xfs_log_recover.c 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_error.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_dinode.h"
  33. #include "xfs_inode.h"
  34. #include "xfs_inode_item.h"
  35. #include "xfs_alloc.h"
  36. #include "xfs_ialloc.h"
  37. #include "xfs_log_priv.h"
  38. #include "xfs_buf_item.h"
  39. #include "xfs_log_recover.h"
  40. #include "xfs_extfree_item.h"
  41. #include "xfs_trans_priv.h"
  42. #include "xfs_quota.h"
  43. #include "xfs_rw.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_trace.h"
  46. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  47. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  48. #if defined(DEBUG)
  49. STATIC void xlog_recover_check_summary(xlog_t *);
  50. #else
  51. #define xlog_recover_check_summary(log)
  52. #endif
  53. /*
  54. * This structure is used during recovery to record the buf log items which
  55. * have been canceled and should not be replayed.
  56. */
  57. struct xfs_buf_cancel {
  58. xfs_daddr_t bc_blkno;
  59. uint bc_len;
  60. int bc_refcount;
  61. struct list_head bc_list;
  62. };
  63. /*
  64. * Sector aligned buffer routines for buffer create/read/write/access
  65. */
  66. /*
  67. * Verify the given count of basic blocks is valid number of blocks
  68. * to specify for an operation involving the given XFS log buffer.
  69. * Returns nonzero if the count is valid, 0 otherwise.
  70. */
  71. static inline int
  72. xlog_buf_bbcount_valid(
  73. xlog_t *log,
  74. int bbcount)
  75. {
  76. return bbcount > 0 && bbcount <= log->l_logBBsize;
  77. }
  78. /*
  79. * Allocate a buffer to hold log data. The buffer needs to be able
  80. * to map to a range of nbblks basic blocks at any valid (basic
  81. * block) offset within the log.
  82. */
  83. STATIC xfs_buf_t *
  84. xlog_get_bp(
  85. xlog_t *log,
  86. int nbblks)
  87. {
  88. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  89. xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
  90. nbblks);
  91. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  92. return NULL;
  93. }
  94. /*
  95. * We do log I/O in units of log sectors (a power-of-2
  96. * multiple of the basic block size), so we round up the
  97. * requested size to acommodate the basic blocks required
  98. * for complete log sectors.
  99. *
  100. * In addition, the buffer may be used for a non-sector-
  101. * aligned block offset, in which case an I/O of the
  102. * requested size could extend beyond the end of the
  103. * buffer. If the requested size is only 1 basic block it
  104. * will never straddle a sector boundary, so this won't be
  105. * an issue. Nor will this be a problem if the log I/O is
  106. * done in basic blocks (sector size 1). But otherwise we
  107. * extend the buffer by one extra log sector to ensure
  108. * there's space to accomodate this possiblility.
  109. */
  110. if (nbblks > 1 && log->l_sectBBsize > 1)
  111. nbblks += log->l_sectBBsize;
  112. nbblks = round_up(nbblks, log->l_sectBBsize);
  113. return xfs_buf_get_uncached(log->l_mp->m_logdev_targp,
  114. BBTOB(nbblks), 0);
  115. }
  116. STATIC void
  117. xlog_put_bp(
  118. xfs_buf_t *bp)
  119. {
  120. xfs_buf_free(bp);
  121. }
  122. /*
  123. * Return the address of the start of the given block number's data
  124. * in a log buffer. The buffer covers a log sector-aligned region.
  125. */
  126. STATIC xfs_caddr_t
  127. xlog_align(
  128. xlog_t *log,
  129. xfs_daddr_t blk_no,
  130. int nbblks,
  131. xfs_buf_t *bp)
  132. {
  133. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  134. ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
  135. return XFS_BUF_PTR(bp) + BBTOB(offset);
  136. }
  137. /*
  138. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  139. */
  140. STATIC int
  141. xlog_bread_noalign(
  142. xlog_t *log,
  143. xfs_daddr_t blk_no,
  144. int nbblks,
  145. xfs_buf_t *bp)
  146. {
  147. int error;
  148. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  149. xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
  150. nbblks);
  151. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  152. return EFSCORRUPTED;
  153. }
  154. blk_no = round_down(blk_no, log->l_sectBBsize);
  155. nbblks = round_up(nbblks, log->l_sectBBsize);
  156. ASSERT(nbblks > 0);
  157. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  158. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  159. XFS_BUF_READ(bp);
  160. XFS_BUF_BUSY(bp);
  161. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  162. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  163. xfsbdstrat(log->l_mp, bp);
  164. error = xfs_buf_iowait(bp);
  165. if (error)
  166. xfs_ioerror_alert("xlog_bread", log->l_mp,
  167. bp, XFS_BUF_ADDR(bp));
  168. return error;
  169. }
  170. STATIC int
  171. xlog_bread(
  172. xlog_t *log,
  173. xfs_daddr_t blk_no,
  174. int nbblks,
  175. xfs_buf_t *bp,
  176. xfs_caddr_t *offset)
  177. {
  178. int error;
  179. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  180. if (error)
  181. return error;
  182. *offset = xlog_align(log, blk_no, nbblks, bp);
  183. return 0;
  184. }
  185. /*
  186. * Write out the buffer at the given block for the given number of blocks.
  187. * The buffer is kept locked across the write and is returned locked.
  188. * This can only be used for synchronous log writes.
  189. */
  190. STATIC int
  191. xlog_bwrite(
  192. xlog_t *log,
  193. xfs_daddr_t blk_no,
  194. int nbblks,
  195. xfs_buf_t *bp)
  196. {
  197. int error;
  198. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  199. xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
  200. nbblks);
  201. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  202. return EFSCORRUPTED;
  203. }
  204. blk_no = round_down(blk_no, log->l_sectBBsize);
  205. nbblks = round_up(nbblks, log->l_sectBBsize);
  206. ASSERT(nbblks > 0);
  207. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  208. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  209. XFS_BUF_ZEROFLAGS(bp);
  210. XFS_BUF_BUSY(bp);
  211. XFS_BUF_HOLD(bp);
  212. XFS_BUF_PSEMA(bp, PRIBIO);
  213. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  214. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  215. if ((error = xfs_bwrite(log->l_mp, bp)))
  216. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  217. bp, XFS_BUF_ADDR(bp));
  218. return error;
  219. }
  220. #ifdef DEBUG
  221. /*
  222. * dump debug superblock and log record information
  223. */
  224. STATIC void
  225. xlog_header_check_dump(
  226. xfs_mount_t *mp,
  227. xlog_rec_header_t *head)
  228. {
  229. cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
  230. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  231. cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
  232. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  233. }
  234. #else
  235. #define xlog_header_check_dump(mp, head)
  236. #endif
  237. /*
  238. * check log record header for recovery
  239. */
  240. STATIC int
  241. xlog_header_check_recover(
  242. xfs_mount_t *mp,
  243. xlog_rec_header_t *head)
  244. {
  245. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  246. /*
  247. * IRIX doesn't write the h_fmt field and leaves it zeroed
  248. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  249. * a dirty log created in IRIX.
  250. */
  251. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  252. xlog_warn(
  253. "XFS: dirty log written in incompatible format - can't recover");
  254. xlog_header_check_dump(mp, head);
  255. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  256. XFS_ERRLEVEL_HIGH, mp);
  257. return XFS_ERROR(EFSCORRUPTED);
  258. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  259. xlog_warn(
  260. "XFS: dirty log entry has mismatched uuid - can't recover");
  261. xlog_header_check_dump(mp, head);
  262. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  263. XFS_ERRLEVEL_HIGH, mp);
  264. return XFS_ERROR(EFSCORRUPTED);
  265. }
  266. return 0;
  267. }
  268. /*
  269. * read the head block of the log and check the header
  270. */
  271. STATIC int
  272. xlog_header_check_mount(
  273. xfs_mount_t *mp,
  274. xlog_rec_header_t *head)
  275. {
  276. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  277. if (uuid_is_nil(&head->h_fs_uuid)) {
  278. /*
  279. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  280. * h_fs_uuid is nil, we assume this log was last mounted
  281. * by IRIX and continue.
  282. */
  283. xlog_warn("XFS: nil uuid in log - IRIX style log");
  284. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  285. xlog_warn("XFS: log has mismatched uuid - can't recover");
  286. xlog_header_check_dump(mp, head);
  287. XFS_ERROR_REPORT("xlog_header_check_mount",
  288. XFS_ERRLEVEL_HIGH, mp);
  289. return XFS_ERROR(EFSCORRUPTED);
  290. }
  291. return 0;
  292. }
  293. STATIC void
  294. xlog_recover_iodone(
  295. struct xfs_buf *bp)
  296. {
  297. if (XFS_BUF_GETERROR(bp)) {
  298. /*
  299. * We're not going to bother about retrying
  300. * this during recovery. One strike!
  301. */
  302. xfs_ioerror_alert("xlog_recover_iodone",
  303. bp->b_target->bt_mount, bp,
  304. XFS_BUF_ADDR(bp));
  305. xfs_force_shutdown(bp->b_target->bt_mount,
  306. SHUTDOWN_META_IO_ERROR);
  307. }
  308. XFS_BUF_CLR_IODONE_FUNC(bp);
  309. xfs_buf_ioend(bp, 0);
  310. }
  311. /*
  312. * This routine finds (to an approximation) the first block in the physical
  313. * log which contains the given cycle. It uses a binary search algorithm.
  314. * Note that the algorithm can not be perfect because the disk will not
  315. * necessarily be perfect.
  316. */
  317. STATIC int
  318. xlog_find_cycle_start(
  319. xlog_t *log,
  320. xfs_buf_t *bp,
  321. xfs_daddr_t first_blk,
  322. xfs_daddr_t *last_blk,
  323. uint cycle)
  324. {
  325. xfs_caddr_t offset;
  326. xfs_daddr_t mid_blk;
  327. xfs_daddr_t end_blk;
  328. uint mid_cycle;
  329. int error;
  330. end_blk = *last_blk;
  331. mid_blk = BLK_AVG(first_blk, end_blk);
  332. while (mid_blk != first_blk && mid_blk != end_blk) {
  333. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  334. if (error)
  335. return error;
  336. mid_cycle = xlog_get_cycle(offset);
  337. if (mid_cycle == cycle)
  338. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  339. else
  340. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  341. mid_blk = BLK_AVG(first_blk, end_blk);
  342. }
  343. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  344. (mid_blk == end_blk && mid_blk-1 == first_blk));
  345. *last_blk = end_blk;
  346. return 0;
  347. }
  348. /*
  349. * Check that a range of blocks does not contain stop_on_cycle_no.
  350. * Fill in *new_blk with the block offset where such a block is
  351. * found, or with -1 (an invalid block number) if there is no such
  352. * block in the range. The scan needs to occur from front to back
  353. * and the pointer into the region must be updated since a later
  354. * routine will need to perform another test.
  355. */
  356. STATIC int
  357. xlog_find_verify_cycle(
  358. xlog_t *log,
  359. xfs_daddr_t start_blk,
  360. int nbblks,
  361. uint stop_on_cycle_no,
  362. xfs_daddr_t *new_blk)
  363. {
  364. xfs_daddr_t i, j;
  365. uint cycle;
  366. xfs_buf_t *bp;
  367. xfs_daddr_t bufblks;
  368. xfs_caddr_t buf = NULL;
  369. int error = 0;
  370. /*
  371. * Greedily allocate a buffer big enough to handle the full
  372. * range of basic blocks we'll be examining. If that fails,
  373. * try a smaller size. We need to be able to read at least
  374. * a log sector, or we're out of luck.
  375. */
  376. bufblks = 1 << ffs(nbblks);
  377. while (!(bp = xlog_get_bp(log, bufblks))) {
  378. bufblks >>= 1;
  379. if (bufblks < log->l_sectBBsize)
  380. return ENOMEM;
  381. }
  382. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  383. int bcount;
  384. bcount = min(bufblks, (start_blk + nbblks - i));
  385. error = xlog_bread(log, i, bcount, bp, &buf);
  386. if (error)
  387. goto out;
  388. for (j = 0; j < bcount; j++) {
  389. cycle = xlog_get_cycle(buf);
  390. if (cycle == stop_on_cycle_no) {
  391. *new_blk = i+j;
  392. goto out;
  393. }
  394. buf += BBSIZE;
  395. }
  396. }
  397. *new_blk = -1;
  398. out:
  399. xlog_put_bp(bp);
  400. return error;
  401. }
  402. /*
  403. * Potentially backup over partial log record write.
  404. *
  405. * In the typical case, last_blk is the number of the block directly after
  406. * a good log record. Therefore, we subtract one to get the block number
  407. * of the last block in the given buffer. extra_bblks contains the number
  408. * of blocks we would have read on a previous read. This happens when the
  409. * last log record is split over the end of the physical log.
  410. *
  411. * extra_bblks is the number of blocks potentially verified on a previous
  412. * call to this routine.
  413. */
  414. STATIC int
  415. xlog_find_verify_log_record(
  416. xlog_t *log,
  417. xfs_daddr_t start_blk,
  418. xfs_daddr_t *last_blk,
  419. int extra_bblks)
  420. {
  421. xfs_daddr_t i;
  422. xfs_buf_t *bp;
  423. xfs_caddr_t offset = NULL;
  424. xlog_rec_header_t *head = NULL;
  425. int error = 0;
  426. int smallmem = 0;
  427. int num_blks = *last_blk - start_blk;
  428. int xhdrs;
  429. ASSERT(start_blk != 0 || *last_blk != start_blk);
  430. if (!(bp = xlog_get_bp(log, num_blks))) {
  431. if (!(bp = xlog_get_bp(log, 1)))
  432. return ENOMEM;
  433. smallmem = 1;
  434. } else {
  435. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  436. if (error)
  437. goto out;
  438. offset += ((num_blks - 1) << BBSHIFT);
  439. }
  440. for (i = (*last_blk) - 1; i >= 0; i--) {
  441. if (i < start_blk) {
  442. /* valid log record not found */
  443. xlog_warn(
  444. "XFS: Log inconsistent (didn't find previous header)");
  445. ASSERT(0);
  446. error = XFS_ERROR(EIO);
  447. goto out;
  448. }
  449. if (smallmem) {
  450. error = xlog_bread(log, i, 1, bp, &offset);
  451. if (error)
  452. goto out;
  453. }
  454. head = (xlog_rec_header_t *)offset;
  455. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  456. break;
  457. if (!smallmem)
  458. offset -= BBSIZE;
  459. }
  460. /*
  461. * We hit the beginning of the physical log & still no header. Return
  462. * to caller. If caller can handle a return of -1, then this routine
  463. * will be called again for the end of the physical log.
  464. */
  465. if (i == -1) {
  466. error = -1;
  467. goto out;
  468. }
  469. /*
  470. * We have the final block of the good log (the first block
  471. * of the log record _before_ the head. So we check the uuid.
  472. */
  473. if ((error = xlog_header_check_mount(log->l_mp, head)))
  474. goto out;
  475. /*
  476. * We may have found a log record header before we expected one.
  477. * last_blk will be the 1st block # with a given cycle #. We may end
  478. * up reading an entire log record. In this case, we don't want to
  479. * reset last_blk. Only when last_blk points in the middle of a log
  480. * record do we update last_blk.
  481. */
  482. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  483. uint h_size = be32_to_cpu(head->h_size);
  484. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  485. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  486. xhdrs++;
  487. } else {
  488. xhdrs = 1;
  489. }
  490. if (*last_blk - i + extra_bblks !=
  491. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  492. *last_blk = i;
  493. out:
  494. xlog_put_bp(bp);
  495. return error;
  496. }
  497. /*
  498. * Head is defined to be the point of the log where the next log write
  499. * write could go. This means that incomplete LR writes at the end are
  500. * eliminated when calculating the head. We aren't guaranteed that previous
  501. * LR have complete transactions. We only know that a cycle number of
  502. * current cycle number -1 won't be present in the log if we start writing
  503. * from our current block number.
  504. *
  505. * last_blk contains the block number of the first block with a given
  506. * cycle number.
  507. *
  508. * Return: zero if normal, non-zero if error.
  509. */
  510. STATIC int
  511. xlog_find_head(
  512. xlog_t *log,
  513. xfs_daddr_t *return_head_blk)
  514. {
  515. xfs_buf_t *bp;
  516. xfs_caddr_t offset;
  517. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  518. int num_scan_bblks;
  519. uint first_half_cycle, last_half_cycle;
  520. uint stop_on_cycle;
  521. int error, log_bbnum = log->l_logBBsize;
  522. /* Is the end of the log device zeroed? */
  523. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  524. *return_head_blk = first_blk;
  525. /* Is the whole lot zeroed? */
  526. if (!first_blk) {
  527. /* Linux XFS shouldn't generate totally zeroed logs -
  528. * mkfs etc write a dummy unmount record to a fresh
  529. * log so we can store the uuid in there
  530. */
  531. xlog_warn("XFS: totally zeroed log");
  532. }
  533. return 0;
  534. } else if (error) {
  535. xlog_warn("XFS: empty log check failed");
  536. return error;
  537. }
  538. first_blk = 0; /* get cycle # of 1st block */
  539. bp = xlog_get_bp(log, 1);
  540. if (!bp)
  541. return ENOMEM;
  542. error = xlog_bread(log, 0, 1, bp, &offset);
  543. if (error)
  544. goto bp_err;
  545. first_half_cycle = xlog_get_cycle(offset);
  546. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  547. error = xlog_bread(log, last_blk, 1, bp, &offset);
  548. if (error)
  549. goto bp_err;
  550. last_half_cycle = xlog_get_cycle(offset);
  551. ASSERT(last_half_cycle != 0);
  552. /*
  553. * If the 1st half cycle number is equal to the last half cycle number,
  554. * then the entire log is stamped with the same cycle number. In this
  555. * case, head_blk can't be set to zero (which makes sense). The below
  556. * math doesn't work out properly with head_blk equal to zero. Instead,
  557. * we set it to log_bbnum which is an invalid block number, but this
  558. * value makes the math correct. If head_blk doesn't changed through
  559. * all the tests below, *head_blk is set to zero at the very end rather
  560. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  561. * in a circular file.
  562. */
  563. if (first_half_cycle == last_half_cycle) {
  564. /*
  565. * In this case we believe that the entire log should have
  566. * cycle number last_half_cycle. We need to scan backwards
  567. * from the end verifying that there are no holes still
  568. * containing last_half_cycle - 1. If we find such a hole,
  569. * then the start of that hole will be the new head. The
  570. * simple case looks like
  571. * x | x ... | x - 1 | x
  572. * Another case that fits this picture would be
  573. * x | x + 1 | x ... | x
  574. * In this case the head really is somewhere at the end of the
  575. * log, as one of the latest writes at the beginning was
  576. * incomplete.
  577. * One more case is
  578. * x | x + 1 | x ... | x - 1 | x
  579. * This is really the combination of the above two cases, and
  580. * the head has to end up at the start of the x-1 hole at the
  581. * end of the log.
  582. *
  583. * In the 256k log case, we will read from the beginning to the
  584. * end of the log and search for cycle numbers equal to x-1.
  585. * We don't worry about the x+1 blocks that we encounter,
  586. * because we know that they cannot be the head since the log
  587. * started with x.
  588. */
  589. head_blk = log_bbnum;
  590. stop_on_cycle = last_half_cycle - 1;
  591. } else {
  592. /*
  593. * In this case we want to find the first block with cycle
  594. * number matching last_half_cycle. We expect the log to be
  595. * some variation on
  596. * x + 1 ... | x ... | x
  597. * The first block with cycle number x (last_half_cycle) will
  598. * be where the new head belongs. First we do a binary search
  599. * for the first occurrence of last_half_cycle. The binary
  600. * search may not be totally accurate, so then we scan back
  601. * from there looking for occurrences of last_half_cycle before
  602. * us. If that backwards scan wraps around the beginning of
  603. * the log, then we look for occurrences of last_half_cycle - 1
  604. * at the end of the log. The cases we're looking for look
  605. * like
  606. * v binary search stopped here
  607. * x + 1 ... | x | x + 1 | x ... | x
  608. * ^ but we want to locate this spot
  609. * or
  610. * <---------> less than scan distance
  611. * x + 1 ... | x ... | x - 1 | x
  612. * ^ we want to locate this spot
  613. */
  614. stop_on_cycle = last_half_cycle;
  615. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  616. &head_blk, last_half_cycle)))
  617. goto bp_err;
  618. }
  619. /*
  620. * Now validate the answer. Scan back some number of maximum possible
  621. * blocks and make sure each one has the expected cycle number. The
  622. * maximum is determined by the total possible amount of buffering
  623. * in the in-core log. The following number can be made tighter if
  624. * we actually look at the block size of the filesystem.
  625. */
  626. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  627. if (head_blk >= num_scan_bblks) {
  628. /*
  629. * We are guaranteed that the entire check can be performed
  630. * in one buffer.
  631. */
  632. start_blk = head_blk - num_scan_bblks;
  633. if ((error = xlog_find_verify_cycle(log,
  634. start_blk, num_scan_bblks,
  635. stop_on_cycle, &new_blk)))
  636. goto bp_err;
  637. if (new_blk != -1)
  638. head_blk = new_blk;
  639. } else { /* need to read 2 parts of log */
  640. /*
  641. * We are going to scan backwards in the log in two parts.
  642. * First we scan the physical end of the log. In this part
  643. * of the log, we are looking for blocks with cycle number
  644. * last_half_cycle - 1.
  645. * If we find one, then we know that the log starts there, as
  646. * we've found a hole that didn't get written in going around
  647. * the end of the physical log. The simple case for this is
  648. * x + 1 ... | x ... | x - 1 | x
  649. * <---------> less than scan distance
  650. * If all of the blocks at the end of the log have cycle number
  651. * last_half_cycle, then we check the blocks at the start of
  652. * the log looking for occurrences of last_half_cycle. If we
  653. * find one, then our current estimate for the location of the
  654. * first occurrence of last_half_cycle is wrong and we move
  655. * back to the hole we've found. This case looks like
  656. * x + 1 ... | x | x + 1 | x ...
  657. * ^ binary search stopped here
  658. * Another case we need to handle that only occurs in 256k
  659. * logs is
  660. * x + 1 ... | x ... | x+1 | x ...
  661. * ^ binary search stops here
  662. * In a 256k log, the scan at the end of the log will see the
  663. * x + 1 blocks. We need to skip past those since that is
  664. * certainly not the head of the log. By searching for
  665. * last_half_cycle-1 we accomplish that.
  666. */
  667. ASSERT(head_blk <= INT_MAX &&
  668. (xfs_daddr_t) num_scan_bblks >= head_blk);
  669. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  670. if ((error = xlog_find_verify_cycle(log, start_blk,
  671. num_scan_bblks - (int)head_blk,
  672. (stop_on_cycle - 1), &new_blk)))
  673. goto bp_err;
  674. if (new_blk != -1) {
  675. head_blk = new_blk;
  676. goto validate_head;
  677. }
  678. /*
  679. * Scan beginning of log now. The last part of the physical
  680. * log is good. This scan needs to verify that it doesn't find
  681. * the last_half_cycle.
  682. */
  683. start_blk = 0;
  684. ASSERT(head_blk <= INT_MAX);
  685. if ((error = xlog_find_verify_cycle(log,
  686. start_blk, (int)head_blk,
  687. stop_on_cycle, &new_blk)))
  688. goto bp_err;
  689. if (new_blk != -1)
  690. head_blk = new_blk;
  691. }
  692. validate_head:
  693. /*
  694. * Now we need to make sure head_blk is not pointing to a block in
  695. * the middle of a log record.
  696. */
  697. num_scan_bblks = XLOG_REC_SHIFT(log);
  698. if (head_blk >= num_scan_bblks) {
  699. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  700. /* start ptr at last block ptr before head_blk */
  701. if ((error = xlog_find_verify_log_record(log, start_blk,
  702. &head_blk, 0)) == -1) {
  703. error = XFS_ERROR(EIO);
  704. goto bp_err;
  705. } else if (error)
  706. goto bp_err;
  707. } else {
  708. start_blk = 0;
  709. ASSERT(head_blk <= INT_MAX);
  710. if ((error = xlog_find_verify_log_record(log, start_blk,
  711. &head_blk, 0)) == -1) {
  712. /* We hit the beginning of the log during our search */
  713. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  714. new_blk = log_bbnum;
  715. ASSERT(start_blk <= INT_MAX &&
  716. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  717. ASSERT(head_blk <= INT_MAX);
  718. if ((error = xlog_find_verify_log_record(log,
  719. start_blk, &new_blk,
  720. (int)head_blk)) == -1) {
  721. error = XFS_ERROR(EIO);
  722. goto bp_err;
  723. } else if (error)
  724. goto bp_err;
  725. if (new_blk != log_bbnum)
  726. head_blk = new_blk;
  727. } else if (error)
  728. goto bp_err;
  729. }
  730. xlog_put_bp(bp);
  731. if (head_blk == log_bbnum)
  732. *return_head_blk = 0;
  733. else
  734. *return_head_blk = head_blk;
  735. /*
  736. * When returning here, we have a good block number. Bad block
  737. * means that during a previous crash, we didn't have a clean break
  738. * from cycle number N to cycle number N-1. In this case, we need
  739. * to find the first block with cycle number N-1.
  740. */
  741. return 0;
  742. bp_err:
  743. xlog_put_bp(bp);
  744. if (error)
  745. xlog_warn("XFS: failed to find log head");
  746. return error;
  747. }
  748. /*
  749. * Find the sync block number or the tail of the log.
  750. *
  751. * This will be the block number of the last record to have its
  752. * associated buffers synced to disk. Every log record header has
  753. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  754. * to get a sync block number. The only concern is to figure out which
  755. * log record header to believe.
  756. *
  757. * The following algorithm uses the log record header with the largest
  758. * lsn. The entire log record does not need to be valid. We only care
  759. * that the header is valid.
  760. *
  761. * We could speed up search by using current head_blk buffer, but it is not
  762. * available.
  763. */
  764. STATIC int
  765. xlog_find_tail(
  766. xlog_t *log,
  767. xfs_daddr_t *head_blk,
  768. xfs_daddr_t *tail_blk)
  769. {
  770. xlog_rec_header_t *rhead;
  771. xlog_op_header_t *op_head;
  772. xfs_caddr_t offset = NULL;
  773. xfs_buf_t *bp;
  774. int error, i, found;
  775. xfs_daddr_t umount_data_blk;
  776. xfs_daddr_t after_umount_blk;
  777. xfs_lsn_t tail_lsn;
  778. int hblks;
  779. found = 0;
  780. /*
  781. * Find previous log record
  782. */
  783. if ((error = xlog_find_head(log, head_blk)))
  784. return error;
  785. bp = xlog_get_bp(log, 1);
  786. if (!bp)
  787. return ENOMEM;
  788. if (*head_blk == 0) { /* special case */
  789. error = xlog_bread(log, 0, 1, bp, &offset);
  790. if (error)
  791. goto done;
  792. if (xlog_get_cycle(offset) == 0) {
  793. *tail_blk = 0;
  794. /* leave all other log inited values alone */
  795. goto done;
  796. }
  797. }
  798. /*
  799. * Search backwards looking for log record header block
  800. */
  801. ASSERT(*head_blk < INT_MAX);
  802. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  803. error = xlog_bread(log, i, 1, bp, &offset);
  804. if (error)
  805. goto done;
  806. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  807. found = 1;
  808. break;
  809. }
  810. }
  811. /*
  812. * If we haven't found the log record header block, start looking
  813. * again from the end of the physical log. XXXmiken: There should be
  814. * a check here to make sure we didn't search more than N blocks in
  815. * the previous code.
  816. */
  817. if (!found) {
  818. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  819. error = xlog_bread(log, i, 1, bp, &offset);
  820. if (error)
  821. goto done;
  822. if (XLOG_HEADER_MAGIC_NUM ==
  823. be32_to_cpu(*(__be32 *)offset)) {
  824. found = 2;
  825. break;
  826. }
  827. }
  828. }
  829. if (!found) {
  830. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  831. ASSERT(0);
  832. return XFS_ERROR(EIO);
  833. }
  834. /* find blk_no of tail of log */
  835. rhead = (xlog_rec_header_t *)offset;
  836. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  837. /*
  838. * Reset log values according to the state of the log when we
  839. * crashed. In the case where head_blk == 0, we bump curr_cycle
  840. * one because the next write starts a new cycle rather than
  841. * continuing the cycle of the last good log record. At this
  842. * point we have guaranteed that all partial log records have been
  843. * accounted for. Therefore, we know that the last good log record
  844. * written was complete and ended exactly on the end boundary
  845. * of the physical log.
  846. */
  847. log->l_prev_block = i;
  848. log->l_curr_block = (int)*head_blk;
  849. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  850. if (found == 2)
  851. log->l_curr_cycle++;
  852. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  853. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  854. xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
  855. BBTOB(log->l_curr_block));
  856. xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
  857. BBTOB(log->l_curr_block));
  858. /*
  859. * Look for unmount record. If we find it, then we know there
  860. * was a clean unmount. Since 'i' could be the last block in
  861. * the physical log, we convert to a log block before comparing
  862. * to the head_blk.
  863. *
  864. * Save the current tail lsn to use to pass to
  865. * xlog_clear_stale_blocks() below. We won't want to clear the
  866. * unmount record if there is one, so we pass the lsn of the
  867. * unmount record rather than the block after it.
  868. */
  869. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  870. int h_size = be32_to_cpu(rhead->h_size);
  871. int h_version = be32_to_cpu(rhead->h_version);
  872. if ((h_version & XLOG_VERSION_2) &&
  873. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  874. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  875. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  876. hblks++;
  877. } else {
  878. hblks = 1;
  879. }
  880. } else {
  881. hblks = 1;
  882. }
  883. after_umount_blk = (i + hblks + (int)
  884. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  885. tail_lsn = log->l_tail_lsn;
  886. if (*head_blk == after_umount_blk &&
  887. be32_to_cpu(rhead->h_num_logops) == 1) {
  888. umount_data_blk = (i + hblks) % log->l_logBBsize;
  889. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  890. if (error)
  891. goto done;
  892. op_head = (xlog_op_header_t *)offset;
  893. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  894. /*
  895. * Set tail and last sync so that newly written
  896. * log records will point recovery to after the
  897. * current unmount record.
  898. */
  899. log->l_tail_lsn =
  900. xlog_assign_lsn(log->l_curr_cycle,
  901. after_umount_blk);
  902. log->l_last_sync_lsn =
  903. xlog_assign_lsn(log->l_curr_cycle,
  904. after_umount_blk);
  905. *tail_blk = after_umount_blk;
  906. /*
  907. * Note that the unmount was clean. If the unmount
  908. * was not clean, we need to know this to rebuild the
  909. * superblock counters from the perag headers if we
  910. * have a filesystem using non-persistent counters.
  911. */
  912. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  913. }
  914. }
  915. /*
  916. * Make sure that there are no blocks in front of the head
  917. * with the same cycle number as the head. This can happen
  918. * because we allow multiple outstanding log writes concurrently,
  919. * and the later writes might make it out before earlier ones.
  920. *
  921. * We use the lsn from before modifying it so that we'll never
  922. * overwrite the unmount record after a clean unmount.
  923. *
  924. * Do this only if we are going to recover the filesystem
  925. *
  926. * NOTE: This used to say "if (!readonly)"
  927. * However on Linux, we can & do recover a read-only filesystem.
  928. * We only skip recovery if NORECOVERY is specified on mount,
  929. * in which case we would not be here.
  930. *
  931. * But... if the -device- itself is readonly, just skip this.
  932. * We can't recover this device anyway, so it won't matter.
  933. */
  934. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  935. error = xlog_clear_stale_blocks(log, tail_lsn);
  936. done:
  937. xlog_put_bp(bp);
  938. if (error)
  939. xlog_warn("XFS: failed to locate log tail");
  940. return error;
  941. }
  942. /*
  943. * Is the log zeroed at all?
  944. *
  945. * The last binary search should be changed to perform an X block read
  946. * once X becomes small enough. You can then search linearly through
  947. * the X blocks. This will cut down on the number of reads we need to do.
  948. *
  949. * If the log is partially zeroed, this routine will pass back the blkno
  950. * of the first block with cycle number 0. It won't have a complete LR
  951. * preceding it.
  952. *
  953. * Return:
  954. * 0 => the log is completely written to
  955. * -1 => use *blk_no as the first block of the log
  956. * >0 => error has occurred
  957. */
  958. STATIC int
  959. xlog_find_zeroed(
  960. xlog_t *log,
  961. xfs_daddr_t *blk_no)
  962. {
  963. xfs_buf_t *bp;
  964. xfs_caddr_t offset;
  965. uint first_cycle, last_cycle;
  966. xfs_daddr_t new_blk, last_blk, start_blk;
  967. xfs_daddr_t num_scan_bblks;
  968. int error, log_bbnum = log->l_logBBsize;
  969. *blk_no = 0;
  970. /* check totally zeroed log */
  971. bp = xlog_get_bp(log, 1);
  972. if (!bp)
  973. return ENOMEM;
  974. error = xlog_bread(log, 0, 1, bp, &offset);
  975. if (error)
  976. goto bp_err;
  977. first_cycle = xlog_get_cycle(offset);
  978. if (first_cycle == 0) { /* completely zeroed log */
  979. *blk_no = 0;
  980. xlog_put_bp(bp);
  981. return -1;
  982. }
  983. /* check partially zeroed log */
  984. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  985. if (error)
  986. goto bp_err;
  987. last_cycle = xlog_get_cycle(offset);
  988. if (last_cycle != 0) { /* log completely written to */
  989. xlog_put_bp(bp);
  990. return 0;
  991. } else if (first_cycle != 1) {
  992. /*
  993. * If the cycle of the last block is zero, the cycle of
  994. * the first block must be 1. If it's not, maybe we're
  995. * not looking at a log... Bail out.
  996. */
  997. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  998. return XFS_ERROR(EINVAL);
  999. }
  1000. /* we have a partially zeroed log */
  1001. last_blk = log_bbnum-1;
  1002. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1003. goto bp_err;
  1004. /*
  1005. * Validate the answer. Because there is no way to guarantee that
  1006. * the entire log is made up of log records which are the same size,
  1007. * we scan over the defined maximum blocks. At this point, the maximum
  1008. * is not chosen to mean anything special. XXXmiken
  1009. */
  1010. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1011. ASSERT(num_scan_bblks <= INT_MAX);
  1012. if (last_blk < num_scan_bblks)
  1013. num_scan_bblks = last_blk;
  1014. start_blk = last_blk - num_scan_bblks;
  1015. /*
  1016. * We search for any instances of cycle number 0 that occur before
  1017. * our current estimate of the head. What we're trying to detect is
  1018. * 1 ... | 0 | 1 | 0...
  1019. * ^ binary search ends here
  1020. */
  1021. if ((error = xlog_find_verify_cycle(log, start_blk,
  1022. (int)num_scan_bblks, 0, &new_blk)))
  1023. goto bp_err;
  1024. if (new_blk != -1)
  1025. last_blk = new_blk;
  1026. /*
  1027. * Potentially backup over partial log record write. We don't need
  1028. * to search the end of the log because we know it is zero.
  1029. */
  1030. if ((error = xlog_find_verify_log_record(log, start_blk,
  1031. &last_blk, 0)) == -1) {
  1032. error = XFS_ERROR(EIO);
  1033. goto bp_err;
  1034. } else if (error)
  1035. goto bp_err;
  1036. *blk_no = last_blk;
  1037. bp_err:
  1038. xlog_put_bp(bp);
  1039. if (error)
  1040. return error;
  1041. return -1;
  1042. }
  1043. /*
  1044. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1045. * to initialize a buffer full of empty log record headers and write
  1046. * them into the log.
  1047. */
  1048. STATIC void
  1049. xlog_add_record(
  1050. xlog_t *log,
  1051. xfs_caddr_t buf,
  1052. int cycle,
  1053. int block,
  1054. int tail_cycle,
  1055. int tail_block)
  1056. {
  1057. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1058. memset(buf, 0, BBSIZE);
  1059. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1060. recp->h_cycle = cpu_to_be32(cycle);
  1061. recp->h_version = cpu_to_be32(
  1062. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1063. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1064. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1065. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1066. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1067. }
  1068. STATIC int
  1069. xlog_write_log_records(
  1070. xlog_t *log,
  1071. int cycle,
  1072. int start_block,
  1073. int blocks,
  1074. int tail_cycle,
  1075. int tail_block)
  1076. {
  1077. xfs_caddr_t offset;
  1078. xfs_buf_t *bp;
  1079. int balign, ealign;
  1080. int sectbb = log->l_sectBBsize;
  1081. int end_block = start_block + blocks;
  1082. int bufblks;
  1083. int error = 0;
  1084. int i, j = 0;
  1085. /*
  1086. * Greedily allocate a buffer big enough to handle the full
  1087. * range of basic blocks to be written. If that fails, try
  1088. * a smaller size. We need to be able to write at least a
  1089. * log sector, or we're out of luck.
  1090. */
  1091. bufblks = 1 << ffs(blocks);
  1092. while (!(bp = xlog_get_bp(log, bufblks))) {
  1093. bufblks >>= 1;
  1094. if (bufblks < sectbb)
  1095. return ENOMEM;
  1096. }
  1097. /* We may need to do a read at the start to fill in part of
  1098. * the buffer in the starting sector not covered by the first
  1099. * write below.
  1100. */
  1101. balign = round_down(start_block, sectbb);
  1102. if (balign != start_block) {
  1103. error = xlog_bread_noalign(log, start_block, 1, bp);
  1104. if (error)
  1105. goto out_put_bp;
  1106. j = start_block - balign;
  1107. }
  1108. for (i = start_block; i < end_block; i += bufblks) {
  1109. int bcount, endcount;
  1110. bcount = min(bufblks, end_block - start_block);
  1111. endcount = bcount - j;
  1112. /* We may need to do a read at the end to fill in part of
  1113. * the buffer in the final sector not covered by the write.
  1114. * If this is the same sector as the above read, skip it.
  1115. */
  1116. ealign = round_down(end_block, sectbb);
  1117. if (j == 0 && (start_block + endcount > ealign)) {
  1118. offset = XFS_BUF_PTR(bp);
  1119. balign = BBTOB(ealign - start_block);
  1120. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1121. BBTOB(sectbb));
  1122. if (error)
  1123. break;
  1124. error = xlog_bread_noalign(log, ealign, sectbb, bp);
  1125. if (error)
  1126. break;
  1127. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1128. if (error)
  1129. break;
  1130. }
  1131. offset = xlog_align(log, start_block, endcount, bp);
  1132. for (; j < endcount; j++) {
  1133. xlog_add_record(log, offset, cycle, i+j,
  1134. tail_cycle, tail_block);
  1135. offset += BBSIZE;
  1136. }
  1137. error = xlog_bwrite(log, start_block, endcount, bp);
  1138. if (error)
  1139. break;
  1140. start_block += endcount;
  1141. j = 0;
  1142. }
  1143. out_put_bp:
  1144. xlog_put_bp(bp);
  1145. return error;
  1146. }
  1147. /*
  1148. * This routine is called to blow away any incomplete log writes out
  1149. * in front of the log head. We do this so that we won't become confused
  1150. * if we come up, write only a little bit more, and then crash again.
  1151. * If we leave the partial log records out there, this situation could
  1152. * cause us to think those partial writes are valid blocks since they
  1153. * have the current cycle number. We get rid of them by overwriting them
  1154. * with empty log records with the old cycle number rather than the
  1155. * current one.
  1156. *
  1157. * The tail lsn is passed in rather than taken from
  1158. * the log so that we will not write over the unmount record after a
  1159. * clean unmount in a 512 block log. Doing so would leave the log without
  1160. * any valid log records in it until a new one was written. If we crashed
  1161. * during that time we would not be able to recover.
  1162. */
  1163. STATIC int
  1164. xlog_clear_stale_blocks(
  1165. xlog_t *log,
  1166. xfs_lsn_t tail_lsn)
  1167. {
  1168. int tail_cycle, head_cycle;
  1169. int tail_block, head_block;
  1170. int tail_distance, max_distance;
  1171. int distance;
  1172. int error;
  1173. tail_cycle = CYCLE_LSN(tail_lsn);
  1174. tail_block = BLOCK_LSN(tail_lsn);
  1175. head_cycle = log->l_curr_cycle;
  1176. head_block = log->l_curr_block;
  1177. /*
  1178. * Figure out the distance between the new head of the log
  1179. * and the tail. We want to write over any blocks beyond the
  1180. * head that we may have written just before the crash, but
  1181. * we don't want to overwrite the tail of the log.
  1182. */
  1183. if (head_cycle == tail_cycle) {
  1184. /*
  1185. * The tail is behind the head in the physical log,
  1186. * so the distance from the head to the tail is the
  1187. * distance from the head to the end of the log plus
  1188. * the distance from the beginning of the log to the
  1189. * tail.
  1190. */
  1191. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1192. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1193. XFS_ERRLEVEL_LOW, log->l_mp);
  1194. return XFS_ERROR(EFSCORRUPTED);
  1195. }
  1196. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1197. } else {
  1198. /*
  1199. * The head is behind the tail in the physical log,
  1200. * so the distance from the head to the tail is just
  1201. * the tail block minus the head block.
  1202. */
  1203. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1204. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1205. XFS_ERRLEVEL_LOW, log->l_mp);
  1206. return XFS_ERROR(EFSCORRUPTED);
  1207. }
  1208. tail_distance = tail_block - head_block;
  1209. }
  1210. /*
  1211. * If the head is right up against the tail, we can't clear
  1212. * anything.
  1213. */
  1214. if (tail_distance <= 0) {
  1215. ASSERT(tail_distance == 0);
  1216. return 0;
  1217. }
  1218. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1219. /*
  1220. * Take the smaller of the maximum amount of outstanding I/O
  1221. * we could have and the distance to the tail to clear out.
  1222. * We take the smaller so that we don't overwrite the tail and
  1223. * we don't waste all day writing from the head to the tail
  1224. * for no reason.
  1225. */
  1226. max_distance = MIN(max_distance, tail_distance);
  1227. if ((head_block + max_distance) <= log->l_logBBsize) {
  1228. /*
  1229. * We can stomp all the blocks we need to without
  1230. * wrapping around the end of the log. Just do it
  1231. * in a single write. Use the cycle number of the
  1232. * current cycle minus one so that the log will look like:
  1233. * n ... | n - 1 ...
  1234. */
  1235. error = xlog_write_log_records(log, (head_cycle - 1),
  1236. head_block, max_distance, tail_cycle,
  1237. tail_block);
  1238. if (error)
  1239. return error;
  1240. } else {
  1241. /*
  1242. * We need to wrap around the end of the physical log in
  1243. * order to clear all the blocks. Do it in two separate
  1244. * I/Os. The first write should be from the head to the
  1245. * end of the physical log, and it should use the current
  1246. * cycle number minus one just like above.
  1247. */
  1248. distance = log->l_logBBsize - head_block;
  1249. error = xlog_write_log_records(log, (head_cycle - 1),
  1250. head_block, distance, tail_cycle,
  1251. tail_block);
  1252. if (error)
  1253. return error;
  1254. /*
  1255. * Now write the blocks at the start of the physical log.
  1256. * This writes the remainder of the blocks we want to clear.
  1257. * It uses the current cycle number since we're now on the
  1258. * same cycle as the head so that we get:
  1259. * n ... n ... | n - 1 ...
  1260. * ^^^^^ blocks we're writing
  1261. */
  1262. distance = max_distance - (log->l_logBBsize - head_block);
  1263. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1264. tail_cycle, tail_block);
  1265. if (error)
  1266. return error;
  1267. }
  1268. return 0;
  1269. }
  1270. /******************************************************************************
  1271. *
  1272. * Log recover routines
  1273. *
  1274. ******************************************************************************
  1275. */
  1276. STATIC xlog_recover_t *
  1277. xlog_recover_find_tid(
  1278. struct hlist_head *head,
  1279. xlog_tid_t tid)
  1280. {
  1281. xlog_recover_t *trans;
  1282. struct hlist_node *n;
  1283. hlist_for_each_entry(trans, n, head, r_list) {
  1284. if (trans->r_log_tid == tid)
  1285. return trans;
  1286. }
  1287. return NULL;
  1288. }
  1289. STATIC void
  1290. xlog_recover_new_tid(
  1291. struct hlist_head *head,
  1292. xlog_tid_t tid,
  1293. xfs_lsn_t lsn)
  1294. {
  1295. xlog_recover_t *trans;
  1296. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1297. trans->r_log_tid = tid;
  1298. trans->r_lsn = lsn;
  1299. INIT_LIST_HEAD(&trans->r_itemq);
  1300. INIT_HLIST_NODE(&trans->r_list);
  1301. hlist_add_head(&trans->r_list, head);
  1302. }
  1303. STATIC void
  1304. xlog_recover_add_item(
  1305. struct list_head *head)
  1306. {
  1307. xlog_recover_item_t *item;
  1308. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1309. INIT_LIST_HEAD(&item->ri_list);
  1310. list_add_tail(&item->ri_list, head);
  1311. }
  1312. STATIC int
  1313. xlog_recover_add_to_cont_trans(
  1314. struct log *log,
  1315. xlog_recover_t *trans,
  1316. xfs_caddr_t dp,
  1317. int len)
  1318. {
  1319. xlog_recover_item_t *item;
  1320. xfs_caddr_t ptr, old_ptr;
  1321. int old_len;
  1322. if (list_empty(&trans->r_itemq)) {
  1323. /* finish copying rest of trans header */
  1324. xlog_recover_add_item(&trans->r_itemq);
  1325. ptr = (xfs_caddr_t) &trans->r_theader +
  1326. sizeof(xfs_trans_header_t) - len;
  1327. memcpy(ptr, dp, len); /* d, s, l */
  1328. return 0;
  1329. }
  1330. /* take the tail entry */
  1331. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1332. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1333. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1334. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1335. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1336. item->ri_buf[item->ri_cnt-1].i_len += len;
  1337. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1338. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1339. return 0;
  1340. }
  1341. /*
  1342. * The next region to add is the start of a new region. It could be
  1343. * a whole region or it could be the first part of a new region. Because
  1344. * of this, the assumption here is that the type and size fields of all
  1345. * format structures fit into the first 32 bits of the structure.
  1346. *
  1347. * This works because all regions must be 32 bit aligned. Therefore, we
  1348. * either have both fields or we have neither field. In the case we have
  1349. * neither field, the data part of the region is zero length. We only have
  1350. * a log_op_header and can throw away the header since a new one will appear
  1351. * later. If we have at least 4 bytes, then we can determine how many regions
  1352. * will appear in the current log item.
  1353. */
  1354. STATIC int
  1355. xlog_recover_add_to_trans(
  1356. struct log *log,
  1357. xlog_recover_t *trans,
  1358. xfs_caddr_t dp,
  1359. int len)
  1360. {
  1361. xfs_inode_log_format_t *in_f; /* any will do */
  1362. xlog_recover_item_t *item;
  1363. xfs_caddr_t ptr;
  1364. if (!len)
  1365. return 0;
  1366. if (list_empty(&trans->r_itemq)) {
  1367. /* we need to catch log corruptions here */
  1368. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1369. xlog_warn("XFS: xlog_recover_add_to_trans: "
  1370. "bad header magic number");
  1371. ASSERT(0);
  1372. return XFS_ERROR(EIO);
  1373. }
  1374. if (len == sizeof(xfs_trans_header_t))
  1375. xlog_recover_add_item(&trans->r_itemq);
  1376. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1377. return 0;
  1378. }
  1379. ptr = kmem_alloc(len, KM_SLEEP);
  1380. memcpy(ptr, dp, len);
  1381. in_f = (xfs_inode_log_format_t *)ptr;
  1382. /* take the tail entry */
  1383. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1384. if (item->ri_total != 0 &&
  1385. item->ri_total == item->ri_cnt) {
  1386. /* tail item is in use, get a new one */
  1387. xlog_recover_add_item(&trans->r_itemq);
  1388. item = list_entry(trans->r_itemq.prev,
  1389. xlog_recover_item_t, ri_list);
  1390. }
  1391. if (item->ri_total == 0) { /* first region to be added */
  1392. if (in_f->ilf_size == 0 ||
  1393. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1394. xlog_warn(
  1395. "XFS: bad number of regions (%d) in inode log format",
  1396. in_f->ilf_size);
  1397. ASSERT(0);
  1398. return XFS_ERROR(EIO);
  1399. }
  1400. item->ri_total = in_f->ilf_size;
  1401. item->ri_buf =
  1402. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1403. KM_SLEEP);
  1404. }
  1405. ASSERT(item->ri_total > item->ri_cnt);
  1406. /* Description region is ri_buf[0] */
  1407. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1408. item->ri_buf[item->ri_cnt].i_len = len;
  1409. item->ri_cnt++;
  1410. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1411. return 0;
  1412. }
  1413. /*
  1414. * Sort the log items in the transaction. Cancelled buffers need
  1415. * to be put first so they are processed before any items that might
  1416. * modify the buffers. If they are cancelled, then the modifications
  1417. * don't need to be replayed.
  1418. */
  1419. STATIC int
  1420. xlog_recover_reorder_trans(
  1421. struct log *log,
  1422. xlog_recover_t *trans,
  1423. int pass)
  1424. {
  1425. xlog_recover_item_t *item, *n;
  1426. LIST_HEAD(sort_list);
  1427. list_splice_init(&trans->r_itemq, &sort_list);
  1428. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1429. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1430. switch (ITEM_TYPE(item)) {
  1431. case XFS_LI_BUF:
  1432. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1433. trace_xfs_log_recover_item_reorder_head(log,
  1434. trans, item, pass);
  1435. list_move(&item->ri_list, &trans->r_itemq);
  1436. break;
  1437. }
  1438. case XFS_LI_INODE:
  1439. case XFS_LI_DQUOT:
  1440. case XFS_LI_QUOTAOFF:
  1441. case XFS_LI_EFD:
  1442. case XFS_LI_EFI:
  1443. trace_xfs_log_recover_item_reorder_tail(log,
  1444. trans, item, pass);
  1445. list_move_tail(&item->ri_list, &trans->r_itemq);
  1446. break;
  1447. default:
  1448. xlog_warn(
  1449. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1450. ASSERT(0);
  1451. return XFS_ERROR(EIO);
  1452. }
  1453. }
  1454. ASSERT(list_empty(&sort_list));
  1455. return 0;
  1456. }
  1457. /*
  1458. * Build up the table of buf cancel records so that we don't replay
  1459. * cancelled data in the second pass. For buffer records that are
  1460. * not cancel records, there is nothing to do here so we just return.
  1461. *
  1462. * If we get a cancel record which is already in the table, this indicates
  1463. * that the buffer was cancelled multiple times. In order to ensure
  1464. * that during pass 2 we keep the record in the table until we reach its
  1465. * last occurrence in the log, we keep a reference count in the cancel
  1466. * record in the table to tell us how many times we expect to see this
  1467. * record during the second pass.
  1468. */
  1469. STATIC int
  1470. xlog_recover_buffer_pass1(
  1471. struct log *log,
  1472. xlog_recover_item_t *item)
  1473. {
  1474. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1475. struct list_head *bucket;
  1476. struct xfs_buf_cancel *bcp;
  1477. /*
  1478. * If this isn't a cancel buffer item, then just return.
  1479. */
  1480. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1481. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1482. return 0;
  1483. }
  1484. /*
  1485. * Insert an xfs_buf_cancel record into the hash table of them.
  1486. * If there is already an identical record, bump its reference count.
  1487. */
  1488. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1489. list_for_each_entry(bcp, bucket, bc_list) {
  1490. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1491. bcp->bc_len == buf_f->blf_len) {
  1492. bcp->bc_refcount++;
  1493. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1494. return 0;
  1495. }
  1496. }
  1497. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1498. bcp->bc_blkno = buf_f->blf_blkno;
  1499. bcp->bc_len = buf_f->blf_len;
  1500. bcp->bc_refcount = 1;
  1501. list_add_tail(&bcp->bc_list, bucket);
  1502. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1503. return 0;
  1504. }
  1505. /*
  1506. * Check to see whether the buffer being recovered has a corresponding
  1507. * entry in the buffer cancel record table. If it does then return 1
  1508. * so that it will be cancelled, otherwise return 0. If the buffer is
  1509. * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
  1510. * the refcount on the entry in the table and remove it from the table
  1511. * if this is the last reference.
  1512. *
  1513. * We remove the cancel record from the table when we encounter its
  1514. * last occurrence in the log so that if the same buffer is re-used
  1515. * again after its last cancellation we actually replay the changes
  1516. * made at that point.
  1517. */
  1518. STATIC int
  1519. xlog_check_buffer_cancelled(
  1520. struct log *log,
  1521. xfs_daddr_t blkno,
  1522. uint len,
  1523. ushort flags)
  1524. {
  1525. struct list_head *bucket;
  1526. struct xfs_buf_cancel *bcp;
  1527. if (log->l_buf_cancel_table == NULL) {
  1528. /*
  1529. * There is nothing in the table built in pass one,
  1530. * so this buffer must not be cancelled.
  1531. */
  1532. ASSERT(!(flags & XFS_BLF_CANCEL));
  1533. return 0;
  1534. }
  1535. /*
  1536. * Search for an entry in the cancel table that matches our buffer.
  1537. */
  1538. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1539. list_for_each_entry(bcp, bucket, bc_list) {
  1540. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1541. goto found;
  1542. }
  1543. /*
  1544. * We didn't find a corresponding entry in the table, so return 0 so
  1545. * that the buffer is NOT cancelled.
  1546. */
  1547. ASSERT(!(flags & XFS_BLF_CANCEL));
  1548. return 0;
  1549. found:
  1550. /*
  1551. * We've go a match, so return 1 so that the recovery of this buffer
  1552. * is cancelled. If this buffer is actually a buffer cancel log
  1553. * item, then decrement the refcount on the one in the table and
  1554. * remove it if this is the last reference.
  1555. */
  1556. if (flags & XFS_BLF_CANCEL) {
  1557. if (--bcp->bc_refcount == 0) {
  1558. list_del(&bcp->bc_list);
  1559. kmem_free(bcp);
  1560. }
  1561. }
  1562. return 1;
  1563. }
  1564. /*
  1565. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1566. * data which should be recovered is that which corresponds to the
  1567. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1568. * data for the inodes is always logged through the inodes themselves rather
  1569. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1570. *
  1571. * The only time when buffers full of inodes are fully recovered is when the
  1572. * buffer is full of newly allocated inodes. In this case the buffer will
  1573. * not be marked as an inode buffer and so will be sent to
  1574. * xlog_recover_do_reg_buffer() below during recovery.
  1575. */
  1576. STATIC int
  1577. xlog_recover_do_inode_buffer(
  1578. struct xfs_mount *mp,
  1579. xlog_recover_item_t *item,
  1580. struct xfs_buf *bp,
  1581. xfs_buf_log_format_t *buf_f)
  1582. {
  1583. int i;
  1584. int item_index = 0;
  1585. int bit = 0;
  1586. int nbits = 0;
  1587. int reg_buf_offset = 0;
  1588. int reg_buf_bytes = 0;
  1589. int next_unlinked_offset;
  1590. int inodes_per_buf;
  1591. xfs_agino_t *logged_nextp;
  1592. xfs_agino_t *buffer_nextp;
  1593. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1594. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1595. for (i = 0; i < inodes_per_buf; i++) {
  1596. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1597. offsetof(xfs_dinode_t, di_next_unlinked);
  1598. while (next_unlinked_offset >=
  1599. (reg_buf_offset + reg_buf_bytes)) {
  1600. /*
  1601. * The next di_next_unlinked field is beyond
  1602. * the current logged region. Find the next
  1603. * logged region that contains or is beyond
  1604. * the current di_next_unlinked field.
  1605. */
  1606. bit += nbits;
  1607. bit = xfs_next_bit(buf_f->blf_data_map,
  1608. buf_f->blf_map_size, bit);
  1609. /*
  1610. * If there are no more logged regions in the
  1611. * buffer, then we're done.
  1612. */
  1613. if (bit == -1)
  1614. return 0;
  1615. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1616. buf_f->blf_map_size, bit);
  1617. ASSERT(nbits > 0);
  1618. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1619. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1620. item_index++;
  1621. }
  1622. /*
  1623. * If the current logged region starts after the current
  1624. * di_next_unlinked field, then move on to the next
  1625. * di_next_unlinked field.
  1626. */
  1627. if (next_unlinked_offset < reg_buf_offset)
  1628. continue;
  1629. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1630. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1631. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1632. /*
  1633. * The current logged region contains a copy of the
  1634. * current di_next_unlinked field. Extract its value
  1635. * and copy it to the buffer copy.
  1636. */
  1637. logged_nextp = item->ri_buf[item_index].i_addr +
  1638. next_unlinked_offset - reg_buf_offset;
  1639. if (unlikely(*logged_nextp == 0)) {
  1640. xfs_fs_cmn_err(CE_ALERT, mp,
  1641. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1642. item, bp);
  1643. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1644. XFS_ERRLEVEL_LOW, mp);
  1645. return XFS_ERROR(EFSCORRUPTED);
  1646. }
  1647. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1648. next_unlinked_offset);
  1649. *buffer_nextp = *logged_nextp;
  1650. }
  1651. return 0;
  1652. }
  1653. /*
  1654. * Perform a 'normal' buffer recovery. Each logged region of the
  1655. * buffer should be copied over the corresponding region in the
  1656. * given buffer. The bitmap in the buf log format structure indicates
  1657. * where to place the logged data.
  1658. */
  1659. STATIC void
  1660. xlog_recover_do_reg_buffer(
  1661. struct xfs_mount *mp,
  1662. xlog_recover_item_t *item,
  1663. struct xfs_buf *bp,
  1664. xfs_buf_log_format_t *buf_f)
  1665. {
  1666. int i;
  1667. int bit;
  1668. int nbits;
  1669. int error;
  1670. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1671. bit = 0;
  1672. i = 1; /* 0 is the buf format structure */
  1673. while (1) {
  1674. bit = xfs_next_bit(buf_f->blf_data_map,
  1675. buf_f->blf_map_size, bit);
  1676. if (bit == -1)
  1677. break;
  1678. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1679. buf_f->blf_map_size, bit);
  1680. ASSERT(nbits > 0);
  1681. ASSERT(item->ri_buf[i].i_addr != NULL);
  1682. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  1683. ASSERT(XFS_BUF_COUNT(bp) >=
  1684. ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
  1685. /*
  1686. * Do a sanity check if this is a dquot buffer. Just checking
  1687. * the first dquot in the buffer should do. XXXThis is
  1688. * probably a good thing to do for other buf types also.
  1689. */
  1690. error = 0;
  1691. if (buf_f->blf_flags &
  1692. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1693. if (item->ri_buf[i].i_addr == NULL) {
  1694. cmn_err(CE_ALERT,
  1695. "XFS: NULL dquot in %s.", __func__);
  1696. goto next;
  1697. }
  1698. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1699. cmn_err(CE_ALERT,
  1700. "XFS: dquot too small (%d) in %s.",
  1701. item->ri_buf[i].i_len, __func__);
  1702. goto next;
  1703. }
  1704. error = xfs_qm_dqcheck(item->ri_buf[i].i_addr,
  1705. -1, 0, XFS_QMOPT_DOWARN,
  1706. "dquot_buf_recover");
  1707. if (error)
  1708. goto next;
  1709. }
  1710. memcpy(xfs_buf_offset(bp,
  1711. (uint)bit << XFS_BLF_SHIFT), /* dest */
  1712. item->ri_buf[i].i_addr, /* source */
  1713. nbits<<XFS_BLF_SHIFT); /* length */
  1714. next:
  1715. i++;
  1716. bit += nbits;
  1717. }
  1718. /* Shouldn't be any more regions */
  1719. ASSERT(i == item->ri_total);
  1720. }
  1721. /*
  1722. * Do some primitive error checking on ondisk dquot data structures.
  1723. */
  1724. int
  1725. xfs_qm_dqcheck(
  1726. xfs_disk_dquot_t *ddq,
  1727. xfs_dqid_t id,
  1728. uint type, /* used only when IO_dorepair is true */
  1729. uint flags,
  1730. char *str)
  1731. {
  1732. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1733. int errs = 0;
  1734. /*
  1735. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1736. * 1. If we crash while deleting the quotainode(s), and those blks got
  1737. * used for user data. This is because we take the path of regular
  1738. * file deletion; however, the size field of quotainodes is never
  1739. * updated, so all the tricks that we play in itruncate_finish
  1740. * don't quite matter.
  1741. *
  1742. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1743. * But the allocation will be replayed so we'll end up with an
  1744. * uninitialized quota block.
  1745. *
  1746. * This is all fine; things are still consistent, and we haven't lost
  1747. * any quota information. Just don't complain about bad dquot blks.
  1748. */
  1749. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1750. if (flags & XFS_QMOPT_DOWARN)
  1751. cmn_err(CE_ALERT,
  1752. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1753. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1754. errs++;
  1755. }
  1756. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1757. if (flags & XFS_QMOPT_DOWARN)
  1758. cmn_err(CE_ALERT,
  1759. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1760. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1761. errs++;
  1762. }
  1763. if (ddq->d_flags != XFS_DQ_USER &&
  1764. ddq->d_flags != XFS_DQ_PROJ &&
  1765. ddq->d_flags != XFS_DQ_GROUP) {
  1766. if (flags & XFS_QMOPT_DOWARN)
  1767. cmn_err(CE_ALERT,
  1768. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1769. str, id, ddq->d_flags);
  1770. errs++;
  1771. }
  1772. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1773. if (flags & XFS_QMOPT_DOWARN)
  1774. cmn_err(CE_ALERT,
  1775. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1776. "0x%x expected, found id 0x%x",
  1777. str, ddq, id, be32_to_cpu(ddq->d_id));
  1778. errs++;
  1779. }
  1780. if (!errs && ddq->d_id) {
  1781. if (ddq->d_blk_softlimit &&
  1782. be64_to_cpu(ddq->d_bcount) >=
  1783. be64_to_cpu(ddq->d_blk_softlimit)) {
  1784. if (!ddq->d_btimer) {
  1785. if (flags & XFS_QMOPT_DOWARN)
  1786. cmn_err(CE_ALERT,
  1787. "%s : Dquot ID 0x%x (0x%p) "
  1788. "BLK TIMER NOT STARTED",
  1789. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1790. errs++;
  1791. }
  1792. }
  1793. if (ddq->d_ino_softlimit &&
  1794. be64_to_cpu(ddq->d_icount) >=
  1795. be64_to_cpu(ddq->d_ino_softlimit)) {
  1796. if (!ddq->d_itimer) {
  1797. if (flags & XFS_QMOPT_DOWARN)
  1798. cmn_err(CE_ALERT,
  1799. "%s : Dquot ID 0x%x (0x%p) "
  1800. "INODE TIMER NOT STARTED",
  1801. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1802. errs++;
  1803. }
  1804. }
  1805. if (ddq->d_rtb_softlimit &&
  1806. be64_to_cpu(ddq->d_rtbcount) >=
  1807. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1808. if (!ddq->d_rtbtimer) {
  1809. if (flags & XFS_QMOPT_DOWARN)
  1810. cmn_err(CE_ALERT,
  1811. "%s : Dquot ID 0x%x (0x%p) "
  1812. "RTBLK TIMER NOT STARTED",
  1813. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1814. errs++;
  1815. }
  1816. }
  1817. }
  1818. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1819. return errs;
  1820. if (flags & XFS_QMOPT_DOWARN)
  1821. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1822. /*
  1823. * Typically, a repair is only requested by quotacheck.
  1824. */
  1825. ASSERT(id != -1);
  1826. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1827. memset(d, 0, sizeof(xfs_dqblk_t));
  1828. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1829. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1830. d->dd_diskdq.d_flags = type;
  1831. d->dd_diskdq.d_id = cpu_to_be32(id);
  1832. return errs;
  1833. }
  1834. /*
  1835. * Perform a dquot buffer recovery.
  1836. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1837. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1838. * Else, treat it as a regular buffer and do recovery.
  1839. */
  1840. STATIC void
  1841. xlog_recover_do_dquot_buffer(
  1842. xfs_mount_t *mp,
  1843. xlog_t *log,
  1844. xlog_recover_item_t *item,
  1845. xfs_buf_t *bp,
  1846. xfs_buf_log_format_t *buf_f)
  1847. {
  1848. uint type;
  1849. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  1850. /*
  1851. * Filesystems are required to send in quota flags at mount time.
  1852. */
  1853. if (mp->m_qflags == 0) {
  1854. return;
  1855. }
  1856. type = 0;
  1857. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  1858. type |= XFS_DQ_USER;
  1859. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  1860. type |= XFS_DQ_PROJ;
  1861. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  1862. type |= XFS_DQ_GROUP;
  1863. /*
  1864. * This type of quotas was turned off, so ignore this buffer
  1865. */
  1866. if (log->l_quotaoffs_flag & type)
  1867. return;
  1868. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1869. }
  1870. /*
  1871. * This routine replays a modification made to a buffer at runtime.
  1872. * There are actually two types of buffer, regular and inode, which
  1873. * are handled differently. Inode buffers are handled differently
  1874. * in that we only recover a specific set of data from them, namely
  1875. * the inode di_next_unlinked fields. This is because all other inode
  1876. * data is actually logged via inode records and any data we replay
  1877. * here which overlaps that may be stale.
  1878. *
  1879. * When meta-data buffers are freed at run time we log a buffer item
  1880. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  1881. * of the buffer in the log should not be replayed at recovery time.
  1882. * This is so that if the blocks covered by the buffer are reused for
  1883. * file data before we crash we don't end up replaying old, freed
  1884. * meta-data into a user's file.
  1885. *
  1886. * To handle the cancellation of buffer log items, we make two passes
  1887. * over the log during recovery. During the first we build a table of
  1888. * those buffers which have been cancelled, and during the second we
  1889. * only replay those buffers which do not have corresponding cancel
  1890. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1891. * for more details on the implementation of the table of cancel records.
  1892. */
  1893. STATIC int
  1894. xlog_recover_buffer_pass2(
  1895. xlog_t *log,
  1896. xlog_recover_item_t *item)
  1897. {
  1898. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1899. xfs_mount_t *mp = log->l_mp;
  1900. xfs_buf_t *bp;
  1901. int error;
  1902. uint buf_flags;
  1903. /*
  1904. * In this pass we only want to recover all the buffers which have
  1905. * not been cancelled and are not cancellation buffers themselves.
  1906. */
  1907. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  1908. buf_f->blf_len, buf_f->blf_flags)) {
  1909. trace_xfs_log_recover_buf_cancel(log, buf_f);
  1910. return 0;
  1911. }
  1912. trace_xfs_log_recover_buf_recover(log, buf_f);
  1913. buf_flags = XBF_LOCK;
  1914. if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
  1915. buf_flags |= XBF_MAPPED;
  1916. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  1917. buf_flags);
  1918. if (XFS_BUF_ISERROR(bp)) {
  1919. xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
  1920. bp, buf_f->blf_blkno);
  1921. error = XFS_BUF_GETERROR(bp);
  1922. xfs_buf_relse(bp);
  1923. return error;
  1924. }
  1925. error = 0;
  1926. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1927. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  1928. } else if (buf_f->blf_flags &
  1929. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1930. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  1931. } else {
  1932. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1933. }
  1934. if (error)
  1935. return XFS_ERROR(error);
  1936. /*
  1937. * Perform delayed write on the buffer. Asynchronous writes will be
  1938. * slower when taking into account all the buffers to be flushed.
  1939. *
  1940. * Also make sure that only inode buffers with good sizes stay in
  1941. * the buffer cache. The kernel moves inodes in buffers of 1 block
  1942. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  1943. * buffers in the log can be a different size if the log was generated
  1944. * by an older kernel using unclustered inode buffers or a newer kernel
  1945. * running with a different inode cluster size. Regardless, if the
  1946. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  1947. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  1948. * the buffer out of the buffer cache so that the buffer won't
  1949. * overlap with future reads of those inodes.
  1950. */
  1951. if (XFS_DINODE_MAGIC ==
  1952. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  1953. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  1954. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  1955. XFS_BUF_STALE(bp);
  1956. error = xfs_bwrite(mp, bp);
  1957. } else {
  1958. ASSERT(bp->b_target->bt_mount == mp);
  1959. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  1960. xfs_bdwrite(mp, bp);
  1961. }
  1962. return (error);
  1963. }
  1964. STATIC int
  1965. xlog_recover_inode_pass2(
  1966. xlog_t *log,
  1967. xlog_recover_item_t *item)
  1968. {
  1969. xfs_inode_log_format_t *in_f;
  1970. xfs_mount_t *mp = log->l_mp;
  1971. xfs_buf_t *bp;
  1972. xfs_dinode_t *dip;
  1973. int len;
  1974. xfs_caddr_t src;
  1975. xfs_caddr_t dest;
  1976. int error;
  1977. int attr_index;
  1978. uint fields;
  1979. xfs_icdinode_t *dicp;
  1980. int need_free = 0;
  1981. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  1982. in_f = item->ri_buf[0].i_addr;
  1983. } else {
  1984. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  1985. need_free = 1;
  1986. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  1987. if (error)
  1988. goto error;
  1989. }
  1990. /*
  1991. * Inode buffers can be freed, look out for it,
  1992. * and do not replay the inode.
  1993. */
  1994. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  1995. in_f->ilf_len, 0)) {
  1996. error = 0;
  1997. trace_xfs_log_recover_inode_cancel(log, in_f);
  1998. goto error;
  1999. }
  2000. trace_xfs_log_recover_inode_recover(log, in_f);
  2001. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
  2002. XBF_LOCK);
  2003. if (XFS_BUF_ISERROR(bp)) {
  2004. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2005. bp, in_f->ilf_blkno);
  2006. error = XFS_BUF_GETERROR(bp);
  2007. xfs_buf_relse(bp);
  2008. goto error;
  2009. }
  2010. error = 0;
  2011. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2012. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2013. /*
  2014. * Make sure the place we're flushing out to really looks
  2015. * like an inode!
  2016. */
  2017. if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
  2018. xfs_buf_relse(bp);
  2019. xfs_fs_cmn_err(CE_ALERT, mp,
  2020. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2021. dip, bp, in_f->ilf_ino);
  2022. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2023. XFS_ERRLEVEL_LOW, mp);
  2024. error = EFSCORRUPTED;
  2025. goto error;
  2026. }
  2027. dicp = item->ri_buf[1].i_addr;
  2028. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2029. xfs_buf_relse(bp);
  2030. xfs_fs_cmn_err(CE_ALERT, mp,
  2031. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2032. item, in_f->ilf_ino);
  2033. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2034. XFS_ERRLEVEL_LOW, mp);
  2035. error = EFSCORRUPTED;
  2036. goto error;
  2037. }
  2038. /* Skip replay when the on disk inode is newer than the log one */
  2039. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2040. /*
  2041. * Deal with the wrap case, DI_MAX_FLUSH is less
  2042. * than smaller numbers
  2043. */
  2044. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2045. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2046. /* do nothing */
  2047. } else {
  2048. xfs_buf_relse(bp);
  2049. trace_xfs_log_recover_inode_skip(log, in_f);
  2050. error = 0;
  2051. goto error;
  2052. }
  2053. }
  2054. /* Take the opportunity to reset the flush iteration count */
  2055. dicp->di_flushiter = 0;
  2056. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2057. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2058. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2059. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2060. XFS_ERRLEVEL_LOW, mp, dicp);
  2061. xfs_buf_relse(bp);
  2062. xfs_fs_cmn_err(CE_ALERT, mp,
  2063. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2064. item, dip, bp, in_f->ilf_ino);
  2065. error = EFSCORRUPTED;
  2066. goto error;
  2067. }
  2068. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2069. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2070. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2071. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2072. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2073. XFS_ERRLEVEL_LOW, mp, dicp);
  2074. xfs_buf_relse(bp);
  2075. xfs_fs_cmn_err(CE_ALERT, mp,
  2076. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2077. item, dip, bp, in_f->ilf_ino);
  2078. error = EFSCORRUPTED;
  2079. goto error;
  2080. }
  2081. }
  2082. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2083. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2084. XFS_ERRLEVEL_LOW, mp, dicp);
  2085. xfs_buf_relse(bp);
  2086. xfs_fs_cmn_err(CE_ALERT, mp,
  2087. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2088. item, dip, bp, in_f->ilf_ino,
  2089. dicp->di_nextents + dicp->di_anextents,
  2090. dicp->di_nblocks);
  2091. error = EFSCORRUPTED;
  2092. goto error;
  2093. }
  2094. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2095. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2096. XFS_ERRLEVEL_LOW, mp, dicp);
  2097. xfs_buf_relse(bp);
  2098. xfs_fs_cmn_err(CE_ALERT, mp,
  2099. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2100. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2101. error = EFSCORRUPTED;
  2102. goto error;
  2103. }
  2104. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2105. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2106. XFS_ERRLEVEL_LOW, mp, dicp);
  2107. xfs_buf_relse(bp);
  2108. xfs_fs_cmn_err(CE_ALERT, mp,
  2109. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2110. item->ri_buf[1].i_len, item);
  2111. error = EFSCORRUPTED;
  2112. goto error;
  2113. }
  2114. /* The core is in in-core format */
  2115. xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
  2116. /* the rest is in on-disk format */
  2117. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2118. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2119. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2120. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2121. }
  2122. fields = in_f->ilf_fields;
  2123. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2124. case XFS_ILOG_DEV:
  2125. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2126. break;
  2127. case XFS_ILOG_UUID:
  2128. memcpy(XFS_DFORK_DPTR(dip),
  2129. &in_f->ilf_u.ilfu_uuid,
  2130. sizeof(uuid_t));
  2131. break;
  2132. }
  2133. if (in_f->ilf_size == 2)
  2134. goto write_inode_buffer;
  2135. len = item->ri_buf[2].i_len;
  2136. src = item->ri_buf[2].i_addr;
  2137. ASSERT(in_f->ilf_size <= 4);
  2138. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2139. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2140. (len == in_f->ilf_dsize));
  2141. switch (fields & XFS_ILOG_DFORK) {
  2142. case XFS_ILOG_DDATA:
  2143. case XFS_ILOG_DEXT:
  2144. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2145. break;
  2146. case XFS_ILOG_DBROOT:
  2147. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2148. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2149. XFS_DFORK_DSIZE(dip, mp));
  2150. break;
  2151. default:
  2152. /*
  2153. * There are no data fork flags set.
  2154. */
  2155. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2156. break;
  2157. }
  2158. /*
  2159. * If we logged any attribute data, recover it. There may or
  2160. * may not have been any other non-core data logged in this
  2161. * transaction.
  2162. */
  2163. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2164. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2165. attr_index = 3;
  2166. } else {
  2167. attr_index = 2;
  2168. }
  2169. len = item->ri_buf[attr_index].i_len;
  2170. src = item->ri_buf[attr_index].i_addr;
  2171. ASSERT(len == in_f->ilf_asize);
  2172. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2173. case XFS_ILOG_ADATA:
  2174. case XFS_ILOG_AEXT:
  2175. dest = XFS_DFORK_APTR(dip);
  2176. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2177. memcpy(dest, src, len);
  2178. break;
  2179. case XFS_ILOG_ABROOT:
  2180. dest = XFS_DFORK_APTR(dip);
  2181. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2182. len, (xfs_bmdr_block_t*)dest,
  2183. XFS_DFORK_ASIZE(dip, mp));
  2184. break;
  2185. default:
  2186. xlog_warn("XFS: xlog_recover_inode_pass2: Invalid flag");
  2187. ASSERT(0);
  2188. xfs_buf_relse(bp);
  2189. error = EIO;
  2190. goto error;
  2191. }
  2192. }
  2193. write_inode_buffer:
  2194. ASSERT(bp->b_target->bt_mount == mp);
  2195. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2196. xfs_bdwrite(mp, bp);
  2197. error:
  2198. if (need_free)
  2199. kmem_free(in_f);
  2200. return XFS_ERROR(error);
  2201. }
  2202. /*
  2203. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2204. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2205. * of that type.
  2206. */
  2207. STATIC int
  2208. xlog_recover_quotaoff_pass1(
  2209. xlog_t *log,
  2210. xlog_recover_item_t *item)
  2211. {
  2212. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2213. ASSERT(qoff_f);
  2214. /*
  2215. * The logitem format's flag tells us if this was user quotaoff,
  2216. * group/project quotaoff or both.
  2217. */
  2218. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2219. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2220. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2221. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2222. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2223. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2224. return (0);
  2225. }
  2226. /*
  2227. * Recover a dquot record
  2228. */
  2229. STATIC int
  2230. xlog_recover_dquot_pass2(
  2231. xlog_t *log,
  2232. xlog_recover_item_t *item)
  2233. {
  2234. xfs_mount_t *mp = log->l_mp;
  2235. xfs_buf_t *bp;
  2236. struct xfs_disk_dquot *ddq, *recddq;
  2237. int error;
  2238. xfs_dq_logformat_t *dq_f;
  2239. uint type;
  2240. /*
  2241. * Filesystems are required to send in quota flags at mount time.
  2242. */
  2243. if (mp->m_qflags == 0)
  2244. return (0);
  2245. recddq = item->ri_buf[1].i_addr;
  2246. if (recddq == NULL) {
  2247. cmn_err(CE_ALERT,
  2248. "XFS: NULL dquot in %s.", __func__);
  2249. return XFS_ERROR(EIO);
  2250. }
  2251. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2252. cmn_err(CE_ALERT,
  2253. "XFS: dquot too small (%d) in %s.",
  2254. item->ri_buf[1].i_len, __func__);
  2255. return XFS_ERROR(EIO);
  2256. }
  2257. /*
  2258. * This type of quotas was turned off, so ignore this record.
  2259. */
  2260. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2261. ASSERT(type);
  2262. if (log->l_quotaoffs_flag & type)
  2263. return (0);
  2264. /*
  2265. * At this point we know that quota was _not_ turned off.
  2266. * Since the mount flags are not indicating to us otherwise, this
  2267. * must mean that quota is on, and the dquot needs to be replayed.
  2268. * Remember that we may not have fully recovered the superblock yet,
  2269. * so we can't do the usual trick of looking at the SB quota bits.
  2270. *
  2271. * The other possibility, of course, is that the quota subsystem was
  2272. * removed since the last mount - ENOSYS.
  2273. */
  2274. dq_f = item->ri_buf[0].i_addr;
  2275. ASSERT(dq_f);
  2276. if ((error = xfs_qm_dqcheck(recddq,
  2277. dq_f->qlf_id,
  2278. 0, XFS_QMOPT_DOWARN,
  2279. "xlog_recover_dquot_pass2 (log copy)"))) {
  2280. return XFS_ERROR(EIO);
  2281. }
  2282. ASSERT(dq_f->qlf_len == 1);
  2283. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2284. dq_f->qlf_blkno,
  2285. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2286. 0, &bp);
  2287. if (error) {
  2288. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2289. bp, dq_f->qlf_blkno);
  2290. return error;
  2291. }
  2292. ASSERT(bp);
  2293. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2294. /*
  2295. * At least the magic num portion should be on disk because this
  2296. * was among a chunk of dquots created earlier, and we did some
  2297. * minimal initialization then.
  2298. */
  2299. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2300. "xlog_recover_dquot_pass2")) {
  2301. xfs_buf_relse(bp);
  2302. return XFS_ERROR(EIO);
  2303. }
  2304. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2305. ASSERT(dq_f->qlf_size == 2);
  2306. ASSERT(bp->b_target->bt_mount == mp);
  2307. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2308. xfs_bdwrite(mp, bp);
  2309. return (0);
  2310. }
  2311. /*
  2312. * This routine is called to create an in-core extent free intent
  2313. * item from the efi format structure which was logged on disk.
  2314. * It allocates an in-core efi, copies the extents from the format
  2315. * structure into it, and adds the efi to the AIL with the given
  2316. * LSN.
  2317. */
  2318. STATIC int
  2319. xlog_recover_efi_pass2(
  2320. xlog_t *log,
  2321. xlog_recover_item_t *item,
  2322. xfs_lsn_t lsn)
  2323. {
  2324. int error;
  2325. xfs_mount_t *mp = log->l_mp;
  2326. xfs_efi_log_item_t *efip;
  2327. xfs_efi_log_format_t *efi_formatp;
  2328. efi_formatp = item->ri_buf[0].i_addr;
  2329. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2330. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2331. &(efip->efi_format)))) {
  2332. xfs_efi_item_free(efip);
  2333. return error;
  2334. }
  2335. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2336. spin_lock(&log->l_ailp->xa_lock);
  2337. /*
  2338. * xfs_trans_ail_update() drops the AIL lock.
  2339. */
  2340. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2341. return 0;
  2342. }
  2343. /*
  2344. * This routine is called when an efd format structure is found in
  2345. * a committed transaction in the log. It's purpose is to cancel
  2346. * the corresponding efi if it was still in the log. To do this
  2347. * it searches the AIL for the efi with an id equal to that in the
  2348. * efd format structure. If we find it, we remove the efi from the
  2349. * AIL and free it.
  2350. */
  2351. STATIC int
  2352. xlog_recover_efd_pass2(
  2353. xlog_t *log,
  2354. xlog_recover_item_t *item)
  2355. {
  2356. xfs_efd_log_format_t *efd_formatp;
  2357. xfs_efi_log_item_t *efip = NULL;
  2358. xfs_log_item_t *lip;
  2359. __uint64_t efi_id;
  2360. struct xfs_ail_cursor cur;
  2361. struct xfs_ail *ailp = log->l_ailp;
  2362. efd_formatp = item->ri_buf[0].i_addr;
  2363. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2364. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2365. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2366. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2367. efi_id = efd_formatp->efd_efi_id;
  2368. /*
  2369. * Search for the efi with the id in the efd format structure
  2370. * in the AIL.
  2371. */
  2372. spin_lock(&ailp->xa_lock);
  2373. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2374. while (lip != NULL) {
  2375. if (lip->li_type == XFS_LI_EFI) {
  2376. efip = (xfs_efi_log_item_t *)lip;
  2377. if (efip->efi_format.efi_id == efi_id) {
  2378. /*
  2379. * xfs_trans_ail_delete() drops the
  2380. * AIL lock.
  2381. */
  2382. xfs_trans_ail_delete(ailp, lip);
  2383. xfs_efi_item_free(efip);
  2384. spin_lock(&ailp->xa_lock);
  2385. break;
  2386. }
  2387. }
  2388. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2389. }
  2390. xfs_trans_ail_cursor_done(ailp, &cur);
  2391. spin_unlock(&ailp->xa_lock);
  2392. return 0;
  2393. }
  2394. /*
  2395. * Free up any resources allocated by the transaction
  2396. *
  2397. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2398. */
  2399. STATIC void
  2400. xlog_recover_free_trans(
  2401. struct xlog_recover *trans)
  2402. {
  2403. xlog_recover_item_t *item, *n;
  2404. int i;
  2405. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2406. /* Free the regions in the item. */
  2407. list_del(&item->ri_list);
  2408. for (i = 0; i < item->ri_cnt; i++)
  2409. kmem_free(item->ri_buf[i].i_addr);
  2410. /* Free the item itself */
  2411. kmem_free(item->ri_buf);
  2412. kmem_free(item);
  2413. }
  2414. /* Free the transaction recover structure */
  2415. kmem_free(trans);
  2416. }
  2417. STATIC int
  2418. xlog_recover_commit_pass1(
  2419. struct log *log,
  2420. struct xlog_recover *trans,
  2421. xlog_recover_item_t *item)
  2422. {
  2423. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  2424. switch (ITEM_TYPE(item)) {
  2425. case XFS_LI_BUF:
  2426. return xlog_recover_buffer_pass1(log, item);
  2427. case XFS_LI_QUOTAOFF:
  2428. return xlog_recover_quotaoff_pass1(log, item);
  2429. case XFS_LI_INODE:
  2430. case XFS_LI_EFI:
  2431. case XFS_LI_EFD:
  2432. case XFS_LI_DQUOT:
  2433. /* nothing to do in pass 1 */
  2434. return 0;
  2435. default:
  2436. xlog_warn(
  2437. "XFS: invalid item type (%d) xlog_recover_commit_pass1",
  2438. ITEM_TYPE(item));
  2439. ASSERT(0);
  2440. return XFS_ERROR(EIO);
  2441. }
  2442. }
  2443. STATIC int
  2444. xlog_recover_commit_pass2(
  2445. struct log *log,
  2446. struct xlog_recover *trans,
  2447. xlog_recover_item_t *item)
  2448. {
  2449. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  2450. switch (ITEM_TYPE(item)) {
  2451. case XFS_LI_BUF:
  2452. return xlog_recover_buffer_pass2(log, item);
  2453. case XFS_LI_INODE:
  2454. return xlog_recover_inode_pass2(log, item);
  2455. case XFS_LI_EFI:
  2456. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  2457. case XFS_LI_EFD:
  2458. return xlog_recover_efd_pass2(log, item);
  2459. case XFS_LI_DQUOT:
  2460. return xlog_recover_dquot_pass2(log, item);
  2461. case XFS_LI_QUOTAOFF:
  2462. /* nothing to do in pass2 */
  2463. return 0;
  2464. default:
  2465. xlog_warn(
  2466. "XFS: invalid item type (%d) xlog_recover_commit_pass2",
  2467. ITEM_TYPE(item));
  2468. ASSERT(0);
  2469. return XFS_ERROR(EIO);
  2470. }
  2471. }
  2472. /*
  2473. * Perform the transaction.
  2474. *
  2475. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2476. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2477. */
  2478. STATIC int
  2479. xlog_recover_commit_trans(
  2480. struct log *log,
  2481. struct xlog_recover *trans,
  2482. int pass)
  2483. {
  2484. int error = 0;
  2485. xlog_recover_item_t *item;
  2486. hlist_del(&trans->r_list);
  2487. error = xlog_recover_reorder_trans(log, trans, pass);
  2488. if (error)
  2489. return error;
  2490. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2491. if (pass == XLOG_RECOVER_PASS1)
  2492. error = xlog_recover_commit_pass1(log, trans, item);
  2493. else
  2494. error = xlog_recover_commit_pass2(log, trans, item);
  2495. if (error)
  2496. return error;
  2497. }
  2498. xlog_recover_free_trans(trans);
  2499. return 0;
  2500. }
  2501. STATIC int
  2502. xlog_recover_unmount_trans(
  2503. xlog_recover_t *trans)
  2504. {
  2505. /* Do nothing now */
  2506. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2507. return 0;
  2508. }
  2509. /*
  2510. * There are two valid states of the r_state field. 0 indicates that the
  2511. * transaction structure is in a normal state. We have either seen the
  2512. * start of the transaction or the last operation we added was not a partial
  2513. * operation. If the last operation we added to the transaction was a
  2514. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2515. *
  2516. * NOTE: skip LRs with 0 data length.
  2517. */
  2518. STATIC int
  2519. xlog_recover_process_data(
  2520. xlog_t *log,
  2521. struct hlist_head rhash[],
  2522. xlog_rec_header_t *rhead,
  2523. xfs_caddr_t dp,
  2524. int pass)
  2525. {
  2526. xfs_caddr_t lp;
  2527. int num_logops;
  2528. xlog_op_header_t *ohead;
  2529. xlog_recover_t *trans;
  2530. xlog_tid_t tid;
  2531. int error;
  2532. unsigned long hash;
  2533. uint flags;
  2534. lp = dp + be32_to_cpu(rhead->h_len);
  2535. num_logops = be32_to_cpu(rhead->h_num_logops);
  2536. /* check the log format matches our own - else we can't recover */
  2537. if (xlog_header_check_recover(log->l_mp, rhead))
  2538. return (XFS_ERROR(EIO));
  2539. while ((dp < lp) && num_logops) {
  2540. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2541. ohead = (xlog_op_header_t *)dp;
  2542. dp += sizeof(xlog_op_header_t);
  2543. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2544. ohead->oh_clientid != XFS_LOG) {
  2545. xlog_warn(
  2546. "XFS: xlog_recover_process_data: bad clientid");
  2547. ASSERT(0);
  2548. return (XFS_ERROR(EIO));
  2549. }
  2550. tid = be32_to_cpu(ohead->oh_tid);
  2551. hash = XLOG_RHASH(tid);
  2552. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2553. if (trans == NULL) { /* not found; add new tid */
  2554. if (ohead->oh_flags & XLOG_START_TRANS)
  2555. xlog_recover_new_tid(&rhash[hash], tid,
  2556. be64_to_cpu(rhead->h_lsn));
  2557. } else {
  2558. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2559. xlog_warn(
  2560. "XFS: xlog_recover_process_data: bad length");
  2561. WARN_ON(1);
  2562. return (XFS_ERROR(EIO));
  2563. }
  2564. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2565. if (flags & XLOG_WAS_CONT_TRANS)
  2566. flags &= ~XLOG_CONTINUE_TRANS;
  2567. switch (flags) {
  2568. case XLOG_COMMIT_TRANS:
  2569. error = xlog_recover_commit_trans(log,
  2570. trans, pass);
  2571. break;
  2572. case XLOG_UNMOUNT_TRANS:
  2573. error = xlog_recover_unmount_trans(trans);
  2574. break;
  2575. case XLOG_WAS_CONT_TRANS:
  2576. error = xlog_recover_add_to_cont_trans(log,
  2577. trans, dp,
  2578. be32_to_cpu(ohead->oh_len));
  2579. break;
  2580. case XLOG_START_TRANS:
  2581. xlog_warn(
  2582. "XFS: xlog_recover_process_data: bad transaction");
  2583. ASSERT(0);
  2584. error = XFS_ERROR(EIO);
  2585. break;
  2586. case 0:
  2587. case XLOG_CONTINUE_TRANS:
  2588. error = xlog_recover_add_to_trans(log, trans,
  2589. dp, be32_to_cpu(ohead->oh_len));
  2590. break;
  2591. default:
  2592. xlog_warn(
  2593. "XFS: xlog_recover_process_data: bad flag");
  2594. ASSERT(0);
  2595. error = XFS_ERROR(EIO);
  2596. break;
  2597. }
  2598. if (error)
  2599. return error;
  2600. }
  2601. dp += be32_to_cpu(ohead->oh_len);
  2602. num_logops--;
  2603. }
  2604. return 0;
  2605. }
  2606. /*
  2607. * Process an extent free intent item that was recovered from
  2608. * the log. We need to free the extents that it describes.
  2609. */
  2610. STATIC int
  2611. xlog_recover_process_efi(
  2612. xfs_mount_t *mp,
  2613. xfs_efi_log_item_t *efip)
  2614. {
  2615. xfs_efd_log_item_t *efdp;
  2616. xfs_trans_t *tp;
  2617. int i;
  2618. int error = 0;
  2619. xfs_extent_t *extp;
  2620. xfs_fsblock_t startblock_fsb;
  2621. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  2622. /*
  2623. * First check the validity of the extents described by the
  2624. * EFI. If any are bad, then assume that all are bad and
  2625. * just toss the EFI.
  2626. */
  2627. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2628. extp = &(efip->efi_format.efi_extents[i]);
  2629. startblock_fsb = XFS_BB_TO_FSB(mp,
  2630. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2631. if ((startblock_fsb == 0) ||
  2632. (extp->ext_len == 0) ||
  2633. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2634. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2635. /*
  2636. * This will pull the EFI from the AIL and
  2637. * free the memory associated with it.
  2638. */
  2639. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2640. return XFS_ERROR(EIO);
  2641. }
  2642. }
  2643. tp = xfs_trans_alloc(mp, 0);
  2644. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2645. if (error)
  2646. goto abort_error;
  2647. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2648. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2649. extp = &(efip->efi_format.efi_extents[i]);
  2650. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2651. if (error)
  2652. goto abort_error;
  2653. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2654. extp->ext_len);
  2655. }
  2656. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  2657. error = xfs_trans_commit(tp, 0);
  2658. return error;
  2659. abort_error:
  2660. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2661. return error;
  2662. }
  2663. /*
  2664. * When this is called, all of the EFIs which did not have
  2665. * corresponding EFDs should be in the AIL. What we do now
  2666. * is free the extents associated with each one.
  2667. *
  2668. * Since we process the EFIs in normal transactions, they
  2669. * will be removed at some point after the commit. This prevents
  2670. * us from just walking down the list processing each one.
  2671. * We'll use a flag in the EFI to skip those that we've already
  2672. * processed and use the AIL iteration mechanism's generation
  2673. * count to try to speed this up at least a bit.
  2674. *
  2675. * When we start, we know that the EFIs are the only things in
  2676. * the AIL. As we process them, however, other items are added
  2677. * to the AIL. Since everything added to the AIL must come after
  2678. * everything already in the AIL, we stop processing as soon as
  2679. * we see something other than an EFI in the AIL.
  2680. */
  2681. STATIC int
  2682. xlog_recover_process_efis(
  2683. xlog_t *log)
  2684. {
  2685. xfs_log_item_t *lip;
  2686. xfs_efi_log_item_t *efip;
  2687. int error = 0;
  2688. struct xfs_ail_cursor cur;
  2689. struct xfs_ail *ailp;
  2690. ailp = log->l_ailp;
  2691. spin_lock(&ailp->xa_lock);
  2692. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2693. while (lip != NULL) {
  2694. /*
  2695. * We're done when we see something other than an EFI.
  2696. * There should be no EFIs left in the AIL now.
  2697. */
  2698. if (lip->li_type != XFS_LI_EFI) {
  2699. #ifdef DEBUG
  2700. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2701. ASSERT(lip->li_type != XFS_LI_EFI);
  2702. #endif
  2703. break;
  2704. }
  2705. /*
  2706. * Skip EFIs that we've already processed.
  2707. */
  2708. efip = (xfs_efi_log_item_t *)lip;
  2709. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  2710. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2711. continue;
  2712. }
  2713. spin_unlock(&ailp->xa_lock);
  2714. error = xlog_recover_process_efi(log->l_mp, efip);
  2715. spin_lock(&ailp->xa_lock);
  2716. if (error)
  2717. goto out;
  2718. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2719. }
  2720. out:
  2721. xfs_trans_ail_cursor_done(ailp, &cur);
  2722. spin_unlock(&ailp->xa_lock);
  2723. return error;
  2724. }
  2725. /*
  2726. * This routine performs a transaction to null out a bad inode pointer
  2727. * in an agi unlinked inode hash bucket.
  2728. */
  2729. STATIC void
  2730. xlog_recover_clear_agi_bucket(
  2731. xfs_mount_t *mp,
  2732. xfs_agnumber_t agno,
  2733. int bucket)
  2734. {
  2735. xfs_trans_t *tp;
  2736. xfs_agi_t *agi;
  2737. xfs_buf_t *agibp;
  2738. int offset;
  2739. int error;
  2740. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2741. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2742. 0, 0, 0);
  2743. if (error)
  2744. goto out_abort;
  2745. error = xfs_read_agi(mp, tp, agno, &agibp);
  2746. if (error)
  2747. goto out_abort;
  2748. agi = XFS_BUF_TO_AGI(agibp);
  2749. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2750. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2751. (sizeof(xfs_agino_t) * bucket);
  2752. xfs_trans_log_buf(tp, agibp, offset,
  2753. (offset + sizeof(xfs_agino_t) - 1));
  2754. error = xfs_trans_commit(tp, 0);
  2755. if (error)
  2756. goto out_error;
  2757. return;
  2758. out_abort:
  2759. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2760. out_error:
  2761. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2762. "failed to clear agi %d. Continuing.", agno);
  2763. return;
  2764. }
  2765. STATIC xfs_agino_t
  2766. xlog_recover_process_one_iunlink(
  2767. struct xfs_mount *mp,
  2768. xfs_agnumber_t agno,
  2769. xfs_agino_t agino,
  2770. int bucket)
  2771. {
  2772. struct xfs_buf *ibp;
  2773. struct xfs_dinode *dip;
  2774. struct xfs_inode *ip;
  2775. xfs_ino_t ino;
  2776. int error;
  2777. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2778. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  2779. if (error)
  2780. goto fail;
  2781. /*
  2782. * Get the on disk inode to find the next inode in the bucket.
  2783. */
  2784. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
  2785. if (error)
  2786. goto fail_iput;
  2787. ASSERT(ip->i_d.di_nlink == 0);
  2788. ASSERT(ip->i_d.di_mode != 0);
  2789. /* setup for the next pass */
  2790. agino = be32_to_cpu(dip->di_next_unlinked);
  2791. xfs_buf_relse(ibp);
  2792. /*
  2793. * Prevent any DMAPI event from being sent when the reference on
  2794. * the inode is dropped.
  2795. */
  2796. ip->i_d.di_dmevmask = 0;
  2797. IRELE(ip);
  2798. return agino;
  2799. fail_iput:
  2800. IRELE(ip);
  2801. fail:
  2802. /*
  2803. * We can't read in the inode this bucket points to, or this inode
  2804. * is messed up. Just ditch this bucket of inodes. We will lose
  2805. * some inodes and space, but at least we won't hang.
  2806. *
  2807. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2808. * clear the inode pointer in the bucket.
  2809. */
  2810. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2811. return NULLAGINO;
  2812. }
  2813. /*
  2814. * xlog_iunlink_recover
  2815. *
  2816. * This is called during recovery to process any inodes which
  2817. * we unlinked but not freed when the system crashed. These
  2818. * inodes will be on the lists in the AGI blocks. What we do
  2819. * here is scan all the AGIs and fully truncate and free any
  2820. * inodes found on the lists. Each inode is removed from the
  2821. * lists when it has been fully truncated and is freed. The
  2822. * freeing of the inode and its removal from the list must be
  2823. * atomic.
  2824. */
  2825. STATIC void
  2826. xlog_recover_process_iunlinks(
  2827. xlog_t *log)
  2828. {
  2829. xfs_mount_t *mp;
  2830. xfs_agnumber_t agno;
  2831. xfs_agi_t *agi;
  2832. xfs_buf_t *agibp;
  2833. xfs_agino_t agino;
  2834. int bucket;
  2835. int error;
  2836. uint mp_dmevmask;
  2837. mp = log->l_mp;
  2838. /*
  2839. * Prevent any DMAPI event from being sent while in this function.
  2840. */
  2841. mp_dmevmask = mp->m_dmevmask;
  2842. mp->m_dmevmask = 0;
  2843. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2844. /*
  2845. * Find the agi for this ag.
  2846. */
  2847. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2848. if (error) {
  2849. /*
  2850. * AGI is b0rked. Don't process it.
  2851. *
  2852. * We should probably mark the filesystem as corrupt
  2853. * after we've recovered all the ag's we can....
  2854. */
  2855. continue;
  2856. }
  2857. agi = XFS_BUF_TO_AGI(agibp);
  2858. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2859. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2860. while (agino != NULLAGINO) {
  2861. /*
  2862. * Release the agi buffer so that it can
  2863. * be acquired in the normal course of the
  2864. * transaction to truncate and free the inode.
  2865. */
  2866. xfs_buf_relse(agibp);
  2867. agino = xlog_recover_process_one_iunlink(mp,
  2868. agno, agino, bucket);
  2869. /*
  2870. * Reacquire the agibuffer and continue around
  2871. * the loop. This should never fail as we know
  2872. * the buffer was good earlier on.
  2873. */
  2874. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2875. ASSERT(error == 0);
  2876. agi = XFS_BUF_TO_AGI(agibp);
  2877. }
  2878. }
  2879. /*
  2880. * Release the buffer for the current agi so we can
  2881. * go on to the next one.
  2882. */
  2883. xfs_buf_relse(agibp);
  2884. }
  2885. mp->m_dmevmask = mp_dmevmask;
  2886. }
  2887. #ifdef DEBUG
  2888. STATIC void
  2889. xlog_pack_data_checksum(
  2890. xlog_t *log,
  2891. xlog_in_core_t *iclog,
  2892. int size)
  2893. {
  2894. int i;
  2895. __be32 *up;
  2896. uint chksum = 0;
  2897. up = (__be32 *)iclog->ic_datap;
  2898. /* divide length by 4 to get # words */
  2899. for (i = 0; i < (size >> 2); i++) {
  2900. chksum ^= be32_to_cpu(*up);
  2901. up++;
  2902. }
  2903. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  2904. }
  2905. #else
  2906. #define xlog_pack_data_checksum(log, iclog, size)
  2907. #endif
  2908. /*
  2909. * Stamp cycle number in every block
  2910. */
  2911. void
  2912. xlog_pack_data(
  2913. xlog_t *log,
  2914. xlog_in_core_t *iclog,
  2915. int roundoff)
  2916. {
  2917. int i, j, k;
  2918. int size = iclog->ic_offset + roundoff;
  2919. __be32 cycle_lsn;
  2920. xfs_caddr_t dp;
  2921. xlog_pack_data_checksum(log, iclog, size);
  2922. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  2923. dp = iclog->ic_datap;
  2924. for (i = 0; i < BTOBB(size) &&
  2925. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2926. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  2927. *(__be32 *)dp = cycle_lsn;
  2928. dp += BBSIZE;
  2929. }
  2930. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2931. xlog_in_core_2_t *xhdr = iclog->ic_data;
  2932. for ( ; i < BTOBB(size); i++) {
  2933. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2934. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2935. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  2936. *(__be32 *)dp = cycle_lsn;
  2937. dp += BBSIZE;
  2938. }
  2939. for (i = 1; i < log->l_iclog_heads; i++) {
  2940. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  2941. }
  2942. }
  2943. }
  2944. STATIC void
  2945. xlog_unpack_data(
  2946. xlog_rec_header_t *rhead,
  2947. xfs_caddr_t dp,
  2948. xlog_t *log)
  2949. {
  2950. int i, j, k;
  2951. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  2952. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2953. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  2954. dp += BBSIZE;
  2955. }
  2956. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2957. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  2958. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  2959. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2960. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2961. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  2962. dp += BBSIZE;
  2963. }
  2964. }
  2965. }
  2966. STATIC int
  2967. xlog_valid_rec_header(
  2968. xlog_t *log,
  2969. xlog_rec_header_t *rhead,
  2970. xfs_daddr_t blkno)
  2971. {
  2972. int hlen;
  2973. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  2974. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  2975. XFS_ERRLEVEL_LOW, log->l_mp);
  2976. return XFS_ERROR(EFSCORRUPTED);
  2977. }
  2978. if (unlikely(
  2979. (!rhead->h_version ||
  2980. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  2981. xlog_warn("XFS: %s: unrecognised log version (%d).",
  2982. __func__, be32_to_cpu(rhead->h_version));
  2983. return XFS_ERROR(EIO);
  2984. }
  2985. /* LR body must have data or it wouldn't have been written */
  2986. hlen = be32_to_cpu(rhead->h_len);
  2987. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  2988. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  2989. XFS_ERRLEVEL_LOW, log->l_mp);
  2990. return XFS_ERROR(EFSCORRUPTED);
  2991. }
  2992. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  2993. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  2994. XFS_ERRLEVEL_LOW, log->l_mp);
  2995. return XFS_ERROR(EFSCORRUPTED);
  2996. }
  2997. return 0;
  2998. }
  2999. /*
  3000. * Read the log from tail to head and process the log records found.
  3001. * Handle the two cases where the tail and head are in the same cycle
  3002. * and where the active portion of the log wraps around the end of
  3003. * the physical log separately. The pass parameter is passed through
  3004. * to the routines called to process the data and is not looked at
  3005. * here.
  3006. */
  3007. STATIC int
  3008. xlog_do_recovery_pass(
  3009. xlog_t *log,
  3010. xfs_daddr_t head_blk,
  3011. xfs_daddr_t tail_blk,
  3012. int pass)
  3013. {
  3014. xlog_rec_header_t *rhead;
  3015. xfs_daddr_t blk_no;
  3016. xfs_caddr_t offset;
  3017. xfs_buf_t *hbp, *dbp;
  3018. int error = 0, h_size;
  3019. int bblks, split_bblks;
  3020. int hblks, split_hblks, wrapped_hblks;
  3021. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3022. ASSERT(head_blk != tail_blk);
  3023. /*
  3024. * Read the header of the tail block and get the iclog buffer size from
  3025. * h_size. Use this to tell how many sectors make up the log header.
  3026. */
  3027. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3028. /*
  3029. * When using variable length iclogs, read first sector of
  3030. * iclog header and extract the header size from it. Get a
  3031. * new hbp that is the correct size.
  3032. */
  3033. hbp = xlog_get_bp(log, 1);
  3034. if (!hbp)
  3035. return ENOMEM;
  3036. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3037. if (error)
  3038. goto bread_err1;
  3039. rhead = (xlog_rec_header_t *)offset;
  3040. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3041. if (error)
  3042. goto bread_err1;
  3043. h_size = be32_to_cpu(rhead->h_size);
  3044. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3045. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3046. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3047. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3048. hblks++;
  3049. xlog_put_bp(hbp);
  3050. hbp = xlog_get_bp(log, hblks);
  3051. } else {
  3052. hblks = 1;
  3053. }
  3054. } else {
  3055. ASSERT(log->l_sectBBsize == 1);
  3056. hblks = 1;
  3057. hbp = xlog_get_bp(log, 1);
  3058. h_size = XLOG_BIG_RECORD_BSIZE;
  3059. }
  3060. if (!hbp)
  3061. return ENOMEM;
  3062. dbp = xlog_get_bp(log, BTOBB(h_size));
  3063. if (!dbp) {
  3064. xlog_put_bp(hbp);
  3065. return ENOMEM;
  3066. }
  3067. memset(rhash, 0, sizeof(rhash));
  3068. if (tail_blk <= head_blk) {
  3069. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3070. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3071. if (error)
  3072. goto bread_err2;
  3073. rhead = (xlog_rec_header_t *)offset;
  3074. error = xlog_valid_rec_header(log, rhead, blk_no);
  3075. if (error)
  3076. goto bread_err2;
  3077. /* blocks in data section */
  3078. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3079. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3080. &offset);
  3081. if (error)
  3082. goto bread_err2;
  3083. xlog_unpack_data(rhead, offset, log);
  3084. if ((error = xlog_recover_process_data(log,
  3085. rhash, rhead, offset, pass)))
  3086. goto bread_err2;
  3087. blk_no += bblks + hblks;
  3088. }
  3089. } else {
  3090. /*
  3091. * Perform recovery around the end of the physical log.
  3092. * When the head is not on the same cycle number as the tail,
  3093. * we can't do a sequential recovery as above.
  3094. */
  3095. blk_no = tail_blk;
  3096. while (blk_no < log->l_logBBsize) {
  3097. /*
  3098. * Check for header wrapping around physical end-of-log
  3099. */
  3100. offset = XFS_BUF_PTR(hbp);
  3101. split_hblks = 0;
  3102. wrapped_hblks = 0;
  3103. if (blk_no + hblks <= log->l_logBBsize) {
  3104. /* Read header in one read */
  3105. error = xlog_bread(log, blk_no, hblks, hbp,
  3106. &offset);
  3107. if (error)
  3108. goto bread_err2;
  3109. } else {
  3110. /* This LR is split across physical log end */
  3111. if (blk_no != log->l_logBBsize) {
  3112. /* some data before physical log end */
  3113. ASSERT(blk_no <= INT_MAX);
  3114. split_hblks = log->l_logBBsize - (int)blk_no;
  3115. ASSERT(split_hblks > 0);
  3116. error = xlog_bread(log, blk_no,
  3117. split_hblks, hbp,
  3118. &offset);
  3119. if (error)
  3120. goto bread_err2;
  3121. }
  3122. /*
  3123. * Note: this black magic still works with
  3124. * large sector sizes (non-512) only because:
  3125. * - we increased the buffer size originally
  3126. * by 1 sector giving us enough extra space
  3127. * for the second read;
  3128. * - the log start is guaranteed to be sector
  3129. * aligned;
  3130. * - we read the log end (LR header start)
  3131. * _first_, then the log start (LR header end)
  3132. * - order is important.
  3133. */
  3134. wrapped_hblks = hblks - split_hblks;
  3135. error = XFS_BUF_SET_PTR(hbp,
  3136. offset + BBTOB(split_hblks),
  3137. BBTOB(hblks - split_hblks));
  3138. if (error)
  3139. goto bread_err2;
  3140. error = xlog_bread_noalign(log, 0,
  3141. wrapped_hblks, hbp);
  3142. if (error)
  3143. goto bread_err2;
  3144. error = XFS_BUF_SET_PTR(hbp, offset,
  3145. BBTOB(hblks));
  3146. if (error)
  3147. goto bread_err2;
  3148. }
  3149. rhead = (xlog_rec_header_t *)offset;
  3150. error = xlog_valid_rec_header(log, rhead,
  3151. split_hblks ? blk_no : 0);
  3152. if (error)
  3153. goto bread_err2;
  3154. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3155. blk_no += hblks;
  3156. /* Read in data for log record */
  3157. if (blk_no + bblks <= log->l_logBBsize) {
  3158. error = xlog_bread(log, blk_no, bblks, dbp,
  3159. &offset);
  3160. if (error)
  3161. goto bread_err2;
  3162. } else {
  3163. /* This log record is split across the
  3164. * physical end of log */
  3165. offset = XFS_BUF_PTR(dbp);
  3166. split_bblks = 0;
  3167. if (blk_no != log->l_logBBsize) {
  3168. /* some data is before the physical
  3169. * end of log */
  3170. ASSERT(!wrapped_hblks);
  3171. ASSERT(blk_no <= INT_MAX);
  3172. split_bblks =
  3173. log->l_logBBsize - (int)blk_no;
  3174. ASSERT(split_bblks > 0);
  3175. error = xlog_bread(log, blk_no,
  3176. split_bblks, dbp,
  3177. &offset);
  3178. if (error)
  3179. goto bread_err2;
  3180. }
  3181. /*
  3182. * Note: this black magic still works with
  3183. * large sector sizes (non-512) only because:
  3184. * - we increased the buffer size originally
  3185. * by 1 sector giving us enough extra space
  3186. * for the second read;
  3187. * - the log start is guaranteed to be sector
  3188. * aligned;
  3189. * - we read the log end (LR header start)
  3190. * _first_, then the log start (LR header end)
  3191. * - order is important.
  3192. */
  3193. error = XFS_BUF_SET_PTR(dbp,
  3194. offset + BBTOB(split_bblks),
  3195. BBTOB(bblks - split_bblks));
  3196. if (error)
  3197. goto bread_err2;
  3198. error = xlog_bread_noalign(log, wrapped_hblks,
  3199. bblks - split_bblks,
  3200. dbp);
  3201. if (error)
  3202. goto bread_err2;
  3203. error = XFS_BUF_SET_PTR(dbp, offset, h_size);
  3204. if (error)
  3205. goto bread_err2;
  3206. }
  3207. xlog_unpack_data(rhead, offset, log);
  3208. if ((error = xlog_recover_process_data(log, rhash,
  3209. rhead, offset, pass)))
  3210. goto bread_err2;
  3211. blk_no += bblks;
  3212. }
  3213. ASSERT(blk_no >= log->l_logBBsize);
  3214. blk_no -= log->l_logBBsize;
  3215. /* read first part of physical log */
  3216. while (blk_no < head_blk) {
  3217. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3218. if (error)
  3219. goto bread_err2;
  3220. rhead = (xlog_rec_header_t *)offset;
  3221. error = xlog_valid_rec_header(log, rhead, blk_no);
  3222. if (error)
  3223. goto bread_err2;
  3224. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3225. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3226. &offset);
  3227. if (error)
  3228. goto bread_err2;
  3229. xlog_unpack_data(rhead, offset, log);
  3230. if ((error = xlog_recover_process_data(log, rhash,
  3231. rhead, offset, pass)))
  3232. goto bread_err2;
  3233. blk_no += bblks + hblks;
  3234. }
  3235. }
  3236. bread_err2:
  3237. xlog_put_bp(dbp);
  3238. bread_err1:
  3239. xlog_put_bp(hbp);
  3240. return error;
  3241. }
  3242. /*
  3243. * Do the recovery of the log. We actually do this in two phases.
  3244. * The two passes are necessary in order to implement the function
  3245. * of cancelling a record written into the log. The first pass
  3246. * determines those things which have been cancelled, and the
  3247. * second pass replays log items normally except for those which
  3248. * have been cancelled. The handling of the replay and cancellations
  3249. * takes place in the log item type specific routines.
  3250. *
  3251. * The table of items which have cancel records in the log is allocated
  3252. * and freed at this level, since only here do we know when all of
  3253. * the log recovery has been completed.
  3254. */
  3255. STATIC int
  3256. xlog_do_log_recovery(
  3257. xlog_t *log,
  3258. xfs_daddr_t head_blk,
  3259. xfs_daddr_t tail_blk)
  3260. {
  3261. int error, i;
  3262. ASSERT(head_blk != tail_blk);
  3263. /*
  3264. * First do a pass to find all of the cancelled buf log items.
  3265. * Store them in the buf_cancel_table for use in the second pass.
  3266. */
  3267. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3268. sizeof(struct list_head),
  3269. KM_SLEEP);
  3270. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3271. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3272. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3273. XLOG_RECOVER_PASS1);
  3274. if (error != 0) {
  3275. kmem_free(log->l_buf_cancel_table);
  3276. log->l_buf_cancel_table = NULL;
  3277. return error;
  3278. }
  3279. /*
  3280. * Then do a second pass to actually recover the items in the log.
  3281. * When it is complete free the table of buf cancel items.
  3282. */
  3283. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3284. XLOG_RECOVER_PASS2);
  3285. #ifdef DEBUG
  3286. if (!error) {
  3287. int i;
  3288. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3289. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3290. }
  3291. #endif /* DEBUG */
  3292. kmem_free(log->l_buf_cancel_table);
  3293. log->l_buf_cancel_table = NULL;
  3294. return error;
  3295. }
  3296. /*
  3297. * Do the actual recovery
  3298. */
  3299. STATIC int
  3300. xlog_do_recover(
  3301. xlog_t *log,
  3302. xfs_daddr_t head_blk,
  3303. xfs_daddr_t tail_blk)
  3304. {
  3305. int error;
  3306. xfs_buf_t *bp;
  3307. xfs_sb_t *sbp;
  3308. /*
  3309. * First replay the images in the log.
  3310. */
  3311. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3312. if (error) {
  3313. return error;
  3314. }
  3315. XFS_bflush(log->l_mp->m_ddev_targp);
  3316. /*
  3317. * If IO errors happened during recovery, bail out.
  3318. */
  3319. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3320. return (EIO);
  3321. }
  3322. /*
  3323. * We now update the tail_lsn since much of the recovery has completed
  3324. * and there may be space available to use. If there were no extent
  3325. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3326. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3327. * lsn of the last known good LR on disk. If there are extent frees
  3328. * or iunlinks they will have some entries in the AIL; so we look at
  3329. * the AIL to determine how to set the tail_lsn.
  3330. */
  3331. xlog_assign_tail_lsn(log->l_mp);
  3332. /*
  3333. * Now that we've finished replaying all buffer and inode
  3334. * updates, re-read in the superblock.
  3335. */
  3336. bp = xfs_getsb(log->l_mp, 0);
  3337. XFS_BUF_UNDONE(bp);
  3338. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3339. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3340. XFS_BUF_READ(bp);
  3341. XFS_BUF_UNASYNC(bp);
  3342. xfsbdstrat(log->l_mp, bp);
  3343. error = xfs_buf_iowait(bp);
  3344. if (error) {
  3345. xfs_ioerror_alert("xlog_do_recover",
  3346. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3347. ASSERT(0);
  3348. xfs_buf_relse(bp);
  3349. return error;
  3350. }
  3351. /* Convert superblock from on-disk format */
  3352. sbp = &log->l_mp->m_sb;
  3353. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3354. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3355. ASSERT(xfs_sb_good_version(sbp));
  3356. xfs_buf_relse(bp);
  3357. /* We've re-read the superblock so re-initialize per-cpu counters */
  3358. xfs_icsb_reinit_counters(log->l_mp);
  3359. xlog_recover_check_summary(log);
  3360. /* Normal transactions can now occur */
  3361. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3362. return 0;
  3363. }
  3364. /*
  3365. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3366. *
  3367. * Return error or zero.
  3368. */
  3369. int
  3370. xlog_recover(
  3371. xlog_t *log)
  3372. {
  3373. xfs_daddr_t head_blk, tail_blk;
  3374. int error;
  3375. /* find the tail of the log */
  3376. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3377. return error;
  3378. if (tail_blk != head_blk) {
  3379. /* There used to be a comment here:
  3380. *
  3381. * disallow recovery on read-only mounts. note -- mount
  3382. * checks for ENOSPC and turns it into an intelligent
  3383. * error message.
  3384. * ...but this is no longer true. Now, unless you specify
  3385. * NORECOVERY (in which case this function would never be
  3386. * called), we just go ahead and recover. We do this all
  3387. * under the vfs layer, so we can get away with it unless
  3388. * the device itself is read-only, in which case we fail.
  3389. */
  3390. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3391. return error;
  3392. }
  3393. cmn_err(CE_NOTE,
  3394. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3395. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3396. log->l_mp->m_logname : "internal");
  3397. error = xlog_do_recover(log, head_blk, tail_blk);
  3398. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3399. }
  3400. return error;
  3401. }
  3402. /*
  3403. * In the first part of recovery we replay inodes and buffers and build
  3404. * up the list of extent free items which need to be processed. Here
  3405. * we process the extent free items and clean up the on disk unlinked
  3406. * inode lists. This is separated from the first part of recovery so
  3407. * that the root and real-time bitmap inodes can be read in from disk in
  3408. * between the two stages. This is necessary so that we can free space
  3409. * in the real-time portion of the file system.
  3410. */
  3411. int
  3412. xlog_recover_finish(
  3413. xlog_t *log)
  3414. {
  3415. /*
  3416. * Now we're ready to do the transactions needed for the
  3417. * rest of recovery. Start with completing all the extent
  3418. * free intent records and then process the unlinked inode
  3419. * lists. At this point, we essentially run in normal mode
  3420. * except that we're still performing recovery actions
  3421. * rather than accepting new requests.
  3422. */
  3423. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3424. int error;
  3425. error = xlog_recover_process_efis(log);
  3426. if (error) {
  3427. cmn_err(CE_ALERT,
  3428. "Failed to recover EFIs on filesystem: %s",
  3429. log->l_mp->m_fsname);
  3430. return error;
  3431. }
  3432. /*
  3433. * Sync the log to get all the EFIs out of the AIL.
  3434. * This isn't absolutely necessary, but it helps in
  3435. * case the unlink transactions would have problems
  3436. * pushing the EFIs out of the way.
  3437. */
  3438. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3439. xlog_recover_process_iunlinks(log);
  3440. xlog_recover_check_summary(log);
  3441. cmn_err(CE_NOTE,
  3442. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3443. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3444. log->l_mp->m_logname : "internal");
  3445. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3446. } else {
  3447. cmn_err(CE_DEBUG,
  3448. "!Ending clean XFS mount for filesystem: %s\n",
  3449. log->l_mp->m_fsname);
  3450. }
  3451. return 0;
  3452. }
  3453. #if defined(DEBUG)
  3454. /*
  3455. * Read all of the agf and agi counters and check that they
  3456. * are consistent with the superblock counters.
  3457. */
  3458. void
  3459. xlog_recover_check_summary(
  3460. xlog_t *log)
  3461. {
  3462. xfs_mount_t *mp;
  3463. xfs_agf_t *agfp;
  3464. xfs_buf_t *agfbp;
  3465. xfs_buf_t *agibp;
  3466. xfs_agnumber_t agno;
  3467. __uint64_t freeblks;
  3468. __uint64_t itotal;
  3469. __uint64_t ifree;
  3470. int error;
  3471. mp = log->l_mp;
  3472. freeblks = 0LL;
  3473. itotal = 0LL;
  3474. ifree = 0LL;
  3475. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3476. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3477. if (error) {
  3478. xfs_fs_cmn_err(CE_ALERT, mp,
  3479. "xlog_recover_check_summary(agf)"
  3480. "agf read failed agno %d error %d",
  3481. agno, error);
  3482. } else {
  3483. agfp = XFS_BUF_TO_AGF(agfbp);
  3484. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3485. be32_to_cpu(agfp->agf_flcount);
  3486. xfs_buf_relse(agfbp);
  3487. }
  3488. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3489. if (!error) {
  3490. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3491. itotal += be32_to_cpu(agi->agi_count);
  3492. ifree += be32_to_cpu(agi->agi_freecount);
  3493. xfs_buf_relse(agibp);
  3494. }
  3495. }
  3496. }
  3497. #endif /* DEBUG */