process_32.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * Gareth Hughes <gareth@valinux.com>, May 2000
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/cpu.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/fs.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/elfcore.h>
  18. #include <linux/smp.h>
  19. #include <linux/stddef.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/user.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/utsname.h>
  25. #include <linux/delay.h>
  26. #include <linux/reboot.h>
  27. #include <linux/init.h>
  28. #include <linux/mc146818rtc.h>
  29. #include <linux/module.h>
  30. #include <linux/kallsyms.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/random.h>
  33. #include <linux/personality.h>
  34. #include <linux/tick.h>
  35. #include <linux/percpu.h>
  36. #include <linux/prctl.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/system.h>
  40. #include <asm/io.h>
  41. #include <asm/ldt.h>
  42. #include <asm/processor.h>
  43. #include <asm/i387.h>
  44. #include <asm/desc.h>
  45. #ifdef CONFIG_MATH_EMULATION
  46. #include <asm/math_emu.h>
  47. #endif
  48. #include <linux/err.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/cpu.h>
  51. #include <asm/kdebug.h>
  52. #include <asm/idle.h>
  53. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  54. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  55. EXPORT_PER_CPU_SYMBOL(current_task);
  56. DEFINE_PER_CPU(int, cpu_number);
  57. EXPORT_PER_CPU_SYMBOL(cpu_number);
  58. /*
  59. * Return saved PC of a blocked thread.
  60. */
  61. unsigned long thread_saved_pc(struct task_struct *tsk)
  62. {
  63. return ((unsigned long *)tsk->thread.sp)[3];
  64. }
  65. #ifdef CONFIG_HOTPLUG_CPU
  66. #include <asm/nmi.h>
  67. static void cpu_exit_clear(void)
  68. {
  69. int cpu = raw_smp_processor_id();
  70. idle_task_exit();
  71. cpu_uninit();
  72. irq_ctx_exit(cpu);
  73. cpu_clear(cpu, cpu_callout_map);
  74. cpu_clear(cpu, cpu_callin_map);
  75. numa_remove_cpu(cpu);
  76. c1e_remove_cpu(cpu);
  77. }
  78. /* We don't actually take CPU down, just spin without interrupts. */
  79. static inline void play_dead(void)
  80. {
  81. /* This must be done before dead CPU ack */
  82. cpu_exit_clear();
  83. mb();
  84. /* Ack it */
  85. __get_cpu_var(cpu_state) = CPU_DEAD;
  86. /*
  87. * With physical CPU hotplug, we should halt the cpu
  88. */
  89. local_irq_disable();
  90. /* mask all interrupts, flush any and all caches, and halt */
  91. wbinvd_halt();
  92. }
  93. #else
  94. static inline void play_dead(void)
  95. {
  96. BUG();
  97. }
  98. #endif /* CONFIG_HOTPLUG_CPU */
  99. /*
  100. * The idle thread. There's no useful work to be
  101. * done, so just try to conserve power and have a
  102. * low exit latency (ie sit in a loop waiting for
  103. * somebody to say that they'd like to reschedule)
  104. */
  105. void cpu_idle(void)
  106. {
  107. int cpu = smp_processor_id();
  108. current_thread_info()->status |= TS_POLLING;
  109. /* endless idle loop with no priority at all */
  110. while (1) {
  111. tick_nohz_stop_sched_tick(1);
  112. while (!need_resched()) {
  113. check_pgt_cache();
  114. rmb();
  115. if (rcu_pending(cpu))
  116. rcu_check_callbacks(cpu, 0);
  117. if (cpu_is_offline(cpu))
  118. play_dead();
  119. local_irq_disable();
  120. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  121. /* Don't trace irqs off for idle */
  122. stop_critical_timings();
  123. pm_idle();
  124. start_critical_timings();
  125. }
  126. tick_nohz_restart_sched_tick();
  127. preempt_enable_no_resched();
  128. schedule();
  129. preempt_disable();
  130. }
  131. }
  132. void __show_registers(struct pt_regs *regs, int all)
  133. {
  134. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  135. unsigned long d0, d1, d2, d3, d6, d7;
  136. unsigned long sp;
  137. unsigned short ss, gs;
  138. if (user_mode_vm(regs)) {
  139. sp = regs->sp;
  140. ss = regs->ss & 0xffff;
  141. savesegment(gs, gs);
  142. } else {
  143. sp = (unsigned long) (&regs->sp);
  144. savesegment(ss, ss);
  145. savesegment(gs, gs);
  146. }
  147. printk("\n");
  148. printk("Pid: %d, comm: %s %s (%s %.*s)\n",
  149. task_pid_nr(current), current->comm,
  150. print_tainted(), init_utsname()->release,
  151. (int)strcspn(init_utsname()->version, " "),
  152. init_utsname()->version);
  153. printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
  154. (u16)regs->cs, regs->ip, regs->flags,
  155. smp_processor_id());
  156. print_symbol("EIP is at %s\n", regs->ip);
  157. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  158. regs->ax, regs->bx, regs->cx, regs->dx);
  159. printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  160. regs->si, regs->di, regs->bp, sp);
  161. printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
  162. (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
  163. if (!all)
  164. return;
  165. cr0 = read_cr0();
  166. cr2 = read_cr2();
  167. cr3 = read_cr3();
  168. cr4 = read_cr4_safe();
  169. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  170. cr0, cr2, cr3, cr4);
  171. get_debugreg(d0, 0);
  172. get_debugreg(d1, 1);
  173. get_debugreg(d2, 2);
  174. get_debugreg(d3, 3);
  175. printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
  176. d0, d1, d2, d3);
  177. get_debugreg(d6, 6);
  178. get_debugreg(d7, 7);
  179. printk("DR6: %08lx DR7: %08lx\n",
  180. d6, d7);
  181. }
  182. void show_regs(struct pt_regs *regs)
  183. {
  184. __show_registers(regs, 1);
  185. show_trace(NULL, regs, &regs->sp, regs->bp);
  186. }
  187. /*
  188. * This gets run with %bx containing the
  189. * function to call, and %dx containing
  190. * the "args".
  191. */
  192. extern void kernel_thread_helper(void);
  193. /*
  194. * Create a kernel thread
  195. */
  196. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  197. {
  198. struct pt_regs regs;
  199. memset(&regs, 0, sizeof(regs));
  200. regs.bx = (unsigned long) fn;
  201. regs.dx = (unsigned long) arg;
  202. regs.ds = __USER_DS;
  203. regs.es = __USER_DS;
  204. regs.fs = __KERNEL_PERCPU;
  205. regs.orig_ax = -1;
  206. regs.ip = (unsigned long) kernel_thread_helper;
  207. regs.cs = __KERNEL_CS | get_kernel_rpl();
  208. regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  209. /* Ok, create the new process.. */
  210. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  211. }
  212. EXPORT_SYMBOL(kernel_thread);
  213. /*
  214. * Free current thread data structures etc..
  215. */
  216. void exit_thread(void)
  217. {
  218. /* The process may have allocated an io port bitmap... nuke it. */
  219. if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
  220. struct task_struct *tsk = current;
  221. struct thread_struct *t = &tsk->thread;
  222. int cpu = get_cpu();
  223. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  224. kfree(t->io_bitmap_ptr);
  225. t->io_bitmap_ptr = NULL;
  226. clear_thread_flag(TIF_IO_BITMAP);
  227. /*
  228. * Careful, clear this in the TSS too:
  229. */
  230. memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
  231. t->io_bitmap_max = 0;
  232. tss->io_bitmap_owner = NULL;
  233. tss->io_bitmap_max = 0;
  234. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  235. put_cpu();
  236. }
  237. }
  238. void flush_thread(void)
  239. {
  240. struct task_struct *tsk = current;
  241. tsk->thread.debugreg0 = 0;
  242. tsk->thread.debugreg1 = 0;
  243. tsk->thread.debugreg2 = 0;
  244. tsk->thread.debugreg3 = 0;
  245. tsk->thread.debugreg6 = 0;
  246. tsk->thread.debugreg7 = 0;
  247. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  248. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  249. /*
  250. * Forget coprocessor state..
  251. */
  252. tsk->fpu_counter = 0;
  253. clear_fpu(tsk);
  254. clear_used_math();
  255. }
  256. void release_thread(struct task_struct *dead_task)
  257. {
  258. BUG_ON(dead_task->mm);
  259. release_vm86_irqs(dead_task);
  260. }
  261. /*
  262. * This gets called before we allocate a new thread and copy
  263. * the current task into it.
  264. */
  265. void prepare_to_copy(struct task_struct *tsk)
  266. {
  267. unlazy_fpu(tsk);
  268. }
  269. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  270. unsigned long unused,
  271. struct task_struct * p, struct pt_regs * regs)
  272. {
  273. struct pt_regs * childregs;
  274. struct task_struct *tsk;
  275. int err;
  276. childregs = task_pt_regs(p);
  277. *childregs = *regs;
  278. childregs->ax = 0;
  279. childregs->sp = sp;
  280. p->thread.sp = (unsigned long) childregs;
  281. p->thread.sp0 = (unsigned long) (childregs+1);
  282. p->thread.ip = (unsigned long) ret_from_fork;
  283. savesegment(gs, p->thread.gs);
  284. tsk = current;
  285. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  286. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  287. IO_BITMAP_BYTES, GFP_KERNEL);
  288. if (!p->thread.io_bitmap_ptr) {
  289. p->thread.io_bitmap_max = 0;
  290. return -ENOMEM;
  291. }
  292. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  293. }
  294. err = 0;
  295. /*
  296. * Set a new TLS for the child thread?
  297. */
  298. if (clone_flags & CLONE_SETTLS)
  299. err = do_set_thread_area(p, -1,
  300. (struct user_desc __user *)childregs->si, 0);
  301. if (err && p->thread.io_bitmap_ptr) {
  302. kfree(p->thread.io_bitmap_ptr);
  303. p->thread.io_bitmap_max = 0;
  304. }
  305. return err;
  306. }
  307. void
  308. start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  309. {
  310. __asm__("movl %0, %%gs" :: "r"(0));
  311. regs->fs = 0;
  312. set_fs(USER_DS);
  313. regs->ds = __USER_DS;
  314. regs->es = __USER_DS;
  315. regs->ss = __USER_DS;
  316. regs->cs = __USER_CS;
  317. regs->ip = new_ip;
  318. regs->sp = new_sp;
  319. /*
  320. * Free the old FP and other extended state
  321. */
  322. free_thread_xstate(current);
  323. }
  324. EXPORT_SYMBOL_GPL(start_thread);
  325. static void hard_disable_TSC(void)
  326. {
  327. write_cr4(read_cr4() | X86_CR4_TSD);
  328. }
  329. void disable_TSC(void)
  330. {
  331. preempt_disable();
  332. if (!test_and_set_thread_flag(TIF_NOTSC))
  333. /*
  334. * Must flip the CPU state synchronously with
  335. * TIF_NOTSC in the current running context.
  336. */
  337. hard_disable_TSC();
  338. preempt_enable();
  339. }
  340. static void hard_enable_TSC(void)
  341. {
  342. write_cr4(read_cr4() & ~X86_CR4_TSD);
  343. }
  344. static void enable_TSC(void)
  345. {
  346. preempt_disable();
  347. if (test_and_clear_thread_flag(TIF_NOTSC))
  348. /*
  349. * Must flip the CPU state synchronously with
  350. * TIF_NOTSC in the current running context.
  351. */
  352. hard_enable_TSC();
  353. preempt_enable();
  354. }
  355. int get_tsc_mode(unsigned long adr)
  356. {
  357. unsigned int val;
  358. if (test_thread_flag(TIF_NOTSC))
  359. val = PR_TSC_SIGSEGV;
  360. else
  361. val = PR_TSC_ENABLE;
  362. return put_user(val, (unsigned int __user *)adr);
  363. }
  364. int set_tsc_mode(unsigned int val)
  365. {
  366. if (val == PR_TSC_SIGSEGV)
  367. disable_TSC();
  368. else if (val == PR_TSC_ENABLE)
  369. enable_TSC();
  370. else
  371. return -EINVAL;
  372. return 0;
  373. }
  374. static noinline void
  375. __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  376. struct tss_struct *tss)
  377. {
  378. struct thread_struct *prev, *next;
  379. unsigned long debugctl;
  380. prev = &prev_p->thread;
  381. next = &next_p->thread;
  382. debugctl = prev->debugctlmsr;
  383. if (next->ds_area_msr != prev->ds_area_msr) {
  384. /* we clear debugctl to make sure DS
  385. * is not in use when we change it */
  386. debugctl = 0;
  387. update_debugctlmsr(0);
  388. wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
  389. }
  390. if (next->debugctlmsr != debugctl)
  391. update_debugctlmsr(next->debugctlmsr);
  392. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  393. set_debugreg(next->debugreg0, 0);
  394. set_debugreg(next->debugreg1, 1);
  395. set_debugreg(next->debugreg2, 2);
  396. set_debugreg(next->debugreg3, 3);
  397. /* no 4 and 5 */
  398. set_debugreg(next->debugreg6, 6);
  399. set_debugreg(next->debugreg7, 7);
  400. }
  401. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  402. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  403. /* prev and next are different */
  404. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  405. hard_disable_TSC();
  406. else
  407. hard_enable_TSC();
  408. }
  409. #ifdef X86_BTS
  410. if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
  411. ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
  412. if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
  413. ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
  414. #endif
  415. if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  416. /*
  417. * Disable the bitmap via an invalid offset. We still cache
  418. * the previous bitmap owner and the IO bitmap contents:
  419. */
  420. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  421. return;
  422. }
  423. if (likely(next == tss->io_bitmap_owner)) {
  424. /*
  425. * Previous owner of the bitmap (hence the bitmap content)
  426. * matches the next task, we dont have to do anything but
  427. * to set a valid offset in the TSS:
  428. */
  429. tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
  430. return;
  431. }
  432. /*
  433. * Lazy TSS's I/O bitmap copy. We set an invalid offset here
  434. * and we let the task to get a GPF in case an I/O instruction
  435. * is performed. The handler of the GPF will verify that the
  436. * faulting task has a valid I/O bitmap and, it true, does the
  437. * real copy and restart the instruction. This will save us
  438. * redundant copies when the currently switched task does not
  439. * perform any I/O during its timeslice.
  440. */
  441. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
  442. }
  443. /*
  444. * switch_to(x,yn) should switch tasks from x to y.
  445. *
  446. * We fsave/fwait so that an exception goes off at the right time
  447. * (as a call from the fsave or fwait in effect) rather than to
  448. * the wrong process. Lazy FP saving no longer makes any sense
  449. * with modern CPU's, and this simplifies a lot of things (SMP
  450. * and UP become the same).
  451. *
  452. * NOTE! We used to use the x86 hardware context switching. The
  453. * reason for not using it any more becomes apparent when you
  454. * try to recover gracefully from saved state that is no longer
  455. * valid (stale segment register values in particular). With the
  456. * hardware task-switch, there is no way to fix up bad state in
  457. * a reasonable manner.
  458. *
  459. * The fact that Intel documents the hardware task-switching to
  460. * be slow is a fairly red herring - this code is not noticeably
  461. * faster. However, there _is_ some room for improvement here,
  462. * so the performance issues may eventually be a valid point.
  463. * More important, however, is the fact that this allows us much
  464. * more flexibility.
  465. *
  466. * The return value (in %ax) will be the "prev" task after
  467. * the task-switch, and shows up in ret_from_fork in entry.S,
  468. * for example.
  469. */
  470. struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  471. {
  472. struct thread_struct *prev = &prev_p->thread,
  473. *next = &next_p->thread;
  474. int cpu = smp_processor_id();
  475. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  476. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  477. __unlazy_fpu(prev_p);
  478. /* we're going to use this soon, after a few expensive things */
  479. if (next_p->fpu_counter > 5)
  480. prefetch(next->xstate);
  481. /*
  482. * Reload esp0.
  483. */
  484. load_sp0(tss, next);
  485. /*
  486. * Save away %gs. No need to save %fs, as it was saved on the
  487. * stack on entry. No need to save %es and %ds, as those are
  488. * always kernel segments while inside the kernel. Doing this
  489. * before setting the new TLS descriptors avoids the situation
  490. * where we temporarily have non-reloadable segments in %fs
  491. * and %gs. This could be an issue if the NMI handler ever
  492. * used %fs or %gs (it does not today), or if the kernel is
  493. * running inside of a hypervisor layer.
  494. */
  495. savesegment(gs, prev->gs);
  496. /*
  497. * Load the per-thread Thread-Local Storage descriptor.
  498. */
  499. load_TLS(next, cpu);
  500. /*
  501. * Restore IOPL if needed. In normal use, the flags restore
  502. * in the switch assembly will handle this. But if the kernel
  503. * is running virtualized at a non-zero CPL, the popf will
  504. * not restore flags, so it must be done in a separate step.
  505. */
  506. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  507. set_iopl_mask(next->iopl);
  508. /*
  509. * Now maybe handle debug registers and/or IO bitmaps
  510. */
  511. if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
  512. task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
  513. __switch_to_xtra(prev_p, next_p, tss);
  514. /*
  515. * Leave lazy mode, flushing any hypercalls made here.
  516. * This must be done before restoring TLS segments so
  517. * the GDT and LDT are properly updated, and must be
  518. * done before math_state_restore, so the TS bit is up
  519. * to date.
  520. */
  521. arch_leave_lazy_cpu_mode();
  522. /* If the task has used fpu the last 5 timeslices, just do a full
  523. * restore of the math state immediately to avoid the trap; the
  524. * chances of needing FPU soon are obviously high now
  525. *
  526. * tsk_used_math() checks prevent calling math_state_restore(),
  527. * which can sleep in the case of !tsk_used_math()
  528. */
  529. if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
  530. math_state_restore();
  531. /*
  532. * Restore %gs if needed (which is common)
  533. */
  534. if (prev->gs | next->gs)
  535. loadsegment(gs, next->gs);
  536. x86_write_percpu(current_task, next_p);
  537. return prev_p;
  538. }
  539. asmlinkage int sys_fork(struct pt_regs regs)
  540. {
  541. return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  542. }
  543. asmlinkage int sys_clone(struct pt_regs regs)
  544. {
  545. unsigned long clone_flags;
  546. unsigned long newsp;
  547. int __user *parent_tidptr, *child_tidptr;
  548. clone_flags = regs.bx;
  549. newsp = regs.cx;
  550. parent_tidptr = (int __user *)regs.dx;
  551. child_tidptr = (int __user *)regs.di;
  552. if (!newsp)
  553. newsp = regs.sp;
  554. return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
  555. }
  556. /*
  557. * This is trivial, and on the face of it looks like it
  558. * could equally well be done in user mode.
  559. *
  560. * Not so, for quite unobvious reasons - register pressure.
  561. * In user mode vfork() cannot have a stack frame, and if
  562. * done by calling the "clone()" system call directly, you
  563. * do not have enough call-clobbered registers to hold all
  564. * the information you need.
  565. */
  566. asmlinkage int sys_vfork(struct pt_regs regs)
  567. {
  568. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  569. }
  570. /*
  571. * sys_execve() executes a new program.
  572. */
  573. asmlinkage int sys_execve(struct pt_regs regs)
  574. {
  575. int error;
  576. char * filename;
  577. filename = getname((char __user *) regs.bx);
  578. error = PTR_ERR(filename);
  579. if (IS_ERR(filename))
  580. goto out;
  581. error = do_execve(filename,
  582. (char __user * __user *) regs.cx,
  583. (char __user * __user *) regs.dx,
  584. &regs);
  585. if (error == 0) {
  586. /* Make sure we don't return using sysenter.. */
  587. set_thread_flag(TIF_IRET);
  588. }
  589. putname(filename);
  590. out:
  591. return error;
  592. }
  593. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  594. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  595. unsigned long get_wchan(struct task_struct *p)
  596. {
  597. unsigned long bp, sp, ip;
  598. unsigned long stack_page;
  599. int count = 0;
  600. if (!p || p == current || p->state == TASK_RUNNING)
  601. return 0;
  602. stack_page = (unsigned long)task_stack_page(p);
  603. sp = p->thread.sp;
  604. if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
  605. return 0;
  606. /* include/asm-i386/system.h:switch_to() pushes bp last. */
  607. bp = *(unsigned long *) sp;
  608. do {
  609. if (bp < stack_page || bp > top_ebp+stack_page)
  610. return 0;
  611. ip = *(unsigned long *) (bp+4);
  612. if (!in_sched_functions(ip))
  613. return ip;
  614. bp = *(unsigned long *) bp;
  615. } while (count++ < 16);
  616. return 0;
  617. }
  618. unsigned long arch_align_stack(unsigned long sp)
  619. {
  620. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  621. sp -= get_random_int() % 8192;
  622. return sp & ~0xf;
  623. }
  624. unsigned long arch_randomize_brk(struct mm_struct *mm)
  625. {
  626. unsigned long range_end = mm->brk + 0x02000000;
  627. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  628. }