ring_buffer.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ring_buffer.h>
  7. #include <linux/spinlock.h>
  8. #include <linux/debugfs.h>
  9. #include <linux/uaccess.h>
  10. #include <linux/module.h>
  11. #include <linux/percpu.h>
  12. #include <linux/mutex.h>
  13. #include <linux/sched.h> /* used for sched_clock() (for now) */
  14. #include <linux/init.h>
  15. #include <linux/hash.h>
  16. #include <linux/list.h>
  17. #include <linux/fs.h>
  18. #include "trace.h"
  19. /* Up this if you want to test the TIME_EXTENTS and normalization */
  20. #define DEBUG_SHIFT 0
  21. /* FIXME!!! */
  22. u64 ring_buffer_time_stamp(int cpu)
  23. {
  24. /* shift to debug/test normalization and TIME_EXTENTS */
  25. return sched_clock() << DEBUG_SHIFT;
  26. }
  27. void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
  28. {
  29. /* Just stupid testing the normalize function and deltas */
  30. *ts >>= DEBUG_SHIFT;
  31. }
  32. #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
  33. #define RB_ALIGNMENT_SHIFT 2
  34. #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
  35. #define RB_MAX_SMALL_DATA 28
  36. enum {
  37. RB_LEN_TIME_EXTEND = 8,
  38. RB_LEN_TIME_STAMP = 16,
  39. };
  40. /* inline for ring buffer fast paths */
  41. static inline unsigned
  42. rb_event_length(struct ring_buffer_event *event)
  43. {
  44. unsigned length;
  45. switch (event->type) {
  46. case RINGBUF_TYPE_PADDING:
  47. /* undefined */
  48. return -1;
  49. case RINGBUF_TYPE_TIME_EXTEND:
  50. return RB_LEN_TIME_EXTEND;
  51. case RINGBUF_TYPE_TIME_STAMP:
  52. return RB_LEN_TIME_STAMP;
  53. case RINGBUF_TYPE_DATA:
  54. if (event->len)
  55. length = event->len << RB_ALIGNMENT_SHIFT;
  56. else
  57. length = event->array[0];
  58. return length + RB_EVNT_HDR_SIZE;
  59. default:
  60. BUG();
  61. }
  62. /* not hit */
  63. return 0;
  64. }
  65. /**
  66. * ring_buffer_event_length - return the length of the event
  67. * @event: the event to get the length of
  68. */
  69. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  70. {
  71. return rb_event_length(event);
  72. }
  73. /* inline for ring buffer fast paths */
  74. static inline void *
  75. rb_event_data(struct ring_buffer_event *event)
  76. {
  77. BUG_ON(event->type != RINGBUF_TYPE_DATA);
  78. /* If length is in len field, then array[0] has the data */
  79. if (event->len)
  80. return (void *)&event->array[0];
  81. /* Otherwise length is in array[0] and array[1] has the data */
  82. return (void *)&event->array[1];
  83. }
  84. /**
  85. * ring_buffer_event_data - return the data of the event
  86. * @event: the event to get the data from
  87. */
  88. void *ring_buffer_event_data(struct ring_buffer_event *event)
  89. {
  90. return rb_event_data(event);
  91. }
  92. #define for_each_buffer_cpu(buffer, cpu) \
  93. for_each_cpu_mask(cpu, buffer->cpumask)
  94. #define TS_SHIFT 27
  95. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  96. #define TS_DELTA_TEST (~TS_MASK)
  97. /*
  98. * This hack stolen from mm/slob.c.
  99. * We can store per page timing information in the page frame of the page.
  100. * Thanks to Peter Zijlstra for suggesting this idea.
  101. */
  102. struct buffer_page {
  103. u64 time_stamp; /* page time stamp */
  104. local_t write; /* index for next write */
  105. local_t commit; /* write commited index */
  106. unsigned read; /* index for next read */
  107. struct list_head list; /* list of free pages */
  108. void *page; /* Actual data page */
  109. };
  110. /*
  111. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  112. * this issue out.
  113. */
  114. static inline void free_buffer_page(struct buffer_page *bpage)
  115. {
  116. if (bpage->page)
  117. free_page((unsigned long)bpage->page);
  118. kfree(bpage);
  119. }
  120. /*
  121. * We need to fit the time_stamp delta into 27 bits.
  122. */
  123. static inline int test_time_stamp(u64 delta)
  124. {
  125. if (delta & TS_DELTA_TEST)
  126. return 1;
  127. return 0;
  128. }
  129. #define BUF_PAGE_SIZE PAGE_SIZE
  130. /*
  131. * head_page == tail_page && head == tail then buffer is empty.
  132. */
  133. struct ring_buffer_per_cpu {
  134. int cpu;
  135. struct ring_buffer *buffer;
  136. raw_spinlock_t lock;
  137. struct lock_class_key lock_key;
  138. struct list_head pages;
  139. struct buffer_page *head_page; /* read from head */
  140. struct buffer_page *tail_page; /* write to tail */
  141. struct buffer_page *commit_page; /* commited pages */
  142. struct buffer_page *reader_page;
  143. unsigned long overrun;
  144. unsigned long entries;
  145. u64 write_stamp;
  146. u64 read_stamp;
  147. atomic_t record_disabled;
  148. };
  149. struct ring_buffer {
  150. unsigned long size;
  151. unsigned pages;
  152. unsigned flags;
  153. int cpus;
  154. cpumask_t cpumask;
  155. atomic_t record_disabled;
  156. struct mutex mutex;
  157. struct ring_buffer_per_cpu **buffers;
  158. };
  159. struct ring_buffer_iter {
  160. struct ring_buffer_per_cpu *cpu_buffer;
  161. unsigned long head;
  162. struct buffer_page *head_page;
  163. u64 read_stamp;
  164. };
  165. #define RB_WARN_ON(buffer, cond) \
  166. do { \
  167. if (unlikely(cond)) { \
  168. atomic_inc(&buffer->record_disabled); \
  169. WARN_ON(1); \
  170. } \
  171. } while (0)
  172. #define RB_WARN_ON_RET(buffer, cond) \
  173. do { \
  174. if (unlikely(cond)) { \
  175. atomic_inc(&buffer->record_disabled); \
  176. WARN_ON(1); \
  177. return -1; \
  178. } \
  179. } while (0)
  180. #define RB_WARN_ON_ONCE(buffer, cond) \
  181. do { \
  182. static int once; \
  183. if (unlikely(cond) && !once) { \
  184. once++; \
  185. atomic_inc(&buffer->record_disabled); \
  186. WARN_ON(1); \
  187. } \
  188. } while (0)
  189. /**
  190. * check_pages - integrity check of buffer pages
  191. * @cpu_buffer: CPU buffer with pages to test
  192. *
  193. * As a safty measure we check to make sure the data pages have not
  194. * been corrupted.
  195. */
  196. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  197. {
  198. struct list_head *head = &cpu_buffer->pages;
  199. struct buffer_page *page, *tmp;
  200. RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
  201. RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
  202. list_for_each_entry_safe(page, tmp, head, list) {
  203. RB_WARN_ON_RET(cpu_buffer,
  204. page->list.next->prev != &page->list);
  205. RB_WARN_ON_RET(cpu_buffer,
  206. page->list.prev->next != &page->list);
  207. }
  208. return 0;
  209. }
  210. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  211. unsigned nr_pages)
  212. {
  213. struct list_head *head = &cpu_buffer->pages;
  214. struct buffer_page *page, *tmp;
  215. unsigned long addr;
  216. LIST_HEAD(pages);
  217. unsigned i;
  218. for (i = 0; i < nr_pages; i++) {
  219. page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
  220. GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
  221. if (!page)
  222. goto free_pages;
  223. list_add(&page->list, &pages);
  224. addr = __get_free_page(GFP_KERNEL);
  225. if (!addr)
  226. goto free_pages;
  227. page->page = (void *)addr;
  228. }
  229. list_splice(&pages, head);
  230. rb_check_pages(cpu_buffer);
  231. return 0;
  232. free_pages:
  233. list_for_each_entry_safe(page, tmp, &pages, list) {
  234. list_del_init(&page->list);
  235. free_buffer_page(page);
  236. }
  237. return -ENOMEM;
  238. }
  239. static struct ring_buffer_per_cpu *
  240. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
  241. {
  242. struct ring_buffer_per_cpu *cpu_buffer;
  243. struct buffer_page *page;
  244. unsigned long addr;
  245. int ret;
  246. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  247. GFP_KERNEL, cpu_to_node(cpu));
  248. if (!cpu_buffer)
  249. return NULL;
  250. cpu_buffer->cpu = cpu;
  251. cpu_buffer->buffer = buffer;
  252. cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  253. INIT_LIST_HEAD(&cpu_buffer->pages);
  254. page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
  255. GFP_KERNEL, cpu_to_node(cpu));
  256. if (!page)
  257. goto fail_free_buffer;
  258. cpu_buffer->reader_page = page;
  259. addr = __get_free_page(GFP_KERNEL);
  260. if (!addr)
  261. goto fail_free_reader;
  262. page->page = (void *)addr;
  263. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  264. ret = rb_allocate_pages(cpu_buffer, buffer->pages);
  265. if (ret < 0)
  266. goto fail_free_reader;
  267. cpu_buffer->head_page
  268. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  269. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  270. return cpu_buffer;
  271. fail_free_reader:
  272. free_buffer_page(cpu_buffer->reader_page);
  273. fail_free_buffer:
  274. kfree(cpu_buffer);
  275. return NULL;
  276. }
  277. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  278. {
  279. struct list_head *head = &cpu_buffer->pages;
  280. struct buffer_page *page, *tmp;
  281. list_del_init(&cpu_buffer->reader_page->list);
  282. free_buffer_page(cpu_buffer->reader_page);
  283. list_for_each_entry_safe(page, tmp, head, list) {
  284. list_del_init(&page->list);
  285. free_buffer_page(page);
  286. }
  287. kfree(cpu_buffer);
  288. }
  289. /*
  290. * Causes compile errors if the struct buffer_page gets bigger
  291. * than the struct page.
  292. */
  293. extern int ring_buffer_page_too_big(void);
  294. /**
  295. * ring_buffer_alloc - allocate a new ring_buffer
  296. * @size: the size in bytes that is needed.
  297. * @flags: attributes to set for the ring buffer.
  298. *
  299. * Currently the only flag that is available is the RB_FL_OVERWRITE
  300. * flag. This flag means that the buffer will overwrite old data
  301. * when the buffer wraps. If this flag is not set, the buffer will
  302. * drop data when the tail hits the head.
  303. */
  304. struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
  305. {
  306. struct ring_buffer *buffer;
  307. int bsize;
  308. int cpu;
  309. /* Paranoid! Optimizes out when all is well */
  310. if (sizeof(struct buffer_page) > sizeof(struct page))
  311. ring_buffer_page_too_big();
  312. /* keep it in its own cache line */
  313. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  314. GFP_KERNEL);
  315. if (!buffer)
  316. return NULL;
  317. buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  318. buffer->flags = flags;
  319. /* need at least two pages */
  320. if (buffer->pages == 1)
  321. buffer->pages++;
  322. buffer->cpumask = cpu_possible_map;
  323. buffer->cpus = nr_cpu_ids;
  324. bsize = sizeof(void *) * nr_cpu_ids;
  325. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  326. GFP_KERNEL);
  327. if (!buffer->buffers)
  328. goto fail_free_buffer;
  329. for_each_buffer_cpu(buffer, cpu) {
  330. buffer->buffers[cpu] =
  331. rb_allocate_cpu_buffer(buffer, cpu);
  332. if (!buffer->buffers[cpu])
  333. goto fail_free_buffers;
  334. }
  335. mutex_init(&buffer->mutex);
  336. return buffer;
  337. fail_free_buffers:
  338. for_each_buffer_cpu(buffer, cpu) {
  339. if (buffer->buffers[cpu])
  340. rb_free_cpu_buffer(buffer->buffers[cpu]);
  341. }
  342. kfree(buffer->buffers);
  343. fail_free_buffer:
  344. kfree(buffer);
  345. return NULL;
  346. }
  347. /**
  348. * ring_buffer_free - free a ring buffer.
  349. * @buffer: the buffer to free.
  350. */
  351. void
  352. ring_buffer_free(struct ring_buffer *buffer)
  353. {
  354. int cpu;
  355. for_each_buffer_cpu(buffer, cpu)
  356. rb_free_cpu_buffer(buffer->buffers[cpu]);
  357. kfree(buffer);
  358. }
  359. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  360. static void
  361. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
  362. {
  363. struct buffer_page *page;
  364. struct list_head *p;
  365. unsigned i;
  366. atomic_inc(&cpu_buffer->record_disabled);
  367. synchronize_sched();
  368. for (i = 0; i < nr_pages; i++) {
  369. BUG_ON(list_empty(&cpu_buffer->pages));
  370. p = cpu_buffer->pages.next;
  371. page = list_entry(p, struct buffer_page, list);
  372. list_del_init(&page->list);
  373. free_buffer_page(page);
  374. }
  375. BUG_ON(list_empty(&cpu_buffer->pages));
  376. rb_reset_cpu(cpu_buffer);
  377. rb_check_pages(cpu_buffer);
  378. atomic_dec(&cpu_buffer->record_disabled);
  379. }
  380. static void
  381. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
  382. struct list_head *pages, unsigned nr_pages)
  383. {
  384. struct buffer_page *page;
  385. struct list_head *p;
  386. unsigned i;
  387. atomic_inc(&cpu_buffer->record_disabled);
  388. synchronize_sched();
  389. for (i = 0; i < nr_pages; i++) {
  390. BUG_ON(list_empty(pages));
  391. p = pages->next;
  392. page = list_entry(p, struct buffer_page, list);
  393. list_del_init(&page->list);
  394. list_add_tail(&page->list, &cpu_buffer->pages);
  395. }
  396. rb_reset_cpu(cpu_buffer);
  397. rb_check_pages(cpu_buffer);
  398. atomic_dec(&cpu_buffer->record_disabled);
  399. }
  400. /**
  401. * ring_buffer_resize - resize the ring buffer
  402. * @buffer: the buffer to resize.
  403. * @size: the new size.
  404. *
  405. * The tracer is responsible for making sure that the buffer is
  406. * not being used while changing the size.
  407. * Note: We may be able to change the above requirement by using
  408. * RCU synchronizations.
  409. *
  410. * Minimum size is 2 * BUF_PAGE_SIZE.
  411. *
  412. * Returns -1 on failure.
  413. */
  414. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
  415. {
  416. struct ring_buffer_per_cpu *cpu_buffer;
  417. unsigned nr_pages, rm_pages, new_pages;
  418. struct buffer_page *page, *tmp;
  419. unsigned long buffer_size;
  420. unsigned long addr;
  421. LIST_HEAD(pages);
  422. int i, cpu;
  423. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  424. size *= BUF_PAGE_SIZE;
  425. buffer_size = buffer->pages * BUF_PAGE_SIZE;
  426. /* we need a minimum of two pages */
  427. if (size < BUF_PAGE_SIZE * 2)
  428. size = BUF_PAGE_SIZE * 2;
  429. if (size == buffer_size)
  430. return size;
  431. mutex_lock(&buffer->mutex);
  432. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  433. if (size < buffer_size) {
  434. /* easy case, just free pages */
  435. BUG_ON(nr_pages >= buffer->pages);
  436. rm_pages = buffer->pages - nr_pages;
  437. for_each_buffer_cpu(buffer, cpu) {
  438. cpu_buffer = buffer->buffers[cpu];
  439. rb_remove_pages(cpu_buffer, rm_pages);
  440. }
  441. goto out;
  442. }
  443. /*
  444. * This is a bit more difficult. We only want to add pages
  445. * when we can allocate enough for all CPUs. We do this
  446. * by allocating all the pages and storing them on a local
  447. * link list. If we succeed in our allocation, then we
  448. * add these pages to the cpu_buffers. Otherwise we just free
  449. * them all and return -ENOMEM;
  450. */
  451. BUG_ON(nr_pages <= buffer->pages);
  452. new_pages = nr_pages - buffer->pages;
  453. for_each_buffer_cpu(buffer, cpu) {
  454. for (i = 0; i < new_pages; i++) {
  455. page = kzalloc_node(ALIGN(sizeof(*page),
  456. cache_line_size()),
  457. GFP_KERNEL, cpu_to_node(cpu));
  458. if (!page)
  459. goto free_pages;
  460. list_add(&page->list, &pages);
  461. addr = __get_free_page(GFP_KERNEL);
  462. if (!addr)
  463. goto free_pages;
  464. page->page = (void *)addr;
  465. }
  466. }
  467. for_each_buffer_cpu(buffer, cpu) {
  468. cpu_buffer = buffer->buffers[cpu];
  469. rb_insert_pages(cpu_buffer, &pages, new_pages);
  470. }
  471. BUG_ON(!list_empty(&pages));
  472. out:
  473. buffer->pages = nr_pages;
  474. mutex_unlock(&buffer->mutex);
  475. return size;
  476. free_pages:
  477. list_for_each_entry_safe(page, tmp, &pages, list) {
  478. list_del_init(&page->list);
  479. free_buffer_page(page);
  480. }
  481. return -ENOMEM;
  482. }
  483. static inline int rb_null_event(struct ring_buffer_event *event)
  484. {
  485. return event->type == RINGBUF_TYPE_PADDING;
  486. }
  487. static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
  488. {
  489. return page->page + index;
  490. }
  491. static inline struct ring_buffer_event *
  492. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  493. {
  494. return __rb_page_index(cpu_buffer->reader_page,
  495. cpu_buffer->reader_page->read);
  496. }
  497. static inline struct ring_buffer_event *
  498. rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
  499. {
  500. return __rb_page_index(cpu_buffer->head_page,
  501. cpu_buffer->head_page->read);
  502. }
  503. static inline struct ring_buffer_event *
  504. rb_iter_head_event(struct ring_buffer_iter *iter)
  505. {
  506. return __rb_page_index(iter->head_page, iter->head);
  507. }
  508. static inline unsigned rb_page_write(struct buffer_page *bpage)
  509. {
  510. return local_read(&bpage->write);
  511. }
  512. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  513. {
  514. return local_read(&bpage->commit);
  515. }
  516. /* Size is determined by what has been commited */
  517. static inline unsigned rb_page_size(struct buffer_page *bpage)
  518. {
  519. return rb_page_commit(bpage);
  520. }
  521. static inline unsigned
  522. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  523. {
  524. return rb_page_commit(cpu_buffer->commit_page);
  525. }
  526. static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
  527. {
  528. return rb_page_commit(cpu_buffer->head_page);
  529. }
  530. /*
  531. * When the tail hits the head and the buffer is in overwrite mode,
  532. * the head jumps to the next page and all content on the previous
  533. * page is discarded. But before doing so, we update the overrun
  534. * variable of the buffer.
  535. */
  536. static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
  537. {
  538. struct ring_buffer_event *event;
  539. unsigned long head;
  540. for (head = 0; head < rb_head_size(cpu_buffer);
  541. head += rb_event_length(event)) {
  542. event = __rb_page_index(cpu_buffer->head_page, head);
  543. BUG_ON(rb_null_event(event));
  544. /* Only count data entries */
  545. if (event->type != RINGBUF_TYPE_DATA)
  546. continue;
  547. cpu_buffer->overrun++;
  548. cpu_buffer->entries--;
  549. }
  550. }
  551. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  552. struct buffer_page **page)
  553. {
  554. struct list_head *p = (*page)->list.next;
  555. if (p == &cpu_buffer->pages)
  556. p = p->next;
  557. *page = list_entry(p, struct buffer_page, list);
  558. }
  559. static inline unsigned
  560. rb_event_index(struct ring_buffer_event *event)
  561. {
  562. unsigned long addr = (unsigned long)event;
  563. return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
  564. }
  565. static inline int
  566. rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  567. struct ring_buffer_event *event)
  568. {
  569. unsigned long addr = (unsigned long)event;
  570. unsigned long index;
  571. index = rb_event_index(event);
  572. addr &= PAGE_MASK;
  573. return cpu_buffer->commit_page->page == (void *)addr &&
  574. rb_commit_index(cpu_buffer) == index;
  575. }
  576. static inline void
  577. rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
  578. struct ring_buffer_event *event)
  579. {
  580. unsigned long addr = (unsigned long)event;
  581. unsigned long index;
  582. index = rb_event_index(event);
  583. addr &= PAGE_MASK;
  584. while (cpu_buffer->commit_page->page != (void *)addr) {
  585. RB_WARN_ON(cpu_buffer,
  586. cpu_buffer->commit_page == cpu_buffer->tail_page);
  587. cpu_buffer->commit_page->commit =
  588. cpu_buffer->commit_page->write;
  589. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  590. cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
  591. }
  592. /* Now set the commit to the event's index */
  593. local_set(&cpu_buffer->commit_page->commit, index);
  594. }
  595. static inline void
  596. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  597. {
  598. /*
  599. * We only race with interrupts and NMIs on this CPU.
  600. * If we own the commit event, then we can commit
  601. * all others that interrupted us, since the interruptions
  602. * are in stack format (they finish before they come
  603. * back to us). This allows us to do a simple loop to
  604. * assign the commit to the tail.
  605. */
  606. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  607. cpu_buffer->commit_page->commit =
  608. cpu_buffer->commit_page->write;
  609. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  610. cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
  611. /* add barrier to keep gcc from optimizing too much */
  612. barrier();
  613. }
  614. while (rb_commit_index(cpu_buffer) !=
  615. rb_page_write(cpu_buffer->commit_page)) {
  616. cpu_buffer->commit_page->commit =
  617. cpu_buffer->commit_page->write;
  618. barrier();
  619. }
  620. }
  621. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  622. {
  623. cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
  624. cpu_buffer->reader_page->read = 0;
  625. }
  626. static inline void rb_inc_iter(struct ring_buffer_iter *iter)
  627. {
  628. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  629. /*
  630. * The iterator could be on the reader page (it starts there).
  631. * But the head could have moved, since the reader was
  632. * found. Check for this case and assign the iterator
  633. * to the head page instead of next.
  634. */
  635. if (iter->head_page == cpu_buffer->reader_page)
  636. iter->head_page = cpu_buffer->head_page;
  637. else
  638. rb_inc_page(cpu_buffer, &iter->head_page);
  639. iter->read_stamp = iter->head_page->time_stamp;
  640. iter->head = 0;
  641. }
  642. /**
  643. * ring_buffer_update_event - update event type and data
  644. * @event: the even to update
  645. * @type: the type of event
  646. * @length: the size of the event field in the ring buffer
  647. *
  648. * Update the type and data fields of the event. The length
  649. * is the actual size that is written to the ring buffer,
  650. * and with this, we can determine what to place into the
  651. * data field.
  652. */
  653. static inline void
  654. rb_update_event(struct ring_buffer_event *event,
  655. unsigned type, unsigned length)
  656. {
  657. event->type = type;
  658. switch (type) {
  659. case RINGBUF_TYPE_PADDING:
  660. break;
  661. case RINGBUF_TYPE_TIME_EXTEND:
  662. event->len =
  663. (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
  664. >> RB_ALIGNMENT_SHIFT;
  665. break;
  666. case RINGBUF_TYPE_TIME_STAMP:
  667. event->len =
  668. (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
  669. >> RB_ALIGNMENT_SHIFT;
  670. break;
  671. case RINGBUF_TYPE_DATA:
  672. length -= RB_EVNT_HDR_SIZE;
  673. if (length > RB_MAX_SMALL_DATA) {
  674. event->len = 0;
  675. event->array[0] = length;
  676. } else
  677. event->len =
  678. (length + (RB_ALIGNMENT-1))
  679. >> RB_ALIGNMENT_SHIFT;
  680. break;
  681. default:
  682. BUG();
  683. }
  684. }
  685. static inline unsigned rb_calculate_event_length(unsigned length)
  686. {
  687. struct ring_buffer_event event; /* Used only for sizeof array */
  688. /* zero length can cause confusions */
  689. if (!length)
  690. length = 1;
  691. if (length > RB_MAX_SMALL_DATA)
  692. length += sizeof(event.array[0]);
  693. length += RB_EVNT_HDR_SIZE;
  694. length = ALIGN(length, RB_ALIGNMENT);
  695. return length;
  696. }
  697. static struct ring_buffer_event *
  698. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  699. unsigned type, unsigned long length, u64 *ts)
  700. {
  701. struct buffer_page *tail_page, *head_page, *reader_page;
  702. unsigned long tail, write;
  703. struct ring_buffer *buffer = cpu_buffer->buffer;
  704. struct ring_buffer_event *event;
  705. unsigned long flags;
  706. tail_page = cpu_buffer->tail_page;
  707. write = local_add_return(length, &tail_page->write);
  708. tail = write - length;
  709. /* See if we shot pass the end of this buffer page */
  710. if (write > BUF_PAGE_SIZE) {
  711. struct buffer_page *next_page = tail_page;
  712. local_irq_save(flags);
  713. __raw_spin_lock(&cpu_buffer->lock);
  714. rb_inc_page(cpu_buffer, &next_page);
  715. head_page = cpu_buffer->head_page;
  716. reader_page = cpu_buffer->reader_page;
  717. /* we grabbed the lock before incrementing */
  718. RB_WARN_ON(cpu_buffer, next_page == reader_page);
  719. /*
  720. * If for some reason, we had an interrupt storm that made
  721. * it all the way around the buffer, bail, and warn
  722. * about it.
  723. */
  724. if (unlikely(next_page == cpu_buffer->commit_page)) {
  725. WARN_ON_ONCE(1);
  726. goto out_unlock;
  727. }
  728. if (next_page == head_page) {
  729. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  730. /* reset write */
  731. if (tail <= BUF_PAGE_SIZE)
  732. local_set(&tail_page->write, tail);
  733. goto out_unlock;
  734. }
  735. /* tail_page has not moved yet? */
  736. if (tail_page == cpu_buffer->tail_page) {
  737. /* count overflows */
  738. rb_update_overflow(cpu_buffer);
  739. rb_inc_page(cpu_buffer, &head_page);
  740. cpu_buffer->head_page = head_page;
  741. cpu_buffer->head_page->read = 0;
  742. }
  743. }
  744. /*
  745. * If the tail page is still the same as what we think
  746. * it is, then it is up to us to update the tail
  747. * pointer.
  748. */
  749. if (tail_page == cpu_buffer->tail_page) {
  750. local_set(&next_page->write, 0);
  751. local_set(&next_page->commit, 0);
  752. cpu_buffer->tail_page = next_page;
  753. /* reread the time stamp */
  754. *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  755. cpu_buffer->tail_page->time_stamp = *ts;
  756. }
  757. /*
  758. * The actual tail page has moved forward.
  759. */
  760. if (tail < BUF_PAGE_SIZE) {
  761. /* Mark the rest of the page with padding */
  762. event = __rb_page_index(tail_page, tail);
  763. event->type = RINGBUF_TYPE_PADDING;
  764. }
  765. if (tail <= BUF_PAGE_SIZE)
  766. /* Set the write back to the previous setting */
  767. local_set(&tail_page->write, tail);
  768. /*
  769. * If this was a commit entry that failed,
  770. * increment that too
  771. */
  772. if (tail_page == cpu_buffer->commit_page &&
  773. tail == rb_commit_index(cpu_buffer)) {
  774. rb_set_commit_to_write(cpu_buffer);
  775. }
  776. __raw_spin_unlock(&cpu_buffer->lock);
  777. local_irq_restore(flags);
  778. /* fail and let the caller try again */
  779. return ERR_PTR(-EAGAIN);
  780. }
  781. /* We reserved something on the buffer */
  782. BUG_ON(write > BUF_PAGE_SIZE);
  783. event = __rb_page_index(tail_page, tail);
  784. rb_update_event(event, type, length);
  785. /*
  786. * If this is a commit and the tail is zero, then update
  787. * this page's time stamp.
  788. */
  789. if (!tail && rb_is_commit(cpu_buffer, event))
  790. cpu_buffer->commit_page->time_stamp = *ts;
  791. return event;
  792. out_unlock:
  793. __raw_spin_unlock(&cpu_buffer->lock);
  794. local_irq_restore(flags);
  795. return NULL;
  796. }
  797. static int
  798. rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  799. u64 *ts, u64 *delta)
  800. {
  801. struct ring_buffer_event *event;
  802. static int once;
  803. int ret;
  804. if (unlikely(*delta > (1ULL << 59) && !once++)) {
  805. printk(KERN_WARNING "Delta way too big! %llu"
  806. " ts=%llu write stamp = %llu\n",
  807. (unsigned long long)*delta,
  808. (unsigned long long)*ts,
  809. (unsigned long long)cpu_buffer->write_stamp);
  810. WARN_ON(1);
  811. }
  812. /*
  813. * The delta is too big, we to add a
  814. * new timestamp.
  815. */
  816. event = __rb_reserve_next(cpu_buffer,
  817. RINGBUF_TYPE_TIME_EXTEND,
  818. RB_LEN_TIME_EXTEND,
  819. ts);
  820. if (!event)
  821. return -EBUSY;
  822. if (PTR_ERR(event) == -EAGAIN)
  823. return -EAGAIN;
  824. /* Only a commited time event can update the write stamp */
  825. if (rb_is_commit(cpu_buffer, event)) {
  826. /*
  827. * If this is the first on the page, then we need to
  828. * update the page itself, and just put in a zero.
  829. */
  830. if (rb_event_index(event)) {
  831. event->time_delta = *delta & TS_MASK;
  832. event->array[0] = *delta >> TS_SHIFT;
  833. } else {
  834. cpu_buffer->commit_page->time_stamp = *ts;
  835. event->time_delta = 0;
  836. event->array[0] = 0;
  837. }
  838. cpu_buffer->write_stamp = *ts;
  839. /* let the caller know this was the commit */
  840. ret = 1;
  841. } else {
  842. /* Darn, this is just wasted space */
  843. event->time_delta = 0;
  844. event->array[0] = 0;
  845. ret = 0;
  846. }
  847. *delta = 0;
  848. return ret;
  849. }
  850. static struct ring_buffer_event *
  851. rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
  852. unsigned type, unsigned long length)
  853. {
  854. struct ring_buffer_event *event;
  855. u64 ts, delta;
  856. int commit = 0;
  857. int nr_loops = 0;
  858. again:
  859. /*
  860. * We allow for interrupts to reenter here and do a trace.
  861. * If one does, it will cause this original code to loop
  862. * back here. Even with heavy interrupts happening, this
  863. * should only happen a few times in a row. If this happens
  864. * 1000 times in a row, there must be either an interrupt
  865. * storm or we have something buggy.
  866. * Bail!
  867. */
  868. if (unlikely(++nr_loops > 1000)) {
  869. RB_WARN_ON(cpu_buffer, 1);
  870. return NULL;
  871. }
  872. ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  873. /*
  874. * Only the first commit can update the timestamp.
  875. * Yes there is a race here. If an interrupt comes in
  876. * just after the conditional and it traces too, then it
  877. * will also check the deltas. More than one timestamp may
  878. * also be made. But only the entry that did the actual
  879. * commit will be something other than zero.
  880. */
  881. if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
  882. rb_page_write(cpu_buffer->tail_page) ==
  883. rb_commit_index(cpu_buffer)) {
  884. delta = ts - cpu_buffer->write_stamp;
  885. /* make sure this delta is calculated here */
  886. barrier();
  887. /* Did the write stamp get updated already? */
  888. if (unlikely(ts < cpu_buffer->write_stamp))
  889. goto again;
  890. if (test_time_stamp(delta)) {
  891. commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
  892. if (commit == -EBUSY)
  893. return NULL;
  894. if (commit == -EAGAIN)
  895. goto again;
  896. RB_WARN_ON(cpu_buffer, commit < 0);
  897. }
  898. } else
  899. /* Non commits have zero deltas */
  900. delta = 0;
  901. event = __rb_reserve_next(cpu_buffer, type, length, &ts);
  902. if (PTR_ERR(event) == -EAGAIN)
  903. goto again;
  904. if (!event) {
  905. if (unlikely(commit))
  906. /*
  907. * Ouch! We needed a timestamp and it was commited. But
  908. * we didn't get our event reserved.
  909. */
  910. rb_set_commit_to_write(cpu_buffer);
  911. return NULL;
  912. }
  913. /*
  914. * If the timestamp was commited, make the commit our entry
  915. * now so that we will update it when needed.
  916. */
  917. if (commit)
  918. rb_set_commit_event(cpu_buffer, event);
  919. else if (!rb_is_commit(cpu_buffer, event))
  920. delta = 0;
  921. event->time_delta = delta;
  922. return event;
  923. }
  924. static DEFINE_PER_CPU(int, rb_need_resched);
  925. /**
  926. * ring_buffer_lock_reserve - reserve a part of the buffer
  927. * @buffer: the ring buffer to reserve from
  928. * @length: the length of the data to reserve (excluding event header)
  929. * @flags: a pointer to save the interrupt flags
  930. *
  931. * Returns a reseverd event on the ring buffer to copy directly to.
  932. * The user of this interface will need to get the body to write into
  933. * and can use the ring_buffer_event_data() interface.
  934. *
  935. * The length is the length of the data needed, not the event length
  936. * which also includes the event header.
  937. *
  938. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  939. * If NULL is returned, then nothing has been allocated or locked.
  940. */
  941. struct ring_buffer_event *
  942. ring_buffer_lock_reserve(struct ring_buffer *buffer,
  943. unsigned long length,
  944. unsigned long *flags)
  945. {
  946. struct ring_buffer_per_cpu *cpu_buffer;
  947. struct ring_buffer_event *event;
  948. int cpu, resched;
  949. if (atomic_read(&buffer->record_disabled))
  950. return NULL;
  951. /* If we are tracing schedule, we don't want to recurse */
  952. resched = ftrace_preempt_disable();
  953. cpu = raw_smp_processor_id();
  954. if (!cpu_isset(cpu, buffer->cpumask))
  955. goto out;
  956. cpu_buffer = buffer->buffers[cpu];
  957. if (atomic_read(&cpu_buffer->record_disabled))
  958. goto out;
  959. length = rb_calculate_event_length(length);
  960. if (length > BUF_PAGE_SIZE)
  961. goto out;
  962. event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
  963. if (!event)
  964. goto out;
  965. /*
  966. * Need to store resched state on this cpu.
  967. * Only the first needs to.
  968. */
  969. if (preempt_count() == 1)
  970. per_cpu(rb_need_resched, cpu) = resched;
  971. return event;
  972. out:
  973. ftrace_preempt_enable(resched);
  974. return NULL;
  975. }
  976. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  977. struct ring_buffer_event *event)
  978. {
  979. cpu_buffer->entries++;
  980. /* Only process further if we own the commit */
  981. if (!rb_is_commit(cpu_buffer, event))
  982. return;
  983. cpu_buffer->write_stamp += event->time_delta;
  984. rb_set_commit_to_write(cpu_buffer);
  985. }
  986. /**
  987. * ring_buffer_unlock_commit - commit a reserved
  988. * @buffer: The buffer to commit to
  989. * @event: The event pointer to commit.
  990. * @flags: the interrupt flags received from ring_buffer_lock_reserve.
  991. *
  992. * This commits the data to the ring buffer, and releases any locks held.
  993. *
  994. * Must be paired with ring_buffer_lock_reserve.
  995. */
  996. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  997. struct ring_buffer_event *event,
  998. unsigned long flags)
  999. {
  1000. struct ring_buffer_per_cpu *cpu_buffer;
  1001. int cpu = raw_smp_processor_id();
  1002. cpu_buffer = buffer->buffers[cpu];
  1003. rb_commit(cpu_buffer, event);
  1004. /*
  1005. * Only the last preempt count needs to restore preemption.
  1006. */
  1007. if (preempt_count() == 1)
  1008. ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
  1009. else
  1010. preempt_enable_no_resched_notrace();
  1011. return 0;
  1012. }
  1013. /**
  1014. * ring_buffer_write - write data to the buffer without reserving
  1015. * @buffer: The ring buffer to write to.
  1016. * @length: The length of the data being written (excluding the event header)
  1017. * @data: The data to write to the buffer.
  1018. *
  1019. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  1020. * one function. If you already have the data to write to the buffer, it
  1021. * may be easier to simply call this function.
  1022. *
  1023. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  1024. * and not the length of the event which would hold the header.
  1025. */
  1026. int ring_buffer_write(struct ring_buffer *buffer,
  1027. unsigned long length,
  1028. void *data)
  1029. {
  1030. struct ring_buffer_per_cpu *cpu_buffer;
  1031. struct ring_buffer_event *event;
  1032. unsigned long event_length;
  1033. void *body;
  1034. int ret = -EBUSY;
  1035. int cpu, resched;
  1036. if (atomic_read(&buffer->record_disabled))
  1037. return -EBUSY;
  1038. resched = ftrace_preempt_disable();
  1039. cpu = raw_smp_processor_id();
  1040. if (!cpu_isset(cpu, buffer->cpumask))
  1041. goto out;
  1042. cpu_buffer = buffer->buffers[cpu];
  1043. if (atomic_read(&cpu_buffer->record_disabled))
  1044. goto out;
  1045. event_length = rb_calculate_event_length(length);
  1046. event = rb_reserve_next_event(cpu_buffer,
  1047. RINGBUF_TYPE_DATA, event_length);
  1048. if (!event)
  1049. goto out;
  1050. body = rb_event_data(event);
  1051. memcpy(body, data, length);
  1052. rb_commit(cpu_buffer, event);
  1053. ret = 0;
  1054. out:
  1055. ftrace_preempt_enable(resched);
  1056. return ret;
  1057. }
  1058. static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  1059. {
  1060. struct buffer_page *reader = cpu_buffer->reader_page;
  1061. struct buffer_page *head = cpu_buffer->head_page;
  1062. struct buffer_page *commit = cpu_buffer->commit_page;
  1063. return reader->read == rb_page_commit(reader) &&
  1064. (commit == reader ||
  1065. (commit == head &&
  1066. head->read == rb_page_commit(commit)));
  1067. }
  1068. /**
  1069. * ring_buffer_record_disable - stop all writes into the buffer
  1070. * @buffer: The ring buffer to stop writes to.
  1071. *
  1072. * This prevents all writes to the buffer. Any attempt to write
  1073. * to the buffer after this will fail and return NULL.
  1074. *
  1075. * The caller should call synchronize_sched() after this.
  1076. */
  1077. void ring_buffer_record_disable(struct ring_buffer *buffer)
  1078. {
  1079. atomic_inc(&buffer->record_disabled);
  1080. }
  1081. /**
  1082. * ring_buffer_record_enable - enable writes to the buffer
  1083. * @buffer: The ring buffer to enable writes
  1084. *
  1085. * Note, multiple disables will need the same number of enables
  1086. * to truely enable the writing (much like preempt_disable).
  1087. */
  1088. void ring_buffer_record_enable(struct ring_buffer *buffer)
  1089. {
  1090. atomic_dec(&buffer->record_disabled);
  1091. }
  1092. /**
  1093. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  1094. * @buffer: The ring buffer to stop writes to.
  1095. * @cpu: The CPU buffer to stop
  1096. *
  1097. * This prevents all writes to the buffer. Any attempt to write
  1098. * to the buffer after this will fail and return NULL.
  1099. *
  1100. * The caller should call synchronize_sched() after this.
  1101. */
  1102. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  1103. {
  1104. struct ring_buffer_per_cpu *cpu_buffer;
  1105. if (!cpu_isset(cpu, buffer->cpumask))
  1106. return;
  1107. cpu_buffer = buffer->buffers[cpu];
  1108. atomic_inc(&cpu_buffer->record_disabled);
  1109. }
  1110. /**
  1111. * ring_buffer_record_enable_cpu - enable writes to the buffer
  1112. * @buffer: The ring buffer to enable writes
  1113. * @cpu: The CPU to enable.
  1114. *
  1115. * Note, multiple disables will need the same number of enables
  1116. * to truely enable the writing (much like preempt_disable).
  1117. */
  1118. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  1119. {
  1120. struct ring_buffer_per_cpu *cpu_buffer;
  1121. if (!cpu_isset(cpu, buffer->cpumask))
  1122. return;
  1123. cpu_buffer = buffer->buffers[cpu];
  1124. atomic_dec(&cpu_buffer->record_disabled);
  1125. }
  1126. /**
  1127. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  1128. * @buffer: The ring buffer
  1129. * @cpu: The per CPU buffer to get the entries from.
  1130. */
  1131. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  1132. {
  1133. struct ring_buffer_per_cpu *cpu_buffer;
  1134. if (!cpu_isset(cpu, buffer->cpumask))
  1135. return 0;
  1136. cpu_buffer = buffer->buffers[cpu];
  1137. return cpu_buffer->entries;
  1138. }
  1139. /**
  1140. * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
  1141. * @buffer: The ring buffer
  1142. * @cpu: The per CPU buffer to get the number of overruns from
  1143. */
  1144. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  1145. {
  1146. struct ring_buffer_per_cpu *cpu_buffer;
  1147. if (!cpu_isset(cpu, buffer->cpumask))
  1148. return 0;
  1149. cpu_buffer = buffer->buffers[cpu];
  1150. return cpu_buffer->overrun;
  1151. }
  1152. /**
  1153. * ring_buffer_entries - get the number of entries in a buffer
  1154. * @buffer: The ring buffer
  1155. *
  1156. * Returns the total number of entries in the ring buffer
  1157. * (all CPU entries)
  1158. */
  1159. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  1160. {
  1161. struct ring_buffer_per_cpu *cpu_buffer;
  1162. unsigned long entries = 0;
  1163. int cpu;
  1164. /* if you care about this being correct, lock the buffer */
  1165. for_each_buffer_cpu(buffer, cpu) {
  1166. cpu_buffer = buffer->buffers[cpu];
  1167. entries += cpu_buffer->entries;
  1168. }
  1169. return entries;
  1170. }
  1171. /**
  1172. * ring_buffer_overrun_cpu - get the number of overruns in buffer
  1173. * @buffer: The ring buffer
  1174. *
  1175. * Returns the total number of overruns in the ring buffer
  1176. * (all CPU entries)
  1177. */
  1178. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  1179. {
  1180. struct ring_buffer_per_cpu *cpu_buffer;
  1181. unsigned long overruns = 0;
  1182. int cpu;
  1183. /* if you care about this being correct, lock the buffer */
  1184. for_each_buffer_cpu(buffer, cpu) {
  1185. cpu_buffer = buffer->buffers[cpu];
  1186. overruns += cpu_buffer->overrun;
  1187. }
  1188. return overruns;
  1189. }
  1190. /**
  1191. * ring_buffer_iter_reset - reset an iterator
  1192. * @iter: The iterator to reset
  1193. *
  1194. * Resets the iterator, so that it will start from the beginning
  1195. * again.
  1196. */
  1197. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  1198. {
  1199. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1200. /* Iterator usage is expected to have record disabled */
  1201. if (list_empty(&cpu_buffer->reader_page->list)) {
  1202. iter->head_page = cpu_buffer->head_page;
  1203. iter->head = cpu_buffer->head_page->read;
  1204. } else {
  1205. iter->head_page = cpu_buffer->reader_page;
  1206. iter->head = cpu_buffer->reader_page->read;
  1207. }
  1208. if (iter->head)
  1209. iter->read_stamp = cpu_buffer->read_stamp;
  1210. else
  1211. iter->read_stamp = iter->head_page->time_stamp;
  1212. }
  1213. /**
  1214. * ring_buffer_iter_empty - check if an iterator has no more to read
  1215. * @iter: The iterator to check
  1216. */
  1217. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  1218. {
  1219. struct ring_buffer_per_cpu *cpu_buffer;
  1220. cpu_buffer = iter->cpu_buffer;
  1221. return iter->head_page == cpu_buffer->commit_page &&
  1222. iter->head == rb_commit_index(cpu_buffer);
  1223. }
  1224. static void
  1225. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  1226. struct ring_buffer_event *event)
  1227. {
  1228. u64 delta;
  1229. switch (event->type) {
  1230. case RINGBUF_TYPE_PADDING:
  1231. return;
  1232. case RINGBUF_TYPE_TIME_EXTEND:
  1233. delta = event->array[0];
  1234. delta <<= TS_SHIFT;
  1235. delta += event->time_delta;
  1236. cpu_buffer->read_stamp += delta;
  1237. return;
  1238. case RINGBUF_TYPE_TIME_STAMP:
  1239. /* FIXME: not implemented */
  1240. return;
  1241. case RINGBUF_TYPE_DATA:
  1242. cpu_buffer->read_stamp += event->time_delta;
  1243. return;
  1244. default:
  1245. BUG();
  1246. }
  1247. return;
  1248. }
  1249. static void
  1250. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  1251. struct ring_buffer_event *event)
  1252. {
  1253. u64 delta;
  1254. switch (event->type) {
  1255. case RINGBUF_TYPE_PADDING:
  1256. return;
  1257. case RINGBUF_TYPE_TIME_EXTEND:
  1258. delta = event->array[0];
  1259. delta <<= TS_SHIFT;
  1260. delta += event->time_delta;
  1261. iter->read_stamp += delta;
  1262. return;
  1263. case RINGBUF_TYPE_TIME_STAMP:
  1264. /* FIXME: not implemented */
  1265. return;
  1266. case RINGBUF_TYPE_DATA:
  1267. iter->read_stamp += event->time_delta;
  1268. return;
  1269. default:
  1270. BUG();
  1271. }
  1272. return;
  1273. }
  1274. static struct buffer_page *
  1275. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1276. {
  1277. struct buffer_page *reader = NULL;
  1278. unsigned long flags;
  1279. int nr_loops = 0;
  1280. local_irq_save(flags);
  1281. __raw_spin_lock(&cpu_buffer->lock);
  1282. again:
  1283. /*
  1284. * This should normally only loop twice. But because the
  1285. * start of the reader inserts an empty page, it causes
  1286. * a case where we will loop three times. There should be no
  1287. * reason to loop four times (that I know of).
  1288. */
  1289. if (unlikely(++nr_loops > 3)) {
  1290. RB_WARN_ON(cpu_buffer, 1);
  1291. reader = NULL;
  1292. goto out;
  1293. }
  1294. reader = cpu_buffer->reader_page;
  1295. /* If there's more to read, return this page */
  1296. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  1297. goto out;
  1298. /* Never should we have an index greater than the size */
  1299. RB_WARN_ON(cpu_buffer,
  1300. cpu_buffer->reader_page->read > rb_page_size(reader));
  1301. /* check if we caught up to the tail */
  1302. reader = NULL;
  1303. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  1304. goto out;
  1305. /*
  1306. * Splice the empty reader page into the list around the head.
  1307. * Reset the reader page to size zero.
  1308. */
  1309. reader = cpu_buffer->head_page;
  1310. cpu_buffer->reader_page->list.next = reader->list.next;
  1311. cpu_buffer->reader_page->list.prev = reader->list.prev;
  1312. local_set(&cpu_buffer->reader_page->write, 0);
  1313. local_set(&cpu_buffer->reader_page->commit, 0);
  1314. /* Make the reader page now replace the head */
  1315. reader->list.prev->next = &cpu_buffer->reader_page->list;
  1316. reader->list.next->prev = &cpu_buffer->reader_page->list;
  1317. /*
  1318. * If the tail is on the reader, then we must set the head
  1319. * to the inserted page, otherwise we set it one before.
  1320. */
  1321. cpu_buffer->head_page = cpu_buffer->reader_page;
  1322. if (cpu_buffer->commit_page != reader)
  1323. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  1324. /* Finally update the reader page to the new head */
  1325. cpu_buffer->reader_page = reader;
  1326. rb_reset_reader_page(cpu_buffer);
  1327. goto again;
  1328. out:
  1329. __raw_spin_unlock(&cpu_buffer->lock);
  1330. local_irq_restore(flags);
  1331. return reader;
  1332. }
  1333. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  1334. {
  1335. struct ring_buffer_event *event;
  1336. struct buffer_page *reader;
  1337. unsigned length;
  1338. reader = rb_get_reader_page(cpu_buffer);
  1339. /* This function should not be called when buffer is empty */
  1340. BUG_ON(!reader);
  1341. event = rb_reader_event(cpu_buffer);
  1342. if (event->type == RINGBUF_TYPE_DATA)
  1343. cpu_buffer->entries--;
  1344. rb_update_read_stamp(cpu_buffer, event);
  1345. length = rb_event_length(event);
  1346. cpu_buffer->reader_page->read += length;
  1347. }
  1348. static void rb_advance_iter(struct ring_buffer_iter *iter)
  1349. {
  1350. struct ring_buffer *buffer;
  1351. struct ring_buffer_per_cpu *cpu_buffer;
  1352. struct ring_buffer_event *event;
  1353. unsigned length;
  1354. cpu_buffer = iter->cpu_buffer;
  1355. buffer = cpu_buffer->buffer;
  1356. /*
  1357. * Check if we are at the end of the buffer.
  1358. */
  1359. if (iter->head >= rb_page_size(iter->head_page)) {
  1360. BUG_ON(iter->head_page == cpu_buffer->commit_page);
  1361. rb_inc_iter(iter);
  1362. return;
  1363. }
  1364. event = rb_iter_head_event(iter);
  1365. length = rb_event_length(event);
  1366. /*
  1367. * This should not be called to advance the header if we are
  1368. * at the tail of the buffer.
  1369. */
  1370. BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
  1371. (iter->head + length > rb_commit_index(cpu_buffer)));
  1372. rb_update_iter_read_stamp(iter, event);
  1373. iter->head += length;
  1374. /* check for end of page padding */
  1375. if ((iter->head >= rb_page_size(iter->head_page)) &&
  1376. (iter->head_page != cpu_buffer->commit_page))
  1377. rb_advance_iter(iter);
  1378. }
  1379. /**
  1380. * ring_buffer_peek - peek at the next event to be read
  1381. * @buffer: The ring buffer to read
  1382. * @cpu: The cpu to peak at
  1383. * @ts: The timestamp counter of this event.
  1384. *
  1385. * This will return the event that will be read next, but does
  1386. * not consume the data.
  1387. */
  1388. struct ring_buffer_event *
  1389. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1390. {
  1391. struct ring_buffer_per_cpu *cpu_buffer;
  1392. struct ring_buffer_event *event;
  1393. struct buffer_page *reader;
  1394. int nr_loops = 0;
  1395. if (!cpu_isset(cpu, buffer->cpumask))
  1396. return NULL;
  1397. cpu_buffer = buffer->buffers[cpu];
  1398. again:
  1399. /*
  1400. * We repeat when a timestamp is encountered. It is possible
  1401. * to get multiple timestamps from an interrupt entering just
  1402. * as one timestamp is about to be written. The max times
  1403. * that this can happen is the number of nested interrupts we
  1404. * can have. Nesting 10 deep of interrupts is clearly
  1405. * an anomaly.
  1406. */
  1407. if (unlikely(++nr_loops > 10)) {
  1408. RB_WARN_ON(cpu_buffer, 1);
  1409. return NULL;
  1410. }
  1411. reader = rb_get_reader_page(cpu_buffer);
  1412. if (!reader)
  1413. return NULL;
  1414. event = rb_reader_event(cpu_buffer);
  1415. switch (event->type) {
  1416. case RINGBUF_TYPE_PADDING:
  1417. RB_WARN_ON(cpu_buffer, 1);
  1418. rb_advance_reader(cpu_buffer);
  1419. return NULL;
  1420. case RINGBUF_TYPE_TIME_EXTEND:
  1421. /* Internal data, OK to advance */
  1422. rb_advance_reader(cpu_buffer);
  1423. goto again;
  1424. case RINGBUF_TYPE_TIME_STAMP:
  1425. /* FIXME: not implemented */
  1426. rb_advance_reader(cpu_buffer);
  1427. goto again;
  1428. case RINGBUF_TYPE_DATA:
  1429. if (ts) {
  1430. *ts = cpu_buffer->read_stamp + event->time_delta;
  1431. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1432. }
  1433. return event;
  1434. default:
  1435. BUG();
  1436. }
  1437. return NULL;
  1438. }
  1439. /**
  1440. * ring_buffer_iter_peek - peek at the next event to be read
  1441. * @iter: The ring buffer iterator
  1442. * @ts: The timestamp counter of this event.
  1443. *
  1444. * This will return the event that will be read next, but does
  1445. * not increment the iterator.
  1446. */
  1447. struct ring_buffer_event *
  1448. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1449. {
  1450. struct ring_buffer *buffer;
  1451. struct ring_buffer_per_cpu *cpu_buffer;
  1452. struct ring_buffer_event *event;
  1453. int nr_loops = 0;
  1454. if (ring_buffer_iter_empty(iter))
  1455. return NULL;
  1456. cpu_buffer = iter->cpu_buffer;
  1457. buffer = cpu_buffer->buffer;
  1458. again:
  1459. /*
  1460. * We repeat when a timestamp is encountered. It is possible
  1461. * to get multiple timestamps from an interrupt entering just
  1462. * as one timestamp is about to be written. The max times
  1463. * that this can happen is the number of nested interrupts we
  1464. * can have. Nesting 10 deep of interrupts is clearly
  1465. * an anomaly.
  1466. */
  1467. if (unlikely(++nr_loops > 10)) {
  1468. RB_WARN_ON(cpu_buffer, 1);
  1469. return NULL;
  1470. }
  1471. if (rb_per_cpu_empty(cpu_buffer))
  1472. return NULL;
  1473. event = rb_iter_head_event(iter);
  1474. switch (event->type) {
  1475. case RINGBUF_TYPE_PADDING:
  1476. rb_inc_iter(iter);
  1477. goto again;
  1478. case RINGBUF_TYPE_TIME_EXTEND:
  1479. /* Internal data, OK to advance */
  1480. rb_advance_iter(iter);
  1481. goto again;
  1482. case RINGBUF_TYPE_TIME_STAMP:
  1483. /* FIXME: not implemented */
  1484. rb_advance_iter(iter);
  1485. goto again;
  1486. case RINGBUF_TYPE_DATA:
  1487. if (ts) {
  1488. *ts = iter->read_stamp + event->time_delta;
  1489. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1490. }
  1491. return event;
  1492. default:
  1493. BUG();
  1494. }
  1495. return NULL;
  1496. }
  1497. /**
  1498. * ring_buffer_consume - return an event and consume it
  1499. * @buffer: The ring buffer to get the next event from
  1500. *
  1501. * Returns the next event in the ring buffer, and that event is consumed.
  1502. * Meaning, that sequential reads will keep returning a different event,
  1503. * and eventually empty the ring buffer if the producer is slower.
  1504. */
  1505. struct ring_buffer_event *
  1506. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
  1507. {
  1508. struct ring_buffer_per_cpu *cpu_buffer;
  1509. struct ring_buffer_event *event;
  1510. if (!cpu_isset(cpu, buffer->cpumask))
  1511. return NULL;
  1512. event = ring_buffer_peek(buffer, cpu, ts);
  1513. if (!event)
  1514. return NULL;
  1515. cpu_buffer = buffer->buffers[cpu];
  1516. rb_advance_reader(cpu_buffer);
  1517. return event;
  1518. }
  1519. /**
  1520. * ring_buffer_read_start - start a non consuming read of the buffer
  1521. * @buffer: The ring buffer to read from
  1522. * @cpu: The cpu buffer to iterate over
  1523. *
  1524. * This starts up an iteration through the buffer. It also disables
  1525. * the recording to the buffer until the reading is finished.
  1526. * This prevents the reading from being corrupted. This is not
  1527. * a consuming read, so a producer is not expected.
  1528. *
  1529. * Must be paired with ring_buffer_finish.
  1530. */
  1531. struct ring_buffer_iter *
  1532. ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
  1533. {
  1534. struct ring_buffer_per_cpu *cpu_buffer;
  1535. struct ring_buffer_iter *iter;
  1536. unsigned long flags;
  1537. if (!cpu_isset(cpu, buffer->cpumask))
  1538. return NULL;
  1539. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1540. if (!iter)
  1541. return NULL;
  1542. cpu_buffer = buffer->buffers[cpu];
  1543. iter->cpu_buffer = cpu_buffer;
  1544. atomic_inc(&cpu_buffer->record_disabled);
  1545. synchronize_sched();
  1546. local_irq_save(flags);
  1547. __raw_spin_lock(&cpu_buffer->lock);
  1548. ring_buffer_iter_reset(iter);
  1549. __raw_spin_unlock(&cpu_buffer->lock);
  1550. local_irq_restore(flags);
  1551. return iter;
  1552. }
  1553. /**
  1554. * ring_buffer_finish - finish reading the iterator of the buffer
  1555. * @iter: The iterator retrieved by ring_buffer_start
  1556. *
  1557. * This re-enables the recording to the buffer, and frees the
  1558. * iterator.
  1559. */
  1560. void
  1561. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  1562. {
  1563. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1564. atomic_dec(&cpu_buffer->record_disabled);
  1565. kfree(iter);
  1566. }
  1567. /**
  1568. * ring_buffer_read - read the next item in the ring buffer by the iterator
  1569. * @iter: The ring buffer iterator
  1570. * @ts: The time stamp of the event read.
  1571. *
  1572. * This reads the next event in the ring buffer and increments the iterator.
  1573. */
  1574. struct ring_buffer_event *
  1575. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  1576. {
  1577. struct ring_buffer_event *event;
  1578. event = ring_buffer_iter_peek(iter, ts);
  1579. if (!event)
  1580. return NULL;
  1581. rb_advance_iter(iter);
  1582. return event;
  1583. }
  1584. /**
  1585. * ring_buffer_size - return the size of the ring buffer (in bytes)
  1586. * @buffer: The ring buffer.
  1587. */
  1588. unsigned long ring_buffer_size(struct ring_buffer *buffer)
  1589. {
  1590. return BUF_PAGE_SIZE * buffer->pages;
  1591. }
  1592. static void
  1593. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  1594. {
  1595. cpu_buffer->head_page
  1596. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  1597. local_set(&cpu_buffer->head_page->write, 0);
  1598. local_set(&cpu_buffer->head_page->commit, 0);
  1599. cpu_buffer->head_page->read = 0;
  1600. cpu_buffer->tail_page = cpu_buffer->head_page;
  1601. cpu_buffer->commit_page = cpu_buffer->head_page;
  1602. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1603. local_set(&cpu_buffer->reader_page->write, 0);
  1604. local_set(&cpu_buffer->reader_page->commit, 0);
  1605. cpu_buffer->reader_page->read = 0;
  1606. cpu_buffer->overrun = 0;
  1607. cpu_buffer->entries = 0;
  1608. }
  1609. /**
  1610. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  1611. * @buffer: The ring buffer to reset a per cpu buffer of
  1612. * @cpu: The CPU buffer to be reset
  1613. */
  1614. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  1615. {
  1616. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1617. unsigned long flags;
  1618. if (!cpu_isset(cpu, buffer->cpumask))
  1619. return;
  1620. local_irq_save(flags);
  1621. __raw_spin_lock(&cpu_buffer->lock);
  1622. rb_reset_cpu(cpu_buffer);
  1623. __raw_spin_unlock(&cpu_buffer->lock);
  1624. local_irq_restore(flags);
  1625. }
  1626. /**
  1627. * ring_buffer_reset - reset a ring buffer
  1628. * @buffer: The ring buffer to reset all cpu buffers
  1629. */
  1630. void ring_buffer_reset(struct ring_buffer *buffer)
  1631. {
  1632. int cpu;
  1633. for_each_buffer_cpu(buffer, cpu)
  1634. ring_buffer_reset_cpu(buffer, cpu);
  1635. }
  1636. /**
  1637. * rind_buffer_empty - is the ring buffer empty?
  1638. * @buffer: The ring buffer to test
  1639. */
  1640. int ring_buffer_empty(struct ring_buffer *buffer)
  1641. {
  1642. struct ring_buffer_per_cpu *cpu_buffer;
  1643. int cpu;
  1644. /* yes this is racy, but if you don't like the race, lock the buffer */
  1645. for_each_buffer_cpu(buffer, cpu) {
  1646. cpu_buffer = buffer->buffers[cpu];
  1647. if (!rb_per_cpu_empty(cpu_buffer))
  1648. return 0;
  1649. }
  1650. return 1;
  1651. }
  1652. /**
  1653. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  1654. * @buffer: The ring buffer
  1655. * @cpu: The CPU buffer to test
  1656. */
  1657. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  1658. {
  1659. struct ring_buffer_per_cpu *cpu_buffer;
  1660. if (!cpu_isset(cpu, buffer->cpumask))
  1661. return 1;
  1662. cpu_buffer = buffer->buffers[cpu];
  1663. return rb_per_cpu_empty(cpu_buffer);
  1664. }
  1665. /**
  1666. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  1667. * @buffer_a: One buffer to swap with
  1668. * @buffer_b: The other buffer to swap with
  1669. *
  1670. * This function is useful for tracers that want to take a "snapshot"
  1671. * of a CPU buffer and has another back up buffer lying around.
  1672. * it is expected that the tracer handles the cpu buffer not being
  1673. * used at the moment.
  1674. */
  1675. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  1676. struct ring_buffer *buffer_b, int cpu)
  1677. {
  1678. struct ring_buffer_per_cpu *cpu_buffer_a;
  1679. struct ring_buffer_per_cpu *cpu_buffer_b;
  1680. if (!cpu_isset(cpu, buffer_a->cpumask) ||
  1681. !cpu_isset(cpu, buffer_b->cpumask))
  1682. return -EINVAL;
  1683. /* At least make sure the two buffers are somewhat the same */
  1684. if (buffer_a->size != buffer_b->size ||
  1685. buffer_a->pages != buffer_b->pages)
  1686. return -EINVAL;
  1687. cpu_buffer_a = buffer_a->buffers[cpu];
  1688. cpu_buffer_b = buffer_b->buffers[cpu];
  1689. /*
  1690. * We can't do a synchronize_sched here because this
  1691. * function can be called in atomic context.
  1692. * Normally this will be called from the same CPU as cpu.
  1693. * If not it's up to the caller to protect this.
  1694. */
  1695. atomic_inc(&cpu_buffer_a->record_disabled);
  1696. atomic_inc(&cpu_buffer_b->record_disabled);
  1697. buffer_a->buffers[cpu] = cpu_buffer_b;
  1698. buffer_b->buffers[cpu] = cpu_buffer_a;
  1699. cpu_buffer_b->buffer = buffer_a;
  1700. cpu_buffer_a->buffer = buffer_b;
  1701. atomic_dec(&cpu_buffer_a->record_disabled);
  1702. atomic_dec(&cpu_buffer_b->record_disabled);
  1703. return 0;
  1704. }