ctatc.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include "cttimer.h"
  25. #include <linux/delay.h>
  26. #include <sound/pcm.h>
  27. #include <sound/control.h>
  28. #include <sound/asoundef.h>
  29. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  30. #define DAIONUM 7
  31. #define MAX_MULTI_CHN 8
  32. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  33. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  34. | ((IEC958_AES1_CON_MIXER \
  35. | IEC958_AES1_CON_ORIGINAL) << 8) \
  36. | (0x10 << 16) \
  37. | ((IEC958_AES3_CON_FS_48000) << 24))
  38. static struct snd_pci_quirk __devinitdata subsys_20k1_list[] = {
  39. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
  40. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
  41. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
  42. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X),
  43. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000,
  44. "UAA", CTUAA),
  45. { } /* terminator */
  46. };
  47. static struct snd_pci_quirk __devinitdata subsys_20k2_list[] = {
  48. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  49. "SB0760", CTSB0760),
  50. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  51. "SB0880", CTSB0880),
  52. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  53. "SB0880", CTSB0880),
  54. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  55. "SB0880", CTSB0880),
  56. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000,
  57. PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX",
  58. CTHENDRIX),
  59. { } /* terminator */
  60. };
  61. static const char *ct_subsys_name[NUM_CTCARDS] = {
  62. /* 20k1 models */
  63. [CTSB055X] = "SB055x",
  64. [CTSB073X] = "SB073x",
  65. [CTUAA] = "UAA",
  66. [CT20K1_UNKNOWN] = "Unknown",
  67. /* 20k2 models */
  68. [CTSB0760] = "SB076x",
  69. [CTHENDRIX] = "Hendrix",
  70. [CTSB0880] = "SB0880",
  71. [CT20K2_UNKNOWN] = "Unknown",
  72. };
  73. static struct {
  74. int (*create)(struct ct_atc *atc,
  75. enum CTALSADEVS device, const char *device_name);
  76. int (*destroy)(void *alsa_dev);
  77. const char *public_name;
  78. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  79. [FRONT] = { .create = ct_alsa_pcm_create,
  80. .destroy = NULL,
  81. .public_name = "Front/WaveIn"},
  82. [SURROUND] = { .create = ct_alsa_pcm_create,
  83. .destroy = NULL,
  84. .public_name = "Surround"},
  85. [CLFE] = { .create = ct_alsa_pcm_create,
  86. .destroy = NULL,
  87. .public_name = "Center/LFE"},
  88. [SIDE] = { .create = ct_alsa_pcm_create,
  89. .destroy = NULL,
  90. .public_name = "Side"},
  91. [IEC958] = { .create = ct_alsa_pcm_create,
  92. .destroy = NULL,
  93. .public_name = "IEC958 Non-audio"},
  94. [MIXER] = { .create = ct_alsa_mix_create,
  95. .destroy = NULL,
  96. .public_name = "Mixer"}
  97. };
  98. typedef int (*create_t)(void *, void **);
  99. typedef int (*destroy_t)(void *);
  100. static struct {
  101. int (*create)(void *hw, void **rmgr);
  102. int (*destroy)(void *mgr);
  103. } rsc_mgr_funcs[NUM_RSCTYP] = {
  104. [SRC] = { .create = (create_t)src_mgr_create,
  105. .destroy = (destroy_t)src_mgr_destroy },
  106. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  107. .destroy = (destroy_t)srcimp_mgr_destroy },
  108. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  109. .destroy = (destroy_t)amixer_mgr_destroy },
  110. [SUM] = { .create = (create_t)sum_mgr_create,
  111. .destroy = (destroy_t)sum_mgr_destroy },
  112. [DAIO] = { .create = (create_t)daio_mgr_create,
  113. .destroy = (destroy_t)daio_mgr_destroy }
  114. };
  115. static int
  116. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  117. /* *
  118. * Only mono and interleaved modes are supported now.
  119. * Always allocates a contiguous channel block.
  120. * */
  121. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  122. {
  123. struct snd_pcm_runtime *runtime;
  124. struct ct_vm *vm;
  125. if (NULL == apcm->substream)
  126. return 0;
  127. runtime = apcm->substream->runtime;
  128. vm = atc->vm;
  129. apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
  130. if (NULL == apcm->vm_block)
  131. return -ENOENT;
  132. return 0;
  133. }
  134. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  135. {
  136. struct ct_vm *vm;
  137. if (NULL == apcm->vm_block)
  138. return;
  139. vm = atc->vm;
  140. vm->unmap(vm, apcm->vm_block);
  141. apcm->vm_block = NULL;
  142. }
  143. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  144. {
  145. struct ct_vm *vm;
  146. void *kvirt_addr;
  147. unsigned long phys_addr;
  148. vm = atc->vm;
  149. kvirt_addr = vm->get_ptp_virt(vm, index);
  150. if (kvirt_addr == NULL)
  151. phys_addr = (~0UL);
  152. else
  153. phys_addr = virt_to_phys(kvirt_addr);
  154. return phys_addr;
  155. }
  156. static unsigned int convert_format(snd_pcm_format_t snd_format)
  157. {
  158. switch (snd_format) {
  159. case SNDRV_PCM_FORMAT_U8:
  160. return SRC_SF_U8;
  161. case SNDRV_PCM_FORMAT_S16_LE:
  162. return SRC_SF_S16;
  163. case SNDRV_PCM_FORMAT_S24_3LE:
  164. return SRC_SF_S24;
  165. case SNDRV_PCM_FORMAT_S32_LE:
  166. return SRC_SF_S32;
  167. case SNDRV_PCM_FORMAT_FLOAT_LE:
  168. return SRC_SF_F32;
  169. default:
  170. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  171. snd_format);
  172. return SRC_SF_S16;
  173. }
  174. }
  175. static unsigned int
  176. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  177. {
  178. unsigned int pitch;
  179. int b;
  180. /* get pitch and convert to fixed-point 8.24 format. */
  181. pitch = (input_rate / output_rate) << 24;
  182. input_rate %= output_rate;
  183. input_rate /= 100;
  184. output_rate /= 100;
  185. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  186. b--;
  187. if (b >= 0) {
  188. input_rate <<= (31 - b);
  189. input_rate /= output_rate;
  190. b = 24 - (31 - b);
  191. if (b >= 0)
  192. input_rate <<= b;
  193. else
  194. input_rate >>= -b;
  195. pitch |= input_rate;
  196. }
  197. return pitch;
  198. }
  199. static int select_rom(unsigned int pitch)
  200. {
  201. if ((pitch > 0x00428f5c) && (pitch < 0x01b851ec)) {
  202. /* 0.26 <= pitch <= 1.72 */
  203. return 1;
  204. } else if ((0x01d66666 == pitch) || (0x01d66667 == pitch)) {
  205. /* pitch == 1.8375 */
  206. return 2;
  207. } else if (0x02000000 == pitch) {
  208. /* pitch == 2 */
  209. return 3;
  210. } else if ((pitch >= 0x0) && (pitch <= 0x08000000)) {
  211. /* 0 <= pitch <= 8 */
  212. return 0;
  213. } else {
  214. return -ENOENT;
  215. }
  216. }
  217. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  218. {
  219. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  220. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  221. struct src_desc desc = {0};
  222. struct amixer_desc mix_dsc = {0};
  223. struct src *src;
  224. struct amixer *amixer;
  225. int err;
  226. int n_amixer = apcm->substream->runtime->channels, i = 0;
  227. int device = apcm->substream->pcm->device;
  228. unsigned int pitch;
  229. /* first release old resources */
  230. atc_pcm_release_resources(atc, apcm);
  231. /* Get SRC resource */
  232. desc.multi = apcm->substream->runtime->channels;
  233. desc.msr = atc->msr;
  234. desc.mode = MEMRD;
  235. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  236. if (err)
  237. goto error1;
  238. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  239. (atc->rsr * atc->msr));
  240. src = apcm->src;
  241. src->ops->set_pitch(src, pitch);
  242. src->ops->set_rom(src, select_rom(pitch));
  243. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  244. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  245. /* Get AMIXER resource */
  246. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  247. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  248. if (NULL == apcm->amixers) {
  249. err = -ENOMEM;
  250. goto error1;
  251. }
  252. mix_dsc.msr = atc->msr;
  253. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  254. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  255. (struct amixer **)&apcm->amixers[i]);
  256. if (err)
  257. goto error1;
  258. apcm->n_amixer++;
  259. }
  260. /* Set up device virtual mem map */
  261. err = ct_map_audio_buffer(atc, apcm);
  262. if (err < 0)
  263. goto error1;
  264. /* Connect resources */
  265. src = apcm->src;
  266. for (i = 0; i < n_amixer; i++) {
  267. amixer = apcm->amixers[i];
  268. mutex_lock(&atc->atc_mutex);
  269. amixer->ops->setup(amixer, &src->rsc,
  270. INIT_VOL, atc->pcm[i+device*2]);
  271. mutex_unlock(&atc->atc_mutex);
  272. src = src->ops->next_interleave(src);
  273. if (NULL == src)
  274. src = apcm->src;
  275. }
  276. ct_timer_prepare(apcm->timer);
  277. return 0;
  278. error1:
  279. atc_pcm_release_resources(atc, apcm);
  280. return err;
  281. }
  282. static int
  283. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  284. {
  285. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  286. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  287. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  288. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  289. struct srcimp *srcimp;
  290. int i;
  291. if (NULL != apcm->srcimps) {
  292. for (i = 0; i < apcm->n_srcimp; i++) {
  293. srcimp = apcm->srcimps[i];
  294. srcimp->ops->unmap(srcimp);
  295. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  296. apcm->srcimps[i] = NULL;
  297. }
  298. kfree(apcm->srcimps);
  299. apcm->srcimps = NULL;
  300. }
  301. if (NULL != apcm->srccs) {
  302. for (i = 0; i < apcm->n_srcc; i++) {
  303. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  304. apcm->srccs[i] = NULL;
  305. }
  306. kfree(apcm->srccs);
  307. apcm->srccs = NULL;
  308. }
  309. if (NULL != apcm->amixers) {
  310. for (i = 0; i < apcm->n_amixer; i++) {
  311. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  312. apcm->amixers[i] = NULL;
  313. }
  314. kfree(apcm->amixers);
  315. apcm->amixers = NULL;
  316. }
  317. if (NULL != apcm->mono) {
  318. sum_mgr->put_sum(sum_mgr, apcm->mono);
  319. apcm->mono = NULL;
  320. }
  321. if (NULL != apcm->src) {
  322. src_mgr->put_src(src_mgr, apcm->src);
  323. apcm->src = NULL;
  324. }
  325. if (NULL != apcm->vm_block) {
  326. /* Undo device virtual mem map */
  327. ct_unmap_audio_buffer(atc, apcm);
  328. apcm->vm_block = NULL;
  329. }
  330. return 0;
  331. }
  332. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  333. {
  334. unsigned int max_cisz;
  335. struct src *src = apcm->src;
  336. if (apcm->started)
  337. return 0;
  338. apcm->started = 1;
  339. max_cisz = src->multi * src->rsc.msr;
  340. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  341. src->ops->set_sa(src, apcm->vm_block->addr);
  342. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  343. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  344. src->ops->set_cisz(src, max_cisz);
  345. src->ops->set_bm(src, 1);
  346. src->ops->set_state(src, SRC_STATE_INIT);
  347. src->ops->commit_write(src);
  348. ct_timer_start(apcm->timer);
  349. return 0;
  350. }
  351. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  352. {
  353. struct src *src;
  354. int i;
  355. ct_timer_stop(apcm->timer);
  356. src = apcm->src;
  357. src->ops->set_bm(src, 0);
  358. src->ops->set_state(src, SRC_STATE_OFF);
  359. src->ops->commit_write(src);
  360. if (NULL != apcm->srccs) {
  361. for (i = 0; i < apcm->n_srcc; i++) {
  362. src = apcm->srccs[i];
  363. src->ops->set_bm(src, 0);
  364. src->ops->set_state(src, SRC_STATE_OFF);
  365. src->ops->commit_write(src);
  366. }
  367. }
  368. apcm->started = 0;
  369. return 0;
  370. }
  371. static int
  372. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  373. {
  374. struct src *src = apcm->src;
  375. u32 size, max_cisz;
  376. int position;
  377. if (!src)
  378. return 0;
  379. position = src->ops->get_ca(src);
  380. size = apcm->vm_block->size;
  381. max_cisz = src->multi * src->rsc.msr;
  382. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  383. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  384. }
  385. struct src_node_conf_t {
  386. unsigned int pitch;
  387. unsigned int msr:8;
  388. unsigned int mix_msr:8;
  389. unsigned int imp_msr:8;
  390. unsigned int vo:1;
  391. };
  392. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  393. struct src_node_conf_t *conf, int *n_srcc)
  394. {
  395. unsigned int pitch;
  396. /* get pitch and convert to fixed-point 8.24 format. */
  397. pitch = atc_get_pitch((atc->rsr * atc->msr),
  398. apcm->substream->runtime->rate);
  399. *n_srcc = 0;
  400. if (1 == atc->msr) {
  401. *n_srcc = apcm->substream->runtime->channels;
  402. conf[0].pitch = pitch;
  403. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  404. conf[0].vo = 1;
  405. } else if (2 == atc->msr) {
  406. if (0x8000000 < pitch) {
  407. /* Need two-stage SRCs, SRCIMPs and
  408. * AMIXERs for converting format */
  409. conf[0].pitch = (atc->msr << 24);
  410. conf[0].msr = conf[0].mix_msr = 1;
  411. conf[0].imp_msr = atc->msr;
  412. conf[0].vo = 0;
  413. conf[1].pitch = atc_get_pitch(atc->rsr,
  414. apcm->substream->runtime->rate);
  415. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  416. conf[1].vo = 1;
  417. *n_srcc = apcm->substream->runtime->channels * 2;
  418. } else if (0x1000000 < pitch) {
  419. /* Need one-stage SRCs, SRCIMPs and
  420. * AMIXERs for converting format */
  421. conf[0].pitch = pitch;
  422. conf[0].msr = conf[0].mix_msr
  423. = conf[0].imp_msr = atc->msr;
  424. conf[0].vo = 1;
  425. *n_srcc = apcm->substream->runtime->channels;
  426. }
  427. }
  428. }
  429. static int
  430. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  431. {
  432. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  433. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  434. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  435. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  436. struct src_desc src_dsc = {0};
  437. struct src *src;
  438. struct srcimp_desc srcimp_dsc = {0};
  439. struct srcimp *srcimp;
  440. struct amixer_desc mix_dsc = {0};
  441. struct sum_desc sum_dsc = {0};
  442. unsigned int pitch;
  443. int multi, err, i;
  444. int n_srcimp, n_amixer, n_srcc, n_sum;
  445. struct src_node_conf_t src_node_conf[2] = {{0} };
  446. /* first release old resources */
  447. atc_pcm_release_resources(atc, apcm);
  448. /* The numbers of converting SRCs and SRCIMPs should be determined
  449. * by pitch value. */
  450. multi = apcm->substream->runtime->channels;
  451. /* get pitch and convert to fixed-point 8.24 format. */
  452. pitch = atc_get_pitch((atc->rsr * atc->msr),
  453. apcm->substream->runtime->rate);
  454. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  455. n_sum = (1 == multi) ? 1 : 0;
  456. n_amixer = n_sum * 2 + n_srcc;
  457. n_srcimp = n_srcc;
  458. if ((multi > 1) && (0x8000000 >= pitch)) {
  459. /* Need extra AMIXERs and SRCIMPs for special treatment
  460. * of interleaved recording of conjugate channels */
  461. n_amixer += multi * atc->msr;
  462. n_srcimp += multi * atc->msr;
  463. } else {
  464. n_srcimp += multi;
  465. }
  466. if (n_srcc) {
  467. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  468. if (NULL == apcm->srccs)
  469. return -ENOMEM;
  470. }
  471. if (n_amixer) {
  472. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  473. if (NULL == apcm->amixers) {
  474. err = -ENOMEM;
  475. goto error1;
  476. }
  477. }
  478. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  479. if (NULL == apcm->srcimps) {
  480. err = -ENOMEM;
  481. goto error1;
  482. }
  483. /* Allocate SRCs for sample rate conversion if needed */
  484. src_dsc.multi = 1;
  485. src_dsc.mode = ARCRW;
  486. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  487. src_dsc.msr = src_node_conf[i/multi].msr;
  488. err = src_mgr->get_src(src_mgr, &src_dsc,
  489. (struct src **)&apcm->srccs[i]);
  490. if (err)
  491. goto error1;
  492. src = apcm->srccs[i];
  493. pitch = src_node_conf[i/multi].pitch;
  494. src->ops->set_pitch(src, pitch);
  495. src->ops->set_rom(src, select_rom(pitch));
  496. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  497. apcm->n_srcc++;
  498. }
  499. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  500. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  501. if (i < (n_sum*2))
  502. mix_dsc.msr = atc->msr;
  503. else if (i < (n_sum*2+n_srcc))
  504. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  505. else
  506. mix_dsc.msr = 1;
  507. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  508. (struct amixer **)&apcm->amixers[i]);
  509. if (err)
  510. goto error1;
  511. apcm->n_amixer++;
  512. }
  513. /* Allocate a SUM resource to mix all input channels together */
  514. sum_dsc.msr = atc->msr;
  515. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  516. if (err)
  517. goto error1;
  518. pitch = atc_get_pitch((atc->rsr * atc->msr),
  519. apcm->substream->runtime->rate);
  520. /* Allocate SRCIMP resources */
  521. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  522. if (i < (n_srcc))
  523. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  524. else if (1 == multi)
  525. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  526. else
  527. srcimp_dsc.msr = 1;
  528. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  529. if (err)
  530. goto error1;
  531. apcm->srcimps[i] = srcimp;
  532. apcm->n_srcimp++;
  533. }
  534. /* Allocate a SRC for writing data to host memory */
  535. src_dsc.multi = apcm->substream->runtime->channels;
  536. src_dsc.msr = 1;
  537. src_dsc.mode = MEMWR;
  538. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  539. if (err)
  540. goto error1;
  541. src = apcm->src;
  542. src->ops->set_pitch(src, pitch);
  543. /* Set up device virtual mem map */
  544. err = ct_map_audio_buffer(atc, apcm);
  545. if (err < 0)
  546. goto error1;
  547. return 0;
  548. error1:
  549. atc_pcm_release_resources(atc, apcm);
  550. return err;
  551. }
  552. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  553. {
  554. struct src *src;
  555. struct amixer *amixer;
  556. struct srcimp *srcimp;
  557. struct ct_mixer *mixer = atc->mixer;
  558. struct sum *mono;
  559. struct rsc *out_ports[8] = {NULL};
  560. int err, i, j, n_sum, multi;
  561. unsigned int pitch;
  562. int mix_base = 0, imp_base = 0;
  563. atc_pcm_release_resources(atc, apcm);
  564. /* Get needed resources. */
  565. err = atc_pcm_capture_get_resources(atc, apcm);
  566. if (err)
  567. return err;
  568. /* Connect resources */
  569. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  570. &out_ports[0], &out_ports[1]);
  571. multi = apcm->substream->runtime->channels;
  572. if (1 == multi) {
  573. mono = apcm->mono;
  574. for (i = 0; i < 2; i++) {
  575. amixer = apcm->amixers[i];
  576. amixer->ops->setup(amixer, out_ports[i],
  577. MONO_SUM_SCALE, mono);
  578. }
  579. out_ports[0] = &mono->rsc;
  580. n_sum = 1;
  581. mix_base = n_sum * 2;
  582. }
  583. for (i = 0; i < apcm->n_srcc; i++) {
  584. src = apcm->srccs[i];
  585. srcimp = apcm->srcimps[imp_base+i];
  586. amixer = apcm->amixers[mix_base+i];
  587. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  588. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  589. out_ports[i%multi] = &amixer->rsc;
  590. }
  591. pitch = atc_get_pitch((atc->rsr * atc->msr),
  592. apcm->substream->runtime->rate);
  593. if ((multi > 1) && (pitch <= 0x8000000)) {
  594. /* Special connection for interleaved
  595. * recording with conjugate channels */
  596. for (i = 0; i < multi; i++) {
  597. out_ports[i]->ops->master(out_ports[i]);
  598. for (j = 0; j < atc->msr; j++) {
  599. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  600. amixer->ops->set_input(amixer, out_ports[i]);
  601. amixer->ops->set_scale(amixer, INIT_VOL);
  602. amixer->ops->set_sum(amixer, NULL);
  603. amixer->ops->commit_raw_write(amixer);
  604. out_ports[i]->ops->next_conj(out_ports[i]);
  605. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  606. srcimp->ops->map(srcimp, apcm->src,
  607. &amixer->rsc);
  608. }
  609. }
  610. } else {
  611. for (i = 0; i < multi; i++) {
  612. srcimp = apcm->srcimps[apcm->n_srcc+i];
  613. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  614. }
  615. }
  616. ct_timer_prepare(apcm->timer);
  617. return 0;
  618. }
  619. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  620. {
  621. struct src *src;
  622. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  623. int i, multi;
  624. if (apcm->started)
  625. return 0;
  626. apcm->started = 1;
  627. multi = apcm->substream->runtime->channels;
  628. /* Set up converting SRCs */
  629. for (i = 0; i < apcm->n_srcc; i++) {
  630. src = apcm->srccs[i];
  631. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  632. src_mgr->src_disable(src_mgr, src);
  633. }
  634. /* Set up recording SRC */
  635. src = apcm->src;
  636. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  637. src->ops->set_sa(src, apcm->vm_block->addr);
  638. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  639. src->ops->set_ca(src, apcm->vm_block->addr);
  640. src_mgr->src_disable(src_mgr, src);
  641. /* Disable relevant SRCs firstly */
  642. src_mgr->commit_write(src_mgr);
  643. /* Enable SRCs respectively */
  644. for (i = 0; i < apcm->n_srcc; i++) {
  645. src = apcm->srccs[i];
  646. src->ops->set_state(src, SRC_STATE_RUN);
  647. src->ops->commit_write(src);
  648. src_mgr->src_enable_s(src_mgr, src);
  649. }
  650. src = apcm->src;
  651. src->ops->set_bm(src, 1);
  652. src->ops->set_state(src, SRC_STATE_RUN);
  653. src->ops->commit_write(src);
  654. src_mgr->src_enable_s(src_mgr, src);
  655. /* Enable relevant SRCs synchronously */
  656. src_mgr->commit_write(src_mgr);
  657. ct_timer_start(apcm->timer);
  658. return 0;
  659. }
  660. static int
  661. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  662. {
  663. struct src *src = apcm->src;
  664. if (!src)
  665. return 0;
  666. return src->ops->get_ca(src) - apcm->vm_block->addr;
  667. }
  668. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  669. struct ct_atc_pcm *apcm)
  670. {
  671. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  672. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  673. struct src_desc desc = {0};
  674. struct amixer_desc mix_dsc = {0};
  675. struct src *src;
  676. int err;
  677. int n_amixer = apcm->substream->runtime->channels, i;
  678. unsigned int pitch, rsr = atc->pll_rate;
  679. /* first release old resources */
  680. atc_pcm_release_resources(atc, apcm);
  681. /* Get SRC resource */
  682. desc.multi = apcm->substream->runtime->channels;
  683. desc.msr = 1;
  684. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  685. desc.msr <<= 1;
  686. desc.mode = MEMRD;
  687. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  688. if (err)
  689. goto error1;
  690. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  691. src = apcm->src;
  692. src->ops->set_pitch(src, pitch);
  693. src->ops->set_rom(src, select_rom(pitch));
  694. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  695. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  696. src->ops->set_bp(src, 1);
  697. /* Get AMIXER resource */
  698. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  699. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  700. if (NULL == apcm->amixers) {
  701. err = -ENOMEM;
  702. goto error1;
  703. }
  704. mix_dsc.msr = desc.msr;
  705. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  706. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  707. (struct amixer **)&apcm->amixers[i]);
  708. if (err)
  709. goto error1;
  710. apcm->n_amixer++;
  711. }
  712. /* Set up device virtual mem map */
  713. err = ct_map_audio_buffer(atc, apcm);
  714. if (err < 0)
  715. goto error1;
  716. return 0;
  717. error1:
  718. atc_pcm_release_resources(atc, apcm);
  719. return err;
  720. }
  721. static int atc_pll_init(struct ct_atc *atc, int rate)
  722. {
  723. struct hw *hw = atc->hw;
  724. int err;
  725. err = hw->pll_init(hw, rate);
  726. atc->pll_rate = err ? 0 : rate;
  727. return err;
  728. }
  729. static int
  730. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  731. {
  732. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  733. unsigned int rate = apcm->substream->runtime->rate;
  734. unsigned int status;
  735. int err = 0;
  736. unsigned char iec958_con_fs;
  737. switch (rate) {
  738. case 48000:
  739. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  740. break;
  741. case 44100:
  742. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  743. break;
  744. case 32000:
  745. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  746. break;
  747. default:
  748. return -ENOENT;
  749. }
  750. mutex_lock(&atc->atc_mutex);
  751. dao->ops->get_spos(dao, &status);
  752. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  753. status &= ((~IEC958_AES3_CON_FS) << 24);
  754. status |= (iec958_con_fs << 24);
  755. dao->ops->set_spos(dao, status);
  756. dao->ops->commit_write(dao);
  757. }
  758. if ((rate != atc->pll_rate) && (32000 != rate))
  759. err = atc_pll_init(atc, rate);
  760. mutex_unlock(&atc->atc_mutex);
  761. return err;
  762. }
  763. static int
  764. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  765. {
  766. struct src *src;
  767. struct amixer *amixer;
  768. struct dao *dao;
  769. int err;
  770. int i;
  771. atc_pcm_release_resources(atc, apcm);
  772. /* Configure SPDIFOO and PLL to passthrough mode;
  773. * determine pll_rate. */
  774. err = spdif_passthru_playback_setup(atc, apcm);
  775. if (err)
  776. return err;
  777. /* Get needed resources. */
  778. err = spdif_passthru_playback_get_resources(atc, apcm);
  779. if (err)
  780. return err;
  781. /* Connect resources */
  782. src = apcm->src;
  783. for (i = 0; i < apcm->n_amixer; i++) {
  784. amixer = apcm->amixers[i];
  785. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  786. src = src->ops->next_interleave(src);
  787. if (NULL == src)
  788. src = apcm->src;
  789. }
  790. /* Connect to SPDIFOO */
  791. mutex_lock(&atc->atc_mutex);
  792. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  793. amixer = apcm->amixers[0];
  794. dao->ops->set_left_input(dao, &amixer->rsc);
  795. amixer = apcm->amixers[1];
  796. dao->ops->set_right_input(dao, &amixer->rsc);
  797. mutex_unlock(&atc->atc_mutex);
  798. ct_timer_prepare(apcm->timer);
  799. return 0;
  800. }
  801. static int atc_select_line_in(struct ct_atc *atc)
  802. {
  803. struct hw *hw = atc->hw;
  804. struct ct_mixer *mixer = atc->mixer;
  805. struct src *src;
  806. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  807. return 0;
  808. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  809. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  810. hw->select_adc_source(hw, ADC_LINEIN);
  811. src = atc->srcs[2];
  812. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  813. src = atc->srcs[3];
  814. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  815. return 0;
  816. }
  817. static int atc_select_mic_in(struct ct_atc *atc)
  818. {
  819. struct hw *hw = atc->hw;
  820. struct ct_mixer *mixer = atc->mixer;
  821. struct src *src;
  822. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  823. return 0;
  824. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  825. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  826. hw->select_adc_source(hw, ADC_MICIN);
  827. src = atc->srcs[2];
  828. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  829. src = atc->srcs[3];
  830. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  831. return 0;
  832. }
  833. static int atc_have_digit_io_switch(struct ct_atc *atc)
  834. {
  835. struct hw *hw = atc->hw;
  836. return hw->have_digit_io_switch(hw);
  837. }
  838. static int atc_select_digit_io(struct ct_atc *atc)
  839. {
  840. struct hw *hw = atc->hw;
  841. if (hw->is_adc_source_selected(hw, ADC_NONE))
  842. return 0;
  843. hw->select_adc_source(hw, ADC_NONE);
  844. return 0;
  845. }
  846. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  847. {
  848. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  849. if (state)
  850. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  851. else
  852. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  853. daio_mgr->commit_write(daio_mgr);
  854. return 0;
  855. }
  856. static int
  857. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  858. {
  859. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  860. return dao->ops->get_spos(dao, status);
  861. }
  862. static int
  863. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  864. {
  865. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  866. dao->ops->set_spos(dao, status);
  867. dao->ops->commit_write(dao);
  868. return 0;
  869. }
  870. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  871. {
  872. return atc_daio_unmute(atc, state, LINEO1);
  873. }
  874. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  875. {
  876. return atc_daio_unmute(atc, state, LINEO4);
  877. }
  878. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  879. {
  880. return atc_daio_unmute(atc, state, LINEO3);
  881. }
  882. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  883. {
  884. return atc_daio_unmute(atc, state, LINEO2);
  885. }
  886. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  887. {
  888. return atc_daio_unmute(atc, state, LINEIM);
  889. }
  890. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  891. {
  892. return atc_daio_unmute(atc, state, SPDIFOO);
  893. }
  894. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  895. {
  896. return atc_daio_unmute(atc, state, SPDIFIO);
  897. }
  898. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  899. {
  900. return atc_dao_get_status(atc, status, SPDIFOO);
  901. }
  902. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  903. {
  904. return atc_dao_set_status(atc, status, SPDIFOO);
  905. }
  906. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  907. {
  908. struct dao_desc da_dsc = {0};
  909. struct dao *dao;
  910. int err;
  911. struct ct_mixer *mixer = atc->mixer;
  912. struct rsc *rscs[2] = {NULL};
  913. unsigned int spos = 0;
  914. mutex_lock(&atc->atc_mutex);
  915. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  916. da_dsc.msr = state ? 1 : atc->msr;
  917. da_dsc.passthru = state ? 1 : 0;
  918. err = dao->ops->reinit(dao, &da_dsc);
  919. if (state) {
  920. spos = IEC958_DEFAULT_CON;
  921. } else {
  922. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  923. &rscs[0], &rscs[1]);
  924. dao->ops->set_left_input(dao, rscs[0]);
  925. dao->ops->set_right_input(dao, rscs[1]);
  926. /* Restore PLL to atc->rsr if needed. */
  927. if (atc->pll_rate != atc->rsr)
  928. err = atc_pll_init(atc, atc->rsr);
  929. }
  930. dao->ops->set_spos(dao, spos);
  931. dao->ops->commit_write(dao);
  932. mutex_unlock(&atc->atc_mutex);
  933. return err;
  934. }
  935. static int atc_release_resources(struct ct_atc *atc)
  936. {
  937. int i;
  938. struct daio_mgr *daio_mgr = NULL;
  939. struct dao *dao = NULL;
  940. struct dai *dai = NULL;
  941. struct daio *daio = NULL;
  942. struct sum_mgr *sum_mgr = NULL;
  943. struct src_mgr *src_mgr = NULL;
  944. struct srcimp_mgr *srcimp_mgr = NULL;
  945. struct srcimp *srcimp = NULL;
  946. struct ct_mixer *mixer = NULL;
  947. /* disconnect internal mixer objects */
  948. if (NULL != atc->mixer) {
  949. mixer = atc->mixer;
  950. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  951. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  952. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  953. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  954. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  955. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  956. }
  957. if (NULL != atc->daios) {
  958. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  959. for (i = 0; i < atc->n_daio; i++) {
  960. daio = atc->daios[i];
  961. if (daio->type < LINEIM) {
  962. dao = container_of(daio, struct dao, daio);
  963. dao->ops->clear_left_input(dao);
  964. dao->ops->clear_right_input(dao);
  965. } else {
  966. dai = container_of(daio, struct dai, daio);
  967. /* some thing to do for dai ... */
  968. }
  969. daio_mgr->put_daio(daio_mgr, daio);
  970. }
  971. kfree(atc->daios);
  972. atc->daios = NULL;
  973. }
  974. if (NULL != atc->pcm) {
  975. sum_mgr = atc->rsc_mgrs[SUM];
  976. for (i = 0; i < atc->n_pcm; i++)
  977. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  978. kfree(atc->pcm);
  979. atc->pcm = NULL;
  980. }
  981. if (NULL != atc->srcs) {
  982. src_mgr = atc->rsc_mgrs[SRC];
  983. for (i = 0; i < atc->n_src; i++)
  984. src_mgr->put_src(src_mgr, atc->srcs[i]);
  985. kfree(atc->srcs);
  986. atc->srcs = NULL;
  987. }
  988. if (NULL != atc->srcimps) {
  989. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  990. for (i = 0; i < atc->n_srcimp; i++) {
  991. srcimp = atc->srcimps[i];
  992. srcimp->ops->unmap(srcimp);
  993. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  994. }
  995. kfree(atc->srcimps);
  996. atc->srcimps = NULL;
  997. }
  998. return 0;
  999. }
  1000. static int ct_atc_destroy(struct ct_atc *atc)
  1001. {
  1002. int i = 0;
  1003. if (NULL == atc)
  1004. return 0;
  1005. if (atc->timer) {
  1006. ct_timer_free(atc->timer);
  1007. atc->timer = NULL;
  1008. }
  1009. atc_release_resources(atc);
  1010. /* Destroy internal mixer objects */
  1011. if (NULL != atc->mixer)
  1012. ct_mixer_destroy(atc->mixer);
  1013. for (i = 0; i < NUM_RSCTYP; i++) {
  1014. if ((NULL != rsc_mgr_funcs[i].destroy) &&
  1015. (NULL != atc->rsc_mgrs[i]))
  1016. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  1017. }
  1018. if (NULL != atc->hw)
  1019. destroy_hw_obj((struct hw *)atc->hw);
  1020. /* Destroy device virtual memory manager object */
  1021. if (NULL != atc->vm) {
  1022. ct_vm_destroy(atc->vm);
  1023. atc->vm = NULL;
  1024. }
  1025. kfree(atc);
  1026. return 0;
  1027. }
  1028. static int atc_dev_free(struct snd_device *dev)
  1029. {
  1030. struct ct_atc *atc = dev->device_data;
  1031. return ct_atc_destroy(atc);
  1032. }
  1033. static int __devinit atc_identify_card(struct ct_atc *atc)
  1034. {
  1035. const struct snd_pci_quirk *p;
  1036. const struct snd_pci_quirk *list;
  1037. switch (atc->chip_type) {
  1038. case ATC20K1:
  1039. atc->chip_name = "20K1";
  1040. list = subsys_20k1_list;
  1041. break;
  1042. case ATC20K2:
  1043. atc->chip_name = "20K2";
  1044. list = subsys_20k2_list;
  1045. break;
  1046. default:
  1047. return -ENOENT;
  1048. }
  1049. p = snd_pci_quirk_lookup(atc->pci, list);
  1050. if (p) {
  1051. if (p->value < 0) {
  1052. printk(KERN_ERR "ctxfi: "
  1053. "Device %04x:%04x is black-listed\n",
  1054. atc->pci->subsystem_vendor,
  1055. atc->pci->subsystem_device);
  1056. return -ENOENT;
  1057. }
  1058. atc->model = p->value;
  1059. } else {
  1060. if (atc->chip_type == ATC20K1)
  1061. atc->model = CT20K1_UNKNOWN;
  1062. else
  1063. atc->model = CT20K2_UNKNOWN;
  1064. }
  1065. atc->model_name = ct_subsys_name[atc->model];
  1066. snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n",
  1067. atc->chip_name, atc->model_name,
  1068. atc->pci->subsystem_vendor,
  1069. atc->pci->subsystem_device);
  1070. return 0;
  1071. }
  1072. int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc)
  1073. {
  1074. enum CTALSADEVS i;
  1075. int err;
  1076. alsa_dev_funcs[MIXER].public_name = atc->chip_name;
  1077. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1078. if (NULL == alsa_dev_funcs[i].create)
  1079. continue;
  1080. err = alsa_dev_funcs[i].create(atc, i,
  1081. alsa_dev_funcs[i].public_name);
  1082. if (err) {
  1083. printk(KERN_ERR "ctxfi: "
  1084. "Creating alsa device %d failed!\n", i);
  1085. return err;
  1086. }
  1087. }
  1088. return 0;
  1089. }
  1090. static int __devinit atc_create_hw_devs(struct ct_atc *atc)
  1091. {
  1092. struct hw *hw;
  1093. struct card_conf info = {0};
  1094. int i, err;
  1095. err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw);
  1096. if (err) {
  1097. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1098. return err;
  1099. }
  1100. atc->hw = hw;
  1101. /* Initialize card hardware. */
  1102. info.rsr = atc->rsr;
  1103. info.msr = atc->msr;
  1104. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1105. err = hw->card_init(hw, &info);
  1106. if (err < 0)
  1107. return err;
  1108. for (i = 0; i < NUM_RSCTYP; i++) {
  1109. if (NULL == rsc_mgr_funcs[i].create)
  1110. continue;
  1111. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1112. if (err) {
  1113. printk(KERN_ERR "ctxfi: "
  1114. "Failed to create rsc_mgr %d!!!\n", i);
  1115. return err;
  1116. }
  1117. }
  1118. return 0;
  1119. }
  1120. static int atc_get_resources(struct ct_atc *atc)
  1121. {
  1122. struct daio_desc da_desc = {0};
  1123. struct daio_mgr *daio_mgr;
  1124. struct src_desc src_dsc = {0};
  1125. struct src_mgr *src_mgr;
  1126. struct srcimp_desc srcimp_dsc = {0};
  1127. struct srcimp_mgr *srcimp_mgr;
  1128. struct sum_desc sum_dsc = {0};
  1129. struct sum_mgr *sum_mgr;
  1130. int err, i;
  1131. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1132. if (NULL == atc->daios)
  1133. return -ENOMEM;
  1134. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1135. if (NULL == atc->srcs)
  1136. return -ENOMEM;
  1137. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1138. if (NULL == atc->srcimps)
  1139. return -ENOMEM;
  1140. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1141. if (NULL == atc->pcm)
  1142. return -ENOMEM;
  1143. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1144. da_desc.msr = atc->msr;
  1145. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1146. da_desc.type = i;
  1147. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1148. (struct daio **)&atc->daios[i]);
  1149. if (err) {
  1150. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1151. "resource %d!!!\n", i);
  1152. return err;
  1153. }
  1154. atc->n_daio++;
  1155. }
  1156. if (atc->model == CTSB073X)
  1157. da_desc.type = SPDIFI1;
  1158. else
  1159. da_desc.type = SPDIFIO;
  1160. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1161. (struct daio **)&atc->daios[i]);
  1162. if (err) {
  1163. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1164. return err;
  1165. }
  1166. atc->n_daio++;
  1167. src_mgr = atc->rsc_mgrs[SRC];
  1168. src_dsc.multi = 1;
  1169. src_dsc.msr = atc->msr;
  1170. src_dsc.mode = ARCRW;
  1171. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1172. err = src_mgr->get_src(src_mgr, &src_dsc,
  1173. (struct src **)&atc->srcs[i]);
  1174. if (err)
  1175. return err;
  1176. atc->n_src++;
  1177. }
  1178. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1179. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1180. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1181. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1182. (struct srcimp **)&atc->srcimps[i]);
  1183. if (err)
  1184. return err;
  1185. atc->n_srcimp++;
  1186. }
  1187. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1188. for (i = 0; i < (2*1); i++) {
  1189. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1190. (struct srcimp **)&atc->srcimps[2*1+i]);
  1191. if (err)
  1192. return err;
  1193. atc->n_srcimp++;
  1194. }
  1195. sum_mgr = atc->rsc_mgrs[SUM];
  1196. sum_dsc.msr = atc->msr;
  1197. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1198. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1199. (struct sum **)&atc->pcm[i]);
  1200. if (err)
  1201. return err;
  1202. atc->n_pcm++;
  1203. }
  1204. return 0;
  1205. }
  1206. static void
  1207. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1208. struct src **srcs, struct srcimp **srcimps)
  1209. {
  1210. struct rsc *rscs[2] = {NULL};
  1211. struct src *src;
  1212. struct srcimp *srcimp;
  1213. int i = 0;
  1214. rscs[0] = &dai->daio.rscl;
  1215. rscs[1] = &dai->daio.rscr;
  1216. for (i = 0; i < 2; i++) {
  1217. src = srcs[i];
  1218. srcimp = srcimps[i];
  1219. srcimp->ops->map(srcimp, src, rscs[i]);
  1220. src_mgr->src_disable(src_mgr, src);
  1221. }
  1222. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1223. src = srcs[0];
  1224. src->ops->set_pm(src, 1);
  1225. for (i = 0; i < 2; i++) {
  1226. src = srcs[i];
  1227. src->ops->set_state(src, SRC_STATE_RUN);
  1228. src->ops->commit_write(src);
  1229. src_mgr->src_enable_s(src_mgr, src);
  1230. }
  1231. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1232. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1233. dai->ops->set_enb_src(dai, 1);
  1234. dai->ops->set_enb_srt(dai, 1);
  1235. dai->ops->commit_write(dai);
  1236. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1237. }
  1238. static void atc_connect_resources(struct ct_atc *atc)
  1239. {
  1240. struct dai *dai;
  1241. struct dao *dao;
  1242. struct src *src;
  1243. struct sum *sum;
  1244. struct ct_mixer *mixer;
  1245. struct rsc *rscs[2] = {NULL};
  1246. int i, j;
  1247. mixer = atc->mixer;
  1248. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1249. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1250. dao = container_of(atc->daios[j], struct dao, daio);
  1251. dao->ops->set_left_input(dao, rscs[0]);
  1252. dao->ops->set_right_input(dao, rscs[1]);
  1253. }
  1254. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1255. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1256. (struct src **)&atc->srcs[2],
  1257. (struct srcimp **)&atc->srcimps[2]);
  1258. src = atc->srcs[2];
  1259. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1260. src = atc->srcs[3];
  1261. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1262. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1263. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1264. (struct src **)&atc->srcs[0],
  1265. (struct srcimp **)&atc->srcimps[0]);
  1266. src = atc->srcs[0];
  1267. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1268. src = atc->srcs[1];
  1269. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1270. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1271. sum = atc->pcm[j];
  1272. mixer->set_input_left(mixer, i, &sum->rsc);
  1273. sum = atc->pcm[j+1];
  1274. mixer->set_input_right(mixer, i, &sum->rsc);
  1275. }
  1276. }
  1277. #ifdef CONFIG_PM
  1278. static int atc_suspend(struct ct_atc *atc, pm_message_t state)
  1279. {
  1280. int i;
  1281. struct hw *hw = atc->hw;
  1282. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D3hot);
  1283. for (i = FRONT; i < NUM_PCMS; i++) {
  1284. if (!atc->pcms[i])
  1285. continue;
  1286. snd_pcm_suspend_all(atc->pcms[i]);
  1287. }
  1288. atc_release_resources(atc);
  1289. hw->suspend(hw, state);
  1290. return 0;
  1291. }
  1292. static int atc_hw_resume(struct ct_atc *atc)
  1293. {
  1294. struct hw *hw = atc->hw;
  1295. struct card_conf info = {0};
  1296. /* Re-initialize card hardware. */
  1297. info.rsr = atc->rsr;
  1298. info.msr = atc->msr;
  1299. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1300. return hw->resume(hw, &info);
  1301. }
  1302. static int atc_resources_resume(struct ct_atc *atc)
  1303. {
  1304. struct ct_mixer *mixer;
  1305. int err = 0;
  1306. /* Get resources */
  1307. err = atc_get_resources(atc);
  1308. if (err < 0) {
  1309. atc_release_resources(atc);
  1310. return err;
  1311. }
  1312. /* Build topology */
  1313. atc_connect_resources(atc);
  1314. mixer = atc->mixer;
  1315. mixer->resume(mixer);
  1316. return 0;
  1317. }
  1318. static int atc_resume(struct ct_atc *atc)
  1319. {
  1320. int err = 0;
  1321. /* Do hardware resume. */
  1322. err = atc_hw_resume(atc);
  1323. if (err < 0) {
  1324. printk(KERN_ERR "ctxfi: pci_enable_device failed, "
  1325. "disabling device\n");
  1326. snd_card_disconnect(atc->card);
  1327. return err;
  1328. }
  1329. err = atc_resources_resume(atc);
  1330. if (err < 0)
  1331. return err;
  1332. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D0);
  1333. return 0;
  1334. }
  1335. #endif
  1336. static struct ct_atc atc_preset __devinitdata = {
  1337. .map_audio_buffer = ct_map_audio_buffer,
  1338. .unmap_audio_buffer = ct_unmap_audio_buffer,
  1339. .pcm_playback_prepare = atc_pcm_playback_prepare,
  1340. .pcm_release_resources = atc_pcm_release_resources,
  1341. .pcm_playback_start = atc_pcm_playback_start,
  1342. .pcm_playback_stop = atc_pcm_stop,
  1343. .pcm_playback_position = atc_pcm_playback_position,
  1344. .pcm_capture_prepare = atc_pcm_capture_prepare,
  1345. .pcm_capture_start = atc_pcm_capture_start,
  1346. .pcm_capture_stop = atc_pcm_stop,
  1347. .pcm_capture_position = atc_pcm_capture_position,
  1348. .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
  1349. .get_ptp_phys = atc_get_ptp_phys,
  1350. .select_line_in = atc_select_line_in,
  1351. .select_mic_in = atc_select_mic_in,
  1352. .select_digit_io = atc_select_digit_io,
  1353. .line_front_unmute = atc_line_front_unmute,
  1354. .line_surround_unmute = atc_line_surround_unmute,
  1355. .line_clfe_unmute = atc_line_clfe_unmute,
  1356. .line_rear_unmute = atc_line_rear_unmute,
  1357. .line_in_unmute = atc_line_in_unmute,
  1358. .spdif_out_unmute = atc_spdif_out_unmute,
  1359. .spdif_in_unmute = atc_spdif_in_unmute,
  1360. .spdif_out_get_status = atc_spdif_out_get_status,
  1361. .spdif_out_set_status = atc_spdif_out_set_status,
  1362. .spdif_out_passthru = atc_spdif_out_passthru,
  1363. .have_digit_io_switch = atc_have_digit_io_switch,
  1364. #ifdef CONFIG_PM
  1365. .suspend = atc_suspend,
  1366. .resume = atc_resume,
  1367. #endif
  1368. };
  1369. /**
  1370. * ct_atc_create - create and initialize a hardware manager
  1371. * @card: corresponding alsa card object
  1372. * @pci: corresponding kernel pci device object
  1373. * @ratc: return created object address in it
  1374. *
  1375. * Creates and initializes a hardware manager.
  1376. *
  1377. * Creates kmallocated ct_atc structure. Initializes hardware.
  1378. * Returns 0 if suceeds, or negative error code if fails.
  1379. */
  1380. int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1381. unsigned int rsr, unsigned int msr,
  1382. int chip_type, struct ct_atc **ratc)
  1383. {
  1384. struct ct_atc *atc;
  1385. static struct snd_device_ops ops = {
  1386. .dev_free = atc_dev_free,
  1387. };
  1388. int err;
  1389. *ratc = NULL;
  1390. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1391. if (NULL == atc)
  1392. return -ENOMEM;
  1393. /* Set operations */
  1394. *atc = atc_preset;
  1395. atc->card = card;
  1396. atc->pci = pci;
  1397. atc->rsr = rsr;
  1398. atc->msr = msr;
  1399. atc->chip_type = chip_type;
  1400. mutex_init(&atc->atc_mutex);
  1401. /* Find card model */
  1402. err = atc_identify_card(atc);
  1403. if (err < 0) {
  1404. printk(KERN_ERR "ctatc: Card not recognised\n");
  1405. goto error1;
  1406. }
  1407. /* Set up device virtual memory management object */
  1408. err = ct_vm_create(&atc->vm);
  1409. if (err < 0)
  1410. goto error1;
  1411. /* Create all atc hw devices */
  1412. err = atc_create_hw_devs(atc);
  1413. if (err < 0)
  1414. goto error1;
  1415. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1416. if (err) {
  1417. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1418. goto error1;
  1419. }
  1420. /* Get resources */
  1421. err = atc_get_resources(atc);
  1422. if (err < 0)
  1423. goto error1;
  1424. /* Build topology */
  1425. atc_connect_resources(atc);
  1426. atc->timer = ct_timer_new(atc);
  1427. if (!atc->timer)
  1428. goto error1;
  1429. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1430. if (err < 0)
  1431. goto error1;
  1432. snd_card_set_dev(card, &pci->dev);
  1433. *ratc = atc;
  1434. return 0;
  1435. error1:
  1436. ct_atc_destroy(atc);
  1437. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1438. return err;
  1439. }