_vaddr;
  450. char *src_vaddr;
  451. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  452. src_vaddr = kmap(user_page);
  453. memcpy_toio(dst_vaddr + gtt_offset,
  454. src_vaddr + user_offset,
  455. length);
  456. kunmap(user_page);
  457. io_mapping_unmap(dst_vaddr);
  458. }
  459. static inline int
  460. fast_shmem_write(struct page **pages,
  461. loff_t page_base, int page_offset,
  462. char __user *data,
  463. int length)
  464. {
  465. char __iomem *vaddr;
  466. unsigned long unwritten;
  467. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  468. if (vaddr == NULL)
  469. return -ENOMEM;
  470. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  471. kunmap_atomic(vaddr, KM_USER0);
  472. if (unwritten)
  473. return -EFAULT;
  474. return 0;
  475. }
  476. /**
  477. * This is the fast pwrite path, where we copy the data directly from the
  478. * user into the GTT, uncached.
  479. */
  480. static int
  481. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  482. struct drm_i915_gem_pwrite *args,
  483. struct drm_file *file_priv)
  484. {
  485. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  486. drm_i915_private_t *dev_priv = dev->dev_private;
  487. ssize_t remain;
  488. loff_t offset, page_base;
  489. char __user *user_data;
  490. int page_offset, page_length;
  491. int ret;
  492. user_data = (char __user *) (uintptr_t) args->data_ptr;
  493. remain = args->size;
  494. if (!access_ok(VERIFY_READ, user_data, remain))
  495. return -EFAULT;
  496. mutex_lock(&dev->struct_mutex);
  497. ret = i915_gem_object_pin(obj, 0);
  498. if (ret) {
  499. mutex_unlock(&dev->struct_mutex);
  500. return ret;
  501. }
  502. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  503. if (ret)
  504. goto fail;
  505. obj_priv = to_intel_bo(obj);
  506. offset = obj_priv->gtt_offset + args->offset;
  507. while (remain > 0) {
  508. /* Operation in this page
  509. *
  510. * page_base = page offset within aperture
  511. * page_offset = offset within page
  512. * page_length = bytes to copy for this page
  513. */
  514. page_base = (offset & ~(PAGE_SIZE-1));
  515. page_offset = offset & (PAGE_SIZE-1);
  516. page_length = remain;
  517. if ((page_offset + remain) > PAGE_SIZE)
  518. page_length = PAGE_SIZE - page_offset;
  519. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  520. page_offset, user_data, page_length);
  521. /* If we get a fault while copying data, then (presumably) our
  522. * source page isn't available. Return the error and we'll
  523. * retry in the slow path.
  524. */
  525. if (ret)
  526. goto fail;
  527. remain -= page_length;
  528. user_data += page_length;
  529. offset += page_length;
  530. }
  531. fail:
  532. i915_gem_object_unpin(obj);
  533. mutex_unlock(&dev->struct_mutex);
  534. return ret;
  535. }
  536. /**
  537. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  538. * the memory and maps it using kmap_atomic for copying.
  539. *
  540. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  541. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  542. */
  543. static int
  544. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  545. struct drm_i915_gem_pwrite *args,
  546. struct drm_file *file_priv)
  547. {
  548. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  549. drm_i915_private_t *dev_priv = dev->dev_private;
  550. ssize_t remain;
  551. loff_t gtt_page_base, offset;
  552. loff_t first_data_page, last_data_page, num_pages;
  553. loff_t pinned_pages, i;
  554. struct page **user_pages;
  555. struct mm_struct *mm = current->mm;
  556. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  557. int ret;
  558. uint64_t data_ptr = args->data_ptr;
  559. remain = args->size;
  560. /* Pin the user pages containing the data. We can't fault while
  561. * holding the struct mutex, and all of the pwrite implementations
  562. * want to hold it while dereferencing the user data.
  563. */
  564. first_data_page = data_ptr / PAGE_SIZE;
  565. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  566. num_pages = last_data_page - first_data_page + 1;
  567. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  568. if (user_pages == NULL)
  569. return -ENOMEM;
  570. down_read(&mm->mmap_sem);
  571. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  572. num_pages, 0, 0, user_pages, NULL);
  573. up_read(&mm->mmap_sem);
  574. if (pinned_pages < num_pages) {
  575. ret = -EFAULT;
  576. goto out_unpin_pages;
  577. }
  578. mutex_lock(&dev->struct_mutex);
  579. ret = i915_gem_object_pin(obj, 0);
  580. if (ret)
  581. goto out_unlock;
  582. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  583. if (ret)
  584. goto out_unpin_object;
  585. obj_priv = to_intel_bo(obj);
  586. offset = obj_priv->gtt_offset + args->offset;
  587. while (remain > 0) {
  588. /* Operation in this page
  589. *
  590. * gtt_page_base = page offset within aperture
  591. * gtt_page_offset = offset within page in aperture
  592. * data_page_index = page number in get_user_pages return
  593. * data_page_offset = offset with data_page_index page.
  594. * page_length = bytes to copy for this page
  595. */
  596. gtt_page_base = offset & PAGE_MASK;
  597. gtt_page_offset = offset & ~PAGE_MASK;
  598. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  599. data_page_offset = data_ptr & ~PAGE_MASK;
  600. page_length = remain;
  601. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  602. page_length = PAGE_SIZE - gtt_page_offset;
  603. if ((data_page_offset + page_length) > PAGE_SIZE)
  604. page_length = PAGE_SIZE - data_page_offset;
  605. slow_kernel_write(dev_priv->mm.gtt_mapping,
  606. gtt_page_base, gtt_page_offset,
  607. user_pages[data_page_index],
  608. data_page_offset,
  609. page_length);
  610. remain -= page_length;
  611. offset += page_length;
  612. data_ptr += page_length;
  613. }
  614. out_unpin_object:
  615. i915_gem_object_unpin(obj);
  616. out_unlock:
  617. mutex_unlock(&dev->struct_mutex);
  618. out_unpin_pages:
  619. for (i = 0; i < pinned_pages; i++)
  620. page_cache_release(user_pages[i]);
  621. drm_free_large(user_pages);
  622. return ret;
  623. }
  624. /**
  625. * This is the fast shmem pwrite path, which attempts to directly
  626. * copy_from_user into the kmapped pages backing the object.
  627. */
  628. static int
  629. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  630. struct drm_i915_gem_pwrite *args,
  631. struct drm_file *file_priv)
  632. {
  633. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  634. ssize_t remain;
  635. loff_t offset, page_base;
  636. char __user *user_data;
  637. int page_offset, page_length;
  638. int ret;
  639. user_data = (char __user *) (uintptr_t) args->data_ptr;
  640. remain = args->size;
  641. mutex_lock(&dev->struct_mutex);
  642. ret = i915_gem_object_get_pages(obj, 0);
  643. if (ret != 0)
  644. goto fail_unlock;
  645. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  646. if (ret != 0)
  647. goto fail_put_pages;
  648. obj_priv = to_intel_bo(obj);
  649. offset = args->offset;
  650. obj_priv->dirty = 1;
  651. while (remain > 0) {
  652. /* Operation in this page
  653. *
  654. * page_base = page offset within aperture
  655. * page_offset = offset within page
  656. * page_length = bytes to copy for this page
  657. */
  658. page_base = (offset & ~(PAGE_SIZE-1));
  659. page_offset = offset & (PAGE_SIZE-1);
  660. page_length = remain;
  661. if ((page_offset + remain) > PAGE_SIZE)
  662. page_length = PAGE_SIZE - page_offset;
  663. ret = fast_shmem_write(obj_priv->pages,
  664. page_base, page_offset,
  665. user_data, page_length);
  666. if (ret)
  667. goto fail_put_pages;
  668. remain -= page_length;
  669. user_data += page_length;
  670. offset += page_length;
  671. }
  672. fail_put_pages:
  673. i915_gem_object_put_pages(obj);
  674. fail_unlock:
  675. mutex_unlock(&dev->struct_mutex);
  676. return ret;
  677. }
  678. /**
  679. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  680. * the memory and maps it using kmap_atomic for copying.
  681. *
  682. * This avoids taking mmap_sem for faulting on the user's address while the
  683. * struct_mutex is held.
  684. */
  685. static int
  686. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  687. struct drm_i915_gem_pwrite *args,
  688. struct drm_file *file_priv)
  689. {
  690. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  691. struct mm_struct *mm = current->mm;
  692. struct page **user_pages;
  693. ssize_t remain;
  694. loff_t offset, pinned_pages, i;
  695. loff_t first_data_page, last_data_page, num_pages;
  696. int shmem_page_index, shmem_page_offset;
  697. int data_page_index, data_page_offset;
  698. int page_length;
  699. int ret;
  700. uint64_t data_ptr = args->data_ptr;
  701. int do_bit17_swizzling;
  702. remain = args->size;
  703. /* Pin the user pages containing the data. We can't fault while
  704. * holding the struct mutex, and all of the pwrite implementations
  705. * want to hold it while dereferencing the user data.
  706. */
  707. first_data_page = data_ptr / PAGE_SIZE;
  708. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  709. num_pages = last_data_page - first_data_page + 1;
  710. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  711. if (user_pages == NULL)
  712. return -ENOMEM;
  713. down_read(&mm->mmap_sem);
  714. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  715. num_pages, 0, 0, user_pages, NULL);
  716. up_read(&mm->mmap_sem);
  717. if (pinned_pages < num_pages) {
  718. ret = -EFAULT;
  719. goto fail_put_user_pages;
  720. }
  721. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  722. mutex_lock(&dev->struct_mutex);
  723. ret = i915_gem_object_get_pages_or_evict(obj);
  724. if (ret)
  725. goto fail_unlock;
  726. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  727. if (ret != 0)
  728. goto fail_put_pages;
  729. obj_priv = to_intel_bo(obj);
  730. offset = args->offset;
  731. obj_priv->dirty = 1;
  732. while (remain > 0) {
  733. /* Operation in this page
  734. *
  735. * shmem_page_index = page number within shmem file
  736. * shmem_page_offset = offset within page in shmem file
  737. * data_page_index = page number in get_user_pages return
  738. * data_page_offset = offset with data_page_index page.
  739. * page_length = bytes to copy for this page
  740. */
  741. shmem_page_index = offset / PAGE_SIZE;
  742. shmem_page_offset = offset & ~PAGE_MASK;
  743. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  744. data_page_offset = data_ptr & ~PAGE_MASK;
  745. page_length = remain;
  746. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  747. page_length = PAGE_SIZE - shmem_page_offset;
  748. if ((data_page_offset + page_length) > PAGE_SIZE)
  749. page_length = PAGE_SIZE - data_page_offset;
  750. if (do_bit17_swizzling) {
  751. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  752. shmem_page_offset,
  753. user_pages[data_page_index],
  754. data_page_offset,
  755. page_length,
  756. 0);
  757. } else {
  758. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  759. shmem_page_offset,
  760. user_pages[data_page_index],
  761. data_page_offset,
  762. page_length);
  763. }
  764. remain -= page_length;
  765. data_ptr += page_length;
  766. offset += page_length;
  767. }
  768. fail_put_pages:
  769. i915_gem_object_put_pages(obj);
  770. fail_unlock:
  771. mutex_unlock(&dev->struct_mutex);
  772. fail_put_user_pages:
  773. for (i = 0; i < pinned_pages; i++)
  774. page_cache_release(user_pages[i]);
  775. drm_free_large(user_pages);
  776. return ret;
  777. }
  778. /**
  779. * Writes data to the object referenced by handle.
  780. *
  781. * On error, the contents of the buffer that were to be modified are undefined.
  782. */
  783. int
  784. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  785. struct drm_file *file_priv)
  786. {
  787. struct drm_i915_gem_pwrite *args = data;
  788. struct drm_gem_object *obj;
  789. struct drm_i915_gem_object *obj_priv;
  790. int ret = 0;
  791. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  792. if (obj == NULL)
  793. return -ENOENT;
  794. obj_priv = to_intel_bo(obj);
  795. /* Bounds check destination.
  796. *
  797. * XXX: This could use review for overflow issues...
  798. */
  799. if (args->offset > obj->size || args->size > obj->size ||
  800. args->offset + args->size > obj->size) {
  801. drm_gem_object_unreference_unlocked(obj);
  802. return -EINVAL;
  803. }
  804. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  805. * it would end up going through the fenced access, and we'll get
  806. * different detiling behavior between reading and writing.
  807. * pread/pwrite currently are reading and writing from the CPU
  808. * perspective, requiring manual detiling by the client.
  809. */
  810. if (obj_priv->phys_obj)
  811. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  812. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  813. dev->gtt_total != 0 &&
  814. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  815. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  816. if (ret == -EFAULT) {
  817. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  818. file_priv);
  819. }
  820. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  821. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  822. } else {
  823. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  824. if (ret == -EFAULT) {
  825. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  826. file_priv);
  827. }
  828. }
  829. #if WATCH_PWRITE
  830. if (ret)
  831. DRM_INFO("pwrite failed %d\n", ret);
  832. #endif
  833. drm_gem_object_unreference_unlocked(obj);
  834. return ret;
  835. }
  836. /**
  837. * Called when user space prepares to use an object with the CPU, either
  838. * through the mmap ioctl's mapping or a GTT mapping.
  839. */
  840. int
  841. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  842. struct drm_file *file_priv)
  843. {
  844. struct drm_i915_private *dev_priv = dev->dev_private;
  845. struct drm_i915_gem_set_domain *args = data;
  846. struct drm_gem_object *obj;
  847. struct drm_i915_gem_object *obj_priv;
  848. uint32_t read_domains = args->read_domains;
  849. uint32_t write_domain = args->write_domain;
  850. int ret;
  851. if (!(dev->driver->driver_features & DRIVER_GEM))
  852. return -ENODEV;
  853. /* Only handle setting domains to types used by the CPU. */
  854. if (write_domain & I915_GEM_GPU_DOMAINS)
  855. return -EINVAL;
  856. if (read_domains & I915_GEM_GPU_DOMAINS)
  857. return -EINVAL;
  858. /* Having something in the write domain implies it's in the read
  859. * domain, and only that read domain. Enforce that in the request.
  860. */
  861. if (write_domain != 0 && read_domains != write_domain)
  862. return -EINVAL;
  863. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  864. if (obj == NULL)
  865. return -ENOENT;
  866. obj_priv = to_intel_bo(obj);
  867. mutex_lock(&dev->struct_mutex);
  868. intel_mark_busy(dev, obj);
  869. #if WATCH_BUF
  870. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  871. obj, obj->size, read_domains, write_domain);
  872. #endif
  873. if (read_domains & I915_GEM_DOMAIN_GTT) {
  874. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  875. /* Update the LRU on the fence for the CPU access that's
  876. * about to occur.
  877. */
  878. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  879. struct drm_i915_fence_reg *reg =
  880. &dev_priv->fence_regs[obj_priv->fence_reg];
  881. list_move_tail(&reg->lru_list,
  882. &dev_priv->mm.fence_list);
  883. }
  884. /* Silently promote "you're not bound, there was nothing to do"
  885. * to success, since the client was just asking us to
  886. * make sure everything was done.
  887. */
  888. if (ret == -EINVAL)
  889. ret = 0;
  890. } else {
  891. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  892. }
  893. /* Maintain LRU order of "inactive" objects */
  894. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  895. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  896. drm_gem_object_unreference(obj);
  897. mutex_unlock(&dev->struct_mutex);
  898. return ret;
  899. }
  900. /**
  901. * Called when user space has done writes to this buffer
  902. */
  903. int
  904. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  905. struct drm_file *file_priv)
  906. {
  907. struct drm_i915_gem_sw_finish *args = data;
  908. struct drm_gem_object *obj;
  909. struct drm_i915_gem_object *obj_priv;
  910. int ret = 0;
  911. if (!(dev->driver->driver_features & DRIVER_GEM))
  912. return -ENODEV;
  913. mutex_lock(&dev->struct_mutex);
  914. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  915. if (obj == NULL) {
  916. mutex_unlock(&dev->struct_mutex);
  917. return -ENOENT;
  918. }
  919. #if WATCH_BUF
  920. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  921. __func__, args->handle, obj, obj->size);
  922. #endif
  923. obj_priv = to_intel_bo(obj);
  924. /* Pinned buffers may be scanout, so flush the cache */
  925. if (obj_priv->pin_count)
  926. i915_gem_object_flush_cpu_write_domain(obj);
  927. drm_gem_object_unreference(obj);
  928. mutex_unlock(&dev->struct_mutex);
  929. return ret;
  930. }
  931. /**
  932. * Maps the contents of an object, returning the address it is mapped
  933. * into.
  934. *
  935. * While the mapping holds a reference on the contents of the object, it doesn't
  936. * imply a ref on the object itself.
  937. */
  938. int
  939. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  940. struct drm_file *file_priv)
  941. {
  942. struct drm_i915_gem_mmap *args = data;
  943. struct drm_gem_object *obj;
  944. loff_t offset;
  945. unsigned long addr;
  946. if (!(dev->driver->driver_features & DRIVER_GEM))
  947. return -ENODEV;
  948. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  949. if (obj == NULL)
  950. return -ENOENT;
  951. offset = args->offset;
  952. down_write(&current->mm->mmap_sem);
  953. addr = do_mmap(obj->filp, 0, args->size,
  954. PROT_READ | PROT_WRITE, MAP_SHARED,
  955. args->offset);
  956. up_write(&current->mm->mmap_sem);
  957. drm_gem_object_unreference_unlocked(obj);
  958. if (IS_ERR((void *)addr))
  959. return addr;
  960. args->addr_ptr = (uint64_t) addr;
  961. return 0;
  962. }
  963. /**
  964. * i915_gem_fault - fault a page into the GTT
  965. * vma: VMA in question
  966. * vmf: fault info
  967. *
  968. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  969. * from userspace. The fault handler takes care of binding the object to
  970. * the GTT (if needed), allocating and programming a fence register (again,
  971. * only if needed based on whether the old reg is still valid or the object
  972. * is tiled) and inserting a new PTE into the faulting process.
  973. *
  974. * Note that the faulting process may involve evicting existing objects
  975. * from the GTT and/or fence registers to make room. So performance may
  976. * suffer if the GTT working set is large or there are few fence registers
  977. * left.
  978. */
  979. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  980. {
  981. struct drm_gem_object *obj = vma->vm_private_data;
  982. struct drm_device *dev = obj->dev;
  983. drm_i915_private_t *dev_priv = dev->dev_private;
  984. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  985. pgoff_t page_offset;
  986. unsigned long pfn;
  987. int ret = 0;
  988. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  989. /* We don't use vmf->pgoff since that has the fake offset */
  990. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  991. PAGE_SHIFT;
  992. /* Now bind it into the GTT if needed */
  993. mutex_lock(&dev->struct_mutex);
  994. if (!obj_priv->gtt_space) {
  995. ret = i915_gem_object_bind_to_gtt(obj, 0);
  996. if (ret)
  997. goto unlock;
  998. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  999. if (ret)
  1000. goto unlock;
  1001. }
  1002. /* Need a new fence register? */
  1003. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1004. ret = i915_gem_object_get_fence_reg(obj, true);
  1005. if (ret)
  1006. goto unlock;
  1007. }
  1008. if (i915_gem_object_is_inactive(obj_priv))
  1009. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1010. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1011. page_offset;
  1012. /* Finally, remap it using the new GTT offset */
  1013. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1014. unlock:
  1015. mutex_unlock(&dev->struct_mutex);
  1016. switch (ret) {
  1017. case 0:
  1018. case -ERESTARTSYS:
  1019. return VM_FAULT_NOPAGE;
  1020. case -ENOMEM:
  1021. case -EAGAIN:
  1022. return VM_FAULT_OOM;
  1023. default:
  1024. return VM_FAULT_SIGBUS;
  1025. }
  1026. }
  1027. /**
  1028. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1029. * @obj: obj in question
  1030. *
  1031. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1032. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1033. * up the object based on the offset and sets up the various memory mapping
  1034. * structures.
  1035. *
  1036. * This routine allocates and attaches a fake offset for @obj.
  1037. */
  1038. static int
  1039. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1040. {
  1041. struct drm_device *dev = obj->dev;
  1042. struct drm_gem_mm *mm = dev->mm_private;
  1043. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1044. struct drm_map_list *list;
  1045. struct drm_local_map *map;
  1046. int ret = 0;
  1047. /* Set the object up for mmap'ing */
  1048. list = &obj->map_list;
  1049. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1050. if (!list->map)
  1051. return -ENOMEM;
  1052. map = list->map;
  1053. map->type = _DRM_GEM;
  1054. map->size = obj->size;
  1055. map->handle = obj;
  1056. /* Get a DRM GEM mmap offset allocated... */
  1057. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1058. obj->size / PAGE_SIZE, 0, 0);
  1059. if (!list->file_offset_node) {
  1060. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1061. ret = -ENOMEM;
  1062. goto out_free_list;
  1063. }
  1064. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1065. obj->size / PAGE_SIZE, 0);
  1066. if (!list->file_offset_node) {
  1067. ret = -ENOMEM;
  1068. goto out_free_list;
  1069. }
  1070. list->hash.key = list->file_offset_node->start;
  1071. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1072. DRM_ERROR("failed to add to map hash\n");
  1073. ret = -ENOMEM;
  1074. goto out_free_mm;
  1075. }
  1076. /* By now we should be all set, any drm_mmap request on the offset
  1077. * below will get to our mmap & fault handler */
  1078. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1079. return 0;
  1080. out_free_mm:
  1081. drm_mm_put_block(list->file_offset_node);
  1082. out_free_list:
  1083. kfree(list->map);
  1084. return ret;
  1085. }
  1086. /**
  1087. * i915_gem_release_mmap - remove physical page mappings
  1088. * @obj: obj in question
  1089. *
  1090. * Preserve the reservation of the mmapping with the DRM core code, but
  1091. * relinquish ownership of the pages back to the system.
  1092. *
  1093. * It is vital that we remove the page mapping if we have mapped a tiled
  1094. * object through the GTT and then lose the fence register due to
  1095. * resource pressure. Similarly if the object has been moved out of the
  1096. * aperture, than pages mapped into userspace must be revoked. Removing the
  1097. * mapping will then trigger a page fault on the next user access, allowing
  1098. * fixup by i915_gem_fault().
  1099. */
  1100. void
  1101. i915_gem_release_mmap(struct drm_gem_object *obj)
  1102. {
  1103. struct drm_device *dev = obj->dev;
  1104. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1105. if (dev->dev_mapping)
  1106. unmap_mapping_range(dev->dev_mapping,
  1107. obj_priv->mmap_offset, obj->size, 1);
  1108. }
  1109. static void
  1110. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1111. {
  1112. struct drm_device *dev = obj->dev;
  1113. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1114. struct drm_gem_mm *mm = dev->mm_private;
  1115. struct drm_map_list *list;
  1116. list = &obj->map_list;
  1117. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1118. if (list->file_offset_node) {
  1119. drm_mm_put_block(list->file_offset_node);
  1120. list->file_offset_node = NULL;
  1121. }
  1122. if (list->map) {
  1123. kfree(list->map);
  1124. list->map = NULL;
  1125. }
  1126. obj_priv->mmap_offset = 0;
  1127. }
  1128. /**
  1129. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1130. * @obj: object to check
  1131. *
  1132. * Return the required GTT alignment for an object, taking into account
  1133. * potential fence register mapping if needed.
  1134. */
  1135. static uint32_t
  1136. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1137. {
  1138. struct drm_device *dev = obj->dev;
  1139. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1140. int start, i;
  1141. /*
  1142. * Minimum alignment is 4k (GTT page size), but might be greater
  1143. * if a fence register is needed for the object.
  1144. */
  1145. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1146. return 4096;
  1147. /*
  1148. * Previous chips need to be aligned to the size of the smallest
  1149. * fence register that can contain the object.
  1150. */
  1151. if (INTEL_INFO(dev)->gen == 3)
  1152. start = 1024*1024;
  1153. else
  1154. start = 512*1024;
  1155. for (i = start; i < obj->size; i <<= 1)
  1156. ;
  1157. return i;
  1158. }
  1159. /**
  1160. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1161. * @dev: DRM device
  1162. * @data: GTT mapping ioctl data
  1163. * @file_priv: GEM object info
  1164. *
  1165. * Simply returns the fake offset to userspace so it can mmap it.
  1166. * The mmap call will end up in drm_gem_mmap(), which will set things
  1167. * up so we can get faults in the handler above.
  1168. *
  1169. * The fault handler will take care of binding the object into the GTT
  1170. * (since it may have been evicted to make room for something), allocating
  1171. * a fence register, and mapping the appropriate aperture address into
  1172. * userspace.
  1173. */
  1174. int
  1175. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1176. struct drm_file *file_priv)
  1177. {
  1178. struct drm_i915_gem_mmap_gtt *args = data;
  1179. struct drm_gem_object *obj;
  1180. struct drm_i915_gem_object *obj_priv;
  1181. int ret;
  1182. if (!(dev->driver->driver_features & DRIVER_GEM))
  1183. return -ENODEV;
  1184. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1185. if (obj == NULL)
  1186. return -ENOENT;
  1187. mutex_lock(&dev->struct_mutex);
  1188. obj_priv = to_intel_bo(obj);
  1189. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1190. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1191. drm_gem_object_unreference(obj);
  1192. mutex_unlock(&dev->struct_mutex);
  1193. return -EINVAL;
  1194. }
  1195. if (!obj_priv->mmap_offset) {
  1196. ret = i915_gem_create_mmap_offset(obj);
  1197. if (ret) {
  1198. drm_gem_object_unreference(obj);
  1199. mutex_unlock(&dev->struct_mutex);
  1200. return ret;
  1201. }
  1202. }
  1203. args->offset = obj_priv->mmap_offset;
  1204. /*
  1205. * Pull it into the GTT so that we have a page list (makes the
  1206. * initial fault faster and any subsequent flushing possible).
  1207. */
  1208. if (!obj_priv->agp_mem) {
  1209. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1210. if (ret) {
  1211. drm_gem_object_unreference(obj);
  1212. mutex_unlock(&dev->struct_mutex);
  1213. return ret;
  1214. }
  1215. }
  1216. drm_gem_object_unreference(obj);
  1217. mutex_unlock(&dev->struct_mutex);
  1218. return 0;
  1219. }
  1220. void
  1221. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1222. {
  1223. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1224. int page_count = obj->size / PAGE_SIZE;
  1225. int i;
  1226. BUG_ON(obj_priv->pages_refcount == 0);
  1227. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1228. if (--obj_priv->pages_refcount != 0)
  1229. return;
  1230. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1231. i915_gem_object_save_bit_17_swizzle(obj);
  1232. if (obj_priv->madv == I915_MADV_DONTNEED)
  1233. obj_priv->dirty = 0;
  1234. for (i = 0; i < page_count; i++) {
  1235. if (obj_priv->dirty)
  1236. set_page_dirty(obj_priv->pages[i]);
  1237. if (obj_priv->madv == I915_MADV_WILLNEED)
  1238. mark_page_accessed(obj_priv->pages[i]);
  1239. page_cache_release(obj_priv->pages[i]);
  1240. }
  1241. obj_priv->dirty = 0;
  1242. drm_free_large(obj_priv->pages);
  1243. obj_priv->pages = NULL;
  1244. }
  1245. static uint32_t
  1246. i915_gem_next_request_seqno(struct drm_device *dev,
  1247. struct intel_ring_buffer *ring)
  1248. {
  1249. drm_i915_private_t *dev_priv = dev->dev_private;
  1250. ring->outstanding_lazy_request = true;
  1251. return dev_priv->next_seqno;
  1252. }
  1253. static void
  1254. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1255. struct intel_ring_buffer *ring)
  1256. {
  1257. struct drm_device *dev = obj->dev;
  1258. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1259. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1260. BUG_ON(ring == NULL);
  1261. obj_priv->ring = ring;
  1262. /* Add a reference if we're newly entering the active list. */
  1263. if (!obj_priv->active) {
  1264. drm_gem_object_reference(obj);
  1265. obj_priv->active = 1;
  1266. }
  1267. /* Move from whatever list we were on to the tail of execution. */
  1268. list_move_tail(&obj_priv->list, &ring->active_list);
  1269. obj_priv->last_rendering_seqno = seqno;
  1270. }
  1271. static void
  1272. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1273. {
  1274. struct drm_device *dev = obj->dev;
  1275. drm_i915_private_t *dev_priv = dev->dev_private;
  1276. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1277. BUG_ON(!obj_priv->active);
  1278. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1279. obj_priv->last_rendering_seqno = 0;
  1280. }
  1281. /* Immediately discard the backing storage */
  1282. static void
  1283. i915_gem_object_truncate(struct drm_gem_object *obj)
  1284. {
  1285. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1286. struct inode *inode;
  1287. /* Our goal here is to return as much of the memory as
  1288. * is possible back to the system as we are called from OOM.
  1289. * To do this we must instruct the shmfs to drop all of its
  1290. * backing pages, *now*. Here we mirror the actions taken
  1291. * when by shmem_delete_inode() to release the backing store.
  1292. */
  1293. inode = obj->filp->f_path.dentry->d_inode;
  1294. truncate_inode_pages(inode->i_mapping, 0);
  1295. if (inode->i_op->truncate_range)
  1296. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1297. obj_priv->madv = __I915_MADV_PURGED;
  1298. }
  1299. static inline int
  1300. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1301. {
  1302. return obj_priv->madv == I915_MADV_DONTNEED;
  1303. }
  1304. static void
  1305. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1306. {
  1307. struct drm_device *dev = obj->dev;
  1308. drm_i915_private_t *dev_priv = dev->dev_private;
  1309. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1310. i915_verify_inactive(dev, __FILE__, __LINE__);
  1311. if (obj_priv->pin_count != 0)
  1312. list_del_init(&obj_priv->list);
  1313. else
  1314. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1315. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1316. obj_priv->last_rendering_seqno = 0;
  1317. obj_priv->ring = NULL;
  1318. if (obj_priv->active) {
  1319. obj_priv->active = 0;
  1320. drm_gem_object_unreference(obj);
  1321. }
  1322. i915_verify_inactive(dev, __FILE__, __LINE__);
  1323. }
  1324. void
  1325. i915_gem_process_flushing_list(struct drm_device *dev,
  1326. uint32_t flush_domains,
  1327. struct intel_ring_buffer *ring)
  1328. {
  1329. drm_i915_private_t *dev_priv = dev->dev_private;
  1330. struct drm_i915_gem_object *obj_priv, *next;
  1331. list_for_each_entry_safe(obj_priv, next,
  1332. &dev_priv->mm.gpu_write_list,
  1333. gpu_write_list) {
  1334. struct drm_gem_object *obj = &obj_priv->base;
  1335. if (obj->write_domain & flush_domains &&
  1336. obj_priv->ring == ring) {
  1337. uint32_t old_write_domain = obj->write_domain;
  1338. obj->write_domain = 0;
  1339. list_del_init(&obj_priv->gpu_write_list);
  1340. i915_gem_object_move_to_active(obj, ring);
  1341. /* update the fence lru list */
  1342. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1343. struct drm_i915_fence_reg *reg =
  1344. &dev_priv->fence_regs[obj_priv->fence_reg];
  1345. list_move_tail(&reg->lru_list,
  1346. &dev_priv->mm.fence_list);
  1347. }
  1348. trace_i915_gem_object_change_domain(obj,
  1349. obj->read_domains,
  1350. old_write_domain);
  1351. }
  1352. }
  1353. }
  1354. uint32_t
  1355. i915_add_request(struct drm_device *dev,
  1356. struct drm_file *file_priv,
  1357. struct drm_i915_gem_request *request,
  1358. struct intel_ring_buffer *ring)
  1359. {
  1360. drm_i915_private_t *dev_priv = dev->dev_private;
  1361. struct drm_i915_file_private *i915_file_priv = NULL;
  1362. uint32_t seqno;
  1363. int was_empty;
  1364. if (file_priv != NULL)
  1365. i915_file_priv = file_priv->driver_priv;
  1366. if (request == NULL) {
  1367. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1368. if (request == NULL)
  1369. return 0;
  1370. }
  1371. seqno = ring->add_request(dev, ring, file_priv, 0);
  1372. request->seqno = seqno;
  1373. request->ring = ring;
  1374. request->emitted_jiffies = jiffies;
  1375. was_empty = list_empty(&ring->request_list);
  1376. list_add_tail(&request->list, &ring->request_list);
  1377. if (i915_file_priv) {
  1378. list_add_tail(&request->client_list,
  1379. &i915_file_priv->mm.request_list);
  1380. } else {
  1381. INIT_LIST_HEAD(&request->client_list);
  1382. }
  1383. if (!dev_priv->mm.suspended) {
  1384. mod_timer(&dev_priv->hangcheck_timer,
  1385. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1386. if (was_empty)
  1387. queue_delayed_work(dev_priv->wq,
  1388. &dev_priv->mm.retire_work, HZ);
  1389. }
  1390. return seqno;
  1391. }
  1392. /**
  1393. * Command execution barrier
  1394. *
  1395. * Ensures that all commands in the ring are finished
  1396. * before signalling the CPU
  1397. */
  1398. static void
  1399. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1400. {
  1401. uint32_t flush_domains = 0;
  1402. /* The sampler always gets flushed on i965 (sigh) */
  1403. if (INTEL_INFO(dev)->gen >= 4)
  1404. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1405. ring->flush(dev, ring,
  1406. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1407. }
  1408. /**
  1409. * Moves buffers associated only with the given active seqno from the active
  1410. * to inactive list, potentially freeing them.
  1411. */
  1412. static void
  1413. i915_gem_retire_request(struct drm_device *dev,
  1414. struct drm_i915_gem_request *request)
  1415. {
  1416. trace_i915_gem_request_retire(dev, request->seqno);
  1417. /* Move any buffers on the active list that are no longer referenced
  1418. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1419. */
  1420. while (!list_empty(&request->ring->active_list)) {
  1421. struct drm_gem_object *obj;
  1422. struct drm_i915_gem_object *obj_priv;
  1423. obj_priv = list_first_entry(&request->ring->active_list,
  1424. struct drm_i915_gem_object,
  1425. list);
  1426. obj = &obj_priv->base;
  1427. /* If the seqno being retired doesn't match the oldest in the
  1428. * list, then the oldest in the list must still be newer than
  1429. * this seqno.
  1430. */
  1431. if (obj_priv->last_rendering_seqno != request->seqno)
  1432. return;
  1433. #if WATCH_LRU
  1434. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1435. __func__, request->seqno, obj);
  1436. #endif
  1437. if (obj->write_domain != 0)
  1438. i915_gem_object_move_to_flushing(obj);
  1439. else
  1440. i915_gem_object_move_to_inactive(obj);
  1441. }
  1442. }
  1443. /**
  1444. * Returns true if seq1 is later than seq2.
  1445. */
  1446. bool
  1447. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1448. {
  1449. return (int32_t)(seq1 - seq2) >= 0;
  1450. }
  1451. uint32_t
  1452. i915_get_gem_seqno(struct drm_device *dev,
  1453. struct intel_ring_buffer *ring)
  1454. {
  1455. return ring->get_gem_seqno(dev, ring);
  1456. }
  1457. /**
  1458. * This function clears the request list as sequence numbers are passed.
  1459. */
  1460. static void
  1461. i915_gem_retire_requests_ring(struct drm_device *dev,
  1462. struct intel_ring_buffer *ring)
  1463. {
  1464. drm_i915_private_t *dev_priv = dev->dev_private;
  1465. uint32_t seqno;
  1466. if (!ring->status_page.page_addr
  1467. || list_empty(&ring->request_list))
  1468. return;
  1469. seqno = i915_get_gem_seqno(dev, ring);
  1470. while (!list_empty(&ring->request_list)) {
  1471. struct drm_i915_gem_request *request;
  1472. uint32_t retiring_seqno;
  1473. request = list_first_entry(&ring->request_list,
  1474. struct drm_i915_gem_request,
  1475. list);
  1476. retiring_seqno = request->seqno;
  1477. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1478. atomic_read(&dev_priv->mm.wedged)) {
  1479. i915_gem_retire_request(dev, request);
  1480. list_del(&request->list);
  1481. list_del(&request->client_list);
  1482. kfree(request);
  1483. } else
  1484. break;
  1485. }
  1486. if (unlikely (dev_priv->trace_irq_seqno &&
  1487. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1488. ring->user_irq_put(dev, ring);
  1489. dev_priv->trace_irq_seqno = 0;
  1490. }
  1491. }
  1492. void
  1493. i915_gem_retire_requests(struct drm_device *dev)
  1494. {
  1495. drm_i915_private_t *dev_priv = dev->dev_private;
  1496. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1497. struct drm_i915_gem_object *obj_priv, *tmp;
  1498. /* We must be careful that during unbind() we do not
  1499. * accidentally infinitely recurse into retire requests.
  1500. * Currently:
  1501. * retire -> free -> unbind -> wait -> retire_ring
  1502. */
  1503. list_for_each_entry_safe(obj_priv, tmp,
  1504. &dev_priv->mm.deferred_free_list,
  1505. list)
  1506. i915_gem_free_object_tail(&obj_priv->base);
  1507. }
  1508. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1509. if (HAS_BSD(dev))
  1510. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1511. }
  1512. static void
  1513. i915_gem_retire_work_handler(struct work_struct *work)
  1514. {
  1515. drm_i915_private_t *dev_priv;
  1516. struct drm_device *dev;
  1517. dev_priv = container_of(work, drm_i915_private_t,
  1518. mm.retire_work.work);
  1519. dev = dev_priv->dev;
  1520. mutex_lock(&dev->struct_mutex);
  1521. i915_gem_retire_requests(dev);
  1522. if (!dev_priv->mm.suspended &&
  1523. (!list_empty(&dev_priv->render_ring.request_list) ||
  1524. (HAS_BSD(dev) &&
  1525. !list_empty(&dev_priv->bsd_ring.request_list))))
  1526. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1527. mutex_unlock(&dev->struct_mutex);
  1528. }
  1529. int
  1530. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1531. bool interruptible, struct intel_ring_buffer *ring)
  1532. {
  1533. drm_i915_private_t *dev_priv = dev->dev_private;
  1534. u32 ier;
  1535. int ret = 0;
  1536. BUG_ON(seqno == 0);
  1537. if (seqno == dev_priv->next_seqno) {
  1538. seqno = i915_add_request(dev, NULL, NULL, ring);
  1539. if (seqno == 0)
  1540. return -ENOMEM;
  1541. }
  1542. if (atomic_read(&dev_priv->mm.wedged))
  1543. return -EIO;
  1544. if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
  1545. if (HAS_PCH_SPLIT(dev))
  1546. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1547. else
  1548. ier = I915_READ(IER);
  1549. if (!ier) {
  1550. DRM_ERROR("something (likely vbetool) disabled "
  1551. "interrupts, re-enabling\n");
  1552. i915_driver_irq_preinstall(dev);
  1553. i915_driver_irq_postinstall(dev);
  1554. }
  1555. trace_i915_gem_request_wait_begin(dev, seqno);
  1556. ring->waiting_gem_seqno = seqno;
  1557. ring->user_irq_get(dev, ring);
  1558. if (interruptible)
  1559. ret = wait_event_interruptible(ring->irq_queue,
  1560. i915_seqno_passed(
  1561. ring->get_gem_seqno(dev, ring), seqno)
  1562. || atomic_read(&dev_priv->mm.wedged));
  1563. else
  1564. wait_event(ring->irq_queue,
  1565. i915_seqno_passed(
  1566. ring->get_gem_seqno(dev, ring), seqno)
  1567. || atomic_read(&dev_priv->mm.wedged));
  1568. ring->user_irq_put(dev, ring);
  1569. ring->waiting_gem_seqno = 0;
  1570. trace_i915_gem_request_wait_end(dev, seqno);
  1571. }
  1572. if (atomic_read(&dev_priv->mm.wedged))
  1573. ret = -EIO;
  1574. if (ret && ret != -ERESTARTSYS)
  1575. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1576. __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
  1577. dev_priv->next_seqno);
  1578. /* Directly dispatch request retiring. While we have the work queue
  1579. * to handle this, the waiter on a request often wants an associated
  1580. * buffer to have made it to the inactive list, and we would need
  1581. * a separate wait queue to handle that.
  1582. */
  1583. if (ret == 0)
  1584. i915_gem_retire_requests_ring(dev, ring);
  1585. return ret;
  1586. }
  1587. /**
  1588. * Waits for a sequence number to be signaled, and cleans up the
  1589. * request and object lists appropriately for that event.
  1590. */
  1591. static int
  1592. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1593. struct intel_ring_buffer *ring)
  1594. {
  1595. return i915_do_wait_request(dev, seqno, 1, ring);
  1596. }
  1597. static void
  1598. i915_gem_flush(struct drm_device *dev,
  1599. uint32_t invalidate_domains,
  1600. uint32_t flush_domains)
  1601. {
  1602. drm_i915_private_t *dev_priv = dev->dev_private;
  1603. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1604. drm_agp_chipset_flush(dev);
  1605. dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
  1606. invalidate_domains,
  1607. flush_domains);
  1608. if (HAS_BSD(dev))
  1609. dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
  1610. invalidate_domains,
  1611. flush_domains);
  1612. }
  1613. /**
  1614. * Ensures that all rendering to the object has completed and the object is
  1615. * safe to unbind from the GTT or access from the CPU.
  1616. */
  1617. static int
  1618. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1619. bool interruptible)
  1620. {
  1621. struct drm_device *dev = obj->dev;
  1622. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1623. int ret;
  1624. /* This function only exists to support waiting for existing rendering,
  1625. * not for emitting required flushes.
  1626. */
  1627. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1628. /* If there is rendering queued on the buffer being evicted, wait for
  1629. * it.
  1630. */
  1631. if (obj_priv->active) {
  1632. #if WATCH_BUF
  1633. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1634. __func__, obj, obj_priv->last_rendering_seqno);
  1635. #endif
  1636. ret = i915_do_wait_request(dev,
  1637. obj_priv->last_rendering_seqno,
  1638. interruptible,
  1639. obj_priv->ring);
  1640. if (ret)
  1641. return ret;
  1642. }
  1643. return 0;
  1644. }
  1645. /**
  1646. * Unbinds an object from the GTT aperture.
  1647. */
  1648. int
  1649. i915_gem_object_unbind(struct drm_gem_object *obj)
  1650. {
  1651. struct drm_device *dev = obj->dev;
  1652. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1653. int ret = 0;
  1654. #if WATCH_BUF
  1655. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1656. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1657. #endif
  1658. if (obj_priv->gtt_space == NULL)
  1659. return 0;
  1660. if (obj_priv->pin_count != 0) {
  1661. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1662. return -EINVAL;
  1663. }
  1664. /* blow away mappings if mapped through GTT */
  1665. i915_gem_release_mmap(obj);
  1666. /* Move the object to the CPU domain to ensure that
  1667. * any possible CPU writes while it's not in the GTT
  1668. * are flushed when we go to remap it. This will
  1669. * also ensure that all pending GPU writes are finished
  1670. * before we unbind.
  1671. */
  1672. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1673. if (ret == -ERESTARTSYS)
  1674. return ret;
  1675. /* Continue on if we fail due to EIO, the GPU is hung so we
  1676. * should be safe and we need to cleanup or else we might
  1677. * cause memory corruption through use-after-free.
  1678. */
  1679. /* release the fence reg _after_ flushing */
  1680. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1681. i915_gem_clear_fence_reg(obj);
  1682. if (obj_priv->agp_mem != NULL) {
  1683. drm_unbind_agp(obj_priv->agp_mem);
  1684. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1685. obj_priv->agp_mem = NULL;
  1686. }
  1687. i915_gem_object_put_pages(obj);
  1688. BUG_ON(obj_priv->pages_refcount);
  1689. if (obj_priv->gtt_space) {
  1690. atomic_dec(&dev->gtt_count);
  1691. atomic_sub(obj->size, &dev->gtt_memory);
  1692. drm_mm_put_block(obj_priv->gtt_space);
  1693. obj_priv->gtt_space = NULL;
  1694. }
  1695. /* Remove ourselves from the LRU list if present. */
  1696. if (!list_empty(&obj_priv->list))
  1697. list_del_init(&obj_priv->list);
  1698. if (i915_gem_object_is_purgeable(obj_priv))
  1699. i915_gem_object_truncate(obj);
  1700. trace_i915_gem_object_unbind(obj);
  1701. return ret;
  1702. }
  1703. int
  1704. i915_gpu_idle(struct drm_device *dev)
  1705. {
  1706. drm_i915_private_t *dev_priv = dev->dev_private;
  1707. bool lists_empty;
  1708. int ret;
  1709. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1710. list_empty(&dev_priv->render_ring.active_list) &&
  1711. (!HAS_BSD(dev) ||
  1712. list_empty(&dev_priv->bsd_ring.active_list)));
  1713. if (lists_empty)
  1714. return 0;
  1715. /* Flush everything onto the inactive list. */
  1716. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1717. ret = i915_wait_request(dev,
  1718. i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
  1719. &dev_priv->render_ring);
  1720. if (ret)
  1721. return ret;
  1722. if (HAS_BSD(dev)) {
  1723. ret = i915_wait_request(dev,
  1724. i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
  1725. &dev_priv->bsd_ring);
  1726. if (ret)
  1727. return ret;
  1728. }
  1729. return 0;
  1730. }
  1731. int
  1732. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1733. gfp_t gfpmask)
  1734. {
  1735. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1736. int page_count, i;
  1737. struct address_space *mapping;
  1738. struct inode *inode;
  1739. struct page *page;
  1740. BUG_ON(obj_priv->pages_refcount
  1741. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1742. if (obj_priv->pages_refcount++ != 0)
  1743. return 0;
  1744. /* Get the list of pages out of our struct file. They'll be pinned
  1745. * at this point until we release them.
  1746. */
  1747. page_count = obj->size / PAGE_SIZE;
  1748. BUG_ON(obj_priv->pages != NULL);
  1749. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1750. if (obj_priv->pages == NULL) {
  1751. obj_priv->pages_refcount--;
  1752. return -ENOMEM;
  1753. }
  1754. inode = obj->filp->f_path.dentry->d_inode;
  1755. mapping = inode->i_mapping;
  1756. for (i = 0; i < page_count; i++) {
  1757. page = read_cache_page_gfp(mapping, i,
  1758. GFP_HIGHUSER |
  1759. __GFP_COLD |
  1760. __GFP_RECLAIMABLE |
  1761. gfpmask);
  1762. if (IS_ERR(page))
  1763. goto err_pages;
  1764. obj_priv->pages[i] = page;
  1765. }
  1766. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1767. i915_gem_object_do_bit_17_swizzle(obj);
  1768. return 0;
  1769. err_pages:
  1770. while (i--)
  1771. page_cache_release(obj_priv->pages[i]);
  1772. drm_free_large(obj_priv->pages);
  1773. obj_priv->pages = NULL;
  1774. obj_priv->pages_refcount--;
  1775. return PTR_ERR(page);
  1776. }
  1777. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1778. {
  1779. struct drm_gem_object *obj = reg->obj;
  1780. struct drm_device *dev = obj->dev;
  1781. drm_i915_private_t *dev_priv = dev->dev_private;
  1782. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1783. int regnum = obj_priv->fence_reg;
  1784. uint64_t val;
  1785. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1786. 0xfffff000) << 32;
  1787. val |= obj_priv->gtt_offset & 0xfffff000;
  1788. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1789. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1790. if (obj_priv->tiling_mode == I915_TILING_Y)
  1791. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1792. val |= I965_FENCE_REG_VALID;
  1793. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1794. }
  1795. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1796. {
  1797. struct drm_gem_object *obj = reg->obj;
  1798. struct drm_device *dev = obj->dev;
  1799. drm_i915_private_t *dev_priv = dev->dev_private;
  1800. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1801. int regnum = obj_priv->fence_reg;
  1802. uint64_t val;
  1803. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1804. 0xfffff000) << 32;
  1805. val |= obj_priv->gtt_offset & 0xfffff000;
  1806. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1807. if (obj_priv->tiling_mode == I915_TILING_Y)
  1808. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1809. val |= I965_FENCE_REG_VALID;
  1810. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1811. }
  1812. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1813. {
  1814. struct drm_gem_object *obj = reg->obj;
  1815. struct drm_device *dev = obj->dev;
  1816. drm_i915_private_t *dev_priv = dev->dev_private;
  1817. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1818. int regnum = obj_priv->fence_reg;
  1819. int tile_width;
  1820. uint32_t fence_reg, val;
  1821. uint32_t pitch_val;
  1822. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1823. (obj_priv->gtt_offset & (obj->size - 1))) {
  1824. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1825. __func__, obj_priv->gtt_offset, obj->size);
  1826. return;
  1827. }
  1828. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1829. HAS_128_BYTE_Y_TILING(dev))
  1830. tile_width = 128;
  1831. else
  1832. tile_width = 512;
  1833. /* Note: pitch better be a power of two tile widths */
  1834. pitch_val = obj_priv->stride / tile_width;
  1835. pitch_val = ffs(pitch_val) - 1;
  1836. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1837. HAS_128_BYTE_Y_TILING(dev))
  1838. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1839. else
  1840. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1841. val = obj_priv->gtt_offset;
  1842. if (obj_priv->tiling_mode == I915_TILING_Y)
  1843. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1844. val |= I915_FENCE_SIZE_BITS(obj->size);
  1845. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1846. val |= I830_FENCE_REG_VALID;
  1847. if (regnum < 8)
  1848. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1849. else
  1850. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1851. I915_WRITE(fence_reg, val);
  1852. }
  1853. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1854. {
  1855. struct drm_gem_object *obj = reg->obj;
  1856. struct drm_device *dev = obj->dev;
  1857. drm_i915_private_t *dev_priv = dev->dev_private;
  1858. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1859. int regnum = obj_priv->fence_reg;
  1860. uint32_t val;
  1861. uint32_t pitch_val;
  1862. uint32_t fence_size_bits;
  1863. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1864. (obj_priv->gtt_offset & (obj->size - 1))) {
  1865. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1866. __func__, obj_priv->gtt_offset);
  1867. return;
  1868. }
  1869. pitch_val = obj_priv->stride / 128;
  1870. pitch_val = ffs(pitch_val) - 1;
  1871. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1872. val = obj_priv->gtt_offset;
  1873. if (obj_priv->tiling_mode == I915_TILING_Y)
  1874. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1875. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1876. WARN_ON(fence_size_bits & ~0x00000f00);
  1877. val |= fence_size_bits;
  1878. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1879. val |= I830_FENCE_REG_VALID;
  1880. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1881. }
  1882. static int i915_find_fence_reg(struct drm_device *dev,
  1883. bool interruptible)
  1884. {
  1885. struct drm_i915_fence_reg *reg = NULL;
  1886. struct drm_i915_gem_object *obj_priv = NULL;
  1887. struct drm_i915_private *dev_priv = dev->dev_private;
  1888. struct drm_gem_object *obj = NULL;
  1889. int i, avail, ret;
  1890. /* First try to find a free reg */
  1891. avail = 0;
  1892. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1893. reg = &dev_priv->fence_regs[i];
  1894. if (!reg->obj)
  1895. return i;
  1896. obj_priv = to_intel_bo(reg->obj);
  1897. if (!obj_priv->pin_count)
  1898. avail++;
  1899. }
  1900. if (avail == 0)
  1901. return -ENOSPC;
  1902. /* None available, try to steal one or wait for a user to finish */
  1903. i = I915_FENCE_REG_NONE;
  1904. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  1905. lru_list) {
  1906. obj = reg->obj;
  1907. obj_priv = to_intel_bo(obj);
  1908. if (obj_priv->pin_count)
  1909. continue;
  1910. /* found one! */
  1911. i = obj_priv->fence_reg;
  1912. break;
  1913. }
  1914. BUG_ON(i == I915_FENCE_REG_NONE);
  1915. /* We only have a reference on obj from the active list. put_fence_reg
  1916. * might drop that one, causing a use-after-free in it. So hold a
  1917. * private reference to obj like the other callers of put_fence_reg
  1918. * (set_tiling ioctl) do. */
  1919. drm_gem_object_reference(obj);
  1920. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  1921. drm_gem_object_unreference(obj);
  1922. if (ret != 0)
  1923. return ret;
  1924. return i;
  1925. }
  1926. /**
  1927. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1928. * @obj: object to map through a fence reg
  1929. *
  1930. * When mapping objects through the GTT, userspace wants to be able to write
  1931. * to them without having to worry about swizzling if the object is tiled.
  1932. *
  1933. * This function walks the fence regs looking for a free one for @obj,
  1934. * stealing one if it can't find any.
  1935. *
  1936. * It then sets up the reg based on the object's properties: address, pitch
  1937. * and tiling format.
  1938. */
  1939. int
  1940. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  1941. bool interruptible)
  1942. {
  1943. struct drm_device *dev = obj->dev;
  1944. struct drm_i915_private *dev_priv = dev->dev_private;
  1945. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1946. struct drm_i915_fence_reg *reg = NULL;
  1947. int ret;
  1948. /* Just update our place in the LRU if our fence is getting used. */
  1949. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1950. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1951. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1952. return 0;
  1953. }
  1954. switch (obj_priv->tiling_mode) {
  1955. case I915_TILING_NONE:
  1956. WARN(1, "allocating a fence for non-tiled object?\n");
  1957. break;
  1958. case I915_TILING_X:
  1959. if (!obj_priv->stride)
  1960. return -EINVAL;
  1961. WARN((obj_priv->stride & (512 - 1)),
  1962. "object 0x%08x is X tiled but has non-512B pitch\n",
  1963. obj_priv->gtt_offset);
  1964. break;
  1965. case I915_TILING_Y:
  1966. if (!obj_priv->stride)
  1967. return -EINVAL;
  1968. WARN((obj_priv->stride & (128 - 1)),
  1969. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1970. obj_priv->gtt_offset);
  1971. break;
  1972. }
  1973. ret = i915_find_fence_reg(dev, interruptible);
  1974. if (ret < 0)
  1975. return ret;
  1976. obj_priv->fence_reg = ret;
  1977. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1978. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1979. reg->obj = obj;
  1980. switch (INTEL_INFO(dev)->gen) {
  1981. case 6:
  1982. sandybridge_write_fence_reg(reg);
  1983. break;
  1984. case 5:
  1985. case 4:
  1986. i965_write_fence_reg(reg);
  1987. break;
  1988. case 3:
  1989. i915_write_fence_reg(reg);
  1990. break;
  1991. case 2:
  1992. i830_write_fence_reg(reg);
  1993. break;
  1994. }
  1995. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  1996. obj_priv->tiling_mode);
  1997. return 0;
  1998. }
  1999. /**
  2000. * i915_gem_clear_fence_reg - clear out fence register info
  2001. * @obj: object to clear
  2002. *
  2003. * Zeroes out the fence register itself and clears out the associated
  2004. * data structures in dev_priv and obj_priv.
  2005. */
  2006. static void
  2007. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2008. {
  2009. struct drm_device *dev = obj->dev;
  2010. drm_i915_private_t *dev_priv = dev->dev_private;
  2011. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2012. struct drm_i915_fence_reg *reg =
  2013. &dev_priv->fence_regs[obj_priv->fence_reg];
  2014. uint32_t fence_reg;
  2015. switch (INTEL_INFO(dev)->gen) {
  2016. case 6:
  2017. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2018. (obj_priv->fence_reg * 8), 0);
  2019. break;
  2020. case 5:
  2021. case 4:
  2022. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2023. break;
  2024. case 3:
  2025. if (obj_priv->fence_reg > 8)
  2026. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2027. else
  2028. case 2:
  2029. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2030. I915_WRITE(fence_reg, 0);
  2031. break;
  2032. }
  2033. reg->obj = NULL;
  2034. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2035. list_del_init(&reg->lru_list);
  2036. }
  2037. /**
  2038. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2039. * to the buffer to finish, and then resets the fence register.
  2040. * @obj: tiled object holding a fence register.
  2041. * @bool: whether the wait upon the fence is interruptible
  2042. *
  2043. * Zeroes out the fence register itself and clears out the associated
  2044. * data structures in dev_priv and obj_priv.
  2045. */
  2046. int
  2047. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2048. bool interruptible)
  2049. {
  2050. struct drm_device *dev = obj->dev;
  2051. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2052. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2053. return 0;
  2054. /* If we've changed tiling, GTT-mappings of the object
  2055. * need to re-fault to ensure that the correct fence register
  2056. * setup is in place.
  2057. */
  2058. i915_gem_release_mmap(obj);
  2059. /* On the i915, GPU access to tiled buffers is via a fence,
  2060. * therefore we must wait for any outstanding access to complete
  2061. * before clearing the fence.
  2062. */
  2063. if (INTEL_INFO(dev)->gen < 4) {
  2064. int ret;
  2065. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2066. if (ret)
  2067. return ret;
  2068. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2069. if (ret)
  2070. return ret;
  2071. }
  2072. i915_gem_object_flush_gtt_write_domain(obj);
  2073. i915_gem_clear_fence_reg(obj);
  2074. return 0;
  2075. }
  2076. /**
  2077. * Finds free space in the GTT aperture and binds the object there.
  2078. */
  2079. static int
  2080. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2081. {
  2082. struct drm_device *dev = obj->dev;
  2083. drm_i915_private_t *dev_priv = dev->dev_private;
  2084. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2085. struct drm_mm_node *free_space;
  2086. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2087. int ret;
  2088. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2089. DRM_ERROR("Attempting to bind a purgeable object\n");
  2090. return -EINVAL;
  2091. }
  2092. if (alignment == 0)
  2093. alignment = i915_gem_get_gtt_alignment(obj);
  2094. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2095. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2096. return -EINVAL;
  2097. }
  2098. /* If the object is bigger than the entire aperture, reject it early
  2099. * before evicting everything in a vain attempt to find space.
  2100. */
  2101. if (obj->size > dev->gtt_total) {
  2102. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2103. return -E2BIG;
  2104. }
  2105. search_free:
  2106. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2107. obj->size, alignment, 0);
  2108. if (free_space != NULL) {
  2109. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2110. alignment);
  2111. if (obj_priv->gtt_space != NULL)
  2112. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2113. }
  2114. if (obj_priv->gtt_space == NULL) {
  2115. /* If the gtt is empty and we're still having trouble
  2116. * fitting our object in, we're out of memory.
  2117. */
  2118. #if WATCH_LRU
  2119. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2120. #endif
  2121. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2122. if (ret)
  2123. return ret;
  2124. goto search_free;
  2125. }
  2126. #if WATCH_BUF
  2127. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2128. obj->size, obj_priv->gtt_offset);
  2129. #endif
  2130. ret = i915_gem_object_get_pages(obj, gfpmask);
  2131. if (ret) {
  2132. drm_mm_put_block(obj_priv->gtt_space);
  2133. obj_priv->gtt_space = NULL;
  2134. if (ret == -ENOMEM) {
  2135. /* first try to clear up some space from the GTT */
  2136. ret = i915_gem_evict_something(dev, obj->size,
  2137. alignment);
  2138. if (ret) {
  2139. /* now try to shrink everyone else */
  2140. if (gfpmask) {
  2141. gfpmask = 0;
  2142. goto search_free;
  2143. }
  2144. return ret;
  2145. }
  2146. goto search_free;
  2147. }
  2148. return ret;
  2149. }
  2150. /* Create an AGP memory structure pointing at our pages, and bind it
  2151. * into the GTT.
  2152. */
  2153. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2154. obj_priv->pages,
  2155. obj->size >> PAGE_SHIFT,
  2156. obj_priv->gtt_offset,
  2157. obj_priv->agp_type);
  2158. if (obj_priv->agp_mem == NULL) {
  2159. i915_gem_object_put_pages(obj);
  2160. drm_mm_put_block(obj_priv->gtt_space);
  2161. obj_priv->gtt_space = NULL;
  2162. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2163. if (ret)
  2164. return ret;
  2165. goto search_free;
  2166. }
  2167. atomic_inc(&dev->gtt_count);
  2168. atomic_add(obj->size, &dev->gtt_memory);
  2169. /* keep track of bounds object by adding it to the inactive list */
  2170. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2171. /* Assert that the object is not currently in any GPU domain. As it
  2172. * wasn't in the GTT, there shouldn't be any way it could have been in
  2173. * a GPU cache
  2174. */
  2175. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2176. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2177. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2178. return 0;
  2179. }
  2180. void
  2181. i915_gem_clflush_object(struct drm_gem_object *obj)
  2182. {
  2183. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2184. /* If we don't have a page list set up, then we're not pinned
  2185. * to GPU, and we can ignore the cache flush because it'll happen
  2186. * again at bind time.
  2187. */
  2188. if (obj_priv->pages == NULL)
  2189. return;
  2190. trace_i915_gem_object_clflush(obj);
  2191. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2192. }
  2193. /** Flushes any GPU write domain for the object if it's dirty. */
  2194. static int
  2195. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2196. bool pipelined)
  2197. {
  2198. struct drm_device *dev = obj->dev;
  2199. uint32_t old_write_domain;
  2200. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2201. return 0;
  2202. /* Queue the GPU write cache flushing we need. */
  2203. old_write_domain = obj->write_domain;
  2204. i915_gem_flush(dev, 0, obj->write_domain);
  2205. BUG_ON(obj->write_domain);
  2206. trace_i915_gem_object_change_domain(obj,
  2207. obj->read_domains,
  2208. old_write_domain);
  2209. if (pipelined)
  2210. return 0;
  2211. return i915_gem_object_wait_rendering(obj, true);
  2212. }
  2213. /** Flushes the GTT write domain for the object if it's dirty. */
  2214. static void
  2215. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2216. {
  2217. uint32_t old_write_domain;
  2218. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2219. return;
  2220. /* No actual flushing is required for the GTT write domain. Writes
  2221. * to it immediately go to main memory as far as we know, so there's
  2222. * no chipset flush. It also doesn't land in render cache.
  2223. */
  2224. old_write_domain = obj->write_domain;
  2225. obj->write_domain = 0;
  2226. trace_i915_gem_object_change_domain(obj,
  2227. obj->read_domains,
  2228. old_write_domain);
  2229. }
  2230. /** Flushes the CPU write domain for the object if it's dirty. */
  2231. static void
  2232. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2233. {
  2234. struct drm_device *dev = obj->dev;
  2235. uint32_t old_write_domain;
  2236. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2237. return;
  2238. i915_gem_clflush_object(obj);
  2239. drm_agp_chipset_flush(dev);
  2240. old_write_domain = obj->write_domain;
  2241. obj->write_domain = 0;
  2242. trace_i915_gem_object_change_domain(obj,
  2243. obj->read_domains,
  2244. old_write_domain);
  2245. }
  2246. /**
  2247. * Moves a single object to the GTT read, and possibly write domain.
  2248. *
  2249. * This function returns when the move is complete, including waiting on
  2250. * flushes to occur.
  2251. */
  2252. int
  2253. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2254. {
  2255. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2256. uint32_t old_write_domain, old_read_domains;
  2257. int ret;
  2258. /* Not valid to be called on unbound objects. */
  2259. if (obj_priv->gtt_space == NULL)
  2260. return -EINVAL;
  2261. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2262. if (ret != 0)
  2263. return ret;
  2264. i915_gem_object_flush_cpu_write_domain(obj);
  2265. if (write) {
  2266. ret = i915_gem_object_wait_rendering(obj, true);
  2267. if (ret)
  2268. return ret;
  2269. }
  2270. old_write_domain = obj->write_domain;
  2271. old_read_domains = obj->read_domains;
  2272. /* It should now be out of any other write domains, and we can update
  2273. * the domain values for our changes.
  2274. */
  2275. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2276. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2277. if (write) {
  2278. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2279. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2280. obj_priv->dirty = 1;
  2281. }
  2282. trace_i915_gem_object_change_domain(obj,
  2283. old_read_domains,
  2284. old_write_domain);
  2285. return 0;
  2286. }
  2287. /*
  2288. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2289. * wait, as in modesetting process we're not supposed to be interrupted.
  2290. */
  2291. int
  2292. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2293. bool pipelined)
  2294. {
  2295. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2296. uint32_t old_read_domains;
  2297. int ret;
  2298. /* Not valid to be called on unbound objects. */
  2299. if (obj_priv->gtt_space == NULL)
  2300. return -EINVAL;
  2301. ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
  2302. if (ret)
  2303. return ret;
  2304. i915_gem_object_flush_cpu_write_domain(obj);
  2305. old_read_domains = obj->read_domains;
  2306. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2307. trace_i915_gem_object_change_domain(obj,
  2308. old_read_domains,
  2309. obj->write_domain);
  2310. return 0;
  2311. }
  2312. /**
  2313. * Moves a single object to the CPU read, and possibly write domain.
  2314. *
  2315. * This function returns when the move is complete, including waiting on
  2316. * flushes to occur.
  2317. */
  2318. static int
  2319. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2320. {
  2321. uint32_t old_write_domain, old_read_domains;
  2322. int ret;
  2323. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2324. if (ret != 0)
  2325. return ret;
  2326. i915_gem_object_flush_gtt_write_domain(obj);
  2327. /* If we have a partially-valid cache of the object in the CPU,
  2328. * finish invalidating it and free the per-page flags.
  2329. */
  2330. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2331. if (write) {
  2332. ret = i915_gem_object_wait_rendering(obj, true);
  2333. if (ret)
  2334. return ret;
  2335. }
  2336. old_write_domain = obj->write_domain;
  2337. old_read_domains = obj->read_domains;
  2338. /* Flush the CPU cache if it's still invalid. */
  2339. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2340. i915_gem_clflush_object(obj);
  2341. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2342. }
  2343. /* It should now be out of any other write domains, and we can update
  2344. * the domain values for our changes.
  2345. */
  2346. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2347. /* If we're writing through the CPU, then the GPU read domains will
  2348. * need to be invalidated at next use.
  2349. */
  2350. if (write) {
  2351. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2352. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2353. }
  2354. trace_i915_gem_object_change_domain(obj,
  2355. old_read_domains,
  2356. old_write_domain);
  2357. return 0;
  2358. }
  2359. /*
  2360. * Set the next domain for the specified object. This
  2361. * may not actually perform the necessary flushing/invaliding though,
  2362. * as that may want to be batched with other set_domain operations
  2363. *
  2364. * This is (we hope) the only really tricky part of gem. The goal
  2365. * is fairly simple -- track which caches hold bits of the object
  2366. * and make sure they remain coherent. A few concrete examples may
  2367. * help to explain how it works. For shorthand, we use the notation
  2368. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2369. * a pair of read and write domain masks.
  2370. *
  2371. * Case 1: the batch buffer
  2372. *
  2373. * 1. Allocated
  2374. * 2. Written by CPU
  2375. * 3. Mapped to GTT
  2376. * 4. Read by GPU
  2377. * 5. Unmapped from GTT
  2378. * 6. Freed
  2379. *
  2380. * Let's take these a step at a time
  2381. *
  2382. * 1. Allocated
  2383. * Pages allocated from the kernel may still have
  2384. * cache contents, so we set them to (CPU, CPU) always.
  2385. * 2. Written by CPU (using pwrite)
  2386. * The pwrite function calls set_domain (CPU, CPU) and
  2387. * this function does nothing (as nothing changes)
  2388. * 3. Mapped by GTT
  2389. * This function asserts that the object is not
  2390. * currently in any GPU-based read or write domains
  2391. * 4. Read by GPU
  2392. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2393. * As write_domain is zero, this function adds in the
  2394. * current read domains (CPU+COMMAND, 0).
  2395. * flush_domains is set to CPU.
  2396. * invalidate_domains is set to COMMAND
  2397. * clflush is run to get data out of the CPU caches
  2398. * then i915_dev_set_domain calls i915_gem_flush to
  2399. * emit an MI_FLUSH and drm_agp_chipset_flush
  2400. * 5. Unmapped from GTT
  2401. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2402. * flush_domains and invalidate_domains end up both zero
  2403. * so no flushing/invalidating happens
  2404. * 6. Freed
  2405. * yay, done
  2406. *
  2407. * Case 2: The shared render buffer
  2408. *
  2409. * 1. Allocated
  2410. * 2. Mapped to GTT
  2411. * 3. Read/written by GPU
  2412. * 4. set_domain to (CPU,CPU)
  2413. * 5. Read/written by CPU
  2414. * 6. Read/written by GPU
  2415. *
  2416. * 1. Allocated
  2417. * Same as last example, (CPU, CPU)
  2418. * 2. Mapped to GTT
  2419. * Nothing changes (assertions find that it is not in the GPU)
  2420. * 3. Read/written by GPU
  2421. * execbuffer calls set_domain (RENDER, RENDER)
  2422. * flush_domains gets CPU
  2423. * invalidate_domains gets GPU
  2424. * clflush (obj)
  2425. * MI_FLUSH and drm_agp_chipset_flush
  2426. * 4. set_domain (CPU, CPU)
  2427. * flush_domains gets GPU
  2428. * invalidate_domains gets CPU
  2429. * wait_rendering (obj) to make sure all drawing is complete.
  2430. * This will include an MI_FLUSH to get the data from GPU
  2431. * to memory
  2432. * clflush (obj) to invalidate the CPU cache
  2433. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2434. * 5. Read/written by CPU
  2435. * cache lines are loaded and dirtied
  2436. * 6. Read written by GPU
  2437. * Same as last GPU access
  2438. *
  2439. * Case 3: The constant buffer
  2440. *
  2441. * 1. Allocated
  2442. * 2. Written by CPU
  2443. * 3. Read by GPU
  2444. * 4. Updated (written) by CPU again
  2445. * 5. Read by GPU
  2446. *
  2447. * 1. Allocated
  2448. * (CPU, CPU)
  2449. * 2. Written by CPU
  2450. * (CPU, CPU)
  2451. * 3. Read by GPU
  2452. * (CPU+RENDER, 0)
  2453. * flush_domains = CPU
  2454. * invalidate_domains = RENDER
  2455. * clflush (obj)
  2456. * MI_FLUSH
  2457. * drm_agp_chipset_flush
  2458. * 4. Updated (written) by CPU again
  2459. * (CPU, CPU)
  2460. * flush_domains = 0 (no previous write domain)
  2461. * invalidate_domains = 0 (no new read domains)
  2462. * 5. Read by GPU
  2463. * (CPU+RENDER, 0)
  2464. * flush_domains = CPU
  2465. * invalidate_domains = RENDER
  2466. * clflush (obj)
  2467. * MI_FLUSH
  2468. * drm_agp_chipset_flush
  2469. */
  2470. static void
  2471. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2472. {
  2473. struct drm_device *dev = obj->dev;
  2474. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2475. uint32_t invalidate_domains = 0;
  2476. uint32_t flush_domains = 0;
  2477. uint32_t old_read_domains;
  2478. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2479. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2480. intel_mark_busy(dev, obj);
  2481. #if WATCH_BUF
  2482. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2483. __func__, obj,
  2484. obj->read_domains, obj->pending_read_domains,
  2485. obj->write_domain, obj->pending_write_domain);
  2486. #endif
  2487. /*
  2488. * If the object isn't moving to a new write domain,
  2489. * let the object stay in multiple read domains
  2490. */
  2491. if (obj->pending_write_domain == 0)
  2492. obj->pending_read_domains |= obj->read_domains;
  2493. else
  2494. obj_priv->dirty = 1;
  2495. /*
  2496. * Flush the current write domain if
  2497. * the new read domains don't match. Invalidate
  2498. * any read domains which differ from the old
  2499. * write domain
  2500. */
  2501. if (obj->write_domain &&
  2502. obj->write_domain != obj->pending_read_domains) {
  2503. flush_domains |= obj->write_domain;
  2504. invalidate_domains |=
  2505. obj->pending_read_domains & ~obj->write_domain;
  2506. }
  2507. /*
  2508. * Invalidate any read caches which may have
  2509. * stale data. That is, any new read domains.
  2510. */
  2511. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2512. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2513. #if WATCH_BUF
  2514. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2515. __func__, flush_domains, invalidate_domains);
  2516. #endif
  2517. i915_gem_clflush_object(obj);
  2518. }
  2519. old_read_domains = obj->read_domains;
  2520. /* The actual obj->write_domain will be updated with
  2521. * pending_write_domain after we emit the accumulated flush for all
  2522. * of our domain changes in execbuffers (which clears objects'
  2523. * write_domains). So if we have a current write domain that we
  2524. * aren't changing, set pending_write_domain to that.
  2525. */
  2526. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2527. obj->pending_write_domain = obj->write_domain;
  2528. obj->read_domains = obj->pending_read_domains;
  2529. dev->invalidate_domains |= invalidate_domains;
  2530. dev->flush_domains |= flush_domains;
  2531. #if WATCH_BUF
  2532. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2533. __func__,
  2534. obj->read_domains, obj->write_domain,
  2535. dev->invalidate_domains, dev->flush_domains);
  2536. #endif
  2537. trace_i915_gem_object_change_domain(obj,
  2538. old_read_domains,
  2539. obj->write_domain);
  2540. }
  2541. /**
  2542. * Moves the object from a partially CPU read to a full one.
  2543. *
  2544. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2545. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2546. */
  2547. static void
  2548. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2549. {
  2550. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2551. if (!obj_priv->page_cpu_valid)
  2552. return;
  2553. /* If we're partially in the CPU read domain, finish moving it in.
  2554. */
  2555. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2556. int i;
  2557. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2558. if (obj_priv->page_cpu_valid[i])
  2559. continue;
  2560. drm_clflush_pages(obj_priv->pages + i, 1);
  2561. }
  2562. }
  2563. /* Free the page_cpu_valid mappings which are now stale, whether
  2564. * or not we've got I915_GEM_DOMAIN_CPU.
  2565. */
  2566. kfree(obj_priv->page_cpu_valid);
  2567. obj_priv->page_cpu_valid = NULL;
  2568. }
  2569. /**
  2570. * Set the CPU read domain on a range of the object.
  2571. *
  2572. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2573. * not entirely valid. The page_cpu_valid member of the object flags which
  2574. * pages have been flushed, and will be respected by
  2575. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2576. * of the whole object.
  2577. *
  2578. * This function returns when the move is complete, including waiting on
  2579. * flushes to occur.
  2580. */
  2581. static int
  2582. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2583. uint64_t offset, uint64_t size)
  2584. {
  2585. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2586. uint32_t old_read_domains;
  2587. int i, ret;
  2588. if (offset == 0 && size == obj->size)
  2589. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2590. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2591. if (ret != 0)
  2592. return ret;
  2593. i915_gem_object_flush_gtt_write_domain(obj);
  2594. /* If we're already fully in the CPU read domain, we're done. */
  2595. if (obj_priv->page_cpu_valid == NULL &&
  2596. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2597. return 0;
  2598. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2599. * newly adding I915_GEM_DOMAIN_CPU
  2600. */
  2601. if (obj_priv->page_cpu_valid == NULL) {
  2602. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2603. GFP_KERNEL);
  2604. if (obj_priv->page_cpu_valid == NULL)
  2605. return -ENOMEM;
  2606. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2607. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2608. /* Flush the cache on any pages that are still invalid from the CPU's
  2609. * perspective.
  2610. */
  2611. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2612. i++) {
  2613. if (obj_priv->page_cpu_valid[i])
  2614. continue;
  2615. drm_clflush_pages(obj_priv->pages + i, 1);
  2616. obj_priv->page_cpu_valid[i] = 1;
  2617. }
  2618. /* It should now be out of any other write domains, and we can update
  2619. * the domain values for our changes.
  2620. */
  2621. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2622. old_read_domains = obj->read_domains;
  2623. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2624. trace_i915_gem_object_change_domain(obj,
  2625. old_read_domains,
  2626. obj->write_domain);
  2627. return 0;
  2628. }
  2629. /**
  2630. * Pin an object to the GTT and evaluate the relocations landing in it.
  2631. */
  2632. static int
  2633. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2634. struct drm_file *file_priv,
  2635. struct drm_i915_gem_exec_object2 *entry,
  2636. struct drm_i915_gem_relocation_entry *relocs)
  2637. {
  2638. struct drm_device *dev = obj->dev;
  2639. drm_i915_private_t *dev_priv = dev->dev_private;
  2640. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2641. int i, ret;
  2642. void __iomem *reloc_page;
  2643. bool need_fence;
  2644. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2645. obj_priv->tiling_mode != I915_TILING_NONE;
  2646. /* Check fence reg constraints and rebind if necessary */
  2647. if (need_fence &&
  2648. !i915_gem_object_fence_offset_ok(obj,
  2649. obj_priv->tiling_mode)) {
  2650. ret = i915_gem_object_unbind(obj);
  2651. if (ret)
  2652. return ret;
  2653. }
  2654. /* Choose the GTT offset for our buffer and put it there. */
  2655. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2656. if (ret)
  2657. return ret;
  2658. /*
  2659. * Pre-965 chips need a fence register set up in order to
  2660. * properly handle blits to/from tiled surfaces.
  2661. */
  2662. if (need_fence) {
  2663. ret = i915_gem_object_get_fence_reg(obj, false);
  2664. if (ret != 0) {
  2665. i915_gem_object_unpin(obj);
  2666. return ret;
  2667. }
  2668. }
  2669. entry->offset = obj_priv->gtt_offset;
  2670. /* Apply the relocations, using the GTT aperture to avoid cache
  2671. * flushing requirements.
  2672. */
  2673. for (i = 0; i < entry->relocation_count; i++) {
  2674. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2675. struct drm_gem_object *target_obj;
  2676. struct drm_i915_gem_object *target_obj_priv;
  2677. uint32_t reloc_val, reloc_offset;
  2678. uint32_t __iomem *reloc_entry;
  2679. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2680. reloc->target_handle);
  2681. if (target_obj == NULL) {
  2682. i915_gem_object_unpin(obj);
  2683. return -ENOENT;
  2684. }
  2685. target_obj_priv = to_intel_bo(target_obj);
  2686. #if WATCH_RELOC
  2687. DRM_INFO("%s: obj %p offset %08x target %d "
  2688. "read %08x write %08x gtt %08x "
  2689. "presumed %08x delta %08x\n",
  2690. __func__,
  2691. obj,
  2692. (int) reloc->offset,
  2693. (int) reloc->target_handle,
  2694. (int) reloc->read_domains,
  2695. (int) reloc->write_domain,
  2696. (int) target_obj_priv->gtt_offset,
  2697. (int) reloc->presumed_offset,
  2698. reloc->delta);
  2699. #endif
  2700. /* The target buffer should have appeared before us in the
  2701. * exec_object list, so it should have a GTT space bound by now.
  2702. */
  2703. if (target_obj_priv->gtt_space == NULL) {
  2704. DRM_ERROR("No GTT space found for object %d\n",
  2705. reloc->target_handle);
  2706. drm_gem_object_unreference(target_obj);
  2707. i915_gem_object_unpin(obj);
  2708. return -EINVAL;
  2709. }
  2710. /* Validate that the target is in a valid r/w GPU domain */
  2711. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2712. DRM_ERROR("reloc with multiple write domains: "
  2713. "obj %p target %d offset %d "
  2714. "read %08x write %08x",
  2715. obj, reloc->target_handle,
  2716. (int) reloc->offset,
  2717. reloc->read_domains,
  2718. reloc->write_domain);
  2719. return -EINVAL;
  2720. }
  2721. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2722. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2723. DRM_ERROR("reloc with read/write CPU domains: "
  2724. "obj %p target %d offset %d "
  2725. "read %08x write %08x",
  2726. obj, reloc->target_handle,
  2727. (int) reloc->offset,
  2728. reloc->read_domains,
  2729. reloc->write_domain);
  2730. drm_gem_object_unreference(target_obj);
  2731. i915_gem_object_unpin(obj);
  2732. return -EINVAL;
  2733. }
  2734. if (reloc->write_domain && target_obj->pending_write_domain &&
  2735. reloc->write_domain != target_obj->pending_write_domain) {
  2736. DRM_ERROR("Write domain conflict: "
  2737. "obj %p target %d offset %d "
  2738. "new %08x old %08x\n",
  2739. obj, reloc->target_handle,
  2740. (int) reloc->offset,
  2741. reloc->write_domain,
  2742. target_obj->pending_write_domain);
  2743. drm_gem_object_unreference(target_obj);
  2744. i915_gem_object_unpin(obj);
  2745. return -EINVAL;
  2746. }
  2747. target_obj->pending_read_domains |= reloc->read_domains;
  2748. target_obj->pending_write_domain |= reloc->write_domain;
  2749. /* If the relocation already has the right value in it, no
  2750. * more work needs to be done.
  2751. */
  2752. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2753. drm_gem_object_unreference(target_obj);
  2754. continue;
  2755. }
  2756. /* Check that the relocation address is valid... */
  2757. if (reloc->offset > obj->size - 4) {
  2758. DRM_ERROR("Relocation beyond object bounds: "
  2759. "obj %p target %d offset %d size %d.\n",
  2760. obj, reloc->target_handle,
  2761. (int) reloc->offset, (int) obj->size);
  2762. drm_gem_object_unreference(target_obj);
  2763. i915_gem_object_unpin(obj);
  2764. return -EINVAL;
  2765. }
  2766. if (reloc->offset & 3) {
  2767. DRM_ERROR("Relocation not 4-byte aligned: "
  2768. "obj %p target %d offset %d.\n",
  2769. obj, reloc->target_handle,
  2770. (int) reloc->offset);
  2771. drm_gem_object_unreference(target_obj);
  2772. i915_gem_object_unpin(obj);
  2773. return -EINVAL;
  2774. }
  2775. /* and points to somewhere within the target object. */
  2776. if (reloc->delta >= target_obj->size) {
  2777. DRM_ERROR("Relocation beyond target object bounds: "
  2778. "obj %p target %d delta %d size %d.\n",
  2779. obj, reloc->target_handle,
  2780. (int) reloc->delta, (int) target_obj->size);
  2781. drm_gem_object_unreference(target_obj);
  2782. i915_gem_object_unpin(obj);
  2783. return -EINVAL;
  2784. }
  2785. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2786. if (ret != 0) {
  2787. drm_gem_object_unreference(target_obj);
  2788. i915_gem_object_unpin(obj);
  2789. return -EINVAL;
  2790. }
  2791. /* Map the page containing the relocation we're going to
  2792. * perform.
  2793. */
  2794. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2795. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2796. (reloc_offset &
  2797. ~(PAGE_SIZE - 1)),
  2798. KM_USER0);
  2799. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2800. (reloc_offset & (PAGE_SIZE - 1)));
  2801. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2802. #if WATCH_BUF
  2803. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2804. obj, (unsigned int) reloc->offset,
  2805. readl(reloc_entry), reloc_val);
  2806. #endif
  2807. writel(reloc_val, reloc_entry);
  2808. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2809. /* The updated presumed offset for this entry will be
  2810. * copied back out to the user.
  2811. */
  2812. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2813. drm_gem_object_unreference(target_obj);
  2814. }
  2815. #if WATCH_BUF
  2816. if (0)
  2817. i915_gem_dump_object(obj, 128, __func__, ~0);
  2818. #endif
  2819. return 0;
  2820. }
  2821. /* Throttle our rendering by waiting until the ring has completed our requests
  2822. * emitted over 20 msec ago.
  2823. *
  2824. * Note that if we were to use the current jiffies each time around the loop,
  2825. * we wouldn't escape the function with any frames outstanding if the time to
  2826. * render a frame was over 20ms.
  2827. *
  2828. * This should get us reasonable parallelism between CPU and GPU but also
  2829. * relatively low latency when blocking on a particular request to finish.
  2830. */
  2831. static int
  2832. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2833. {
  2834. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2835. int ret = 0;
  2836. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2837. mutex_lock(&dev->struct_mutex);
  2838. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2839. struct drm_i915_gem_request *request;
  2840. request = list_first_entry(&i915_file_priv->mm.request_list,
  2841. struct drm_i915_gem_request,
  2842. client_list);
  2843. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2844. break;
  2845. ret = i915_wait_request(dev, request->seqno, request->ring);
  2846. if (ret != 0)
  2847. break;
  2848. }
  2849. mutex_unlock(&dev->struct_mutex);
  2850. return ret;
  2851. }
  2852. static int
  2853. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  2854. uint32_t buffer_count,
  2855. struct drm_i915_gem_relocation_entry **relocs)
  2856. {
  2857. uint32_t reloc_count = 0, reloc_index = 0, i;
  2858. int ret;
  2859. *relocs = NULL;
  2860. for (i = 0; i < buffer_count; i++) {
  2861. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2862. return -EINVAL;
  2863. reloc_count += exec_list[i].relocation_count;
  2864. }
  2865. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2866. if (*relocs == NULL) {
  2867. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  2868. return -ENOMEM;
  2869. }
  2870. for (i = 0; i < buffer_count; i++) {
  2871. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2872. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2873. ret = copy_from_user(&(*relocs)[reloc_index],
  2874. user_relocs,
  2875. exec_list[i].relocation_count *
  2876. sizeof(**relocs));
  2877. if (ret != 0) {
  2878. drm_free_large(*relocs);
  2879. *relocs = NULL;
  2880. return -EFAULT;
  2881. }
  2882. reloc_index += exec_list[i].relocation_count;
  2883. }
  2884. return 0;
  2885. }
  2886. static int
  2887. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  2888. uint32_t buffer_count,
  2889. struct drm_i915_gem_relocation_entry *relocs)
  2890. {
  2891. uint32_t reloc_count = 0, i;
  2892. int ret = 0;
  2893. if (relocs == NULL)
  2894. return 0;
  2895. for (i = 0; i < buffer_count; i++) {
  2896. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2897. int unwritten;
  2898. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2899. unwritten = copy_to_user(user_relocs,
  2900. &relocs[reloc_count],
  2901. exec_list[i].relocation_count *
  2902. sizeof(*relocs));
  2903. if (unwritten) {
  2904. ret = -EFAULT;
  2905. goto err;
  2906. }
  2907. reloc_count += exec_list[i].relocation_count;
  2908. }
  2909. err:
  2910. drm_free_large(relocs);
  2911. return ret;
  2912. }
  2913. static int
  2914. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  2915. uint64_t exec_offset)
  2916. {
  2917. uint32_t exec_start, exec_len;
  2918. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2919. exec_len = (uint32_t) exec->batch_len;
  2920. if ((exec_start | exec_len) & 0x7)
  2921. return -EINVAL;
  2922. if (!exec_start)
  2923. return -EINVAL;
  2924. return 0;
  2925. }
  2926. static int
  2927. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  2928. struct drm_gem_object **object_list,
  2929. int count)
  2930. {
  2931. drm_i915_private_t *dev_priv = dev->dev_private;
  2932. struct drm_i915_gem_object *obj_priv;
  2933. DEFINE_WAIT(wait);
  2934. int i, ret = 0;
  2935. for (;;) {
  2936. prepare_to_wait(&dev_priv->pending_flip_queue,
  2937. &wait, TASK_INTERRUPTIBLE);
  2938. for (i = 0; i < count; i++) {
  2939. obj_priv = to_intel_bo(object_list[i]);
  2940. if (atomic_read(&obj_priv->pending_flip) > 0)
  2941. break;
  2942. }
  2943. if (i == count)
  2944. break;
  2945. if (!signal_pending(current)) {
  2946. mutex_unlock(&dev->struct_mutex);
  2947. schedule();
  2948. mutex_lock(&dev->struct_mutex);
  2949. continue;
  2950. }
  2951. ret = -ERESTARTSYS;
  2952. break;
  2953. }
  2954. finish_wait(&dev_priv->pending_flip_queue, &wait);
  2955. return ret;
  2956. }
  2957. static int
  2958. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  2959. struct drm_file *file_priv,
  2960. struct drm_i915_gem_execbuffer2 *args,
  2961. struct drm_i915_gem_exec_object2 *exec_list)
  2962. {
  2963. drm_i915_private_t *dev_priv = dev->dev_private;
  2964. struct drm_gem_object **object_list = NULL;
  2965. struct drm_gem_object *batch_obj;
  2966. struct drm_i915_gem_object *obj_priv;
  2967. struct drm_clip_rect *cliprects = NULL;
  2968. struct drm_i915_gem_relocation_entry *relocs = NULL;
  2969. struct drm_i915_gem_request *request = NULL;
  2970. int ret = 0, ret2, i, pinned = 0;
  2971. uint64_t exec_offset;
  2972. uint32_t seqno, reloc_index;
  2973. int pin_tries, flips;
  2974. struct intel_ring_buffer *ring = NULL;
  2975. #if WATCH_EXEC
  2976. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2977. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2978. #endif
  2979. if (args->flags & I915_EXEC_BSD) {
  2980. if (!HAS_BSD(dev)) {
  2981. DRM_ERROR("execbuf with wrong flag\n");
  2982. return -EINVAL;
  2983. }
  2984. ring = &dev_priv->bsd_ring;
  2985. } else {
  2986. ring = &dev_priv->render_ring;
  2987. }
  2988. if (args->buffer_count < 1) {
  2989. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2990. return -EINVAL;
  2991. }
  2992. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  2993. if (object_list == NULL) {
  2994. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  2995. args->buffer_count);
  2996. ret = -ENOMEM;
  2997. goto pre_mutex_err;
  2998. }
  2999. if (args->num_cliprects != 0) {
  3000. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3001. GFP_KERNEL);
  3002. if (cliprects == NULL) {
  3003. ret = -ENOMEM;
  3004. goto pre_mutex_err;
  3005. }
  3006. ret = copy_from_user(cliprects,
  3007. (struct drm_clip_rect __user *)
  3008. (uintptr_t) args->cliprects_ptr,
  3009. sizeof(*cliprects) * args->num_cliprects);
  3010. if (ret != 0) {
  3011. DRM_ERROR("copy %d cliprects failed: %d\n",
  3012. args->num_cliprects, ret);
  3013. ret = -EFAULT;
  3014. goto pre_mutex_err;
  3015. }
  3016. }
  3017. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3018. if (request == NULL) {
  3019. ret = -ENOMEM;
  3020. goto pre_mutex_err;
  3021. }
  3022. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3023. &relocs);
  3024. if (ret != 0)
  3025. goto pre_mutex_err;
  3026. mutex_lock(&dev->struct_mutex);
  3027. i915_verify_inactive(dev, __FILE__, __LINE__);
  3028. if (atomic_read(&dev_priv->mm.wedged)) {
  3029. mutex_unlock(&dev->struct_mutex);
  3030. ret = -EIO;
  3031. goto pre_mutex_err;
  3032. }
  3033. if (dev_priv->mm.suspended) {
  3034. mutex_unlock(&dev->struct_mutex);
  3035. ret = -EBUSY;
  3036. goto pre_mutex_err;
  3037. }
  3038. /* Look up object handles */
  3039. flips = 0;
  3040. for (i = 0; i < args->buffer_count; i++) {
  3041. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3042. exec_list[i].handle);
  3043. if (object_list[i] == NULL) {
  3044. DRM_ERROR("Invalid object handle %d at index %d\n",
  3045. exec_list[i].handle, i);
  3046. /* prevent error path from reading uninitialized data */
  3047. args->buffer_count = i + 1;
  3048. ret = -ENOENT;
  3049. goto err;
  3050. }
  3051. obj_priv = to_intel_bo(object_list[i]);
  3052. if (obj_priv->in_execbuffer) {
  3053. DRM_ERROR("Object %p appears more than once in object list\n",
  3054. object_list[i]);
  3055. /* prevent error path from reading uninitialized data */
  3056. args->buffer_count = i + 1;
  3057. ret = -EINVAL;
  3058. goto err;
  3059. }
  3060. obj_priv->in_execbuffer = true;
  3061. flips += atomic_read(&obj_priv->pending_flip);
  3062. }
  3063. if (flips > 0) {
  3064. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3065. args->buffer_count);
  3066. if (ret)
  3067. goto err;
  3068. }
  3069. /* Pin and relocate */
  3070. for (pin_tries = 0; ; pin_tries++) {
  3071. ret = 0;
  3072. reloc_index = 0;
  3073. for (i = 0; i < args->buffer_count; i++) {
  3074. object_list[i]->pending_read_domains = 0;
  3075. object_list[i]->pending_write_domain = 0;
  3076. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3077. file_priv,
  3078. &exec_list[i],
  3079. &relocs[reloc_index]);
  3080. if (ret)
  3081. break;
  3082. pinned = i + 1;
  3083. reloc_index += exec_list[i].relocation_count;
  3084. }
  3085. /* success */
  3086. if (ret == 0)
  3087. break;
  3088. /* error other than GTT full, or we've already tried again */
  3089. if (ret != -ENOSPC || pin_tries >= 1) {
  3090. if (ret != -ERESTARTSYS) {
  3091. unsigned long long total_size = 0;
  3092. int num_fences = 0;
  3093. for (i = 0; i < args->buffer_count; i++) {
  3094. obj_priv = to_intel_bo(object_list[i]);
  3095. total_size += object_list[i]->size;
  3096. num_fences +=
  3097. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3098. obj_priv->tiling_mode != I915_TILING_NONE;
  3099. }
  3100. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3101. pinned+1, args->buffer_count,
  3102. total_size, num_fences,
  3103. ret);
  3104. DRM_ERROR("%d objects [%d pinned], "
  3105. "%d object bytes [%d pinned], "
  3106. "%d/%d gtt bytes\n",
  3107. atomic_read(&dev->object_count),
  3108. atomic_read(&dev->pin_count),
  3109. atomic_read(&dev->object_memory),
  3110. atomic_read(&dev->pin_memory),
  3111. atomic_read(&dev->gtt_memory),
  3112. dev->gtt_total);
  3113. }
  3114. goto err;
  3115. }
  3116. /* unpin all of our buffers */
  3117. for (i = 0; i < pinned; i++)
  3118. i915_gem_object_unpin(object_list[i]);
  3119. pinned = 0;
  3120. /* evict everyone we can from the aperture */
  3121. ret = i915_gem_evict_everything(dev);
  3122. if (ret && ret != -ENOSPC)
  3123. goto err;
  3124. }
  3125. /* Set the pending read domains for the batch buffer to COMMAND */
  3126. batch_obj = object_list[args->buffer_count-1];
  3127. if (batch_obj->pending_write_domain) {
  3128. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3129. ret = -EINVAL;
  3130. goto err;
  3131. }
  3132. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3133. /* Sanity check the batch buffer, prior to moving objects */
  3134. exec_offset = exec_list[args->buffer_count - 1].offset;
  3135. ret = i915_gem_check_execbuffer (args, exec_offset);
  3136. if (ret != 0) {
  3137. DRM_ERROR("execbuf with invalid offset/length\n");
  3138. goto err;
  3139. }
  3140. i915_verify_inactive(dev, __FILE__, __LINE__);
  3141. /* Zero the global flush/invalidate flags. These
  3142. * will be modified as new domains are computed
  3143. * for each object
  3144. */
  3145. dev->invalidate_domains = 0;
  3146. dev->flush_domains = 0;
  3147. for (i = 0; i < args->buffer_count; i++) {
  3148. struct drm_gem_object *obj = object_list[i];
  3149. /* Compute new gpu domains and update invalidate/flush */
  3150. i915_gem_object_set_to_gpu_domain(obj);
  3151. }
  3152. i915_verify_inactive(dev, __FILE__, __LINE__);
  3153. if (dev->invalidate_domains | dev->flush_domains) {
  3154. #if WATCH_EXEC
  3155. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3156. __func__,
  3157. dev->invalidate_domains,
  3158. dev->flush_domains);
  3159. #endif
  3160. i915_gem_flush(dev,
  3161. dev->invalidate_domains,
  3162. dev->flush_domains);
  3163. }
  3164. if (dev_priv->render_ring.outstanding_lazy_request) {
  3165. (void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
  3166. dev_priv->render_ring.outstanding_lazy_request = false;
  3167. }
  3168. if (dev_priv->bsd_ring.outstanding_lazy_request) {
  3169. (void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
  3170. dev_priv->bsd_ring.outstanding_lazy_request = false;
  3171. }
  3172. for (i = 0; i < args->buffer_count; i++) {
  3173. struct drm_gem_object *obj = object_list[i];
  3174. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3175. uint32_t old_write_domain = obj->write_domain;
  3176. obj->write_domain = obj->pending_write_domain;
  3177. if (obj->write_domain)
  3178. list_move_tail(&obj_priv->gpu_write_list,
  3179. &dev_priv->mm.gpu_write_list);
  3180. else
  3181. list_del_init(&obj_priv->gpu_write_list);
  3182. trace_i915_gem_object_change_domain(obj,
  3183. obj->read_domains,
  3184. old_write_domain);
  3185. }
  3186. i915_verify_inactive(dev, __FILE__, __LINE__);
  3187. #if WATCH_COHERENCY
  3188. for (i = 0; i < args->buffer_count; i++) {
  3189. i915_gem_object_check_coherency(object_list[i],
  3190. exec_list[i].handle);
  3191. }
  3192. #endif
  3193. #if WATCH_EXEC
  3194. i915_gem_dump_object(batch_obj,
  3195. args->batch_len,
  3196. __func__,
  3197. ~0);
  3198. #endif
  3199. /* Exec the batchbuffer */
  3200. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3201. cliprects, exec_offset);
  3202. if (ret) {
  3203. DRM_ERROR("dispatch failed %d\n", ret);
  3204. goto err;
  3205. }
  3206. /*
  3207. * Ensure that the commands in the batch buffer are
  3208. * finished before the interrupt fires
  3209. */
  3210. i915_retire_commands(dev, ring);
  3211. i915_verify_inactive(dev, __FILE__, __LINE__);
  3212. for (i = 0; i < args->buffer_count; i++) {
  3213. struct drm_gem_object *obj = object_list[i];
  3214. obj_priv = to_intel_bo(obj);
  3215. i915_gem_object_move_to_active(obj, ring);
  3216. #if WATCH_LRU
  3217. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3218. #endif
  3219. }
  3220. /*
  3221. * Get a seqno representing the execution of the current buffer,
  3222. * which we can wait on. We would like to mitigate these interrupts,
  3223. * likely by only creating seqnos occasionally (so that we have
  3224. * *some* interrupts representing completion of buffers that we can
  3225. * wait on when trying to clear up gtt space).
  3226. */
  3227. seqno = i915_add_request(dev, file_priv, request, ring);
  3228. request = NULL;
  3229. #if WATCH_LRU
  3230. i915_dump_lru(dev, __func__);
  3231. #endif
  3232. i915_verify_inactive(dev, __FILE__, __LINE__);
  3233. err:
  3234. for (i = 0; i < pinned; i++)
  3235. i915_gem_object_unpin(object_list[i]);
  3236. for (i = 0; i < args->buffer_count; i++) {
  3237. if (object_list[i]) {
  3238. obj_priv = to_intel_bo(object_list[i]);
  3239. obj_priv->in_execbuffer = false;
  3240. }
  3241. drm_gem_object_unreference(object_list[i]);
  3242. }
  3243. mutex_unlock(&dev->struct_mutex);
  3244. pre_mutex_err:
  3245. /* Copy the updated relocations out regardless of current error
  3246. * state. Failure to update the relocs would mean that the next
  3247. * time userland calls execbuf, it would do so with presumed offset
  3248. * state that didn't match the actual object state.
  3249. */
  3250. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3251. relocs);
  3252. if (ret2 != 0) {
  3253. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3254. if (ret == 0)
  3255. ret = ret2;
  3256. }
  3257. drm_free_large(object_list);
  3258. kfree(cliprects);
  3259. kfree(request);
  3260. return ret;
  3261. }
  3262. /*
  3263. * Legacy execbuffer just creates an exec2 list from the original exec object
  3264. * list array and passes it to the real function.
  3265. */
  3266. int
  3267. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3268. struct drm_file *file_priv)
  3269. {
  3270. struct drm_i915_gem_execbuffer *args = data;
  3271. struct drm_i915_gem_execbuffer2 exec2;
  3272. struct drm_i915_gem_exec_object *exec_list = NULL;
  3273. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3274. int ret, i;
  3275. #if WATCH_EXEC
  3276. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3277. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3278. #endif
  3279. if (args->buffer_count < 1) {
  3280. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3281. return -EINVAL;
  3282. }
  3283. /* Copy in the exec list from userland */
  3284. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3285. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3286. if (exec_list == NULL || exec2_list == NULL) {
  3287. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3288. args->buffer_count);
  3289. drm_free_large(exec_list);
  3290. drm_free_large(exec2_list);
  3291. return -ENOMEM;
  3292. }
  3293. ret = copy_from_user(exec_list,
  3294. (struct drm_i915_relocation_entry __user *)
  3295. (uintptr_t) args->buffers_ptr,
  3296. sizeof(*exec_list) * args->buffer_count);
  3297. if (ret != 0) {
  3298. DRM_ERROR("copy %d exec entries failed %d\n",
  3299. args->buffer_count, ret);
  3300. drm_free_large(exec_list);
  3301. drm_free_large(exec2_list);
  3302. return -EFAULT;
  3303. }
  3304. for (i = 0; i < args->buffer_count; i++) {
  3305. exec2_list[i].handle = exec_list[i].handle;
  3306. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3307. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3308. exec2_list[i].alignment = exec_list[i].alignment;
  3309. exec2_list[i].offset = exec_list[i].offset;
  3310. if (INTEL_INFO(dev)->gen < 4)
  3311. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3312. else
  3313. exec2_list[i].flags = 0;
  3314. }
  3315. exec2.buffers_ptr = args->buffers_ptr;
  3316. exec2.buffer_count = args->buffer_count;
  3317. exec2.batch_start_offset = args->batch_start_offset;
  3318. exec2.batch_len = args->batch_len;
  3319. exec2.DR1 = args->DR1;
  3320. exec2.DR4 = args->DR4;
  3321. exec2.num_cliprects = args->num_cliprects;
  3322. exec2.cliprects_ptr = args->cliprects_ptr;
  3323. exec2.flags = I915_EXEC_RENDER;
  3324. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3325. if (!ret) {
  3326. /* Copy the new buffer offsets back to the user's exec list. */
  3327. for (i = 0; i < args->buffer_count; i++)
  3328. exec_list[i].offset = exec2_list[i].offset;
  3329. /* ... and back out to userspace */
  3330. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3331. (uintptr_t) args->buffers_ptr,
  3332. exec_list,
  3333. sizeof(*exec_list) * args->buffer_count);
  3334. if (ret) {
  3335. ret = -EFAULT;
  3336. DRM_ERROR("failed to copy %d exec entries "
  3337. "back to user (%d)\n",
  3338. args->buffer_count, ret);
  3339. }
  3340. }
  3341. drm_free_large(exec_list);
  3342. drm_free_large(exec2_list);
  3343. return ret;
  3344. }
  3345. int
  3346. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3347. struct drm_file *file_priv)
  3348. {
  3349. struct drm_i915_gem_execbuffer2 *args = data;
  3350. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3351. int ret;
  3352. #if WATCH_EXEC
  3353. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3354. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3355. #endif
  3356. if (args->buffer_count < 1) {
  3357. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3358. return -EINVAL;
  3359. }
  3360. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3361. if (exec2_list == NULL) {
  3362. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3363. args->buffer_count);
  3364. return -ENOMEM;
  3365. }
  3366. ret = copy_from_user(exec2_list,
  3367. (struct drm_i915_relocation_entry __user *)
  3368. (uintptr_t) args->buffers_ptr,
  3369. sizeof(*exec2_list) * args->buffer_count);
  3370. if (ret != 0) {
  3371. DRM_ERROR("copy %d exec entries failed %d\n",
  3372. args->buffer_count, ret);
  3373. drm_free_large(exec2_list);
  3374. return -EFAULT;
  3375. }
  3376. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3377. if (!ret) {
  3378. /* Copy the new buffer offsets back to the user's exec list. */
  3379. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3380. (uintptr_t) args->buffers_ptr,
  3381. exec2_list,
  3382. sizeof(*exec2_list) * args->buffer_count);
  3383. if (ret) {
  3384. ret = -EFAULT;
  3385. DRM_ERROR("failed to copy %d exec entries "
  3386. "back to user (%d)\n",
  3387. args->buffer_count, ret);
  3388. }
  3389. }
  3390. drm_free_large(exec2_list);
  3391. return ret;
  3392. }
  3393. int
  3394. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3395. {
  3396. struct drm_device *dev = obj->dev;
  3397. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3398. int ret;
  3399. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3400. i915_verify_inactive(dev, __FILE__, __LINE__);
  3401. if (obj_priv->gtt_space != NULL) {
  3402. if (alignment == 0)
  3403. alignment = i915_gem_get_gtt_alignment(obj);
  3404. if (obj_priv->gtt_offset & (alignment - 1)) {
  3405. WARN(obj_priv->pin_count,
  3406. "bo is already pinned with incorrect alignment:"
  3407. " offset=%x, req.alignment=%x\n",
  3408. obj_priv->gtt_offset, alignment);
  3409. ret = i915_gem_object_unbind(obj);
  3410. if (ret)
  3411. return ret;
  3412. }
  3413. }
  3414. if (obj_priv->gtt_space == NULL) {
  3415. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3416. if (ret)
  3417. return ret;
  3418. }
  3419. obj_priv->pin_count++;
  3420. /* If the object is not active and not pending a flush,
  3421. * remove it from the inactive list
  3422. */
  3423. if (obj_priv->pin_count == 1) {
  3424. atomic_inc(&dev->pin_count);
  3425. atomic_add(obj->size, &dev->pin_memory);
  3426. if (!obj_priv->active &&
  3427. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3428. list_del_init(&obj_priv->list);
  3429. }
  3430. i915_verify_inactive(dev, __FILE__, __LINE__);
  3431. return 0;
  3432. }
  3433. void
  3434. i915_gem_object_unpin(struct drm_gem_object *obj)
  3435. {
  3436. struct drm_device *dev = obj->dev;
  3437. drm_i915_private_t *dev_priv = dev->dev_private;
  3438. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3439. i915_verify_inactive(dev, __FILE__, __LINE__);
  3440. obj_priv->pin_count--;
  3441. BUG_ON(obj_priv->pin_count < 0);
  3442. BUG_ON(obj_priv->gtt_space == NULL);
  3443. /* If the object is no longer pinned, and is
  3444. * neither active nor being flushed, then stick it on
  3445. * the inactive list
  3446. */
  3447. if (obj_priv->pin_count == 0) {
  3448. if (!obj_priv->active &&
  3449. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3450. list_move_tail(&obj_priv->list,
  3451. &dev_priv->mm.inactive_list);
  3452. atomic_dec(&dev->pin_count);
  3453. atomic_sub(obj->size, &dev->pin_memory);
  3454. }
  3455. i915_verify_inactive(dev, __FILE__, __LINE__);
  3456. }
  3457. int
  3458. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3459. struct drm_file *file_priv)
  3460. {
  3461. struct drm_i915_gem_pin *args = data;
  3462. struct drm_gem_object *obj;
  3463. struct drm_i915_gem_object *obj_priv;
  3464. int ret;
  3465. mutex_lock(&dev->struct_mutex);
  3466. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3467. if (obj == NULL) {
  3468. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3469. args->handle);
  3470. mutex_unlock(&dev->struct_mutex);
  3471. return -ENOENT;
  3472. }
  3473. obj_priv = to_intel_bo(obj);
  3474. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3475. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3476. drm_gem_object_unreference(obj);
  3477. mutex_unlock(&dev->struct_mutex);
  3478. return -EINVAL;
  3479. }
  3480. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3481. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3482. args->handle);
  3483. drm_gem_object_unreference(obj);
  3484. mutex_unlock(&dev->struct_mutex);
  3485. return -EINVAL;
  3486. }
  3487. obj_priv->user_pin_count++;
  3488. obj_priv->pin_filp = file_priv;
  3489. if (obj_priv->user_pin_count == 1) {
  3490. ret = i915_gem_object_pin(obj, args->alignment);
  3491. if (ret != 0) {
  3492. drm_gem_object_unreference(obj);
  3493. mutex_unlock(&dev->struct_mutex);
  3494. return ret;
  3495. }
  3496. }
  3497. /* XXX - flush the CPU caches for pinned objects
  3498. * as the X server doesn't manage domains yet
  3499. */
  3500. i915_gem_object_flush_cpu_write_domain(obj);
  3501. args->offset = obj_priv->gtt_offset;
  3502. drm_gem_object_unreference(obj);
  3503. mutex_unlock(&dev->struct_mutex);
  3504. return 0;
  3505. }
  3506. int
  3507. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3508. struct drm_file *file_priv)
  3509. {
  3510. struct drm_i915_gem_pin *args = data;
  3511. struct drm_gem_object *obj;
  3512. struct drm_i915_gem_object *obj_priv;
  3513. mutex_lock(&dev->struct_mutex);
  3514. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3515. if (obj == NULL) {
  3516. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3517. args->handle);
  3518. mutex_unlock(&dev->struct_mutex);
  3519. return -ENOENT;
  3520. }
  3521. obj_priv = to_intel_bo(obj);
  3522. if (obj_priv->pin_filp != file_priv) {
  3523. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3524. args->handle);
  3525. drm_gem_object_unreference(obj);
  3526. mutex_unlock(&dev->struct_mutex);
  3527. return -EINVAL;
  3528. }
  3529. obj_priv->user_pin_count--;
  3530. if (obj_priv->user_pin_count == 0) {
  3531. obj_priv->pin_filp = NULL;
  3532. i915_gem_object_unpin(obj);
  3533. }
  3534. drm_gem_object_unreference(obj);
  3535. mutex_unlock(&dev->struct_mutex);
  3536. return 0;
  3537. }
  3538. int
  3539. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3540. struct drm_file *file_priv)
  3541. {
  3542. struct drm_i915_gem_busy *args = data;
  3543. struct drm_gem_object *obj;
  3544. struct drm_i915_gem_object *obj_priv;
  3545. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3546. if (obj == NULL) {
  3547. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3548. args->handle);
  3549. return -ENOENT;
  3550. }
  3551. mutex_lock(&dev->struct_mutex);
  3552. /* Count all active objects as busy, even if they are currently not used
  3553. * by the gpu. Users of this interface expect objects to eventually
  3554. * become non-busy without any further actions, therefore emit any
  3555. * necessary flushes here.
  3556. */
  3557. obj_priv = to_intel_bo(obj);
  3558. args->busy = obj_priv->active;
  3559. if (args->busy) {
  3560. /* Unconditionally flush objects, even when the gpu still uses this
  3561. * object. Userspace calling this function indicates that it wants to
  3562. * use this buffer rather sooner than later, so issuing the required
  3563. * flush earlier is beneficial.
  3564. */
  3565. if (obj->write_domain) {
  3566. i915_gem_flush(dev, 0, obj->write_domain);
  3567. (void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
  3568. }
  3569. /* Update the active list for the hardware's current position.
  3570. * Otherwise this only updates on a delayed timer or when irqs
  3571. * are actually unmasked, and our working set ends up being
  3572. * larger than required.
  3573. */
  3574. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3575. args->busy = obj_priv->active;
  3576. }
  3577. drm_gem_object_unreference(obj);
  3578. mutex_unlock(&dev->struct_mutex);
  3579. return 0;
  3580. }
  3581. int
  3582. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3583. struct drm_file *file_priv)
  3584. {
  3585. return i915_gem_ring_throttle(dev, file_priv);
  3586. }
  3587. int
  3588. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3589. struct drm_file *file_priv)
  3590. {
  3591. struct drm_i915_gem_madvise *args = data;
  3592. struct drm_gem_object *obj;
  3593. struct drm_i915_gem_object *obj_priv;
  3594. switch (args->madv) {
  3595. case I915_MADV_DONTNEED:
  3596. case I915_MADV_WILLNEED:
  3597. break;
  3598. default:
  3599. return -EINVAL;
  3600. }
  3601. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3602. if (obj == NULL) {
  3603. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3604. args->handle);
  3605. return -ENOENT;
  3606. }
  3607. mutex_lock(&dev->struct_mutex);
  3608. obj_priv = to_intel_bo(obj);
  3609. if (obj_priv->pin_count) {
  3610. drm_gem_object_unreference(obj);
  3611. mutex_unlock(&dev->struct_mutex);
  3612. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3613. return -EINVAL;
  3614. }
  3615. if (obj_priv->madv != __I915_MADV_PURGED)
  3616. obj_priv->madv = args->madv;
  3617. /* if the object is no longer bound, discard its backing storage */
  3618. if (i915_gem_object_is_purgeable(obj_priv) &&
  3619. obj_priv->gtt_space == NULL)
  3620. i915_gem_object_truncate(obj);
  3621. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3622. drm_gem_object_unreference(obj);
  3623. mutex_unlock(&dev->struct_mutex);
  3624. return 0;
  3625. }
  3626. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3627. size_t size)
  3628. {
  3629. struct drm_i915_gem_object *obj;
  3630. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3631. if (obj == NULL)
  3632. return NULL;
  3633. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3634. kfree(obj);
  3635. return NULL;
  3636. }
  3637. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3638. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3639. obj->agp_type = AGP_USER_MEMORY;
  3640. obj->base.driver_private = NULL;
  3641. obj->fence_reg = I915_FENCE_REG_NONE;
  3642. INIT_LIST_HEAD(&obj->list);
  3643. INIT_LIST_HEAD(&obj->gpu_write_list);
  3644. obj->madv = I915_MADV_WILLNEED;
  3645. trace_i915_gem_object_create(&obj->base);
  3646. return &obj->base;
  3647. }
  3648. int i915_gem_init_object(struct drm_gem_object *obj)
  3649. {
  3650. BUG();
  3651. return 0;
  3652. }
  3653. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3654. {
  3655. struct drm_device *dev = obj->dev;
  3656. drm_i915_private_t *dev_priv = dev->dev_private;
  3657. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3658. int ret;
  3659. ret = i915_gem_object_unbind(obj);
  3660. if (ret == -ERESTARTSYS) {
  3661. list_move(&obj_priv->list,
  3662. &dev_priv->mm.deferred_free_list);
  3663. return;
  3664. }
  3665. if (obj_priv->mmap_offset)
  3666. i915_gem_free_mmap_offset(obj);
  3667. drm_gem_object_release(obj);
  3668. kfree(obj_priv->page_cpu_valid);
  3669. kfree(obj_priv->bit_17);
  3670. kfree(obj_priv);
  3671. }
  3672. void i915_gem_free_object(struct drm_gem_object *obj)
  3673. {
  3674. struct drm_device *dev = obj->dev;
  3675. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3676. trace_i915_gem_object_destroy(obj);
  3677. while (obj_priv->pin_count > 0)
  3678. i915_gem_object_unpin(obj);
  3679. if (obj_priv->phys_obj)
  3680. i915_gem_detach_phys_object(dev, obj);
  3681. i915_gem_free_object_tail(obj);
  3682. }
  3683. int
  3684. i915_gem_idle(struct drm_device *dev)
  3685. {
  3686. drm_i915_private_t *dev_priv = dev->dev_private;
  3687. int ret;
  3688. mutex_lock(&dev->struct_mutex);
  3689. if (dev_priv->mm.suspended ||
  3690. (dev_priv->render_ring.gem_object == NULL) ||
  3691. (HAS_BSD(dev) &&
  3692. dev_priv->bsd_ring.gem_object == NULL)) {
  3693. mutex_unlock(&dev->struct_mutex);
  3694. return 0;
  3695. }
  3696. ret = i915_gpu_idle(dev);
  3697. if (ret) {
  3698. mutex_unlock(&dev->struct_mutex);
  3699. return ret;
  3700. }
  3701. /* Under UMS, be paranoid and evict. */
  3702. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3703. ret = i915_gem_evict_inactive(dev);
  3704. if (ret) {
  3705. mutex_unlock(&dev->struct_mutex);
  3706. return ret;
  3707. }
  3708. }
  3709. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3710. * We need to replace this with a semaphore, or something.
  3711. * And not confound mm.suspended!
  3712. */
  3713. dev_priv->mm.suspended = 1;
  3714. del_timer_sync(&dev_priv->hangcheck_timer);
  3715. i915_kernel_lost_context(dev);
  3716. i915_gem_cleanup_ringbuffer(dev);
  3717. mutex_unlock(&dev->struct_mutex);
  3718. /* Cancel the retire work handler, which should be idle now. */
  3719. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3720. return 0;
  3721. }
  3722. /*
  3723. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3724. * over cache flushing.
  3725. */
  3726. static int
  3727. i915_gem_init_pipe_control(struct drm_device *dev)
  3728. {
  3729. drm_i915_private_t *dev_priv = dev->dev_private;
  3730. struct drm_gem_object *obj;
  3731. struct drm_i915_gem_object *obj_priv;
  3732. int ret;
  3733. obj = i915_gem_alloc_object(dev, 4096);
  3734. if (obj == NULL) {
  3735. DRM_ERROR("Failed to allocate seqno page\n");
  3736. ret = -ENOMEM;
  3737. goto err;
  3738. }
  3739. obj_priv = to_intel_bo(obj);
  3740. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3741. ret = i915_gem_object_pin(obj, 4096);
  3742. if (ret)
  3743. goto err_unref;
  3744. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3745. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3746. if (dev_priv->seqno_page == NULL)
  3747. goto err_unpin;
  3748. dev_priv->seqno_obj = obj;
  3749. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3750. return 0;
  3751. err_unpin:
  3752. i915_gem_object_unpin(obj);
  3753. err_unref:
  3754. drm_gem_object_unreference(obj);
  3755. err:
  3756. return ret;
  3757. }
  3758. static void
  3759. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3760. {
  3761. drm_i915_private_t *dev_priv = dev->dev_private;
  3762. struct drm_gem_object *obj;
  3763. struct drm_i915_gem_object *obj_priv;
  3764. obj = dev_priv->seqno_obj;
  3765. obj_priv = to_intel_bo(obj);
  3766. kunmap(obj_priv->pages[0]);
  3767. i915_gem_object_unpin(obj);
  3768. drm_gem_object_unreference(obj);
  3769. dev_priv->seqno_obj = NULL;
  3770. dev_priv->seqno_page = NULL;
  3771. }
  3772. int
  3773. i915_gem_init_ringbuffer(struct drm_device *dev)
  3774. {
  3775. drm_i915_private_t *dev_priv = dev->dev_private;
  3776. int ret;
  3777. dev_priv->render_ring = render_ring;
  3778. if (!I915_NEED_GFX_HWS(dev)) {
  3779. dev_priv->render_ring.status_page.page_addr
  3780. = dev_priv->status_page_dmah->vaddr;
  3781. memset(dev_priv->render_ring.status_page.page_addr,
  3782. 0, PAGE_SIZE);
  3783. }
  3784. if (HAS_PIPE_CONTROL(dev)) {
  3785. ret = i915_gem_init_pipe_control(dev);
  3786. if (ret)
  3787. return ret;
  3788. }
  3789. ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
  3790. if (ret)
  3791. goto cleanup_pipe_control;
  3792. if (HAS_BSD(dev)) {
  3793. dev_priv->bsd_ring = bsd_ring;
  3794. ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
  3795. if (ret)
  3796. goto cleanup_render_ring;
  3797. }
  3798. dev_priv->next_seqno = 1;
  3799. return 0;
  3800. cleanup_render_ring:
  3801. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3802. cleanup_pipe_control:
  3803. if (HAS_PIPE_CONTROL(dev))
  3804. i915_gem_cleanup_pipe_control(dev);
  3805. return ret;
  3806. }
  3807. void
  3808. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3809. {
  3810. drm_i915_private_t *dev_priv = dev->dev_private;
  3811. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3812. if (HAS_BSD(dev))
  3813. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3814. if (HAS_PIPE_CONTROL(dev))
  3815. i915_gem_cleanup_pipe_control(dev);
  3816. }
  3817. int
  3818. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3819. struct drm_file *file_priv)
  3820. {
  3821. drm_i915_private_t *dev_priv = dev->dev_private;
  3822. int ret;
  3823. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3824. return 0;
  3825. if (atomic_read(&dev_priv->mm.wedged)) {
  3826. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3827. atomic_set(&dev_priv->mm.wedged, 0);
  3828. }
  3829. mutex_lock(&dev->struct_mutex);
  3830. dev_priv->mm.suspended = 0;
  3831. ret = i915_gem_init_ringbuffer(dev);
  3832. if (ret != 0) {
  3833. mutex_unlock(&dev->struct_mutex);
  3834. return ret;
  3835. }
  3836. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3837. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3838. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3839. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3840. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3841. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3842. mutex_unlock(&dev->struct_mutex);
  3843. ret = drm_irq_install(dev);
  3844. if (ret)
  3845. goto cleanup_ringbuffer;
  3846. return 0;
  3847. cleanup_ringbuffer:
  3848. mutex_lock(&dev->struct_mutex);
  3849. i915_gem_cleanup_ringbuffer(dev);
  3850. dev_priv->mm.suspended = 1;
  3851. mutex_unlock(&dev->struct_mutex);
  3852. return ret;
  3853. }
  3854. int
  3855. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3856. struct drm_file *file_priv)
  3857. {
  3858. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3859. return 0;
  3860. drm_irq_uninstall(dev);
  3861. return i915_gem_idle(dev);
  3862. }
  3863. void
  3864. i915_gem_lastclose(struct drm_device *dev)
  3865. {
  3866. int ret;
  3867. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3868. return;
  3869. ret = i915_gem_idle(dev);
  3870. if (ret)
  3871. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3872. }
  3873. void
  3874. i915_gem_load(struct drm_device *dev)
  3875. {
  3876. int i;
  3877. drm_i915_private_t *dev_priv = dev->dev_private;
  3878. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3879. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  3880. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3881. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3882. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3883. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  3884. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  3885. if (HAS_BSD(dev)) {
  3886. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  3887. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  3888. }
  3889. for (i = 0; i < 16; i++)
  3890. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3891. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3892. i915_gem_retire_work_handler);
  3893. spin_lock(&shrink_list_lock);
  3894. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3895. spin_unlock(&shrink_list_lock);
  3896. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3897. if (IS_GEN3(dev)) {
  3898. u32 tmp = I915_READ(MI_ARB_STATE);
  3899. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3900. /* arb state is a masked write, so set bit + bit in mask */
  3901. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3902. I915_WRITE(MI_ARB_STATE, tmp);
  3903. }
  3904. }
  3905. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3906. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3907. dev_priv->fence_reg_start = 3;
  3908. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3909. dev_priv->num_fence_regs = 16;
  3910. else
  3911. dev_priv->num_fence_regs = 8;
  3912. /* Initialize fence registers to zero */
  3913. switch (INTEL_INFO(dev)->gen) {
  3914. case 6:
  3915. for (i = 0; i < 16; i++)
  3916. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3917. break;
  3918. case 5:
  3919. case 4:
  3920. for (i = 0; i < 16; i++)
  3921. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3922. break;
  3923. case 3:
  3924. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3925. for (i = 0; i < 8; i++)
  3926. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3927. case 2:
  3928. for (i = 0; i < 8; i++)
  3929. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3930. break;
  3931. }
  3932. i915_gem_detect_bit_6_swizzle(dev);
  3933. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3934. }
  3935. /*
  3936. * Create a physically contiguous memory object for this object
  3937. * e.g. for cursor + overlay regs
  3938. */
  3939. static int i915_gem_init_phys_object(struct drm_device *dev,
  3940. int id, int size, int align)
  3941. {
  3942. drm_i915_private_t *dev_priv = dev->dev_private;
  3943. struct drm_i915_gem_phys_object *phys_obj;
  3944. int ret;
  3945. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3946. return 0;
  3947. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3948. if (!phys_obj)
  3949. return -ENOMEM;
  3950. phys_obj->id = id;
  3951. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3952. if (!phys_obj->handle) {
  3953. ret = -ENOMEM;
  3954. goto kfree_obj;
  3955. }
  3956. #ifdef CONFIG_X86
  3957. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3958. #endif
  3959. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3960. return 0;
  3961. kfree_obj:
  3962. kfree(phys_obj);
  3963. return ret;
  3964. }
  3965. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3966. {
  3967. drm_i915_private_t *dev_priv = dev->dev_private;
  3968. struct drm_i915_gem_phys_object *phys_obj;
  3969. if (!dev_priv->mm.phys_objs[id - 1])
  3970. return;
  3971. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3972. if (phys_obj->cur_obj) {
  3973. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3974. }
  3975. #ifdef CONFIG_X86
  3976. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3977. #endif
  3978. drm_pci_free(dev, phys_obj->handle);
  3979. kfree(phys_obj);
  3980. dev_priv->mm.phys_objs[id - 1] = NULL;
  3981. }
  3982. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3983. {
  3984. int i;
  3985. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3986. i915_gem_free_phys_object(dev, i);
  3987. }
  3988. void i915_gem_detach_phys_object(struct drm_device *dev,
  3989. struct drm_gem_object *obj)
  3990. {
  3991. struct drm_i915_gem_object *obj_priv;
  3992. int i;
  3993. int ret;
  3994. int page_count;
  3995. obj_priv = to_intel_bo(obj);
  3996. if (!obj_priv->phys_obj)
  3997. return;
  3998. ret = i915_gem_object_get_pages(obj, 0);
  3999. if (ret)
  4000. goto out;
  4001. page_count = obj->size / PAGE_SIZE;
  4002. for (i = 0; i < page_count; i++) {
  4003. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4004. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4005. memcpy(dst, src, PAGE_SIZE);
  4006. kunmap_atomic(dst, KM_USER0);
  4007. }
  4008. drm_clflush_pages(obj_priv->pages, page_count);
  4009. drm_agp_chipset_flush(dev);
  4010. i915_gem_object_put_pages(obj);
  4011. out:
  4012. obj_priv->phys_obj->cur_obj = NULL;
  4013. obj_priv->phys_obj = NULL;
  4014. }
  4015. int
  4016. i915_gem_attach_phys_object(struct drm_device *dev,
  4017. struct drm_gem_object *obj,
  4018. int id,
  4019. int align)
  4020. {
  4021. drm_i915_private_t *dev_priv = dev->dev_private;
  4022. struct drm_i915_gem_object *obj_priv;
  4023. int ret = 0;
  4024. int page_count;
  4025. int i;
  4026. if (id > I915_MAX_PHYS_OBJECT)
  4027. return -EINVAL;
  4028. obj_priv = to_intel_bo(obj);
  4029. if (obj_priv->phys_obj) {
  4030. if (obj_priv->phys_obj->id == id)
  4031. return 0;
  4032. i915_gem_detach_phys_object(dev, obj);
  4033. }
  4034. /* create a new object */
  4035. if (!dev_priv->mm.phys_objs[id - 1]) {
  4036. ret = i915_gem_init_phys_object(dev, id,
  4037. obj->size, align);
  4038. if (ret) {
  4039. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4040. goto out;
  4041. }
  4042. }
  4043. /* bind to the object */
  4044. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4045. obj_priv->phys_obj->cur_obj = obj;
  4046. ret = i915_gem_object_get_pages(obj, 0);
  4047. if (ret) {
  4048. DRM_ERROR("failed to get page list\n");
  4049. goto out;
  4050. }
  4051. page_count = obj->size / PAGE_SIZE;
  4052. for (i = 0; i < page_count; i++) {
  4053. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4054. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4055. memcpy(dst, src, PAGE_SIZE);
  4056. kunmap_atomic(src, KM_USER0);
  4057. }
  4058. i915_gem_object_put_pages(obj);
  4059. return 0;
  4060. out:
  4061. return ret;
  4062. }
  4063. static int
  4064. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4065. struct drm_i915_gem_pwrite *args,
  4066. struct drm_file *file_priv)
  4067. {
  4068. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4069. void *obj_addr;
  4070. int ret;
  4071. char __user *user_data;
  4072. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4073. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4074. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4075. ret = copy_from_user(obj_addr, user_data, args->size);
  4076. if (ret)
  4077. return -EFAULT;
  4078. drm_agp_chipset_flush(dev);
  4079. return 0;
  4080. }
  4081. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  4082. {
  4083. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  4084. /* Clean up our request list when the client is going away, so that
  4085. * later retire_requests won't dereference our soon-to-be-gone
  4086. * file_priv.
  4087. */
  4088. mutex_lock(&dev->struct_mutex);
  4089. while (!list_empty(&i915_file_priv->mm.request_list))
  4090. list_del_init(i915_file_priv->mm.request_list.next);
  4091. mutex_unlock(&dev->struct_mutex);
  4092. }
  4093. static int
  4094. i915_gpu_is_active(struct drm_device *dev)
  4095. {
  4096. drm_i915_private_t *dev_priv = dev->dev_private;
  4097. int lists_empty;
  4098. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4099. list_empty(&dev_priv->render_ring.active_list);
  4100. if (HAS_BSD(dev))
  4101. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4102. return !lists_empty;
  4103. }
  4104. static int
  4105. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4106. {
  4107. drm_i915_private_t *dev_priv, *next_dev;
  4108. struct drm_i915_gem_object *obj_priv, *next_obj;
  4109. int cnt = 0;
  4110. int would_deadlock = 1;
  4111. /* "fast-path" to count number of available objects */
  4112. if (nr_to_scan == 0) {
  4113. spin_lock(&shrink_list_lock);
  4114. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4115. struct drm_device *dev = dev_priv->dev;
  4116. if (mutex_trylock(&dev->struct_mutex)) {
  4117. list_for_each_entry(obj_priv,
  4118. &dev_priv->mm.inactive_list,
  4119. list)
  4120. cnt++;
  4121. mutex_unlock(&dev->struct_mutex);
  4122. }
  4123. }
  4124. spin_unlock(&shrink_list_lock);
  4125. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4126. }
  4127. spin_lock(&shrink_list_lock);
  4128. rescan:
  4129. /* first scan for clean buffers */
  4130. list_for_each_entry_safe(dev_priv, next_dev,
  4131. &shrink_list, mm.shrink_list) {
  4132. struct drm_device *dev = dev_priv->dev;
  4133. if (! mutex_trylock(&dev->struct_mutex))
  4134. continue;
  4135. spin_unlock(&shrink_list_lock);
  4136. i915_gem_retire_requests(dev);
  4137. list_for_each_entry_safe(obj_priv, next_obj,
  4138. &dev_priv->mm.inactive_list,
  4139. list) {
  4140. if (i915_gem_object_is_purgeable(obj_priv)) {
  4141. i915_gem_object_unbind(&obj_priv->base);
  4142. if (--nr_to_scan <= 0)
  4143. break;
  4144. }
  4145. }
  4146. spin_lock(&shrink_list_lock);
  4147. mutex_unlock(&dev->struct_mutex);
  4148. would_deadlock = 0;
  4149. if (nr_to_scan <= 0)
  4150. break;
  4151. }
  4152. /* second pass, evict/count anything still on the inactive list */
  4153. list_for_each_entry_safe(dev_priv, next_dev,
  4154. &shrink_list, mm.shrink_list) {
  4155. struct drm_device *dev = dev_priv->dev;
  4156. if (! mutex_trylock(&dev->struct_mutex))
  4157. continue;
  4158. spin_unlock(&shrink_list_lock);
  4159. list_for_each_entry_safe(obj_priv, next_obj,
  4160. &dev_priv->mm.inactive_list,
  4161. list) {
  4162. if (nr_to_scan > 0) {
  4163. i915_gem_object_unbind(&obj_priv->base);
  4164. nr_to_scan--;
  4165. } else
  4166. cnt++;
  4167. }
  4168. spin_lock(&shrink_list_lock);
  4169. mutex_unlock(&dev->struct_mutex);
  4170. would_deadlock = 0;
  4171. }
  4172. if (nr_to_scan) {
  4173. int active = 0;
  4174. /*
  4175. * We are desperate for pages, so as a last resort, wait
  4176. * for the GPU to finish and discard whatever we can.
  4177. * This has a dramatic impact to reduce the number of
  4178. * OOM-killer events whilst running the GPU aggressively.
  4179. */
  4180. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4181. struct drm_device *dev = dev_priv->dev;
  4182. if (!mutex_trylock(&dev->struct_mutex))
  4183. continue;
  4184. spin_unlock(&shrink_list_lock);
  4185. if (i915_gpu_is_active(dev)) {
  4186. i915_gpu_idle(dev);
  4187. active++;
  4188. }
  4189. spin_lock(&shrink_list_lock);
  4190. mutex_unlock(&dev->struct_mutex);
  4191. }
  4192. if (active)
  4193. goto rescan;
  4194. }
  4195. spin_unlock(&shrink_list_lock);
  4196. if (would_deadlock)
  4197. return -1;
  4198. else if (cnt > 0)
  4199. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4200. else
  4201. return 0;
  4202. }
  4203. static struct shrinker shrinker = {
  4204. .shrink = i915_gem_shrink,
  4205. .seeks = DEFAULT_SEEKS,
  4206. };
  4207. __init void
  4208. i915_gem_shrinker_init(void)
  4209. {
  4210. register_shrinker(&shrinker);
  4211. }
  4212. __exit void
  4213. i915_gem_shrinker_exit(void)
  4214. {
  4215. unregister_shrinker(&shrinker);
  4216. }