xfs_buf.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/stddef.h>
  19. #include <linux/errno.h>
  20. #include <linux/slab.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/init.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/bio.h>
  25. #include <linux/sysctl.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/percpu.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/hash.h>
  31. #include <linux/kthread.h>
  32. #include "xfs_linux.h"
  33. STATIC kmem_cache_t *pagebuf_zone;
  34. STATIC kmem_shaker_t pagebuf_shake;
  35. STATIC int xfsbufd(void *);
  36. STATIC int xfsbufd_wakeup(int, gfp_t);
  37. STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
  38. STATIC struct workqueue_struct *xfslogd_workqueue;
  39. struct workqueue_struct *xfsdatad_workqueue;
  40. #ifdef PAGEBUF_TRACE
  41. void
  42. pagebuf_trace(
  43. xfs_buf_t *pb,
  44. char *id,
  45. void *data,
  46. void *ra)
  47. {
  48. ktrace_enter(pagebuf_trace_buf,
  49. pb, id,
  50. (void *)(unsigned long)pb->pb_flags,
  51. (void *)(unsigned long)pb->pb_hold.counter,
  52. (void *)(unsigned long)pb->pb_sema.count.counter,
  53. (void *)current,
  54. data, ra,
  55. (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
  56. (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
  57. (void *)(unsigned long)pb->pb_buffer_length,
  58. NULL, NULL, NULL, NULL, NULL);
  59. }
  60. ktrace_t *pagebuf_trace_buf;
  61. #define PAGEBUF_TRACE_SIZE 4096
  62. #define PB_TRACE(pb, id, data) \
  63. pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
  64. #else
  65. #define PB_TRACE(pb, id, data) do { } while (0)
  66. #endif
  67. #ifdef PAGEBUF_LOCK_TRACKING
  68. # define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
  69. # define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
  70. # define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
  71. #else
  72. # define PB_SET_OWNER(pb) do { } while (0)
  73. # define PB_CLEAR_OWNER(pb) do { } while (0)
  74. # define PB_GET_OWNER(pb) do { } while (0)
  75. #endif
  76. #define pb_to_gfp(flags) \
  77. ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
  78. ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  79. #define pb_to_km(flags) \
  80. (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  81. #define pagebuf_allocate(flags) \
  82. kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
  83. #define pagebuf_deallocate(pb) \
  84. kmem_zone_free(pagebuf_zone, (pb));
  85. /*
  86. * Page Region interfaces.
  87. *
  88. * For pages in filesystems where the blocksize is smaller than the
  89. * pagesize, we use the page->private field (long) to hold a bitmap
  90. * of uptodate regions within the page.
  91. *
  92. * Each such region is "bytes per page / bits per long" bytes long.
  93. *
  94. * NBPPR == number-of-bytes-per-page-region
  95. * BTOPR == bytes-to-page-region (rounded up)
  96. * BTOPRT == bytes-to-page-region-truncated (rounded down)
  97. */
  98. #if (BITS_PER_LONG == 32)
  99. #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
  100. #elif (BITS_PER_LONG == 64)
  101. #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
  102. #else
  103. #error BITS_PER_LONG must be 32 or 64
  104. #endif
  105. #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
  106. #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
  107. #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
  108. STATIC unsigned long
  109. page_region_mask(
  110. size_t offset,
  111. size_t length)
  112. {
  113. unsigned long mask;
  114. int first, final;
  115. first = BTOPR(offset);
  116. final = BTOPRT(offset + length - 1);
  117. first = min(first, final);
  118. mask = ~0UL;
  119. mask <<= BITS_PER_LONG - (final - first);
  120. mask >>= BITS_PER_LONG - (final);
  121. ASSERT(offset + length <= PAGE_CACHE_SIZE);
  122. ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
  123. return mask;
  124. }
  125. STATIC inline void
  126. set_page_region(
  127. struct page *page,
  128. size_t offset,
  129. size_t length)
  130. {
  131. set_page_private(page,
  132. page_private(page) | page_region_mask(offset, length));
  133. if (page_private(page) == ~0UL)
  134. SetPageUptodate(page);
  135. }
  136. STATIC inline int
  137. test_page_region(
  138. struct page *page,
  139. size_t offset,
  140. size_t length)
  141. {
  142. unsigned long mask = page_region_mask(offset, length);
  143. return (mask && (page_private(page) & mask) == mask);
  144. }
  145. /*
  146. * Mapping of multi-page buffers into contiguous virtual space
  147. */
  148. typedef struct a_list {
  149. void *vm_addr;
  150. struct a_list *next;
  151. } a_list_t;
  152. STATIC a_list_t *as_free_head;
  153. STATIC int as_list_len;
  154. STATIC DEFINE_SPINLOCK(as_lock);
  155. /*
  156. * Try to batch vunmaps because they are costly.
  157. */
  158. STATIC void
  159. free_address(
  160. void *addr)
  161. {
  162. a_list_t *aentry;
  163. aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
  164. if (likely(aentry)) {
  165. spin_lock(&as_lock);
  166. aentry->next = as_free_head;
  167. aentry->vm_addr = addr;
  168. as_free_head = aentry;
  169. as_list_len++;
  170. spin_unlock(&as_lock);
  171. } else {
  172. vunmap(addr);
  173. }
  174. }
  175. STATIC void
  176. purge_addresses(void)
  177. {
  178. a_list_t *aentry, *old;
  179. if (as_free_head == NULL)
  180. return;
  181. spin_lock(&as_lock);
  182. aentry = as_free_head;
  183. as_free_head = NULL;
  184. as_list_len = 0;
  185. spin_unlock(&as_lock);
  186. while ((old = aentry) != NULL) {
  187. vunmap(aentry->vm_addr);
  188. aentry = aentry->next;
  189. kfree(old);
  190. }
  191. }
  192. /*
  193. * Internal pagebuf object manipulation
  194. */
  195. STATIC void
  196. _pagebuf_initialize(
  197. xfs_buf_t *pb,
  198. xfs_buftarg_t *target,
  199. loff_t range_base,
  200. size_t range_length,
  201. page_buf_flags_t flags)
  202. {
  203. /*
  204. * We don't want certain flags to appear in pb->pb_flags.
  205. */
  206. flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
  207. memset(pb, 0, sizeof(xfs_buf_t));
  208. atomic_set(&pb->pb_hold, 1);
  209. init_MUTEX_LOCKED(&pb->pb_iodonesema);
  210. INIT_LIST_HEAD(&pb->pb_list);
  211. INIT_LIST_HEAD(&pb->pb_hash_list);
  212. init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
  213. PB_SET_OWNER(pb);
  214. pb->pb_target = target;
  215. pb->pb_file_offset = range_base;
  216. /*
  217. * Set buffer_length and count_desired to the same value initially.
  218. * I/O routines should use count_desired, which will be the same in
  219. * most cases but may be reset (e.g. XFS recovery).
  220. */
  221. pb->pb_buffer_length = pb->pb_count_desired = range_length;
  222. pb->pb_flags = flags;
  223. pb->pb_bn = XFS_BUF_DADDR_NULL;
  224. atomic_set(&pb->pb_pin_count, 0);
  225. init_waitqueue_head(&pb->pb_waiters);
  226. XFS_STATS_INC(pb_create);
  227. PB_TRACE(pb, "initialize", target);
  228. }
  229. /*
  230. * Allocate a page array capable of holding a specified number
  231. * of pages, and point the page buf at it.
  232. */
  233. STATIC int
  234. _pagebuf_get_pages(
  235. xfs_buf_t *pb,
  236. int page_count,
  237. page_buf_flags_t flags)
  238. {
  239. /* Make sure that we have a page list */
  240. if (pb->pb_pages == NULL) {
  241. pb->pb_offset = page_buf_poff(pb->pb_file_offset);
  242. pb->pb_page_count = page_count;
  243. if (page_count <= PB_PAGES) {
  244. pb->pb_pages = pb->pb_page_array;
  245. } else {
  246. pb->pb_pages = kmem_alloc(sizeof(struct page *) *
  247. page_count, pb_to_km(flags));
  248. if (pb->pb_pages == NULL)
  249. return -ENOMEM;
  250. }
  251. memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
  252. }
  253. return 0;
  254. }
  255. /*
  256. * Frees pb_pages if it was malloced.
  257. */
  258. STATIC void
  259. _pagebuf_free_pages(
  260. xfs_buf_t *bp)
  261. {
  262. if (bp->pb_pages != bp->pb_page_array) {
  263. kmem_free(bp->pb_pages,
  264. bp->pb_page_count * sizeof(struct page *));
  265. }
  266. }
  267. /*
  268. * Releases the specified buffer.
  269. *
  270. * The modification state of any associated pages is left unchanged.
  271. * The buffer most not be on any hash - use pagebuf_rele instead for
  272. * hashed and refcounted buffers
  273. */
  274. void
  275. pagebuf_free(
  276. xfs_buf_t *bp)
  277. {
  278. PB_TRACE(bp, "free", 0);
  279. ASSERT(list_empty(&bp->pb_hash_list));
  280. if (bp->pb_flags & _PBF_PAGE_CACHE) {
  281. uint i;
  282. if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
  283. free_address(bp->pb_addr - bp->pb_offset);
  284. for (i = 0; i < bp->pb_page_count; i++)
  285. page_cache_release(bp->pb_pages[i]);
  286. _pagebuf_free_pages(bp);
  287. } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
  288. /*
  289. * XXX(hch): bp->pb_count_desired might be incorrect (see
  290. * pagebuf_associate_memory for details), but fortunately
  291. * the Linux version of kmem_free ignores the len argument..
  292. */
  293. kmem_free(bp->pb_addr, bp->pb_count_desired);
  294. _pagebuf_free_pages(bp);
  295. }
  296. pagebuf_deallocate(bp);
  297. }
  298. /*
  299. * Finds all pages for buffer in question and builds it's page list.
  300. */
  301. STATIC int
  302. _pagebuf_lookup_pages(
  303. xfs_buf_t *bp,
  304. uint flags)
  305. {
  306. struct address_space *mapping = bp->pb_target->pbr_mapping;
  307. size_t blocksize = bp->pb_target->pbr_bsize;
  308. size_t size = bp->pb_count_desired;
  309. size_t nbytes, offset;
  310. gfp_t gfp_mask = pb_to_gfp(flags);
  311. unsigned short page_count, i;
  312. pgoff_t first;
  313. loff_t end;
  314. int error;
  315. end = bp->pb_file_offset + bp->pb_buffer_length;
  316. page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
  317. error = _pagebuf_get_pages(bp, page_count, flags);
  318. if (unlikely(error))
  319. return error;
  320. bp->pb_flags |= _PBF_PAGE_CACHE;
  321. offset = bp->pb_offset;
  322. first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
  323. for (i = 0; i < bp->pb_page_count; i++) {
  324. struct page *page;
  325. uint retries = 0;
  326. retry:
  327. page = find_or_create_page(mapping, first + i, gfp_mask);
  328. if (unlikely(page == NULL)) {
  329. if (flags & PBF_READ_AHEAD) {
  330. bp->pb_page_count = i;
  331. for (i = 0; i < bp->pb_page_count; i++)
  332. unlock_page(bp->pb_pages[i]);
  333. return -ENOMEM;
  334. }
  335. /*
  336. * This could deadlock.
  337. *
  338. * But until all the XFS lowlevel code is revamped to
  339. * handle buffer allocation failures we can't do much.
  340. */
  341. if (!(++retries % 100))
  342. printk(KERN_ERR
  343. "XFS: possible memory allocation "
  344. "deadlock in %s (mode:0x%x)\n",
  345. __FUNCTION__, gfp_mask);
  346. XFS_STATS_INC(pb_page_retries);
  347. xfsbufd_wakeup(0, gfp_mask);
  348. blk_congestion_wait(WRITE, HZ/50);
  349. goto retry;
  350. }
  351. XFS_STATS_INC(pb_page_found);
  352. nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
  353. size -= nbytes;
  354. if (!PageUptodate(page)) {
  355. page_count--;
  356. if (blocksize >= PAGE_CACHE_SIZE) {
  357. if (flags & PBF_READ)
  358. bp->pb_locked = 1;
  359. } else if (!PagePrivate(page)) {
  360. if (test_page_region(page, offset, nbytes))
  361. page_count++;
  362. }
  363. }
  364. bp->pb_pages[i] = page;
  365. offset = 0;
  366. }
  367. if (!bp->pb_locked) {
  368. for (i = 0; i < bp->pb_page_count; i++)
  369. unlock_page(bp->pb_pages[i]);
  370. }
  371. if (page_count == bp->pb_page_count)
  372. bp->pb_flags |= PBF_DONE;
  373. PB_TRACE(bp, "lookup_pages", (long)page_count);
  374. return error;
  375. }
  376. /*
  377. * Map buffer into kernel address-space if nessecary.
  378. */
  379. STATIC int
  380. _pagebuf_map_pages(
  381. xfs_buf_t *bp,
  382. uint flags)
  383. {
  384. /* A single page buffer is always mappable */
  385. if (bp->pb_page_count == 1) {
  386. bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
  387. bp->pb_flags |= PBF_MAPPED;
  388. } else if (flags & PBF_MAPPED) {
  389. if (as_list_len > 64)
  390. purge_addresses();
  391. bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
  392. VM_MAP, PAGE_KERNEL);
  393. if (unlikely(bp->pb_addr == NULL))
  394. return -ENOMEM;
  395. bp->pb_addr += bp->pb_offset;
  396. bp->pb_flags |= PBF_MAPPED;
  397. }
  398. return 0;
  399. }
  400. /*
  401. * Finding and Reading Buffers
  402. */
  403. /*
  404. * _pagebuf_find
  405. *
  406. * Looks up, and creates if absent, a lockable buffer for
  407. * a given range of an inode. The buffer is returned
  408. * locked. If other overlapping buffers exist, they are
  409. * released before the new buffer is created and locked,
  410. * which may imply that this call will block until those buffers
  411. * are unlocked. No I/O is implied by this call.
  412. */
  413. xfs_buf_t *
  414. _pagebuf_find(
  415. xfs_buftarg_t *btp, /* block device target */
  416. loff_t ioff, /* starting offset of range */
  417. size_t isize, /* length of range */
  418. page_buf_flags_t flags, /* PBF_TRYLOCK */
  419. xfs_buf_t *new_pb)/* newly allocated buffer */
  420. {
  421. loff_t range_base;
  422. size_t range_length;
  423. xfs_bufhash_t *hash;
  424. xfs_buf_t *pb, *n;
  425. range_base = (ioff << BBSHIFT);
  426. range_length = (isize << BBSHIFT);
  427. /* Check for IOs smaller than the sector size / not sector aligned */
  428. ASSERT(!(range_length < (1 << btp->pbr_sshift)));
  429. ASSERT(!(range_base & (loff_t)btp->pbr_smask));
  430. hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
  431. spin_lock(&hash->bh_lock);
  432. list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
  433. ASSERT(btp == pb->pb_target);
  434. if (pb->pb_file_offset == range_base &&
  435. pb->pb_buffer_length == range_length) {
  436. /*
  437. * If we look at something bring it to the
  438. * front of the list for next time.
  439. */
  440. atomic_inc(&pb->pb_hold);
  441. list_move(&pb->pb_hash_list, &hash->bh_list);
  442. goto found;
  443. }
  444. }
  445. /* No match found */
  446. if (new_pb) {
  447. _pagebuf_initialize(new_pb, btp, range_base,
  448. range_length, flags);
  449. new_pb->pb_hash = hash;
  450. list_add(&new_pb->pb_hash_list, &hash->bh_list);
  451. } else {
  452. XFS_STATS_INC(pb_miss_locked);
  453. }
  454. spin_unlock(&hash->bh_lock);
  455. return new_pb;
  456. found:
  457. spin_unlock(&hash->bh_lock);
  458. /* Attempt to get the semaphore without sleeping,
  459. * if this does not work then we need to drop the
  460. * spinlock and do a hard attempt on the semaphore.
  461. */
  462. if (down_trylock(&pb->pb_sema)) {
  463. if (!(flags & PBF_TRYLOCK)) {
  464. /* wait for buffer ownership */
  465. PB_TRACE(pb, "get_lock", 0);
  466. pagebuf_lock(pb);
  467. XFS_STATS_INC(pb_get_locked_waited);
  468. } else {
  469. /* We asked for a trylock and failed, no need
  470. * to look at file offset and length here, we
  471. * know that this pagebuf at least overlaps our
  472. * pagebuf and is locked, therefore our buffer
  473. * either does not exist, or is this buffer
  474. */
  475. pagebuf_rele(pb);
  476. XFS_STATS_INC(pb_busy_locked);
  477. return (NULL);
  478. }
  479. } else {
  480. /* trylock worked */
  481. PB_SET_OWNER(pb);
  482. }
  483. if (pb->pb_flags & PBF_STALE) {
  484. ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
  485. pb->pb_flags &= PBF_MAPPED;
  486. }
  487. PB_TRACE(pb, "got_lock", 0);
  488. XFS_STATS_INC(pb_get_locked);
  489. return (pb);
  490. }
  491. /*
  492. * xfs_buf_get_flags assembles a buffer covering the specified range.
  493. *
  494. * Storage in memory for all portions of the buffer will be allocated,
  495. * although backing storage may not be.
  496. */
  497. xfs_buf_t *
  498. xfs_buf_get_flags( /* allocate a buffer */
  499. xfs_buftarg_t *target,/* target for buffer */
  500. loff_t ioff, /* starting offset of range */
  501. size_t isize, /* length of range */
  502. page_buf_flags_t flags) /* PBF_TRYLOCK */
  503. {
  504. xfs_buf_t *pb, *new_pb;
  505. int error = 0, i;
  506. new_pb = pagebuf_allocate(flags);
  507. if (unlikely(!new_pb))
  508. return NULL;
  509. pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
  510. if (pb == new_pb) {
  511. error = _pagebuf_lookup_pages(pb, flags);
  512. if (error)
  513. goto no_buffer;
  514. } else {
  515. pagebuf_deallocate(new_pb);
  516. if (unlikely(pb == NULL))
  517. return NULL;
  518. }
  519. for (i = 0; i < pb->pb_page_count; i++)
  520. mark_page_accessed(pb->pb_pages[i]);
  521. if (!(pb->pb_flags & PBF_MAPPED)) {
  522. error = _pagebuf_map_pages(pb, flags);
  523. if (unlikely(error)) {
  524. printk(KERN_WARNING "%s: failed to map pages\n",
  525. __FUNCTION__);
  526. goto no_buffer;
  527. }
  528. }
  529. XFS_STATS_INC(pb_get);
  530. /*
  531. * Always fill in the block number now, the mapped cases can do
  532. * their own overlay of this later.
  533. */
  534. pb->pb_bn = ioff;
  535. pb->pb_count_desired = pb->pb_buffer_length;
  536. PB_TRACE(pb, "get", (unsigned long)flags);
  537. return pb;
  538. no_buffer:
  539. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  540. pagebuf_unlock(pb);
  541. pagebuf_rele(pb);
  542. return NULL;
  543. }
  544. xfs_buf_t *
  545. xfs_buf_read_flags(
  546. xfs_buftarg_t *target,
  547. loff_t ioff,
  548. size_t isize,
  549. page_buf_flags_t flags)
  550. {
  551. xfs_buf_t *pb;
  552. flags |= PBF_READ;
  553. pb = xfs_buf_get_flags(target, ioff, isize, flags);
  554. if (pb) {
  555. if (!XFS_BUF_ISDONE(pb)) {
  556. PB_TRACE(pb, "read", (unsigned long)flags);
  557. XFS_STATS_INC(pb_get_read);
  558. pagebuf_iostart(pb, flags);
  559. } else if (flags & PBF_ASYNC) {
  560. PB_TRACE(pb, "read_async", (unsigned long)flags);
  561. /*
  562. * Read ahead call which is already satisfied,
  563. * drop the buffer
  564. */
  565. goto no_buffer;
  566. } else {
  567. PB_TRACE(pb, "read_done", (unsigned long)flags);
  568. /* We do not want read in the flags */
  569. pb->pb_flags &= ~PBF_READ;
  570. }
  571. }
  572. return pb;
  573. no_buffer:
  574. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  575. pagebuf_unlock(pb);
  576. pagebuf_rele(pb);
  577. return NULL;
  578. }
  579. /*
  580. * If we are not low on memory then do the readahead in a deadlock
  581. * safe manner.
  582. */
  583. void
  584. pagebuf_readahead(
  585. xfs_buftarg_t *target,
  586. loff_t ioff,
  587. size_t isize,
  588. page_buf_flags_t flags)
  589. {
  590. struct backing_dev_info *bdi;
  591. bdi = target->pbr_mapping->backing_dev_info;
  592. if (bdi_read_congested(bdi))
  593. return;
  594. flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
  595. xfs_buf_read_flags(target, ioff, isize, flags);
  596. }
  597. xfs_buf_t *
  598. pagebuf_get_empty(
  599. size_t len,
  600. xfs_buftarg_t *target)
  601. {
  602. xfs_buf_t *pb;
  603. pb = pagebuf_allocate(0);
  604. if (pb)
  605. _pagebuf_initialize(pb, target, 0, len, 0);
  606. return pb;
  607. }
  608. static inline struct page *
  609. mem_to_page(
  610. void *addr)
  611. {
  612. if (((unsigned long)addr < VMALLOC_START) ||
  613. ((unsigned long)addr >= VMALLOC_END)) {
  614. return virt_to_page(addr);
  615. } else {
  616. return vmalloc_to_page(addr);
  617. }
  618. }
  619. int
  620. pagebuf_associate_memory(
  621. xfs_buf_t *pb,
  622. void *mem,
  623. size_t len)
  624. {
  625. int rval;
  626. int i = 0;
  627. size_t ptr;
  628. size_t end, end_cur;
  629. off_t offset;
  630. int page_count;
  631. page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
  632. offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
  633. if (offset && (len > PAGE_CACHE_SIZE))
  634. page_count++;
  635. /* Free any previous set of page pointers */
  636. if (pb->pb_pages)
  637. _pagebuf_free_pages(pb);
  638. pb->pb_pages = NULL;
  639. pb->pb_addr = mem;
  640. rval = _pagebuf_get_pages(pb, page_count, 0);
  641. if (rval)
  642. return rval;
  643. pb->pb_offset = offset;
  644. ptr = (size_t) mem & PAGE_CACHE_MASK;
  645. end = PAGE_CACHE_ALIGN((size_t) mem + len);
  646. end_cur = end;
  647. /* set up first page */
  648. pb->pb_pages[0] = mem_to_page(mem);
  649. ptr += PAGE_CACHE_SIZE;
  650. pb->pb_page_count = ++i;
  651. while (ptr < end) {
  652. pb->pb_pages[i] = mem_to_page((void *)ptr);
  653. pb->pb_page_count = ++i;
  654. ptr += PAGE_CACHE_SIZE;
  655. }
  656. pb->pb_locked = 0;
  657. pb->pb_count_desired = pb->pb_buffer_length = len;
  658. pb->pb_flags |= PBF_MAPPED;
  659. return 0;
  660. }
  661. xfs_buf_t *
  662. pagebuf_get_no_daddr(
  663. size_t len,
  664. xfs_buftarg_t *target)
  665. {
  666. size_t malloc_len = len;
  667. xfs_buf_t *bp;
  668. void *data;
  669. int error;
  670. bp = pagebuf_allocate(0);
  671. if (unlikely(bp == NULL))
  672. goto fail;
  673. _pagebuf_initialize(bp, target, 0, len, 0);
  674. try_again:
  675. data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
  676. if (unlikely(data == NULL))
  677. goto fail_free_buf;
  678. /* check whether alignment matches.. */
  679. if ((__psunsigned_t)data !=
  680. ((__psunsigned_t)data & ~target->pbr_smask)) {
  681. /* .. else double the size and try again */
  682. kmem_free(data, malloc_len);
  683. malloc_len <<= 1;
  684. goto try_again;
  685. }
  686. error = pagebuf_associate_memory(bp, data, len);
  687. if (error)
  688. goto fail_free_mem;
  689. bp->pb_flags |= _PBF_KMEM_ALLOC;
  690. pagebuf_unlock(bp);
  691. PB_TRACE(bp, "no_daddr", data);
  692. return bp;
  693. fail_free_mem:
  694. kmem_free(data, malloc_len);
  695. fail_free_buf:
  696. pagebuf_free(bp);
  697. fail:
  698. return NULL;
  699. }
  700. /*
  701. * pagebuf_hold
  702. *
  703. * Increment reference count on buffer, to hold the buffer concurrently
  704. * with another thread which may release (free) the buffer asynchronously.
  705. *
  706. * Must hold the buffer already to call this function.
  707. */
  708. void
  709. pagebuf_hold(
  710. xfs_buf_t *pb)
  711. {
  712. atomic_inc(&pb->pb_hold);
  713. PB_TRACE(pb, "hold", 0);
  714. }
  715. /*
  716. * pagebuf_rele
  717. *
  718. * pagebuf_rele releases a hold on the specified buffer. If the
  719. * the hold count is 1, pagebuf_rele calls pagebuf_free.
  720. */
  721. void
  722. pagebuf_rele(
  723. xfs_buf_t *pb)
  724. {
  725. xfs_bufhash_t *hash = pb->pb_hash;
  726. PB_TRACE(pb, "rele", pb->pb_relse);
  727. if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
  728. if (pb->pb_relse) {
  729. atomic_inc(&pb->pb_hold);
  730. spin_unlock(&hash->bh_lock);
  731. (*(pb->pb_relse)) (pb);
  732. } else if (pb->pb_flags & PBF_FS_MANAGED) {
  733. spin_unlock(&hash->bh_lock);
  734. } else {
  735. ASSERT(!(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)));
  736. list_del_init(&pb->pb_hash_list);
  737. spin_unlock(&hash->bh_lock);
  738. pagebuf_free(pb);
  739. }
  740. } else {
  741. /*
  742. * Catch reference count leaks
  743. */
  744. ASSERT(atomic_read(&pb->pb_hold) >= 0);
  745. }
  746. }
  747. /*
  748. * Mutual exclusion on buffers. Locking model:
  749. *
  750. * Buffers associated with inodes for which buffer locking
  751. * is not enabled are not protected by semaphores, and are
  752. * assumed to be exclusively owned by the caller. There is a
  753. * spinlock in the buffer, used by the caller when concurrent
  754. * access is possible.
  755. */
  756. /*
  757. * pagebuf_cond_lock
  758. *
  759. * pagebuf_cond_lock locks a buffer object, if it is not already locked.
  760. * Note that this in no way
  761. * locks the underlying pages, so it is only useful for synchronizing
  762. * concurrent use of page buffer objects, not for synchronizing independent
  763. * access to the underlying pages.
  764. */
  765. int
  766. pagebuf_cond_lock( /* lock buffer, if not locked */
  767. /* returns -EBUSY if locked) */
  768. xfs_buf_t *pb)
  769. {
  770. int locked;
  771. locked = down_trylock(&pb->pb_sema) == 0;
  772. if (locked) {
  773. PB_SET_OWNER(pb);
  774. }
  775. PB_TRACE(pb, "cond_lock", (long)locked);
  776. return(locked ? 0 : -EBUSY);
  777. }
  778. #if defined(DEBUG) || defined(XFS_BLI_TRACE)
  779. /*
  780. * pagebuf_lock_value
  781. *
  782. * Return lock value for a pagebuf
  783. */
  784. int
  785. pagebuf_lock_value(
  786. xfs_buf_t *pb)
  787. {
  788. return(atomic_read(&pb->pb_sema.count));
  789. }
  790. #endif
  791. /*
  792. * pagebuf_lock
  793. *
  794. * pagebuf_lock locks a buffer object. Note that this in no way
  795. * locks the underlying pages, so it is only useful for synchronizing
  796. * concurrent use of page buffer objects, not for synchronizing independent
  797. * access to the underlying pages.
  798. */
  799. int
  800. pagebuf_lock(
  801. xfs_buf_t *pb)
  802. {
  803. PB_TRACE(pb, "lock", 0);
  804. if (atomic_read(&pb->pb_io_remaining))
  805. blk_run_address_space(pb->pb_target->pbr_mapping);
  806. down(&pb->pb_sema);
  807. PB_SET_OWNER(pb);
  808. PB_TRACE(pb, "locked", 0);
  809. return 0;
  810. }
  811. /*
  812. * pagebuf_unlock
  813. *
  814. * pagebuf_unlock releases the lock on the buffer object created by
  815. * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
  816. * created by pagebuf_pin).
  817. *
  818. * If the buffer is marked delwri but is not queued, do so before we
  819. * unlock the buffer as we need to set flags correctly. We also need to
  820. * take a reference for the delwri queue because the unlocker is going to
  821. * drop their's and they don't know we just queued it.
  822. */
  823. void
  824. pagebuf_unlock( /* unlock buffer */
  825. xfs_buf_t *pb) /* buffer to unlock */
  826. {
  827. if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
  828. atomic_inc(&pb->pb_hold);
  829. pb->pb_flags |= PBF_ASYNC;
  830. pagebuf_delwri_queue(pb, 0);
  831. }
  832. PB_CLEAR_OWNER(pb);
  833. up(&pb->pb_sema);
  834. PB_TRACE(pb, "unlock", 0);
  835. }
  836. /*
  837. * Pinning Buffer Storage in Memory
  838. */
  839. /*
  840. * pagebuf_pin
  841. *
  842. * pagebuf_pin locks all of the memory represented by a buffer in
  843. * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
  844. * the same or different buffers affecting a given page, will
  845. * properly count the number of outstanding "pin" requests. The
  846. * buffer may be released after the pagebuf_pin and a different
  847. * buffer used when calling pagebuf_unpin, if desired.
  848. * pagebuf_pin should be used by the file system when it wants be
  849. * assured that no attempt will be made to force the affected
  850. * memory to disk. It does not assure that a given logical page
  851. * will not be moved to a different physical page.
  852. */
  853. void
  854. pagebuf_pin(
  855. xfs_buf_t *pb)
  856. {
  857. atomic_inc(&pb->pb_pin_count);
  858. PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
  859. }
  860. /*
  861. * pagebuf_unpin
  862. *
  863. * pagebuf_unpin reverses the locking of memory performed by
  864. * pagebuf_pin. Note that both functions affected the logical
  865. * pages associated with the buffer, not the buffer itself.
  866. */
  867. void
  868. pagebuf_unpin(
  869. xfs_buf_t *pb)
  870. {
  871. if (atomic_dec_and_test(&pb->pb_pin_count)) {
  872. wake_up_all(&pb->pb_waiters);
  873. }
  874. PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
  875. }
  876. int
  877. pagebuf_ispin(
  878. xfs_buf_t *pb)
  879. {
  880. return atomic_read(&pb->pb_pin_count);
  881. }
  882. /*
  883. * pagebuf_wait_unpin
  884. *
  885. * pagebuf_wait_unpin waits until all of the memory associated
  886. * with the buffer is not longer locked in memory. It returns
  887. * immediately if none of the affected pages are locked.
  888. */
  889. static inline void
  890. _pagebuf_wait_unpin(
  891. xfs_buf_t *pb)
  892. {
  893. DECLARE_WAITQUEUE (wait, current);
  894. if (atomic_read(&pb->pb_pin_count) == 0)
  895. return;
  896. add_wait_queue(&pb->pb_waiters, &wait);
  897. for (;;) {
  898. set_current_state(TASK_UNINTERRUPTIBLE);
  899. if (atomic_read(&pb->pb_pin_count) == 0)
  900. break;
  901. if (atomic_read(&pb->pb_io_remaining))
  902. blk_run_address_space(pb->pb_target->pbr_mapping);
  903. schedule();
  904. }
  905. remove_wait_queue(&pb->pb_waiters, &wait);
  906. set_current_state(TASK_RUNNING);
  907. }
  908. /*
  909. * Buffer Utility Routines
  910. */
  911. /*
  912. * pagebuf_iodone
  913. *
  914. * pagebuf_iodone marks a buffer for which I/O is in progress
  915. * done with respect to that I/O. The pb_iodone routine, if
  916. * present, will be called as a side-effect.
  917. */
  918. STATIC void
  919. pagebuf_iodone_work(
  920. void *v)
  921. {
  922. xfs_buf_t *bp = (xfs_buf_t *)v;
  923. if (bp->pb_iodone)
  924. (*(bp->pb_iodone))(bp);
  925. else if (bp->pb_flags & PBF_ASYNC)
  926. xfs_buf_relse(bp);
  927. }
  928. void
  929. pagebuf_iodone(
  930. xfs_buf_t *pb,
  931. int schedule)
  932. {
  933. pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
  934. if (pb->pb_error == 0)
  935. pb->pb_flags |= PBF_DONE;
  936. PB_TRACE(pb, "iodone", pb->pb_iodone);
  937. if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
  938. if (schedule) {
  939. INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
  940. queue_work(xfslogd_workqueue, &pb->pb_iodone_work);
  941. } else {
  942. pagebuf_iodone_work(pb);
  943. }
  944. } else {
  945. up(&pb->pb_iodonesema);
  946. }
  947. }
  948. /*
  949. * pagebuf_ioerror
  950. *
  951. * pagebuf_ioerror sets the error code for a buffer.
  952. */
  953. void
  954. pagebuf_ioerror( /* mark/clear buffer error flag */
  955. xfs_buf_t *pb, /* buffer to mark */
  956. int error) /* error to store (0 if none) */
  957. {
  958. ASSERT(error >= 0 && error <= 0xffff);
  959. pb->pb_error = (unsigned short)error;
  960. PB_TRACE(pb, "ioerror", (unsigned long)error);
  961. }
  962. /*
  963. * pagebuf_iostart
  964. *
  965. * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
  966. * If necessary, it will arrange for any disk space allocation required,
  967. * and it will break up the request if the block mappings require it.
  968. * The pb_iodone routine in the buffer supplied will only be called
  969. * when all of the subsidiary I/O requests, if any, have been completed.
  970. * pagebuf_iostart calls the pagebuf_ioinitiate routine or
  971. * pagebuf_iorequest, if the former routine is not defined, to start
  972. * the I/O on a given low-level request.
  973. */
  974. int
  975. pagebuf_iostart( /* start I/O on a buffer */
  976. xfs_buf_t *pb, /* buffer to start */
  977. page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
  978. /* PBF_WRITE, PBF_DELWRI, */
  979. /* PBF_DONT_BLOCK */
  980. {
  981. int status = 0;
  982. PB_TRACE(pb, "iostart", (unsigned long)flags);
  983. if (flags & PBF_DELWRI) {
  984. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
  985. pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
  986. pagebuf_delwri_queue(pb, 1);
  987. return status;
  988. }
  989. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
  990. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  991. pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
  992. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  993. BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
  994. /* For writes allow an alternate strategy routine to precede
  995. * the actual I/O request (which may not be issued at all in
  996. * a shutdown situation, for example).
  997. */
  998. status = (flags & PBF_WRITE) ?
  999. pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
  1000. /* Wait for I/O if we are not an async request.
  1001. * Note: async I/O request completion will release the buffer,
  1002. * and that can already be done by this point. So using the
  1003. * buffer pointer from here on, after async I/O, is invalid.
  1004. */
  1005. if (!status && !(flags & PBF_ASYNC))
  1006. status = pagebuf_iowait(pb);
  1007. return status;
  1008. }
  1009. /*
  1010. * Helper routine for pagebuf_iorequest
  1011. */
  1012. STATIC __inline__ int
  1013. _pagebuf_iolocked(
  1014. xfs_buf_t *pb)
  1015. {
  1016. ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
  1017. if (pb->pb_flags & PBF_READ)
  1018. return pb->pb_locked;
  1019. return 0;
  1020. }
  1021. STATIC __inline__ void
  1022. _pagebuf_iodone(
  1023. xfs_buf_t *pb,
  1024. int schedule)
  1025. {
  1026. if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
  1027. pb->pb_locked = 0;
  1028. pagebuf_iodone(pb, schedule);
  1029. }
  1030. }
  1031. STATIC int
  1032. bio_end_io_pagebuf(
  1033. struct bio *bio,
  1034. unsigned int bytes_done,
  1035. int error)
  1036. {
  1037. xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
  1038. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1039. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1040. if (bio->bi_size)
  1041. return 1;
  1042. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1043. pb->pb_error = EIO;
  1044. do {
  1045. struct page *page = bvec->bv_page;
  1046. if (unlikely(pb->pb_error)) {
  1047. if (pb->pb_flags & PBF_READ)
  1048. ClearPageUptodate(page);
  1049. SetPageError(page);
  1050. } else if (blocksize == PAGE_CACHE_SIZE) {
  1051. SetPageUptodate(page);
  1052. } else if (!PagePrivate(page) &&
  1053. (pb->pb_flags & _PBF_PAGE_CACHE)) {
  1054. set_page_region(page, bvec->bv_offset, bvec->bv_len);
  1055. }
  1056. if (--bvec >= bio->bi_io_vec)
  1057. prefetchw(&bvec->bv_page->flags);
  1058. if (_pagebuf_iolocked(pb)) {
  1059. unlock_page(page);
  1060. }
  1061. } while (bvec >= bio->bi_io_vec);
  1062. _pagebuf_iodone(pb, 1);
  1063. bio_put(bio);
  1064. return 0;
  1065. }
  1066. STATIC void
  1067. _pagebuf_ioapply(
  1068. xfs_buf_t *pb)
  1069. {
  1070. int i, rw, map_i, total_nr_pages, nr_pages;
  1071. struct bio *bio;
  1072. int offset = pb->pb_offset;
  1073. int size = pb->pb_count_desired;
  1074. sector_t sector = pb->pb_bn;
  1075. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1076. int locking = _pagebuf_iolocked(pb);
  1077. total_nr_pages = pb->pb_page_count;
  1078. map_i = 0;
  1079. if (pb->pb_flags & _PBF_RUN_QUEUES) {
  1080. pb->pb_flags &= ~_PBF_RUN_QUEUES;
  1081. rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
  1082. } else {
  1083. rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
  1084. }
  1085. if (pb->pb_flags & PBF_ORDERED) {
  1086. ASSERT(!(pb->pb_flags & PBF_READ));
  1087. rw = WRITE_BARRIER;
  1088. }
  1089. /* Special code path for reading a sub page size pagebuf in --
  1090. * we populate up the whole page, and hence the other metadata
  1091. * in the same page. This optimization is only valid when the
  1092. * filesystem block size and the page size are equal.
  1093. */
  1094. if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
  1095. (pb->pb_flags & PBF_READ) && locking &&
  1096. (blocksize == PAGE_CACHE_SIZE)) {
  1097. bio = bio_alloc(GFP_NOIO, 1);
  1098. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1099. bio->bi_sector = sector - (offset >> BBSHIFT);
  1100. bio->bi_end_io = bio_end_io_pagebuf;
  1101. bio->bi_private = pb;
  1102. bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
  1103. size = 0;
  1104. atomic_inc(&pb->pb_io_remaining);
  1105. goto submit_io;
  1106. }
  1107. /* Lock down the pages which we need to for the request */
  1108. if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
  1109. for (i = 0; size; i++) {
  1110. int nbytes = PAGE_CACHE_SIZE - offset;
  1111. struct page *page = pb->pb_pages[i];
  1112. if (nbytes > size)
  1113. nbytes = size;
  1114. lock_page(page);
  1115. size -= nbytes;
  1116. offset = 0;
  1117. }
  1118. offset = pb->pb_offset;
  1119. size = pb->pb_count_desired;
  1120. }
  1121. next_chunk:
  1122. atomic_inc(&pb->pb_io_remaining);
  1123. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1124. if (nr_pages > total_nr_pages)
  1125. nr_pages = total_nr_pages;
  1126. bio = bio_alloc(GFP_NOIO, nr_pages);
  1127. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1128. bio->bi_sector = sector;
  1129. bio->bi_end_io = bio_end_io_pagebuf;
  1130. bio->bi_private = pb;
  1131. for (; size && nr_pages; nr_pages--, map_i++) {
  1132. int nbytes = PAGE_CACHE_SIZE - offset;
  1133. if (nbytes > size)
  1134. nbytes = size;
  1135. if (bio_add_page(bio, pb->pb_pages[map_i],
  1136. nbytes, offset) < nbytes)
  1137. break;
  1138. offset = 0;
  1139. sector += nbytes >> BBSHIFT;
  1140. size -= nbytes;
  1141. total_nr_pages--;
  1142. }
  1143. submit_io:
  1144. if (likely(bio->bi_size)) {
  1145. submit_bio(rw, bio);
  1146. if (size)
  1147. goto next_chunk;
  1148. } else {
  1149. bio_put(bio);
  1150. pagebuf_ioerror(pb, EIO);
  1151. }
  1152. }
  1153. /*
  1154. * pagebuf_iorequest -- the core I/O request routine.
  1155. */
  1156. int
  1157. pagebuf_iorequest( /* start real I/O */
  1158. xfs_buf_t *pb) /* buffer to convey to device */
  1159. {
  1160. PB_TRACE(pb, "iorequest", 0);
  1161. if (pb->pb_flags & PBF_DELWRI) {
  1162. pagebuf_delwri_queue(pb, 1);
  1163. return 0;
  1164. }
  1165. if (pb->pb_flags & PBF_WRITE) {
  1166. _pagebuf_wait_unpin(pb);
  1167. }
  1168. pagebuf_hold(pb);
  1169. /* Set the count to 1 initially, this will stop an I/O
  1170. * completion callout which happens before we have started
  1171. * all the I/O from calling pagebuf_iodone too early.
  1172. */
  1173. atomic_set(&pb->pb_io_remaining, 1);
  1174. _pagebuf_ioapply(pb);
  1175. _pagebuf_iodone(pb, 0);
  1176. pagebuf_rele(pb);
  1177. return 0;
  1178. }
  1179. /*
  1180. * pagebuf_iowait
  1181. *
  1182. * pagebuf_iowait waits for I/O to complete on the buffer supplied.
  1183. * It returns immediately if no I/O is pending. In any case, it returns
  1184. * the error code, if any, or 0 if there is no error.
  1185. */
  1186. int
  1187. pagebuf_iowait(
  1188. xfs_buf_t *pb)
  1189. {
  1190. PB_TRACE(pb, "iowait", 0);
  1191. if (atomic_read(&pb->pb_io_remaining))
  1192. blk_run_address_space(pb->pb_target->pbr_mapping);
  1193. down(&pb->pb_iodonesema);
  1194. PB_TRACE(pb, "iowaited", (long)pb->pb_error);
  1195. return pb->pb_error;
  1196. }
  1197. caddr_t
  1198. pagebuf_offset(
  1199. xfs_buf_t *pb,
  1200. size_t offset)
  1201. {
  1202. struct page *page;
  1203. offset += pb->pb_offset;
  1204. page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
  1205. return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
  1206. }
  1207. /*
  1208. * pagebuf_iomove
  1209. *
  1210. * Move data into or out of a buffer.
  1211. */
  1212. void
  1213. pagebuf_iomove(
  1214. xfs_buf_t *pb, /* buffer to process */
  1215. size_t boff, /* starting buffer offset */
  1216. size_t bsize, /* length to copy */
  1217. caddr_t data, /* data address */
  1218. page_buf_rw_t mode) /* read/write flag */
  1219. {
  1220. size_t bend, cpoff, csize;
  1221. struct page *page;
  1222. bend = boff + bsize;
  1223. while (boff < bend) {
  1224. page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
  1225. cpoff = page_buf_poff(boff + pb->pb_offset);
  1226. csize = min_t(size_t,
  1227. PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
  1228. ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
  1229. switch (mode) {
  1230. case PBRW_ZERO:
  1231. memset(page_address(page) + cpoff, 0, csize);
  1232. break;
  1233. case PBRW_READ:
  1234. memcpy(data, page_address(page) + cpoff, csize);
  1235. break;
  1236. case PBRW_WRITE:
  1237. memcpy(page_address(page) + cpoff, data, csize);
  1238. }
  1239. boff += csize;
  1240. data += csize;
  1241. }
  1242. }
  1243. /*
  1244. * Handling of buftargs.
  1245. */
  1246. /*
  1247. * Wait for any bufs with callbacks that have been submitted but
  1248. * have not yet returned... walk the hash list for the target.
  1249. */
  1250. void
  1251. xfs_wait_buftarg(
  1252. xfs_buftarg_t *btp)
  1253. {
  1254. xfs_buf_t *bp, *n;
  1255. xfs_bufhash_t *hash;
  1256. uint i;
  1257. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1258. hash = &btp->bt_hash[i];
  1259. again:
  1260. spin_lock(&hash->bh_lock);
  1261. list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
  1262. ASSERT(btp == bp->pb_target);
  1263. if (!(bp->pb_flags & PBF_FS_MANAGED)) {
  1264. spin_unlock(&hash->bh_lock);
  1265. /*
  1266. * Catch superblock reference count leaks
  1267. * immediately
  1268. */
  1269. BUG_ON(bp->pb_bn == 0);
  1270. delay(100);
  1271. goto again;
  1272. }
  1273. }
  1274. spin_unlock(&hash->bh_lock);
  1275. }
  1276. }
  1277. /*
  1278. * Allocate buffer hash table for a given target.
  1279. * For devices containing metadata (i.e. not the log/realtime devices)
  1280. * we need to allocate a much larger hash table.
  1281. */
  1282. STATIC void
  1283. xfs_alloc_bufhash(
  1284. xfs_buftarg_t *btp,
  1285. int external)
  1286. {
  1287. unsigned int i;
  1288. btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
  1289. btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
  1290. btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
  1291. sizeof(xfs_bufhash_t), KM_SLEEP);
  1292. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1293. spin_lock_init(&btp->bt_hash[i].bh_lock);
  1294. INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
  1295. }
  1296. }
  1297. STATIC void
  1298. xfs_free_bufhash(
  1299. xfs_buftarg_t *btp)
  1300. {
  1301. kmem_free(btp->bt_hash,
  1302. (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
  1303. btp->bt_hash = NULL;
  1304. }
  1305. /*
  1306. * buftarg list for delwrite queue processing
  1307. */
  1308. STATIC LIST_HEAD(xfs_buftarg_list);
  1309. STATIC DEFINE_SPINLOCK(xfs_buftarg_lock);
  1310. STATIC void
  1311. xfs_register_buftarg(
  1312. xfs_buftarg_t *btp)
  1313. {
  1314. spin_lock(&xfs_buftarg_lock);
  1315. list_add(&btp->bt_list, &xfs_buftarg_list);
  1316. spin_unlock(&xfs_buftarg_lock);
  1317. }
  1318. STATIC void
  1319. xfs_unregister_buftarg(
  1320. xfs_buftarg_t *btp)
  1321. {
  1322. spin_lock(&xfs_buftarg_lock);
  1323. list_del(&btp->bt_list);
  1324. spin_unlock(&xfs_buftarg_lock);
  1325. }
  1326. void
  1327. xfs_free_buftarg(
  1328. xfs_buftarg_t *btp,
  1329. int external)
  1330. {
  1331. xfs_flush_buftarg(btp, 1);
  1332. if (external)
  1333. xfs_blkdev_put(btp->pbr_bdev);
  1334. xfs_free_bufhash(btp);
  1335. iput(btp->pbr_mapping->host);
  1336. /* unregister the buftarg first so that we don't get a
  1337. * wakeup finding a non-existent task */
  1338. xfs_unregister_buftarg(btp);
  1339. kthread_stop(btp->bt_task);
  1340. kmem_free(btp, sizeof(*btp));
  1341. }
  1342. STATIC int
  1343. xfs_setsize_buftarg_flags(
  1344. xfs_buftarg_t *btp,
  1345. unsigned int blocksize,
  1346. unsigned int sectorsize,
  1347. int verbose)
  1348. {
  1349. btp->pbr_bsize = blocksize;
  1350. btp->pbr_sshift = ffs(sectorsize) - 1;
  1351. btp->pbr_smask = sectorsize - 1;
  1352. if (set_blocksize(btp->pbr_bdev, sectorsize)) {
  1353. printk(KERN_WARNING
  1354. "XFS: Cannot set_blocksize to %u on device %s\n",
  1355. sectorsize, XFS_BUFTARG_NAME(btp));
  1356. return EINVAL;
  1357. }
  1358. if (verbose &&
  1359. (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
  1360. printk(KERN_WARNING
  1361. "XFS: %u byte sectors in use on device %s. "
  1362. "This is suboptimal; %u or greater is ideal.\n",
  1363. sectorsize, XFS_BUFTARG_NAME(btp),
  1364. (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
  1365. }
  1366. return 0;
  1367. }
  1368. /*
  1369. * When allocating the initial buffer target we have not yet
  1370. * read in the superblock, so don't know what sized sectors
  1371. * are being used is at this early stage. Play safe.
  1372. */
  1373. STATIC int
  1374. xfs_setsize_buftarg_early(
  1375. xfs_buftarg_t *btp,
  1376. struct block_device *bdev)
  1377. {
  1378. return xfs_setsize_buftarg_flags(btp,
  1379. PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
  1380. }
  1381. int
  1382. xfs_setsize_buftarg(
  1383. xfs_buftarg_t *btp,
  1384. unsigned int blocksize,
  1385. unsigned int sectorsize)
  1386. {
  1387. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1388. }
  1389. STATIC int
  1390. xfs_mapping_buftarg(
  1391. xfs_buftarg_t *btp,
  1392. struct block_device *bdev)
  1393. {
  1394. struct backing_dev_info *bdi;
  1395. struct inode *inode;
  1396. struct address_space *mapping;
  1397. static struct address_space_operations mapping_aops = {
  1398. .sync_page = block_sync_page,
  1399. };
  1400. inode = new_inode(bdev->bd_inode->i_sb);
  1401. if (!inode) {
  1402. printk(KERN_WARNING
  1403. "XFS: Cannot allocate mapping inode for device %s\n",
  1404. XFS_BUFTARG_NAME(btp));
  1405. return ENOMEM;
  1406. }
  1407. inode->i_mode = S_IFBLK;
  1408. inode->i_bdev = bdev;
  1409. inode->i_rdev = bdev->bd_dev;
  1410. bdi = blk_get_backing_dev_info(bdev);
  1411. if (!bdi)
  1412. bdi = &default_backing_dev_info;
  1413. mapping = &inode->i_data;
  1414. mapping->a_ops = &mapping_aops;
  1415. mapping->backing_dev_info = bdi;
  1416. mapping_set_gfp_mask(mapping, GFP_NOFS);
  1417. btp->pbr_mapping = mapping;
  1418. return 0;
  1419. }
  1420. STATIC int
  1421. xfs_alloc_delwrite_queue(
  1422. xfs_buftarg_t *btp)
  1423. {
  1424. int error = 0;
  1425. INIT_LIST_HEAD(&btp->bt_list);
  1426. INIT_LIST_HEAD(&btp->bt_delwrite_queue);
  1427. spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
  1428. btp->bt_flags = 0;
  1429. btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
  1430. if (IS_ERR(btp->bt_task)) {
  1431. error = PTR_ERR(btp->bt_task);
  1432. goto out_error;
  1433. }
  1434. xfs_register_buftarg(btp);
  1435. out_error:
  1436. return error;
  1437. }
  1438. xfs_buftarg_t *
  1439. xfs_alloc_buftarg(
  1440. struct block_device *bdev,
  1441. int external)
  1442. {
  1443. xfs_buftarg_t *btp;
  1444. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1445. btp->pbr_dev = bdev->bd_dev;
  1446. btp->pbr_bdev = bdev;
  1447. if (xfs_setsize_buftarg_early(btp, bdev))
  1448. goto error;
  1449. if (xfs_mapping_buftarg(btp, bdev))
  1450. goto error;
  1451. if (xfs_alloc_delwrite_queue(btp))
  1452. goto error;
  1453. xfs_alloc_bufhash(btp, external);
  1454. return btp;
  1455. error:
  1456. kmem_free(btp, sizeof(*btp));
  1457. return NULL;
  1458. }
  1459. /*
  1460. * Pagebuf delayed write buffer handling
  1461. */
  1462. STATIC void
  1463. pagebuf_delwri_queue(
  1464. xfs_buf_t *pb,
  1465. int unlock)
  1466. {
  1467. struct list_head *dwq = &pb->pb_target->bt_delwrite_queue;
  1468. spinlock_t *dwlk = &pb->pb_target->bt_delwrite_lock;
  1469. PB_TRACE(pb, "delwri_q", (long)unlock);
  1470. ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
  1471. (PBF_DELWRI|PBF_ASYNC));
  1472. spin_lock(dwlk);
  1473. /* If already in the queue, dequeue and place at tail */
  1474. if (!list_empty(&pb->pb_list)) {
  1475. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1476. if (unlock) {
  1477. atomic_dec(&pb->pb_hold);
  1478. }
  1479. list_del(&pb->pb_list);
  1480. }
  1481. pb->pb_flags |= _PBF_DELWRI_Q;
  1482. list_add_tail(&pb->pb_list, dwq);
  1483. pb->pb_queuetime = jiffies;
  1484. spin_unlock(dwlk);
  1485. if (unlock)
  1486. pagebuf_unlock(pb);
  1487. }
  1488. void
  1489. pagebuf_delwri_dequeue(
  1490. xfs_buf_t *pb)
  1491. {
  1492. spinlock_t *dwlk = &pb->pb_target->bt_delwrite_lock;
  1493. int dequeued = 0;
  1494. spin_lock(dwlk);
  1495. if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
  1496. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1497. list_del_init(&pb->pb_list);
  1498. dequeued = 1;
  1499. }
  1500. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1501. spin_unlock(dwlk);
  1502. if (dequeued)
  1503. pagebuf_rele(pb);
  1504. PB_TRACE(pb, "delwri_dq", (long)dequeued);
  1505. }
  1506. STATIC void
  1507. pagebuf_runall_queues(
  1508. struct workqueue_struct *queue)
  1509. {
  1510. flush_workqueue(queue);
  1511. }
  1512. STATIC int
  1513. xfsbufd_wakeup(
  1514. int priority,
  1515. gfp_t mask)
  1516. {
  1517. xfs_buftarg_t *btp, *n;
  1518. spin_lock(&xfs_buftarg_lock);
  1519. list_for_each_entry_safe(btp, n, &xfs_buftarg_list, bt_list) {
  1520. if (test_bit(BT_FORCE_SLEEP, &btp->bt_flags))
  1521. continue;
  1522. set_bit(BT_FORCE_FLUSH, &btp->bt_flags);
  1523. barrier();
  1524. wake_up_process(btp->bt_task);
  1525. }
  1526. spin_unlock(&xfs_buftarg_lock);
  1527. return 0;
  1528. }
  1529. STATIC int
  1530. xfsbufd(
  1531. void *data)
  1532. {
  1533. struct list_head tmp;
  1534. unsigned long age;
  1535. xfs_buftarg_t *target = (xfs_buftarg_t *)data;
  1536. xfs_buf_t *pb, *n;
  1537. struct list_head *dwq = &target->bt_delwrite_queue;
  1538. spinlock_t *dwlk = &target->bt_delwrite_lock;
  1539. current->flags |= PF_MEMALLOC;
  1540. INIT_LIST_HEAD(&tmp);
  1541. do {
  1542. if (unlikely(freezing(current))) {
  1543. set_bit(BT_FORCE_SLEEP, &target->bt_flags);
  1544. refrigerator();
  1545. } else {
  1546. clear_bit(BT_FORCE_SLEEP, &target->bt_flags);
  1547. }
  1548. schedule_timeout_interruptible(
  1549. xfs_buf_timer_centisecs * msecs_to_jiffies(10));
  1550. age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
  1551. spin_lock(dwlk);
  1552. list_for_each_entry_safe(pb, n, dwq, pb_list) {
  1553. PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
  1554. ASSERT(pb->pb_flags & PBF_DELWRI);
  1555. if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
  1556. if (!test_bit(BT_FORCE_FLUSH,
  1557. &target->bt_flags) &&
  1558. time_before(jiffies,
  1559. pb->pb_queuetime + age)) {
  1560. pagebuf_unlock(pb);
  1561. break;
  1562. }
  1563. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1564. pb->pb_flags |= PBF_WRITE;
  1565. list_move(&pb->pb_list, &tmp);
  1566. }
  1567. }
  1568. spin_unlock(dwlk);
  1569. while (!list_empty(&tmp)) {
  1570. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1571. ASSERT(target == pb->pb_target);
  1572. list_del_init(&pb->pb_list);
  1573. pagebuf_iostrategy(pb);
  1574. blk_run_address_space(target->pbr_mapping);
  1575. }
  1576. if (as_list_len > 0)
  1577. purge_addresses();
  1578. clear_bit(BT_FORCE_FLUSH, &target->bt_flags);
  1579. } while (!kthread_should_stop());
  1580. return 0;
  1581. }
  1582. /*
  1583. * Go through all incore buffers, and release buffers if they belong to
  1584. * the given device. This is used in filesystem error handling to
  1585. * preserve the consistency of its metadata.
  1586. */
  1587. int
  1588. xfs_flush_buftarg(
  1589. xfs_buftarg_t *target,
  1590. int wait)
  1591. {
  1592. struct list_head tmp;
  1593. xfs_buf_t *pb, *n;
  1594. int pincount = 0;
  1595. struct list_head *dwq = &target->bt_delwrite_queue;
  1596. spinlock_t *dwlk = &target->bt_delwrite_lock;
  1597. pagebuf_runall_queues(xfsdatad_workqueue);
  1598. pagebuf_runall_queues(xfslogd_workqueue);
  1599. INIT_LIST_HEAD(&tmp);
  1600. spin_lock(dwlk);
  1601. list_for_each_entry_safe(pb, n, dwq, pb_list) {
  1602. ASSERT(pb->pb_target == target);
  1603. ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
  1604. PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
  1605. if (pagebuf_ispin(pb)) {
  1606. pincount++;
  1607. continue;
  1608. }
  1609. list_move(&pb->pb_list, &tmp);
  1610. }
  1611. spin_unlock(dwlk);
  1612. /*
  1613. * Dropped the delayed write list lock, now walk the temporary list
  1614. */
  1615. list_for_each_entry_safe(pb, n, &tmp, pb_list) {
  1616. pagebuf_lock(pb);
  1617. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1618. pb->pb_flags |= PBF_WRITE;
  1619. if (wait)
  1620. pb->pb_flags &= ~PBF_ASYNC;
  1621. else
  1622. list_del_init(&pb->pb_list);
  1623. pagebuf_iostrategy(pb);
  1624. }
  1625. /*
  1626. * Remaining list items must be flushed before returning
  1627. */
  1628. while (!list_empty(&tmp)) {
  1629. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1630. list_del_init(&pb->pb_list);
  1631. xfs_iowait(pb);
  1632. xfs_buf_relse(pb);
  1633. }
  1634. if (wait)
  1635. blk_run_address_space(target->pbr_mapping);
  1636. return pincount;
  1637. }
  1638. int __init
  1639. pagebuf_init(void)
  1640. {
  1641. int error = -ENOMEM;
  1642. #ifdef PAGEBUF_TRACE
  1643. pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
  1644. #endif
  1645. pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
  1646. if (!pagebuf_zone)
  1647. goto out_free_trace_buf;
  1648. xfslogd_workqueue = create_workqueue("xfslogd");
  1649. if (!xfslogd_workqueue)
  1650. goto out_free_buf_zone;
  1651. xfsdatad_workqueue = create_workqueue("xfsdatad");
  1652. if (!xfsdatad_workqueue)
  1653. goto out_destroy_xfslogd_workqueue;
  1654. pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
  1655. if (!pagebuf_shake)
  1656. goto out_destroy_xfsdatad_workqueue;
  1657. return 0;
  1658. out_destroy_xfsdatad_workqueue:
  1659. destroy_workqueue(xfsdatad_workqueue);
  1660. out_destroy_xfslogd_workqueue:
  1661. destroy_workqueue(xfslogd_workqueue);
  1662. out_free_buf_zone:
  1663. kmem_zone_destroy(pagebuf_zone);
  1664. out_free_trace_buf:
  1665. #ifdef PAGEBUF_TRACE
  1666. ktrace_free(pagebuf_trace_buf);
  1667. #endif
  1668. return error;
  1669. }
  1670. void
  1671. pagebuf_terminate(void)
  1672. {
  1673. kmem_shake_deregister(pagebuf_shake);
  1674. destroy_workqueue(xfsdatad_workqueue);
  1675. destroy_workqueue(xfslogd_workqueue);
  1676. kmem_zone_destroy(pagebuf_zone);
  1677. #ifdef PAGEBUF_TRACE
  1678. ktrace_free(pagebuf_trace_buf);
  1679. #endif
  1680. }