memory.c 91 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <linux/memcontrol.h>
  49. #include <linux/mmu_notifier.h>
  50. #include <linux/kallsyms.h>
  51. #include <linux/swapops.h>
  52. #include <linux/elf.h>
  53. #include <asm/pgalloc.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/tlb.h>
  56. #include <asm/tlbflush.h>
  57. #include <asm/pgtable.h>
  58. #include "internal.h"
  59. #ifndef CONFIG_NEED_MULTIPLE_NODES
  60. /* use the per-pgdat data instead for discontigmem - mbligh */
  61. unsigned long max_mapnr;
  62. struct page *mem_map;
  63. EXPORT_SYMBOL(max_mapnr);
  64. EXPORT_SYMBOL(mem_map);
  65. #endif
  66. unsigned long num_physpages;
  67. /*
  68. * A number of key systems in x86 including ioremap() rely on the assumption
  69. * that high_memory defines the upper bound on direct map memory, then end
  70. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  71. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  72. * and ZONE_HIGHMEM.
  73. */
  74. void * high_memory;
  75. EXPORT_SYMBOL(num_physpages);
  76. EXPORT_SYMBOL(high_memory);
  77. /*
  78. * Randomize the address space (stacks, mmaps, brk, etc.).
  79. *
  80. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  81. * as ancient (libc5 based) binaries can segfault. )
  82. */
  83. int randomize_va_space __read_mostly =
  84. #ifdef CONFIG_COMPAT_BRK
  85. 1;
  86. #else
  87. 2;
  88. #endif
  89. static int __init disable_randmaps(char *s)
  90. {
  91. randomize_va_space = 0;
  92. return 1;
  93. }
  94. __setup("norandmaps", disable_randmaps);
  95. /*
  96. * If a p?d_bad entry is found while walking page tables, report
  97. * the error, before resetting entry to p?d_none. Usually (but
  98. * very seldom) called out from the p?d_none_or_clear_bad macros.
  99. */
  100. void pgd_clear_bad(pgd_t *pgd)
  101. {
  102. pgd_ERROR(*pgd);
  103. pgd_clear(pgd);
  104. }
  105. void pud_clear_bad(pud_t *pud)
  106. {
  107. pud_ERROR(*pud);
  108. pud_clear(pud);
  109. }
  110. void pmd_clear_bad(pmd_t *pmd)
  111. {
  112. pmd_ERROR(*pmd);
  113. pmd_clear(pmd);
  114. }
  115. /*
  116. * Note: this doesn't free the actual pages themselves. That
  117. * has been handled earlier when unmapping all the memory regions.
  118. */
  119. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  120. {
  121. pgtable_t token = pmd_pgtable(*pmd);
  122. pmd_clear(pmd);
  123. pte_free_tlb(tlb, token);
  124. tlb->mm->nr_ptes--;
  125. }
  126. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  127. unsigned long addr, unsigned long end,
  128. unsigned long floor, unsigned long ceiling)
  129. {
  130. pmd_t *pmd;
  131. unsigned long next;
  132. unsigned long start;
  133. start = addr;
  134. pmd = pmd_offset(pud, addr);
  135. do {
  136. next = pmd_addr_end(addr, end);
  137. if (pmd_none_or_clear_bad(pmd))
  138. continue;
  139. free_pte_range(tlb, pmd);
  140. } while (pmd++, addr = next, addr != end);
  141. start &= PUD_MASK;
  142. if (start < floor)
  143. return;
  144. if (ceiling) {
  145. ceiling &= PUD_MASK;
  146. if (!ceiling)
  147. return;
  148. }
  149. if (end - 1 > ceiling - 1)
  150. return;
  151. pmd = pmd_offset(pud, start);
  152. pud_clear(pud);
  153. pmd_free_tlb(tlb, pmd);
  154. }
  155. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  156. unsigned long addr, unsigned long end,
  157. unsigned long floor, unsigned long ceiling)
  158. {
  159. pud_t *pud;
  160. unsigned long next;
  161. unsigned long start;
  162. start = addr;
  163. pud = pud_offset(pgd, addr);
  164. do {
  165. next = pud_addr_end(addr, end);
  166. if (pud_none_or_clear_bad(pud))
  167. continue;
  168. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  169. } while (pud++, addr = next, addr != end);
  170. start &= PGDIR_MASK;
  171. if (start < floor)
  172. return;
  173. if (ceiling) {
  174. ceiling &= PGDIR_MASK;
  175. if (!ceiling)
  176. return;
  177. }
  178. if (end - 1 > ceiling - 1)
  179. return;
  180. pud = pud_offset(pgd, start);
  181. pgd_clear(pgd);
  182. pud_free_tlb(tlb, pud);
  183. }
  184. /*
  185. * This function frees user-level page tables of a process.
  186. *
  187. * Must be called with pagetable lock held.
  188. */
  189. void free_pgd_range(struct mmu_gather *tlb,
  190. unsigned long addr, unsigned long end,
  191. unsigned long floor, unsigned long ceiling)
  192. {
  193. pgd_t *pgd;
  194. unsigned long next;
  195. unsigned long start;
  196. /*
  197. * The next few lines have given us lots of grief...
  198. *
  199. * Why are we testing PMD* at this top level? Because often
  200. * there will be no work to do at all, and we'd prefer not to
  201. * go all the way down to the bottom just to discover that.
  202. *
  203. * Why all these "- 1"s? Because 0 represents both the bottom
  204. * of the address space and the top of it (using -1 for the
  205. * top wouldn't help much: the masks would do the wrong thing).
  206. * The rule is that addr 0 and floor 0 refer to the bottom of
  207. * the address space, but end 0 and ceiling 0 refer to the top
  208. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  209. * that end 0 case should be mythical).
  210. *
  211. * Wherever addr is brought up or ceiling brought down, we must
  212. * be careful to reject "the opposite 0" before it confuses the
  213. * subsequent tests. But what about where end is brought down
  214. * by PMD_SIZE below? no, end can't go down to 0 there.
  215. *
  216. * Whereas we round start (addr) and ceiling down, by different
  217. * masks at different levels, in order to test whether a table
  218. * now has no other vmas using it, so can be freed, we don't
  219. * bother to round floor or end up - the tests don't need that.
  220. */
  221. addr &= PMD_MASK;
  222. if (addr < floor) {
  223. addr += PMD_SIZE;
  224. if (!addr)
  225. return;
  226. }
  227. if (ceiling) {
  228. ceiling &= PMD_MASK;
  229. if (!ceiling)
  230. return;
  231. }
  232. if (end - 1 > ceiling - 1)
  233. end -= PMD_SIZE;
  234. if (addr > end - 1)
  235. return;
  236. start = addr;
  237. pgd = pgd_offset(tlb->mm, addr);
  238. do {
  239. next = pgd_addr_end(addr, end);
  240. if (pgd_none_or_clear_bad(pgd))
  241. continue;
  242. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  243. } while (pgd++, addr = next, addr != end);
  244. }
  245. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  246. unsigned long floor, unsigned long ceiling)
  247. {
  248. while (vma) {
  249. struct vm_area_struct *next = vma->vm_next;
  250. unsigned long addr = vma->vm_start;
  251. /*
  252. * Hide vma from rmap and vmtruncate before freeing pgtables
  253. */
  254. anon_vma_unlink(vma);
  255. unlink_file_vma(vma);
  256. if (is_vm_hugetlb_page(vma)) {
  257. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  258. floor, next? next->vm_start: ceiling);
  259. } else {
  260. /*
  261. * Optimization: gather nearby vmas into one call down
  262. */
  263. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  264. && !is_vm_hugetlb_page(next)) {
  265. vma = next;
  266. next = vma->vm_next;
  267. anon_vma_unlink(vma);
  268. unlink_file_vma(vma);
  269. }
  270. free_pgd_range(tlb, addr, vma->vm_end,
  271. floor, next? next->vm_start: ceiling);
  272. }
  273. vma = next;
  274. }
  275. }
  276. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  277. {
  278. pgtable_t new = pte_alloc_one(mm, address);
  279. if (!new)
  280. return -ENOMEM;
  281. /*
  282. * Ensure all pte setup (eg. pte page lock and page clearing) are
  283. * visible before the pte is made visible to other CPUs by being
  284. * put into page tables.
  285. *
  286. * The other side of the story is the pointer chasing in the page
  287. * table walking code (when walking the page table without locking;
  288. * ie. most of the time). Fortunately, these data accesses consist
  289. * of a chain of data-dependent loads, meaning most CPUs (alpha
  290. * being the notable exception) will already guarantee loads are
  291. * seen in-order. See the alpha page table accessors for the
  292. * smp_read_barrier_depends() barriers in page table walking code.
  293. */
  294. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  295. spin_lock(&mm->page_table_lock);
  296. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  297. mm->nr_ptes++;
  298. pmd_populate(mm, pmd, new);
  299. new = NULL;
  300. }
  301. spin_unlock(&mm->page_table_lock);
  302. if (new)
  303. pte_free(mm, new);
  304. return 0;
  305. }
  306. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  307. {
  308. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  309. if (!new)
  310. return -ENOMEM;
  311. smp_wmb(); /* See comment in __pte_alloc */
  312. spin_lock(&init_mm.page_table_lock);
  313. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  314. pmd_populate_kernel(&init_mm, pmd, new);
  315. new = NULL;
  316. }
  317. spin_unlock(&init_mm.page_table_lock);
  318. if (new)
  319. pte_free_kernel(&init_mm, new);
  320. return 0;
  321. }
  322. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  323. {
  324. if (file_rss)
  325. add_mm_counter(mm, file_rss, file_rss);
  326. if (anon_rss)
  327. add_mm_counter(mm, anon_rss, anon_rss);
  328. }
  329. /*
  330. * This function is called to print an error when a bad pte
  331. * is found. For example, we might have a PFN-mapped pte in
  332. * a region that doesn't allow it.
  333. *
  334. * The calling function must still handle the error.
  335. */
  336. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  337. pte_t pte, struct page *page)
  338. {
  339. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  340. pud_t *pud = pud_offset(pgd, addr);
  341. pmd_t *pmd = pmd_offset(pud, addr);
  342. struct address_space *mapping;
  343. pgoff_t index;
  344. static unsigned long resume;
  345. static unsigned long nr_shown;
  346. static unsigned long nr_unshown;
  347. /*
  348. * Allow a burst of 60 reports, then keep quiet for that minute;
  349. * or allow a steady drip of one report per second.
  350. */
  351. if (nr_shown == 60) {
  352. if (time_before(jiffies, resume)) {
  353. nr_unshown++;
  354. return;
  355. }
  356. if (nr_unshown) {
  357. printk(KERN_ALERT
  358. "BUG: Bad page map: %lu messages suppressed\n",
  359. nr_unshown);
  360. nr_unshown = 0;
  361. }
  362. nr_shown = 0;
  363. }
  364. if (nr_shown++ == 0)
  365. resume = jiffies + 60 * HZ;
  366. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  367. index = linear_page_index(vma, addr);
  368. printk(KERN_ALERT
  369. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  370. current->comm,
  371. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  372. if (page) {
  373. printk(KERN_ALERT
  374. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  375. page, (void *)page->flags, page_count(page),
  376. page_mapcount(page), page->mapping, page->index);
  377. }
  378. printk(KERN_ALERT
  379. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  380. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  381. /*
  382. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  383. */
  384. if (vma->vm_ops)
  385. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  386. (unsigned long)vma->vm_ops->fault);
  387. if (vma->vm_file && vma->vm_file->f_op)
  388. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  389. (unsigned long)vma->vm_file->f_op->mmap);
  390. dump_stack();
  391. add_taint(TAINT_BAD_PAGE);
  392. }
  393. static inline int is_cow_mapping(unsigned int flags)
  394. {
  395. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  396. }
  397. /*
  398. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  399. *
  400. * "Special" mappings do not wish to be associated with a "struct page" (either
  401. * it doesn't exist, or it exists but they don't want to touch it). In this
  402. * case, NULL is returned here. "Normal" mappings do have a struct page.
  403. *
  404. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  405. * pte bit, in which case this function is trivial. Secondly, an architecture
  406. * may not have a spare pte bit, which requires a more complicated scheme,
  407. * described below.
  408. *
  409. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  410. * special mapping (even if there are underlying and valid "struct pages").
  411. * COWed pages of a VM_PFNMAP are always normal.
  412. *
  413. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  414. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  415. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  416. * mapping will always honor the rule
  417. *
  418. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  419. *
  420. * And for normal mappings this is false.
  421. *
  422. * This restricts such mappings to be a linear translation from virtual address
  423. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  424. * as the vma is not a COW mapping; in that case, we know that all ptes are
  425. * special (because none can have been COWed).
  426. *
  427. *
  428. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  429. *
  430. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  431. * page" backing, however the difference is that _all_ pages with a struct
  432. * page (that is, those where pfn_valid is true) are refcounted and considered
  433. * normal pages by the VM. The disadvantage is that pages are refcounted
  434. * (which can be slower and simply not an option for some PFNMAP users). The
  435. * advantage is that we don't have to follow the strict linearity rule of
  436. * PFNMAP mappings in order to support COWable mappings.
  437. *
  438. */
  439. #ifdef __HAVE_ARCH_PTE_SPECIAL
  440. # define HAVE_PTE_SPECIAL 1
  441. #else
  442. # define HAVE_PTE_SPECIAL 0
  443. #endif
  444. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  445. pte_t pte)
  446. {
  447. unsigned long pfn = pte_pfn(pte);
  448. if (HAVE_PTE_SPECIAL) {
  449. if (likely(!pte_special(pte)))
  450. goto check_pfn;
  451. if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
  452. print_bad_pte(vma, addr, pte, NULL);
  453. return NULL;
  454. }
  455. /* !HAVE_PTE_SPECIAL case follows: */
  456. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  457. if (vma->vm_flags & VM_MIXEDMAP) {
  458. if (!pfn_valid(pfn))
  459. return NULL;
  460. goto out;
  461. } else {
  462. unsigned long off;
  463. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  464. if (pfn == vma->vm_pgoff + off)
  465. return NULL;
  466. if (!is_cow_mapping(vma->vm_flags))
  467. return NULL;
  468. }
  469. }
  470. check_pfn:
  471. if (unlikely(pfn > highest_memmap_pfn)) {
  472. print_bad_pte(vma, addr, pte, NULL);
  473. return NULL;
  474. }
  475. /*
  476. * NOTE! We still have PageReserved() pages in the page tables.
  477. * eg. VDSO mappings can cause them to exist.
  478. */
  479. out:
  480. return pfn_to_page(pfn);
  481. }
  482. /*
  483. * copy one vm_area from one task to the other. Assumes the page tables
  484. * already present in the new task to be cleared in the whole range
  485. * covered by this vma.
  486. */
  487. static inline void
  488. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  489. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  490. unsigned long addr, int *rss)
  491. {
  492. unsigned long vm_flags = vma->vm_flags;
  493. pte_t pte = *src_pte;
  494. struct page *page;
  495. /* pte contains position in swap or file, so copy. */
  496. if (unlikely(!pte_present(pte))) {
  497. if (!pte_file(pte)) {
  498. swp_entry_t entry = pte_to_swp_entry(pte);
  499. swap_duplicate(entry);
  500. /* make sure dst_mm is on swapoff's mmlist. */
  501. if (unlikely(list_empty(&dst_mm->mmlist))) {
  502. spin_lock(&mmlist_lock);
  503. if (list_empty(&dst_mm->mmlist))
  504. list_add(&dst_mm->mmlist,
  505. &src_mm->mmlist);
  506. spin_unlock(&mmlist_lock);
  507. }
  508. if (is_write_migration_entry(entry) &&
  509. is_cow_mapping(vm_flags)) {
  510. /*
  511. * COW mappings require pages in both parent
  512. * and child to be set to read.
  513. */
  514. make_migration_entry_read(&entry);
  515. pte = swp_entry_to_pte(entry);
  516. set_pte_at(src_mm, addr, src_pte, pte);
  517. }
  518. }
  519. goto out_set_pte;
  520. }
  521. /*
  522. * If it's a COW mapping, write protect it both
  523. * in the parent and the child
  524. */
  525. if (is_cow_mapping(vm_flags)) {
  526. ptep_set_wrprotect(src_mm, addr, src_pte);
  527. pte = pte_wrprotect(pte);
  528. }
  529. /*
  530. * If it's a shared mapping, mark it clean in
  531. * the child
  532. */
  533. if (vm_flags & VM_SHARED)
  534. pte = pte_mkclean(pte);
  535. pte = pte_mkold(pte);
  536. page = vm_normal_page(vma, addr, pte);
  537. if (page) {
  538. get_page(page);
  539. page_dup_rmap(page, vma, addr);
  540. rss[!!PageAnon(page)]++;
  541. }
  542. out_set_pte:
  543. set_pte_at(dst_mm, addr, dst_pte, pte);
  544. }
  545. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  546. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  547. unsigned long addr, unsigned long end)
  548. {
  549. pte_t *src_pte, *dst_pte;
  550. spinlock_t *src_ptl, *dst_ptl;
  551. int progress = 0;
  552. int rss[2];
  553. again:
  554. rss[1] = rss[0] = 0;
  555. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  556. if (!dst_pte)
  557. return -ENOMEM;
  558. src_pte = pte_offset_map_nested(src_pmd, addr);
  559. src_ptl = pte_lockptr(src_mm, src_pmd);
  560. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  561. arch_enter_lazy_mmu_mode();
  562. do {
  563. /*
  564. * We are holding two locks at this point - either of them
  565. * could generate latencies in another task on another CPU.
  566. */
  567. if (progress >= 32) {
  568. progress = 0;
  569. if (need_resched() ||
  570. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  571. break;
  572. }
  573. if (pte_none(*src_pte)) {
  574. progress++;
  575. continue;
  576. }
  577. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  578. progress += 8;
  579. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  580. arch_leave_lazy_mmu_mode();
  581. spin_unlock(src_ptl);
  582. pte_unmap_nested(src_pte - 1);
  583. add_mm_rss(dst_mm, rss[0], rss[1]);
  584. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  585. cond_resched();
  586. if (addr != end)
  587. goto again;
  588. return 0;
  589. }
  590. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  591. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  592. unsigned long addr, unsigned long end)
  593. {
  594. pmd_t *src_pmd, *dst_pmd;
  595. unsigned long next;
  596. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  597. if (!dst_pmd)
  598. return -ENOMEM;
  599. src_pmd = pmd_offset(src_pud, addr);
  600. do {
  601. next = pmd_addr_end(addr, end);
  602. if (pmd_none_or_clear_bad(src_pmd))
  603. continue;
  604. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  605. vma, addr, next))
  606. return -ENOMEM;
  607. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  608. return 0;
  609. }
  610. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  611. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  612. unsigned long addr, unsigned long end)
  613. {
  614. pud_t *src_pud, *dst_pud;
  615. unsigned long next;
  616. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  617. if (!dst_pud)
  618. return -ENOMEM;
  619. src_pud = pud_offset(src_pgd, addr);
  620. do {
  621. next = pud_addr_end(addr, end);
  622. if (pud_none_or_clear_bad(src_pud))
  623. continue;
  624. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  625. vma, addr, next))
  626. return -ENOMEM;
  627. } while (dst_pud++, src_pud++, addr = next, addr != end);
  628. return 0;
  629. }
  630. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  631. struct vm_area_struct *vma)
  632. {
  633. pgd_t *src_pgd, *dst_pgd;
  634. unsigned long next;
  635. unsigned long addr = vma->vm_start;
  636. unsigned long end = vma->vm_end;
  637. int ret;
  638. /*
  639. * Don't copy ptes where a page fault will fill them correctly.
  640. * Fork becomes much lighter when there are big shared or private
  641. * readonly mappings. The tradeoff is that copy_page_range is more
  642. * efficient than faulting.
  643. */
  644. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  645. if (!vma->anon_vma)
  646. return 0;
  647. }
  648. if (is_vm_hugetlb_page(vma))
  649. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  650. if (unlikely(is_pfn_mapping(vma))) {
  651. /*
  652. * We do not free on error cases below as remove_vma
  653. * gets called on error from higher level routine
  654. */
  655. ret = track_pfn_vma_copy(vma);
  656. if (ret)
  657. return ret;
  658. }
  659. /*
  660. * We need to invalidate the secondary MMU mappings only when
  661. * there could be a permission downgrade on the ptes of the
  662. * parent mm. And a permission downgrade will only happen if
  663. * is_cow_mapping() returns true.
  664. */
  665. if (is_cow_mapping(vma->vm_flags))
  666. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  667. ret = 0;
  668. dst_pgd = pgd_offset(dst_mm, addr);
  669. src_pgd = pgd_offset(src_mm, addr);
  670. do {
  671. next = pgd_addr_end(addr, end);
  672. if (pgd_none_or_clear_bad(src_pgd))
  673. continue;
  674. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  675. vma, addr, next))) {
  676. ret = -ENOMEM;
  677. break;
  678. }
  679. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  680. if (is_cow_mapping(vma->vm_flags))
  681. mmu_notifier_invalidate_range_end(src_mm,
  682. vma->vm_start, end);
  683. return ret;
  684. }
  685. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  686. struct vm_area_struct *vma, pmd_t *pmd,
  687. unsigned long addr, unsigned long end,
  688. long *zap_work, struct zap_details *details)
  689. {
  690. struct mm_struct *mm = tlb->mm;
  691. pte_t *pte;
  692. spinlock_t *ptl;
  693. int file_rss = 0;
  694. int anon_rss = 0;
  695. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  696. arch_enter_lazy_mmu_mode();
  697. do {
  698. pte_t ptent = *pte;
  699. if (pte_none(ptent)) {
  700. (*zap_work)--;
  701. continue;
  702. }
  703. (*zap_work) -= PAGE_SIZE;
  704. if (pte_present(ptent)) {
  705. struct page *page;
  706. page = vm_normal_page(vma, addr, ptent);
  707. if (unlikely(details) && page) {
  708. /*
  709. * unmap_shared_mapping_pages() wants to
  710. * invalidate cache without truncating:
  711. * unmap shared but keep private pages.
  712. */
  713. if (details->check_mapping &&
  714. details->check_mapping != page->mapping)
  715. continue;
  716. /*
  717. * Each page->index must be checked when
  718. * invalidating or truncating nonlinear.
  719. */
  720. if (details->nonlinear_vma &&
  721. (page->index < details->first_index ||
  722. page->index > details->last_index))
  723. continue;
  724. }
  725. ptent = ptep_get_and_clear_full(mm, addr, pte,
  726. tlb->fullmm);
  727. tlb_remove_tlb_entry(tlb, pte, addr);
  728. if (unlikely(!page))
  729. continue;
  730. if (unlikely(details) && details->nonlinear_vma
  731. && linear_page_index(details->nonlinear_vma,
  732. addr) != page->index)
  733. set_pte_at(mm, addr, pte,
  734. pgoff_to_pte(page->index));
  735. if (PageAnon(page))
  736. anon_rss--;
  737. else {
  738. if (pte_dirty(ptent))
  739. set_page_dirty(page);
  740. if (pte_young(ptent) &&
  741. likely(!VM_SequentialReadHint(vma)))
  742. mark_page_accessed(page);
  743. file_rss--;
  744. }
  745. page_remove_rmap(page);
  746. if (unlikely(page_mapcount(page) < 0))
  747. print_bad_pte(vma, addr, ptent, page);
  748. tlb_remove_page(tlb, page);
  749. continue;
  750. }
  751. /*
  752. * If details->check_mapping, we leave swap entries;
  753. * if details->nonlinear_vma, we leave file entries.
  754. */
  755. if (unlikely(details))
  756. continue;
  757. if (pte_file(ptent)) {
  758. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  759. print_bad_pte(vma, addr, ptent, NULL);
  760. } else if
  761. (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
  762. print_bad_pte(vma, addr, ptent, NULL);
  763. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  764. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  765. add_mm_rss(mm, file_rss, anon_rss);
  766. arch_leave_lazy_mmu_mode();
  767. pte_unmap_unlock(pte - 1, ptl);
  768. return addr;
  769. }
  770. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  771. struct vm_area_struct *vma, pud_t *pud,
  772. unsigned long addr, unsigned long end,
  773. long *zap_work, struct zap_details *details)
  774. {
  775. pmd_t *pmd;
  776. unsigned long next;
  777. pmd = pmd_offset(pud, addr);
  778. do {
  779. next = pmd_addr_end(addr, end);
  780. if (pmd_none_or_clear_bad(pmd)) {
  781. (*zap_work)--;
  782. continue;
  783. }
  784. next = zap_pte_range(tlb, vma, pmd, addr, next,
  785. zap_work, details);
  786. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  787. return addr;
  788. }
  789. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  790. struct vm_area_struct *vma, pgd_t *pgd,
  791. unsigned long addr, unsigned long end,
  792. long *zap_work, struct zap_details *details)
  793. {
  794. pud_t *pud;
  795. unsigned long next;
  796. pud = pud_offset(pgd, addr);
  797. do {
  798. next = pud_addr_end(addr, end);
  799. if (pud_none_or_clear_bad(pud)) {
  800. (*zap_work)--;
  801. continue;
  802. }
  803. next = zap_pmd_range(tlb, vma, pud, addr, next,
  804. zap_work, details);
  805. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  806. return addr;
  807. }
  808. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  809. struct vm_area_struct *vma,
  810. unsigned long addr, unsigned long end,
  811. long *zap_work, struct zap_details *details)
  812. {
  813. pgd_t *pgd;
  814. unsigned long next;
  815. if (details && !details->check_mapping && !details->nonlinear_vma)
  816. details = NULL;
  817. BUG_ON(addr >= end);
  818. tlb_start_vma(tlb, vma);
  819. pgd = pgd_offset(vma->vm_mm, addr);
  820. do {
  821. next = pgd_addr_end(addr, end);
  822. if (pgd_none_or_clear_bad(pgd)) {
  823. (*zap_work)--;
  824. continue;
  825. }
  826. next = zap_pud_range(tlb, vma, pgd, addr, next,
  827. zap_work, details);
  828. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  829. tlb_end_vma(tlb, vma);
  830. return addr;
  831. }
  832. #ifdef CONFIG_PREEMPT
  833. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  834. #else
  835. /* No preempt: go for improved straight-line efficiency */
  836. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  837. #endif
  838. /**
  839. * unmap_vmas - unmap a range of memory covered by a list of vma's
  840. * @tlbp: address of the caller's struct mmu_gather
  841. * @vma: the starting vma
  842. * @start_addr: virtual address at which to start unmapping
  843. * @end_addr: virtual address at which to end unmapping
  844. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  845. * @details: details of nonlinear truncation or shared cache invalidation
  846. *
  847. * Returns the end address of the unmapping (restart addr if interrupted).
  848. *
  849. * Unmap all pages in the vma list.
  850. *
  851. * We aim to not hold locks for too long (for scheduling latency reasons).
  852. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  853. * return the ending mmu_gather to the caller.
  854. *
  855. * Only addresses between `start' and `end' will be unmapped.
  856. *
  857. * The VMA list must be sorted in ascending virtual address order.
  858. *
  859. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  860. * range after unmap_vmas() returns. So the only responsibility here is to
  861. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  862. * drops the lock and schedules.
  863. */
  864. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  865. struct vm_area_struct *vma, unsigned long start_addr,
  866. unsigned long end_addr, unsigned long *nr_accounted,
  867. struct zap_details *details)
  868. {
  869. long zap_work = ZAP_BLOCK_SIZE;
  870. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  871. int tlb_start_valid = 0;
  872. unsigned long start = start_addr;
  873. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  874. int fullmm = (*tlbp)->fullmm;
  875. struct mm_struct *mm = vma->vm_mm;
  876. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  877. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  878. unsigned long end;
  879. start = max(vma->vm_start, start_addr);
  880. if (start >= vma->vm_end)
  881. continue;
  882. end = min(vma->vm_end, end_addr);
  883. if (end <= vma->vm_start)
  884. continue;
  885. if (vma->vm_flags & VM_ACCOUNT)
  886. *nr_accounted += (end - start) >> PAGE_SHIFT;
  887. if (unlikely(is_pfn_mapping(vma)))
  888. untrack_pfn_vma(vma, 0, 0);
  889. while (start != end) {
  890. if (!tlb_start_valid) {
  891. tlb_start = start;
  892. tlb_start_valid = 1;
  893. }
  894. if (unlikely(is_vm_hugetlb_page(vma))) {
  895. /*
  896. * It is undesirable to test vma->vm_file as it
  897. * should be non-null for valid hugetlb area.
  898. * However, vm_file will be NULL in the error
  899. * cleanup path of do_mmap_pgoff. When
  900. * hugetlbfs ->mmap method fails,
  901. * do_mmap_pgoff() nullifies vma->vm_file
  902. * before calling this function to clean up.
  903. * Since no pte has actually been setup, it is
  904. * safe to do nothing in this case.
  905. */
  906. if (vma->vm_file) {
  907. unmap_hugepage_range(vma, start, end, NULL);
  908. zap_work -= (end - start) /
  909. pages_per_huge_page(hstate_vma(vma));
  910. }
  911. start = end;
  912. } else
  913. start = unmap_page_range(*tlbp, vma,
  914. start, end, &zap_work, details);
  915. if (zap_work > 0) {
  916. BUG_ON(start != end);
  917. break;
  918. }
  919. tlb_finish_mmu(*tlbp, tlb_start, start);
  920. if (need_resched() ||
  921. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  922. if (i_mmap_lock) {
  923. *tlbp = NULL;
  924. goto out;
  925. }
  926. cond_resched();
  927. }
  928. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  929. tlb_start_valid = 0;
  930. zap_work = ZAP_BLOCK_SIZE;
  931. }
  932. }
  933. out:
  934. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  935. return start; /* which is now the end (or restart) address */
  936. }
  937. /**
  938. * zap_page_range - remove user pages in a given range
  939. * @vma: vm_area_struct holding the applicable pages
  940. * @address: starting address of pages to zap
  941. * @size: number of bytes to zap
  942. * @details: details of nonlinear truncation or shared cache invalidation
  943. */
  944. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  945. unsigned long size, struct zap_details *details)
  946. {
  947. struct mm_struct *mm = vma->vm_mm;
  948. struct mmu_gather *tlb;
  949. unsigned long end = address + size;
  950. unsigned long nr_accounted = 0;
  951. lru_add_drain();
  952. tlb = tlb_gather_mmu(mm, 0);
  953. update_hiwater_rss(mm);
  954. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  955. if (tlb)
  956. tlb_finish_mmu(tlb, address, end);
  957. return end;
  958. }
  959. /**
  960. * zap_vma_ptes - remove ptes mapping the vma
  961. * @vma: vm_area_struct holding ptes to be zapped
  962. * @address: starting address of pages to zap
  963. * @size: number of bytes to zap
  964. *
  965. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  966. *
  967. * The entire address range must be fully contained within the vma.
  968. *
  969. * Returns 0 if successful.
  970. */
  971. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  972. unsigned long size)
  973. {
  974. if (address < vma->vm_start || address + size > vma->vm_end ||
  975. !(vma->vm_flags & VM_PFNMAP))
  976. return -1;
  977. zap_page_range(vma, address, size, NULL);
  978. return 0;
  979. }
  980. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  981. /*
  982. * Do a quick page-table lookup for a single page.
  983. */
  984. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  985. unsigned int flags)
  986. {
  987. pgd_t *pgd;
  988. pud_t *pud;
  989. pmd_t *pmd;
  990. pte_t *ptep, pte;
  991. spinlock_t *ptl;
  992. struct page *page;
  993. struct mm_struct *mm = vma->vm_mm;
  994. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  995. if (!IS_ERR(page)) {
  996. BUG_ON(flags & FOLL_GET);
  997. goto out;
  998. }
  999. page = NULL;
  1000. pgd = pgd_offset(mm, address);
  1001. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1002. goto no_page_table;
  1003. pud = pud_offset(pgd, address);
  1004. if (pud_none(*pud))
  1005. goto no_page_table;
  1006. if (pud_huge(*pud)) {
  1007. BUG_ON(flags & FOLL_GET);
  1008. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1009. goto out;
  1010. }
  1011. if (unlikely(pud_bad(*pud)))
  1012. goto no_page_table;
  1013. pmd = pmd_offset(pud, address);
  1014. if (pmd_none(*pmd))
  1015. goto no_page_table;
  1016. if (pmd_huge(*pmd)) {
  1017. BUG_ON(flags & FOLL_GET);
  1018. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1019. goto out;
  1020. }
  1021. if (unlikely(pmd_bad(*pmd)))
  1022. goto no_page_table;
  1023. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1024. pte = *ptep;
  1025. if (!pte_present(pte))
  1026. goto no_page;
  1027. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1028. goto unlock;
  1029. page = vm_normal_page(vma, address, pte);
  1030. if (unlikely(!page))
  1031. goto bad_page;
  1032. if (flags & FOLL_GET)
  1033. get_page(page);
  1034. if (flags & FOLL_TOUCH) {
  1035. if ((flags & FOLL_WRITE) &&
  1036. !pte_dirty(pte) && !PageDirty(page))
  1037. set_page_dirty(page);
  1038. /*
  1039. * pte_mkyoung() would be more correct here, but atomic care
  1040. * is needed to avoid losing the dirty bit: it is easier to use
  1041. * mark_page_accessed().
  1042. */
  1043. mark_page_accessed(page);
  1044. }
  1045. unlock:
  1046. pte_unmap_unlock(ptep, ptl);
  1047. out:
  1048. return page;
  1049. bad_page:
  1050. pte_unmap_unlock(ptep, ptl);
  1051. return ERR_PTR(-EFAULT);
  1052. no_page:
  1053. pte_unmap_unlock(ptep, ptl);
  1054. if (!pte_none(pte))
  1055. return page;
  1056. /* Fall through to ZERO_PAGE handling */
  1057. no_page_table:
  1058. /*
  1059. * When core dumping an enormous anonymous area that nobody
  1060. * has touched so far, we don't want to allocate page tables.
  1061. */
  1062. if (flags & FOLL_ANON) {
  1063. page = ZERO_PAGE(0);
  1064. if (flags & FOLL_GET)
  1065. get_page(page);
  1066. BUG_ON(flags & FOLL_WRITE);
  1067. }
  1068. return page;
  1069. }
  1070. /* Can we do the FOLL_ANON optimization? */
  1071. static inline int use_zero_page(struct vm_area_struct *vma)
  1072. {
  1073. /*
  1074. * We don't want to optimize FOLL_ANON for make_pages_present()
  1075. * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
  1076. * we want to get the page from the page tables to make sure
  1077. * that we serialize and update with any other user of that
  1078. * mapping.
  1079. */
  1080. if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
  1081. return 0;
  1082. /*
  1083. * And if we have a fault routine, it's not an anonymous region.
  1084. */
  1085. return !vma->vm_ops || !vma->vm_ops->fault;
  1086. }
  1087. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1088. unsigned long start, int nr_pages, int flags,
  1089. struct page **pages, struct vm_area_struct **vmas)
  1090. {
  1091. int i;
  1092. unsigned int vm_flags = 0;
  1093. int write = !!(flags & GUP_FLAGS_WRITE);
  1094. int force = !!(flags & GUP_FLAGS_FORCE);
  1095. int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
  1096. int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
  1097. if (nr_pages <= 0)
  1098. return 0;
  1099. /*
  1100. * Require read or write permissions.
  1101. * If 'force' is set, we only require the "MAY" flags.
  1102. */
  1103. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1104. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1105. i = 0;
  1106. do {
  1107. struct vm_area_struct *vma;
  1108. unsigned int foll_flags;
  1109. vma = find_extend_vma(mm, start);
  1110. if (!vma && in_gate_area(tsk, start)) {
  1111. unsigned long pg = start & PAGE_MASK;
  1112. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1113. pgd_t *pgd;
  1114. pud_t *pud;
  1115. pmd_t *pmd;
  1116. pte_t *pte;
  1117. /* user gate pages are read-only */
  1118. if (!ignore && write)
  1119. return i ? : -EFAULT;
  1120. if (pg > TASK_SIZE)
  1121. pgd = pgd_offset_k(pg);
  1122. else
  1123. pgd = pgd_offset_gate(mm, pg);
  1124. BUG_ON(pgd_none(*pgd));
  1125. pud = pud_offset(pgd, pg);
  1126. BUG_ON(pud_none(*pud));
  1127. pmd = pmd_offset(pud, pg);
  1128. if (pmd_none(*pmd))
  1129. return i ? : -EFAULT;
  1130. pte = pte_offset_map(pmd, pg);
  1131. if (pte_none(*pte)) {
  1132. pte_unmap(pte);
  1133. return i ? : -EFAULT;
  1134. }
  1135. if (pages) {
  1136. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1137. pages[i] = page;
  1138. if (page)
  1139. get_page(page);
  1140. }
  1141. pte_unmap(pte);
  1142. if (vmas)
  1143. vmas[i] = gate_vma;
  1144. i++;
  1145. start += PAGE_SIZE;
  1146. nr_pages--;
  1147. continue;
  1148. }
  1149. if (!vma ||
  1150. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1151. (!ignore && !(vm_flags & vma->vm_flags)))
  1152. return i ? : -EFAULT;
  1153. if (is_vm_hugetlb_page(vma)) {
  1154. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1155. &start, &nr_pages, i, write);
  1156. continue;
  1157. }
  1158. foll_flags = FOLL_TOUCH;
  1159. if (pages)
  1160. foll_flags |= FOLL_GET;
  1161. if (!write && use_zero_page(vma))
  1162. foll_flags |= FOLL_ANON;
  1163. do {
  1164. struct page *page;
  1165. /*
  1166. * If we have a pending SIGKILL, don't keep faulting
  1167. * pages and potentially allocating memory, unless
  1168. * current is handling munlock--e.g., on exit. In
  1169. * that case, we are not allocating memory. Rather,
  1170. * we're only unlocking already resident/mapped pages.
  1171. */
  1172. if (unlikely(!ignore_sigkill &&
  1173. fatal_signal_pending(current)))
  1174. return i ? i : -ERESTARTSYS;
  1175. if (write)
  1176. foll_flags |= FOLL_WRITE;
  1177. cond_resched();
  1178. while (!(page = follow_page(vma, start, foll_flags))) {
  1179. int ret;
  1180. ret = handle_mm_fault(mm, vma, start,
  1181. (foll_flags & FOLL_WRITE) ?
  1182. FAULT_FLAG_WRITE : 0);
  1183. if (ret & VM_FAULT_ERROR) {
  1184. if (ret & VM_FAULT_OOM)
  1185. return i ? i : -ENOMEM;
  1186. else if (ret & VM_FAULT_SIGBUS)
  1187. return i ? i : -EFAULT;
  1188. BUG();
  1189. }
  1190. if (ret & VM_FAULT_MAJOR)
  1191. tsk->maj_flt++;
  1192. else
  1193. tsk->min_flt++;
  1194. /*
  1195. * The VM_FAULT_WRITE bit tells us that
  1196. * do_wp_page has broken COW when necessary,
  1197. * even if maybe_mkwrite decided not to set
  1198. * pte_write. We can thus safely do subsequent
  1199. * page lookups as if they were reads. But only
  1200. * do so when looping for pte_write is futile:
  1201. * in some cases userspace may also be wanting
  1202. * to write to the gotten user page, which a
  1203. * read fault here might prevent (a readonly
  1204. * page might get reCOWed by userspace write).
  1205. */
  1206. if ((ret & VM_FAULT_WRITE) &&
  1207. !(vma->vm_flags & VM_WRITE))
  1208. foll_flags &= ~FOLL_WRITE;
  1209. cond_resched();
  1210. }
  1211. if (IS_ERR(page))
  1212. return i ? i : PTR_ERR(page);
  1213. if (pages) {
  1214. pages[i] = page;
  1215. flush_anon_page(vma, page, start);
  1216. flush_dcache_page(page);
  1217. }
  1218. if (vmas)
  1219. vmas[i] = vma;
  1220. i++;
  1221. start += PAGE_SIZE;
  1222. nr_pages--;
  1223. } while (nr_pages && start < vma->vm_end);
  1224. } while (nr_pages);
  1225. return i;
  1226. }
  1227. /**
  1228. * get_user_pages() - pin user pages in memory
  1229. * @tsk: task_struct of target task
  1230. * @mm: mm_struct of target mm
  1231. * @start: starting user address
  1232. * @nr_pages: number of pages from start to pin
  1233. * @write: whether pages will be written to by the caller
  1234. * @force: whether to force write access even if user mapping is
  1235. * readonly. This will result in the page being COWed even
  1236. * in MAP_SHARED mappings. You do not want this.
  1237. * @pages: array that receives pointers to the pages pinned.
  1238. * Should be at least nr_pages long. Or NULL, if caller
  1239. * only intends to ensure the pages are faulted in.
  1240. * @vmas: array of pointers to vmas corresponding to each page.
  1241. * Or NULL if the caller does not require them.
  1242. *
  1243. * Returns number of pages pinned. This may be fewer than the number
  1244. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1245. * were pinned, returns -errno. Each page returned must be released
  1246. * with a put_page() call when it is finished with. vmas will only
  1247. * remain valid while mmap_sem is held.
  1248. *
  1249. * Must be called with mmap_sem held for read or write.
  1250. *
  1251. * get_user_pages walks a process's page tables and takes a reference to
  1252. * each struct page that each user address corresponds to at a given
  1253. * instant. That is, it takes the page that would be accessed if a user
  1254. * thread accesses the given user virtual address at that instant.
  1255. *
  1256. * This does not guarantee that the page exists in the user mappings when
  1257. * get_user_pages returns, and there may even be a completely different
  1258. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1259. * and subsequently re faulted). However it does guarantee that the page
  1260. * won't be freed completely. And mostly callers simply care that the page
  1261. * contains data that was valid *at some point in time*. Typically, an IO
  1262. * or similar operation cannot guarantee anything stronger anyway because
  1263. * locks can't be held over the syscall boundary.
  1264. *
  1265. * If write=0, the page must not be written to. If the page is written to,
  1266. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1267. * after the page is finished with, and before put_page is called.
  1268. *
  1269. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1270. * handle on the memory by some means other than accesses via the user virtual
  1271. * addresses. The pages may be submitted for DMA to devices or accessed via
  1272. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1273. * use the correct cache flushing APIs.
  1274. *
  1275. * See also get_user_pages_fast, for performance critical applications.
  1276. */
  1277. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1278. unsigned long start, int nr_pages, int write, int force,
  1279. struct page **pages, struct vm_area_struct **vmas)
  1280. {
  1281. int flags = 0;
  1282. if (write)
  1283. flags |= GUP_FLAGS_WRITE;
  1284. if (force)
  1285. flags |= GUP_FLAGS_FORCE;
  1286. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1287. }
  1288. EXPORT_SYMBOL(get_user_pages);
  1289. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1290. spinlock_t **ptl)
  1291. {
  1292. pgd_t * pgd = pgd_offset(mm, addr);
  1293. pud_t * pud = pud_alloc(mm, pgd, addr);
  1294. if (pud) {
  1295. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1296. if (pmd)
  1297. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1298. }
  1299. return NULL;
  1300. }
  1301. /*
  1302. * This is the old fallback for page remapping.
  1303. *
  1304. * For historical reasons, it only allows reserved pages. Only
  1305. * old drivers should use this, and they needed to mark their
  1306. * pages reserved for the old functions anyway.
  1307. */
  1308. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1309. struct page *page, pgprot_t prot)
  1310. {
  1311. struct mm_struct *mm = vma->vm_mm;
  1312. int retval;
  1313. pte_t *pte;
  1314. spinlock_t *ptl;
  1315. retval = -EINVAL;
  1316. if (PageAnon(page))
  1317. goto out;
  1318. retval = -ENOMEM;
  1319. flush_dcache_page(page);
  1320. pte = get_locked_pte(mm, addr, &ptl);
  1321. if (!pte)
  1322. goto out;
  1323. retval = -EBUSY;
  1324. if (!pte_none(*pte))
  1325. goto out_unlock;
  1326. /* Ok, finally just insert the thing.. */
  1327. get_page(page);
  1328. inc_mm_counter(mm, file_rss);
  1329. page_add_file_rmap(page);
  1330. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1331. retval = 0;
  1332. pte_unmap_unlock(pte, ptl);
  1333. return retval;
  1334. out_unlock:
  1335. pte_unmap_unlock(pte, ptl);
  1336. out:
  1337. return retval;
  1338. }
  1339. /**
  1340. * vm_insert_page - insert single page into user vma
  1341. * @vma: user vma to map to
  1342. * @addr: target user address of this page
  1343. * @page: source kernel page
  1344. *
  1345. * This allows drivers to insert individual pages they've allocated
  1346. * into a user vma.
  1347. *
  1348. * The page has to be a nice clean _individual_ kernel allocation.
  1349. * If you allocate a compound page, you need to have marked it as
  1350. * such (__GFP_COMP), or manually just split the page up yourself
  1351. * (see split_page()).
  1352. *
  1353. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1354. * took an arbitrary page protection parameter. This doesn't allow
  1355. * that. Your vma protection will have to be set up correctly, which
  1356. * means that if you want a shared writable mapping, you'd better
  1357. * ask for a shared writable mapping!
  1358. *
  1359. * The page does not need to be reserved.
  1360. */
  1361. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1362. struct page *page)
  1363. {
  1364. if (addr < vma->vm_start || addr >= vma->vm_end)
  1365. return -EFAULT;
  1366. if (!page_count(page))
  1367. return -EINVAL;
  1368. vma->vm_flags |= VM_INSERTPAGE;
  1369. return insert_page(vma, addr, page, vma->vm_page_prot);
  1370. }
  1371. EXPORT_SYMBOL(vm_insert_page);
  1372. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1373. unsigned long pfn, pgprot_t prot)
  1374. {
  1375. struct mm_struct *mm = vma->vm_mm;
  1376. int retval;
  1377. pte_t *pte, entry;
  1378. spinlock_t *ptl;
  1379. retval = -ENOMEM;
  1380. pte = get_locked_pte(mm, addr, &ptl);
  1381. if (!pte)
  1382. goto out;
  1383. retval = -EBUSY;
  1384. if (!pte_none(*pte))
  1385. goto out_unlock;
  1386. /* Ok, finally just insert the thing.. */
  1387. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1388. set_pte_at(mm, addr, pte, entry);
  1389. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1390. retval = 0;
  1391. out_unlock:
  1392. pte_unmap_unlock(pte, ptl);
  1393. out:
  1394. return retval;
  1395. }
  1396. /**
  1397. * vm_insert_pfn - insert single pfn into user vma
  1398. * @vma: user vma to map to
  1399. * @addr: target user address of this page
  1400. * @pfn: source kernel pfn
  1401. *
  1402. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1403. * they've allocated into a user vma. Same comments apply.
  1404. *
  1405. * This function should only be called from a vm_ops->fault handler, and
  1406. * in that case the handler should return NULL.
  1407. *
  1408. * vma cannot be a COW mapping.
  1409. *
  1410. * As this is called only for pages that do not currently exist, we
  1411. * do not need to flush old virtual caches or the TLB.
  1412. */
  1413. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1414. unsigned long pfn)
  1415. {
  1416. int ret;
  1417. pgprot_t pgprot = vma->vm_page_prot;
  1418. /*
  1419. * Technically, architectures with pte_special can avoid all these
  1420. * restrictions (same for remap_pfn_range). However we would like
  1421. * consistency in testing and feature parity among all, so we should
  1422. * try to keep these invariants in place for everybody.
  1423. */
  1424. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1425. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1426. (VM_PFNMAP|VM_MIXEDMAP));
  1427. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1428. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1429. if (addr < vma->vm_start || addr >= vma->vm_end)
  1430. return -EFAULT;
  1431. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1432. return -EINVAL;
  1433. ret = insert_pfn(vma, addr, pfn, pgprot);
  1434. if (ret)
  1435. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1436. return ret;
  1437. }
  1438. EXPORT_SYMBOL(vm_insert_pfn);
  1439. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1440. unsigned long pfn)
  1441. {
  1442. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1443. if (addr < vma->vm_start || addr >= vma->vm_end)
  1444. return -EFAULT;
  1445. /*
  1446. * If we don't have pte special, then we have to use the pfn_valid()
  1447. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1448. * refcount the page if pfn_valid is true (hence insert_page rather
  1449. * than insert_pfn).
  1450. */
  1451. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1452. struct page *page;
  1453. page = pfn_to_page(pfn);
  1454. return insert_page(vma, addr, page, vma->vm_page_prot);
  1455. }
  1456. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1457. }
  1458. EXPORT_SYMBOL(vm_insert_mixed);
  1459. /*
  1460. * maps a range of physical memory into the requested pages. the old
  1461. * mappings are removed. any references to nonexistent pages results
  1462. * in null mappings (currently treated as "copy-on-access")
  1463. */
  1464. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1465. unsigned long addr, unsigned long end,
  1466. unsigned long pfn, pgprot_t prot)
  1467. {
  1468. pte_t *pte;
  1469. spinlock_t *ptl;
  1470. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1471. if (!pte)
  1472. return -ENOMEM;
  1473. arch_enter_lazy_mmu_mode();
  1474. do {
  1475. BUG_ON(!pte_none(*pte));
  1476. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1477. pfn++;
  1478. } while (pte++, addr += PAGE_SIZE, addr != end);
  1479. arch_leave_lazy_mmu_mode();
  1480. pte_unmap_unlock(pte - 1, ptl);
  1481. return 0;
  1482. }
  1483. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1484. unsigned long addr, unsigned long end,
  1485. unsigned long pfn, pgprot_t prot)
  1486. {
  1487. pmd_t *pmd;
  1488. unsigned long next;
  1489. pfn -= addr >> PAGE_SHIFT;
  1490. pmd = pmd_alloc(mm, pud, addr);
  1491. if (!pmd)
  1492. return -ENOMEM;
  1493. do {
  1494. next = pmd_addr_end(addr, end);
  1495. if (remap_pte_range(mm, pmd, addr, next,
  1496. pfn + (addr >> PAGE_SHIFT), prot))
  1497. return -ENOMEM;
  1498. } while (pmd++, addr = next, addr != end);
  1499. return 0;
  1500. }
  1501. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1502. unsigned long addr, unsigned long end,
  1503. unsigned long pfn, pgprot_t prot)
  1504. {
  1505. pud_t *pud;
  1506. unsigned long next;
  1507. pfn -= addr >> PAGE_SHIFT;
  1508. pud = pud_alloc(mm, pgd, addr);
  1509. if (!pud)
  1510. return -ENOMEM;
  1511. do {
  1512. next = pud_addr_end(addr, end);
  1513. if (remap_pmd_range(mm, pud, addr, next,
  1514. pfn + (addr >> PAGE_SHIFT), prot))
  1515. return -ENOMEM;
  1516. } while (pud++, addr = next, addr != end);
  1517. return 0;
  1518. }
  1519. /**
  1520. * remap_pfn_range - remap kernel memory to userspace
  1521. * @vma: user vma to map to
  1522. * @addr: target user address to start at
  1523. * @pfn: physical address of kernel memory
  1524. * @size: size of map area
  1525. * @prot: page protection flags for this mapping
  1526. *
  1527. * Note: this is only safe if the mm semaphore is held when called.
  1528. */
  1529. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1530. unsigned long pfn, unsigned long size, pgprot_t prot)
  1531. {
  1532. pgd_t *pgd;
  1533. unsigned long next;
  1534. unsigned long end = addr + PAGE_ALIGN(size);
  1535. struct mm_struct *mm = vma->vm_mm;
  1536. int err;
  1537. /*
  1538. * Physically remapped pages are special. Tell the
  1539. * rest of the world about it:
  1540. * VM_IO tells people not to look at these pages
  1541. * (accesses can have side effects).
  1542. * VM_RESERVED is specified all over the place, because
  1543. * in 2.4 it kept swapout's vma scan off this vma; but
  1544. * in 2.6 the LRU scan won't even find its pages, so this
  1545. * flag means no more than count its pages in reserved_vm,
  1546. * and omit it from core dump, even when VM_IO turned off.
  1547. * VM_PFNMAP tells the core MM that the base pages are just
  1548. * raw PFN mappings, and do not have a "struct page" associated
  1549. * with them.
  1550. *
  1551. * There's a horrible special case to handle copy-on-write
  1552. * behaviour that some programs depend on. We mark the "original"
  1553. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1554. */
  1555. if (addr == vma->vm_start && end == vma->vm_end) {
  1556. vma->vm_pgoff = pfn;
  1557. vma->vm_flags |= VM_PFN_AT_MMAP;
  1558. } else if (is_cow_mapping(vma->vm_flags))
  1559. return -EINVAL;
  1560. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1561. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1562. if (err) {
  1563. /*
  1564. * To indicate that track_pfn related cleanup is not
  1565. * needed from higher level routine calling unmap_vmas
  1566. */
  1567. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1568. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1569. return -EINVAL;
  1570. }
  1571. BUG_ON(addr >= end);
  1572. pfn -= addr >> PAGE_SHIFT;
  1573. pgd = pgd_offset(mm, addr);
  1574. flush_cache_range(vma, addr, end);
  1575. do {
  1576. next = pgd_addr_end(addr, end);
  1577. err = remap_pud_range(mm, pgd, addr, next,
  1578. pfn + (addr >> PAGE_SHIFT), prot);
  1579. if (err)
  1580. break;
  1581. } while (pgd++, addr = next, addr != end);
  1582. if (err)
  1583. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1584. return err;
  1585. }
  1586. EXPORT_SYMBOL(remap_pfn_range);
  1587. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1588. unsigned long addr, unsigned long end,
  1589. pte_fn_t fn, void *data)
  1590. {
  1591. pte_t *pte;
  1592. int err;
  1593. pgtable_t token;
  1594. spinlock_t *uninitialized_var(ptl);
  1595. pte = (mm == &init_mm) ?
  1596. pte_alloc_kernel(pmd, addr) :
  1597. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1598. if (!pte)
  1599. return -ENOMEM;
  1600. BUG_ON(pmd_huge(*pmd));
  1601. arch_enter_lazy_mmu_mode();
  1602. token = pmd_pgtable(*pmd);
  1603. do {
  1604. err = fn(pte, token, addr, data);
  1605. if (err)
  1606. break;
  1607. } while (pte++, addr += PAGE_SIZE, addr != end);
  1608. arch_leave_lazy_mmu_mode();
  1609. if (mm != &init_mm)
  1610. pte_unmap_unlock(pte-1, ptl);
  1611. return err;
  1612. }
  1613. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1614. unsigned long addr, unsigned long end,
  1615. pte_fn_t fn, void *data)
  1616. {
  1617. pmd_t *pmd;
  1618. unsigned long next;
  1619. int err;
  1620. BUG_ON(pud_huge(*pud));
  1621. pmd = pmd_alloc(mm, pud, addr);
  1622. if (!pmd)
  1623. return -ENOMEM;
  1624. do {
  1625. next = pmd_addr_end(addr, end);
  1626. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1627. if (err)
  1628. break;
  1629. } while (pmd++, addr = next, addr != end);
  1630. return err;
  1631. }
  1632. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1633. unsigned long addr, unsigned long end,
  1634. pte_fn_t fn, void *data)
  1635. {
  1636. pud_t *pud;
  1637. unsigned long next;
  1638. int err;
  1639. pud = pud_alloc(mm, pgd, addr);
  1640. if (!pud)
  1641. return -ENOMEM;
  1642. do {
  1643. next = pud_addr_end(addr, end);
  1644. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1645. if (err)
  1646. break;
  1647. } while (pud++, addr = next, addr != end);
  1648. return err;
  1649. }
  1650. /*
  1651. * Scan a region of virtual memory, filling in page tables as necessary
  1652. * and calling a provided function on each leaf page table.
  1653. */
  1654. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1655. unsigned long size, pte_fn_t fn, void *data)
  1656. {
  1657. pgd_t *pgd;
  1658. unsigned long next;
  1659. unsigned long start = addr, end = addr + size;
  1660. int err;
  1661. BUG_ON(addr >= end);
  1662. mmu_notifier_invalidate_range_start(mm, start, end);
  1663. pgd = pgd_offset(mm, addr);
  1664. do {
  1665. next = pgd_addr_end(addr, end);
  1666. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1667. if (err)
  1668. break;
  1669. } while (pgd++, addr = next, addr != end);
  1670. mmu_notifier_invalidate_range_end(mm, start, end);
  1671. return err;
  1672. }
  1673. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1674. /*
  1675. * handle_pte_fault chooses page fault handler according to an entry
  1676. * which was read non-atomically. Before making any commitment, on
  1677. * those architectures or configurations (e.g. i386 with PAE) which
  1678. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1679. * must check under lock before unmapping the pte and proceeding
  1680. * (but do_wp_page is only called after already making such a check;
  1681. * and do_anonymous_page and do_no_page can safely check later on).
  1682. */
  1683. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1684. pte_t *page_table, pte_t orig_pte)
  1685. {
  1686. int same = 1;
  1687. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1688. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1689. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1690. spin_lock(ptl);
  1691. same = pte_same(*page_table, orig_pte);
  1692. spin_unlock(ptl);
  1693. }
  1694. #endif
  1695. pte_unmap(page_table);
  1696. return same;
  1697. }
  1698. /*
  1699. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1700. * servicing faults for write access. In the normal case, do always want
  1701. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1702. * that do not have writing enabled, when used by access_process_vm.
  1703. */
  1704. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1705. {
  1706. if (likely(vma->vm_flags & VM_WRITE))
  1707. pte = pte_mkwrite(pte);
  1708. return pte;
  1709. }
  1710. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1711. {
  1712. /*
  1713. * If the source page was a PFN mapping, we don't have
  1714. * a "struct page" for it. We do a best-effort copy by
  1715. * just copying from the original user address. If that
  1716. * fails, we just zero-fill it. Live with it.
  1717. */
  1718. if (unlikely(!src)) {
  1719. void *kaddr = kmap_atomic(dst, KM_USER0);
  1720. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1721. /*
  1722. * This really shouldn't fail, because the page is there
  1723. * in the page tables. But it might just be unreadable,
  1724. * in which case we just give up and fill the result with
  1725. * zeroes.
  1726. */
  1727. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1728. memset(kaddr, 0, PAGE_SIZE);
  1729. kunmap_atomic(kaddr, KM_USER0);
  1730. flush_dcache_page(dst);
  1731. } else
  1732. copy_user_highpage(dst, src, va, vma);
  1733. }
  1734. /*
  1735. * This routine handles present pages, when users try to write
  1736. * to a shared page. It is done by copying the page to a new address
  1737. * and decrementing the shared-page counter for the old page.
  1738. *
  1739. * Note that this routine assumes that the protection checks have been
  1740. * done by the caller (the low-level page fault routine in most cases).
  1741. * Thus we can safely just mark it writable once we've done any necessary
  1742. * COW.
  1743. *
  1744. * We also mark the page dirty at this point even though the page will
  1745. * change only once the write actually happens. This avoids a few races,
  1746. * and potentially makes it more efficient.
  1747. *
  1748. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1749. * but allow concurrent faults), with pte both mapped and locked.
  1750. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1751. */
  1752. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1753. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1754. spinlock_t *ptl, pte_t orig_pte)
  1755. {
  1756. struct page *old_page, *new_page;
  1757. pte_t entry;
  1758. int reuse = 0, ret = 0;
  1759. int page_mkwrite = 0;
  1760. struct page *dirty_page = NULL;
  1761. old_page = vm_normal_page(vma, address, orig_pte);
  1762. if (!old_page) {
  1763. /*
  1764. * VM_MIXEDMAP !pfn_valid() case
  1765. *
  1766. * We should not cow pages in a shared writeable mapping.
  1767. * Just mark the pages writable as we can't do any dirty
  1768. * accounting on raw pfn maps.
  1769. */
  1770. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1771. (VM_WRITE|VM_SHARED))
  1772. goto reuse;
  1773. goto gotten;
  1774. }
  1775. /*
  1776. * Take out anonymous pages first, anonymous shared vmas are
  1777. * not dirty accountable.
  1778. */
  1779. if (PageAnon(old_page)) {
  1780. if (!trylock_page(old_page)) {
  1781. page_cache_get(old_page);
  1782. pte_unmap_unlock(page_table, ptl);
  1783. lock_page(old_page);
  1784. page_table = pte_offset_map_lock(mm, pmd, address,
  1785. &ptl);
  1786. if (!pte_same(*page_table, orig_pte)) {
  1787. unlock_page(old_page);
  1788. page_cache_release(old_page);
  1789. goto unlock;
  1790. }
  1791. page_cache_release(old_page);
  1792. }
  1793. reuse = reuse_swap_page(old_page);
  1794. unlock_page(old_page);
  1795. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1796. (VM_WRITE|VM_SHARED))) {
  1797. /*
  1798. * Only catch write-faults on shared writable pages,
  1799. * read-only shared pages can get COWed by
  1800. * get_user_pages(.write=1, .force=1).
  1801. */
  1802. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1803. struct vm_fault vmf;
  1804. int tmp;
  1805. vmf.virtual_address = (void __user *)(address &
  1806. PAGE_MASK);
  1807. vmf.pgoff = old_page->index;
  1808. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1809. vmf.page = old_page;
  1810. /*
  1811. * Notify the address space that the page is about to
  1812. * become writable so that it can prohibit this or wait
  1813. * for the page to get into an appropriate state.
  1814. *
  1815. * We do this without the lock held, so that it can
  1816. * sleep if it needs to.
  1817. */
  1818. page_cache_get(old_page);
  1819. pte_unmap_unlock(page_table, ptl);
  1820. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1821. if (unlikely(tmp &
  1822. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1823. ret = tmp;
  1824. goto unwritable_page;
  1825. }
  1826. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1827. lock_page(old_page);
  1828. if (!old_page->mapping) {
  1829. ret = 0; /* retry the fault */
  1830. unlock_page(old_page);
  1831. goto unwritable_page;
  1832. }
  1833. } else
  1834. VM_BUG_ON(!PageLocked(old_page));
  1835. /*
  1836. * Since we dropped the lock we need to revalidate
  1837. * the PTE as someone else may have changed it. If
  1838. * they did, we just return, as we can count on the
  1839. * MMU to tell us if they didn't also make it writable.
  1840. */
  1841. page_table = pte_offset_map_lock(mm, pmd, address,
  1842. &ptl);
  1843. if (!pte_same(*page_table, orig_pte)) {
  1844. unlock_page(old_page);
  1845. page_cache_release(old_page);
  1846. goto unlock;
  1847. }
  1848. page_mkwrite = 1;
  1849. }
  1850. dirty_page = old_page;
  1851. get_page(dirty_page);
  1852. reuse = 1;
  1853. }
  1854. if (reuse) {
  1855. reuse:
  1856. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1857. entry = pte_mkyoung(orig_pte);
  1858. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1859. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1860. update_mmu_cache(vma, address, entry);
  1861. ret |= VM_FAULT_WRITE;
  1862. goto unlock;
  1863. }
  1864. /*
  1865. * Ok, we need to copy. Oh, well..
  1866. */
  1867. page_cache_get(old_page);
  1868. gotten:
  1869. pte_unmap_unlock(page_table, ptl);
  1870. if (unlikely(anon_vma_prepare(vma)))
  1871. goto oom;
  1872. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1873. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1874. if (!new_page)
  1875. goto oom;
  1876. /*
  1877. * Don't let another task, with possibly unlocked vma,
  1878. * keep the mlocked page.
  1879. */
  1880. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  1881. lock_page(old_page); /* for LRU manipulation */
  1882. clear_page_mlock(old_page);
  1883. unlock_page(old_page);
  1884. }
  1885. cow_user_page(new_page, old_page, address, vma);
  1886. __SetPageUptodate(new_page);
  1887. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  1888. goto oom_free_new;
  1889. /*
  1890. * Re-check the pte - we dropped the lock
  1891. */
  1892. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1893. if (likely(pte_same(*page_table, orig_pte))) {
  1894. if (old_page) {
  1895. if (!PageAnon(old_page)) {
  1896. dec_mm_counter(mm, file_rss);
  1897. inc_mm_counter(mm, anon_rss);
  1898. }
  1899. } else
  1900. inc_mm_counter(mm, anon_rss);
  1901. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1902. entry = mk_pte(new_page, vma->vm_page_prot);
  1903. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1904. /*
  1905. * Clear the pte entry and flush it first, before updating the
  1906. * pte with the new entry. This will avoid a race condition
  1907. * seen in the presence of one thread doing SMC and another
  1908. * thread doing COW.
  1909. */
  1910. ptep_clear_flush_notify(vma, address, page_table);
  1911. page_add_new_anon_rmap(new_page, vma, address);
  1912. set_pte_at(mm, address, page_table, entry);
  1913. update_mmu_cache(vma, address, entry);
  1914. if (old_page) {
  1915. /*
  1916. * Only after switching the pte to the new page may
  1917. * we remove the mapcount here. Otherwise another
  1918. * process may come and find the rmap count decremented
  1919. * before the pte is switched to the new page, and
  1920. * "reuse" the old page writing into it while our pte
  1921. * here still points into it and can be read by other
  1922. * threads.
  1923. *
  1924. * The critical issue is to order this
  1925. * page_remove_rmap with the ptp_clear_flush above.
  1926. * Those stores are ordered by (if nothing else,)
  1927. * the barrier present in the atomic_add_negative
  1928. * in page_remove_rmap.
  1929. *
  1930. * Then the TLB flush in ptep_clear_flush ensures that
  1931. * no process can access the old page before the
  1932. * decremented mapcount is visible. And the old page
  1933. * cannot be reused until after the decremented
  1934. * mapcount is visible. So transitively, TLBs to
  1935. * old page will be flushed before it can be reused.
  1936. */
  1937. page_remove_rmap(old_page);
  1938. }
  1939. /* Free the old page.. */
  1940. new_page = old_page;
  1941. ret |= VM_FAULT_WRITE;
  1942. } else
  1943. mem_cgroup_uncharge_page(new_page);
  1944. if (new_page)
  1945. page_cache_release(new_page);
  1946. if (old_page)
  1947. page_cache_release(old_page);
  1948. unlock:
  1949. pte_unmap_unlock(page_table, ptl);
  1950. if (dirty_page) {
  1951. /*
  1952. * Yes, Virginia, this is actually required to prevent a race
  1953. * with clear_page_dirty_for_io() from clearing the page dirty
  1954. * bit after it clear all dirty ptes, but before a racing
  1955. * do_wp_page installs a dirty pte.
  1956. *
  1957. * do_no_page is protected similarly.
  1958. */
  1959. if (!page_mkwrite) {
  1960. wait_on_page_locked(dirty_page);
  1961. set_page_dirty_balance(dirty_page, page_mkwrite);
  1962. }
  1963. put_page(dirty_page);
  1964. if (page_mkwrite) {
  1965. struct address_space *mapping = dirty_page->mapping;
  1966. set_page_dirty(dirty_page);
  1967. unlock_page(dirty_page);
  1968. page_cache_release(dirty_page);
  1969. if (mapping) {
  1970. /*
  1971. * Some device drivers do not set page.mapping
  1972. * but still dirty their pages
  1973. */
  1974. balance_dirty_pages_ratelimited(mapping);
  1975. }
  1976. }
  1977. /* file_update_time outside page_lock */
  1978. if (vma->vm_file)
  1979. file_update_time(vma->vm_file);
  1980. }
  1981. return ret;
  1982. oom_free_new:
  1983. page_cache_release(new_page);
  1984. oom:
  1985. if (old_page) {
  1986. if (page_mkwrite) {
  1987. unlock_page(old_page);
  1988. page_cache_release(old_page);
  1989. }
  1990. page_cache_release(old_page);
  1991. }
  1992. return VM_FAULT_OOM;
  1993. unwritable_page:
  1994. page_cache_release(old_page);
  1995. return ret;
  1996. }
  1997. /*
  1998. * Helper functions for unmap_mapping_range().
  1999. *
  2000. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2001. *
  2002. * We have to restart searching the prio_tree whenever we drop the lock,
  2003. * since the iterator is only valid while the lock is held, and anyway
  2004. * a later vma might be split and reinserted earlier while lock dropped.
  2005. *
  2006. * The list of nonlinear vmas could be handled more efficiently, using
  2007. * a placeholder, but handle it in the same way until a need is shown.
  2008. * It is important to search the prio_tree before nonlinear list: a vma
  2009. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2010. * while the lock is dropped; but never shifted from list to prio_tree.
  2011. *
  2012. * In order to make forward progress despite restarting the search,
  2013. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2014. * quickly skip it next time around. Since the prio_tree search only
  2015. * shows us those vmas affected by unmapping the range in question, we
  2016. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2017. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2018. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2019. * i_mmap_lock.
  2020. *
  2021. * In order to make forward progress despite repeatedly restarting some
  2022. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2023. * and restart from that address when we reach that vma again. It might
  2024. * have been split or merged, shrunk or extended, but never shifted: so
  2025. * restart_addr remains valid so long as it remains in the vma's range.
  2026. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2027. * values so we can save vma's restart_addr in its truncate_count field.
  2028. */
  2029. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2030. static void reset_vma_truncate_counts(struct address_space *mapping)
  2031. {
  2032. struct vm_area_struct *vma;
  2033. struct prio_tree_iter iter;
  2034. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2035. vma->vm_truncate_count = 0;
  2036. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2037. vma->vm_truncate_count = 0;
  2038. }
  2039. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2040. unsigned long start_addr, unsigned long end_addr,
  2041. struct zap_details *details)
  2042. {
  2043. unsigned long restart_addr;
  2044. int need_break;
  2045. /*
  2046. * files that support invalidating or truncating portions of the
  2047. * file from under mmaped areas must have their ->fault function
  2048. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2049. * This provides synchronisation against concurrent unmapping here.
  2050. */
  2051. again:
  2052. restart_addr = vma->vm_truncate_count;
  2053. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2054. start_addr = restart_addr;
  2055. if (start_addr >= end_addr) {
  2056. /* Top of vma has been split off since last time */
  2057. vma->vm_truncate_count = details->truncate_count;
  2058. return 0;
  2059. }
  2060. }
  2061. restart_addr = zap_page_range(vma, start_addr,
  2062. end_addr - start_addr, details);
  2063. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2064. if (restart_addr >= end_addr) {
  2065. /* We have now completed this vma: mark it so */
  2066. vma->vm_truncate_count = details->truncate_count;
  2067. if (!need_break)
  2068. return 0;
  2069. } else {
  2070. /* Note restart_addr in vma's truncate_count field */
  2071. vma->vm_truncate_count = restart_addr;
  2072. if (!need_break)
  2073. goto again;
  2074. }
  2075. spin_unlock(details->i_mmap_lock);
  2076. cond_resched();
  2077. spin_lock(details->i_mmap_lock);
  2078. return -EINTR;
  2079. }
  2080. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2081. struct zap_details *details)
  2082. {
  2083. struct vm_area_struct *vma;
  2084. struct prio_tree_iter iter;
  2085. pgoff_t vba, vea, zba, zea;
  2086. restart:
  2087. vma_prio_tree_foreach(vma, &iter, root,
  2088. details->first_index, details->last_index) {
  2089. /* Skip quickly over those we have already dealt with */
  2090. if (vma->vm_truncate_count == details->truncate_count)
  2091. continue;
  2092. vba = vma->vm_pgoff;
  2093. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2094. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2095. zba = details->first_index;
  2096. if (zba < vba)
  2097. zba = vba;
  2098. zea = details->last_index;
  2099. if (zea > vea)
  2100. zea = vea;
  2101. if (unmap_mapping_range_vma(vma,
  2102. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2103. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2104. details) < 0)
  2105. goto restart;
  2106. }
  2107. }
  2108. static inline void unmap_mapping_range_list(struct list_head *head,
  2109. struct zap_details *details)
  2110. {
  2111. struct vm_area_struct *vma;
  2112. /*
  2113. * In nonlinear VMAs there is no correspondence between virtual address
  2114. * offset and file offset. So we must perform an exhaustive search
  2115. * across *all* the pages in each nonlinear VMA, not just the pages
  2116. * whose virtual address lies outside the file truncation point.
  2117. */
  2118. restart:
  2119. list_for_each_entry(vma, head, shared.vm_set.list) {
  2120. /* Skip quickly over those we have already dealt with */
  2121. if (vma->vm_truncate_count == details->truncate_count)
  2122. continue;
  2123. details->nonlinear_vma = vma;
  2124. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2125. vma->vm_end, details) < 0)
  2126. goto restart;
  2127. }
  2128. }
  2129. /**
  2130. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2131. * @mapping: the address space containing mmaps to be unmapped.
  2132. * @holebegin: byte in first page to unmap, relative to the start of
  2133. * the underlying file. This will be rounded down to a PAGE_SIZE
  2134. * boundary. Note that this is different from vmtruncate(), which
  2135. * must keep the partial page. In contrast, we must get rid of
  2136. * partial pages.
  2137. * @holelen: size of prospective hole in bytes. This will be rounded
  2138. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2139. * end of the file.
  2140. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2141. * but 0 when invalidating pagecache, don't throw away private data.
  2142. */
  2143. void unmap_mapping_range(struct address_space *mapping,
  2144. loff_t const holebegin, loff_t const holelen, int even_cows)
  2145. {
  2146. struct zap_details details;
  2147. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2148. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2149. /* Check for overflow. */
  2150. if (sizeof(holelen) > sizeof(hlen)) {
  2151. long long holeend =
  2152. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2153. if (holeend & ~(long long)ULONG_MAX)
  2154. hlen = ULONG_MAX - hba + 1;
  2155. }
  2156. details.check_mapping = even_cows? NULL: mapping;
  2157. details.nonlinear_vma = NULL;
  2158. details.first_index = hba;
  2159. details.last_index = hba + hlen - 1;
  2160. if (details.last_index < details.first_index)
  2161. details.last_index = ULONG_MAX;
  2162. details.i_mmap_lock = &mapping->i_mmap_lock;
  2163. spin_lock(&mapping->i_mmap_lock);
  2164. /* Protect against endless unmapping loops */
  2165. mapping->truncate_count++;
  2166. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2167. if (mapping->truncate_count == 0)
  2168. reset_vma_truncate_counts(mapping);
  2169. mapping->truncate_count++;
  2170. }
  2171. details.truncate_count = mapping->truncate_count;
  2172. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2173. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2174. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2175. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2176. spin_unlock(&mapping->i_mmap_lock);
  2177. }
  2178. EXPORT_SYMBOL(unmap_mapping_range);
  2179. /**
  2180. * vmtruncate - unmap mappings "freed" by truncate() syscall
  2181. * @inode: inode of the file used
  2182. * @offset: file offset to start truncating
  2183. *
  2184. * NOTE! We have to be ready to update the memory sharing
  2185. * between the file and the memory map for a potential last
  2186. * incomplete page. Ugly, but necessary.
  2187. */
  2188. int vmtruncate(struct inode * inode, loff_t offset)
  2189. {
  2190. if (inode->i_size < offset) {
  2191. unsigned long limit;
  2192. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  2193. if (limit != RLIM_INFINITY && offset > limit)
  2194. goto out_sig;
  2195. if (offset > inode->i_sb->s_maxbytes)
  2196. goto out_big;
  2197. i_size_write(inode, offset);
  2198. } else {
  2199. struct address_space *mapping = inode->i_mapping;
  2200. /*
  2201. * truncation of in-use swapfiles is disallowed - it would
  2202. * cause subsequent swapout to scribble on the now-freed
  2203. * blocks.
  2204. */
  2205. if (IS_SWAPFILE(inode))
  2206. return -ETXTBSY;
  2207. i_size_write(inode, offset);
  2208. /*
  2209. * unmap_mapping_range is called twice, first simply for
  2210. * efficiency so that truncate_inode_pages does fewer
  2211. * single-page unmaps. However after this first call, and
  2212. * before truncate_inode_pages finishes, it is possible for
  2213. * private pages to be COWed, which remain after
  2214. * truncate_inode_pages finishes, hence the second
  2215. * unmap_mapping_range call must be made for correctness.
  2216. */
  2217. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2218. truncate_inode_pages(mapping, offset);
  2219. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2220. }
  2221. if (inode->i_op->truncate)
  2222. inode->i_op->truncate(inode);
  2223. return 0;
  2224. out_sig:
  2225. send_sig(SIGXFSZ, current, 0);
  2226. out_big:
  2227. return -EFBIG;
  2228. }
  2229. EXPORT_SYMBOL(vmtruncate);
  2230. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2231. {
  2232. struct address_space *mapping = inode->i_mapping;
  2233. /*
  2234. * If the underlying filesystem is not going to provide
  2235. * a way to truncate a range of blocks (punch a hole) -
  2236. * we should return failure right now.
  2237. */
  2238. if (!inode->i_op->truncate_range)
  2239. return -ENOSYS;
  2240. mutex_lock(&inode->i_mutex);
  2241. down_write(&inode->i_alloc_sem);
  2242. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2243. truncate_inode_pages_range(mapping, offset, end);
  2244. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2245. inode->i_op->truncate_range(inode, offset, end);
  2246. up_write(&inode->i_alloc_sem);
  2247. mutex_unlock(&inode->i_mutex);
  2248. return 0;
  2249. }
  2250. /*
  2251. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2252. * but allow concurrent faults), and pte mapped but not yet locked.
  2253. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2254. */
  2255. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2256. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2257. unsigned int flags, pte_t orig_pte)
  2258. {
  2259. spinlock_t *ptl;
  2260. struct page *page;
  2261. swp_entry_t entry;
  2262. pte_t pte;
  2263. struct mem_cgroup *ptr = NULL;
  2264. int ret = 0;
  2265. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2266. goto out;
  2267. entry = pte_to_swp_entry(orig_pte);
  2268. if (is_migration_entry(entry)) {
  2269. migration_entry_wait(mm, pmd, address);
  2270. goto out;
  2271. }
  2272. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2273. page = lookup_swap_cache(entry);
  2274. if (!page) {
  2275. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2276. page = swapin_readahead(entry,
  2277. GFP_HIGHUSER_MOVABLE, vma, address);
  2278. if (!page) {
  2279. /*
  2280. * Back out if somebody else faulted in this pte
  2281. * while we released the pte lock.
  2282. */
  2283. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2284. if (likely(pte_same(*page_table, orig_pte)))
  2285. ret = VM_FAULT_OOM;
  2286. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2287. goto unlock;
  2288. }
  2289. /* Had to read the page from swap area: Major fault */
  2290. ret = VM_FAULT_MAJOR;
  2291. count_vm_event(PGMAJFAULT);
  2292. }
  2293. lock_page(page);
  2294. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2295. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2296. ret = VM_FAULT_OOM;
  2297. goto out_page;
  2298. }
  2299. /*
  2300. * Back out if somebody else already faulted in this pte.
  2301. */
  2302. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2303. if (unlikely(!pte_same(*page_table, orig_pte)))
  2304. goto out_nomap;
  2305. if (unlikely(!PageUptodate(page))) {
  2306. ret = VM_FAULT_SIGBUS;
  2307. goto out_nomap;
  2308. }
  2309. /*
  2310. * The page isn't present yet, go ahead with the fault.
  2311. *
  2312. * Be careful about the sequence of operations here.
  2313. * To get its accounting right, reuse_swap_page() must be called
  2314. * while the page is counted on swap but not yet in mapcount i.e.
  2315. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2316. * must be called after the swap_free(), or it will never succeed.
  2317. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2318. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2319. * in page->private. In this case, a record in swap_cgroup is silently
  2320. * discarded at swap_free().
  2321. */
  2322. inc_mm_counter(mm, anon_rss);
  2323. pte = mk_pte(page, vma->vm_page_prot);
  2324. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2325. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2326. flags &= ~FAULT_FLAG_WRITE;
  2327. }
  2328. flush_icache_page(vma, page);
  2329. set_pte_at(mm, address, page_table, pte);
  2330. page_add_anon_rmap(page, vma, address);
  2331. /* It's better to call commit-charge after rmap is established */
  2332. mem_cgroup_commit_charge_swapin(page, ptr);
  2333. swap_free(entry);
  2334. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2335. try_to_free_swap(page);
  2336. unlock_page(page);
  2337. if (flags & FAULT_FLAG_WRITE) {
  2338. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2339. if (ret & VM_FAULT_ERROR)
  2340. ret &= VM_FAULT_ERROR;
  2341. goto out;
  2342. }
  2343. /* No need to invalidate - it was non-present before */
  2344. update_mmu_cache(vma, address, pte);
  2345. unlock:
  2346. pte_unmap_unlock(page_table, ptl);
  2347. out:
  2348. return ret;
  2349. out_nomap:
  2350. mem_cgroup_cancel_charge_swapin(ptr);
  2351. pte_unmap_unlock(page_table, ptl);
  2352. out_page:
  2353. unlock_page(page);
  2354. page_cache_release(page);
  2355. return ret;
  2356. }
  2357. /*
  2358. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2359. * but allow concurrent faults), and pte mapped but not yet locked.
  2360. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2361. */
  2362. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2363. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2364. unsigned int flags)
  2365. {
  2366. struct page *page;
  2367. spinlock_t *ptl;
  2368. pte_t entry;
  2369. /* Allocate our own private page. */
  2370. pte_unmap(page_table);
  2371. if (unlikely(anon_vma_prepare(vma)))
  2372. goto oom;
  2373. page = alloc_zeroed_user_highpage_movable(vma, address);
  2374. if (!page)
  2375. goto oom;
  2376. __SetPageUptodate(page);
  2377. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2378. goto oom_free_page;
  2379. entry = mk_pte(page, vma->vm_page_prot);
  2380. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2381. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2382. if (!pte_none(*page_table))
  2383. goto release;
  2384. inc_mm_counter(mm, anon_rss);
  2385. page_add_new_anon_rmap(page, vma, address);
  2386. set_pte_at(mm, address, page_table, entry);
  2387. /* No need to invalidate - it was non-present before */
  2388. update_mmu_cache(vma, address, entry);
  2389. unlock:
  2390. pte_unmap_unlock(page_table, ptl);
  2391. return 0;
  2392. release:
  2393. mem_cgroup_uncharge_page(page);
  2394. page_cache_release(page);
  2395. goto unlock;
  2396. oom_free_page:
  2397. page_cache_release(page);
  2398. oom:
  2399. return VM_FAULT_OOM;
  2400. }
  2401. /*
  2402. * __do_fault() tries to create a new page mapping. It aggressively
  2403. * tries to share with existing pages, but makes a separate copy if
  2404. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2405. * the next page fault.
  2406. *
  2407. * As this is called only for pages that do not currently exist, we
  2408. * do not need to flush old virtual caches or the TLB.
  2409. *
  2410. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2411. * but allow concurrent faults), and pte neither mapped nor locked.
  2412. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2413. */
  2414. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2415. unsigned long address, pmd_t *pmd,
  2416. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2417. {
  2418. pte_t *page_table;
  2419. spinlock_t *ptl;
  2420. struct page *page;
  2421. pte_t entry;
  2422. int anon = 0;
  2423. int charged = 0;
  2424. struct page *dirty_page = NULL;
  2425. struct vm_fault vmf;
  2426. int ret;
  2427. int page_mkwrite = 0;
  2428. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2429. vmf.pgoff = pgoff;
  2430. vmf.flags = flags;
  2431. vmf.page = NULL;
  2432. ret = vma->vm_ops->fault(vma, &vmf);
  2433. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2434. return ret;
  2435. /*
  2436. * For consistency in subsequent calls, make the faulted page always
  2437. * locked.
  2438. */
  2439. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2440. lock_page(vmf.page);
  2441. else
  2442. VM_BUG_ON(!PageLocked(vmf.page));
  2443. /*
  2444. * Should we do an early C-O-W break?
  2445. */
  2446. page = vmf.page;
  2447. if (flags & FAULT_FLAG_WRITE) {
  2448. if (!(vma->vm_flags & VM_SHARED)) {
  2449. anon = 1;
  2450. if (unlikely(anon_vma_prepare(vma))) {
  2451. ret = VM_FAULT_OOM;
  2452. goto out;
  2453. }
  2454. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2455. vma, address);
  2456. if (!page) {
  2457. ret = VM_FAULT_OOM;
  2458. goto out;
  2459. }
  2460. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2461. ret = VM_FAULT_OOM;
  2462. page_cache_release(page);
  2463. goto out;
  2464. }
  2465. charged = 1;
  2466. /*
  2467. * Don't let another task, with possibly unlocked vma,
  2468. * keep the mlocked page.
  2469. */
  2470. if (vma->vm_flags & VM_LOCKED)
  2471. clear_page_mlock(vmf.page);
  2472. copy_user_highpage(page, vmf.page, address, vma);
  2473. __SetPageUptodate(page);
  2474. } else {
  2475. /*
  2476. * If the page will be shareable, see if the backing
  2477. * address space wants to know that the page is about
  2478. * to become writable
  2479. */
  2480. if (vma->vm_ops->page_mkwrite) {
  2481. int tmp;
  2482. unlock_page(page);
  2483. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2484. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2485. if (unlikely(tmp &
  2486. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2487. ret = tmp;
  2488. goto unwritable_page;
  2489. }
  2490. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2491. lock_page(page);
  2492. if (!page->mapping) {
  2493. ret = 0; /* retry the fault */
  2494. unlock_page(page);
  2495. goto unwritable_page;
  2496. }
  2497. } else
  2498. VM_BUG_ON(!PageLocked(page));
  2499. page_mkwrite = 1;
  2500. }
  2501. }
  2502. }
  2503. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2504. /*
  2505. * This silly early PAGE_DIRTY setting removes a race
  2506. * due to the bad i386 page protection. But it's valid
  2507. * for other architectures too.
  2508. *
  2509. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2510. * an exclusive copy of the page, or this is a shared mapping,
  2511. * so we can make it writable and dirty to avoid having to
  2512. * handle that later.
  2513. */
  2514. /* Only go through if we didn't race with anybody else... */
  2515. if (likely(pte_same(*page_table, orig_pte))) {
  2516. flush_icache_page(vma, page);
  2517. entry = mk_pte(page, vma->vm_page_prot);
  2518. if (flags & FAULT_FLAG_WRITE)
  2519. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2520. if (anon) {
  2521. inc_mm_counter(mm, anon_rss);
  2522. page_add_new_anon_rmap(page, vma, address);
  2523. } else {
  2524. inc_mm_counter(mm, file_rss);
  2525. page_add_file_rmap(page);
  2526. if (flags & FAULT_FLAG_WRITE) {
  2527. dirty_page = page;
  2528. get_page(dirty_page);
  2529. }
  2530. }
  2531. set_pte_at(mm, address, page_table, entry);
  2532. /* no need to invalidate: a not-present page won't be cached */
  2533. update_mmu_cache(vma, address, entry);
  2534. } else {
  2535. if (charged)
  2536. mem_cgroup_uncharge_page(page);
  2537. if (anon)
  2538. page_cache_release(page);
  2539. else
  2540. anon = 1; /* no anon but release faulted_page */
  2541. }
  2542. pte_unmap_unlock(page_table, ptl);
  2543. out:
  2544. if (dirty_page) {
  2545. struct address_space *mapping = page->mapping;
  2546. if (set_page_dirty(dirty_page))
  2547. page_mkwrite = 1;
  2548. unlock_page(dirty_page);
  2549. put_page(dirty_page);
  2550. if (page_mkwrite && mapping) {
  2551. /*
  2552. * Some device drivers do not set page.mapping but still
  2553. * dirty their pages
  2554. */
  2555. balance_dirty_pages_ratelimited(mapping);
  2556. }
  2557. /* file_update_time outside page_lock */
  2558. if (vma->vm_file)
  2559. file_update_time(vma->vm_file);
  2560. } else {
  2561. unlock_page(vmf.page);
  2562. if (anon)
  2563. page_cache_release(vmf.page);
  2564. }
  2565. return ret;
  2566. unwritable_page:
  2567. page_cache_release(page);
  2568. return ret;
  2569. }
  2570. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2571. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2572. unsigned int flags, pte_t orig_pte)
  2573. {
  2574. pgoff_t pgoff = (((address & PAGE_MASK)
  2575. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2576. pte_unmap(page_table);
  2577. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2578. }
  2579. /*
  2580. * Fault of a previously existing named mapping. Repopulate the pte
  2581. * from the encoded file_pte if possible. This enables swappable
  2582. * nonlinear vmas.
  2583. *
  2584. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2585. * but allow concurrent faults), and pte mapped but not yet locked.
  2586. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2587. */
  2588. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2589. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2590. unsigned int flags, pte_t orig_pte)
  2591. {
  2592. pgoff_t pgoff;
  2593. flags |= FAULT_FLAG_NONLINEAR;
  2594. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2595. return 0;
  2596. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2597. /*
  2598. * Page table corrupted: show pte and kill process.
  2599. */
  2600. print_bad_pte(vma, address, orig_pte, NULL);
  2601. return VM_FAULT_OOM;
  2602. }
  2603. pgoff = pte_to_pgoff(orig_pte);
  2604. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2605. }
  2606. /*
  2607. * These routines also need to handle stuff like marking pages dirty
  2608. * and/or accessed for architectures that don't do it in hardware (most
  2609. * RISC architectures). The early dirtying is also good on the i386.
  2610. *
  2611. * There is also a hook called "update_mmu_cache()" that architectures
  2612. * with external mmu caches can use to update those (ie the Sparc or
  2613. * PowerPC hashed page tables that act as extended TLBs).
  2614. *
  2615. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2616. * but allow concurrent faults), and pte mapped but not yet locked.
  2617. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2618. */
  2619. static inline int handle_pte_fault(struct mm_struct *mm,
  2620. struct vm_area_struct *vma, unsigned long address,
  2621. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2622. {
  2623. pte_t entry;
  2624. spinlock_t *ptl;
  2625. entry = *pte;
  2626. if (!pte_present(entry)) {
  2627. if (pte_none(entry)) {
  2628. if (vma->vm_ops) {
  2629. if (likely(vma->vm_ops->fault))
  2630. return do_linear_fault(mm, vma, address,
  2631. pte, pmd, flags, entry);
  2632. }
  2633. return do_anonymous_page(mm, vma, address,
  2634. pte, pmd, flags);
  2635. }
  2636. if (pte_file(entry))
  2637. return do_nonlinear_fault(mm, vma, address,
  2638. pte, pmd, flags, entry);
  2639. return do_swap_page(mm, vma, address,
  2640. pte, pmd, flags, entry);
  2641. }
  2642. ptl = pte_lockptr(mm, pmd);
  2643. spin_lock(ptl);
  2644. if (unlikely(!pte_same(*pte, entry)))
  2645. goto unlock;
  2646. if (flags & FAULT_FLAG_WRITE) {
  2647. if (!pte_write(entry))
  2648. return do_wp_page(mm, vma, address,
  2649. pte, pmd, ptl, entry);
  2650. entry = pte_mkdirty(entry);
  2651. }
  2652. entry = pte_mkyoung(entry);
  2653. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2654. update_mmu_cache(vma, address, entry);
  2655. } else {
  2656. /*
  2657. * This is needed only for protection faults but the arch code
  2658. * is not yet telling us if this is a protection fault or not.
  2659. * This still avoids useless tlb flushes for .text page faults
  2660. * with threads.
  2661. */
  2662. if (flags & FAULT_FLAG_WRITE)
  2663. flush_tlb_page(vma, address);
  2664. }
  2665. unlock:
  2666. pte_unmap_unlock(pte, ptl);
  2667. return 0;
  2668. }
  2669. /*
  2670. * By the time we get here, we already hold the mm semaphore
  2671. */
  2672. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2673. unsigned long address, unsigned int flags)
  2674. {
  2675. pgd_t *pgd;
  2676. pud_t *pud;
  2677. pmd_t *pmd;
  2678. pte_t *pte;
  2679. __set_current_state(TASK_RUNNING);
  2680. count_vm_event(PGFAULT);
  2681. if (unlikely(is_vm_hugetlb_page(vma)))
  2682. return hugetlb_fault(mm, vma, address, flags);
  2683. pgd = pgd_offset(mm, address);
  2684. pud = pud_alloc(mm, pgd, address);
  2685. if (!pud)
  2686. return VM_FAULT_OOM;
  2687. pmd = pmd_alloc(mm, pud, address);
  2688. if (!pmd)
  2689. return VM_FAULT_OOM;
  2690. pte = pte_alloc_map(mm, pmd, address);
  2691. if (!pte)
  2692. return VM_FAULT_OOM;
  2693. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2694. }
  2695. #ifndef __PAGETABLE_PUD_FOLDED
  2696. /*
  2697. * Allocate page upper directory.
  2698. * We've already handled the fast-path in-line.
  2699. */
  2700. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2701. {
  2702. pud_t *new = pud_alloc_one(mm, address);
  2703. if (!new)
  2704. return -ENOMEM;
  2705. smp_wmb(); /* See comment in __pte_alloc */
  2706. spin_lock(&mm->page_table_lock);
  2707. if (pgd_present(*pgd)) /* Another has populated it */
  2708. pud_free(mm, new);
  2709. else
  2710. pgd_populate(mm, pgd, new);
  2711. spin_unlock(&mm->page_table_lock);
  2712. return 0;
  2713. }
  2714. #endif /* __PAGETABLE_PUD_FOLDED */
  2715. #ifndef __PAGETABLE_PMD_FOLDED
  2716. /*
  2717. * Allocate page middle directory.
  2718. * We've already handled the fast-path in-line.
  2719. */
  2720. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2721. {
  2722. pmd_t *new = pmd_alloc_one(mm, address);
  2723. if (!new)
  2724. return -ENOMEM;
  2725. smp_wmb(); /* See comment in __pte_alloc */
  2726. spin_lock(&mm->page_table_lock);
  2727. #ifndef __ARCH_HAS_4LEVEL_HACK
  2728. if (pud_present(*pud)) /* Another has populated it */
  2729. pmd_free(mm, new);
  2730. else
  2731. pud_populate(mm, pud, new);
  2732. #else
  2733. if (pgd_present(*pud)) /* Another has populated it */
  2734. pmd_free(mm, new);
  2735. else
  2736. pgd_populate(mm, pud, new);
  2737. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2738. spin_unlock(&mm->page_table_lock);
  2739. return 0;
  2740. }
  2741. #endif /* __PAGETABLE_PMD_FOLDED */
  2742. int make_pages_present(unsigned long addr, unsigned long end)
  2743. {
  2744. int ret, len, write;
  2745. struct vm_area_struct * vma;
  2746. vma = find_vma(current->mm, addr);
  2747. if (!vma)
  2748. return -ENOMEM;
  2749. write = (vma->vm_flags & VM_WRITE) != 0;
  2750. BUG_ON(addr >= end);
  2751. BUG_ON(end > vma->vm_end);
  2752. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2753. ret = get_user_pages(current, current->mm, addr,
  2754. len, write, 0, NULL, NULL);
  2755. if (ret < 0)
  2756. return ret;
  2757. return ret == len ? 0 : -EFAULT;
  2758. }
  2759. #if !defined(__HAVE_ARCH_GATE_AREA)
  2760. #if defined(AT_SYSINFO_EHDR)
  2761. static struct vm_area_struct gate_vma;
  2762. static int __init gate_vma_init(void)
  2763. {
  2764. gate_vma.vm_mm = NULL;
  2765. gate_vma.vm_start = FIXADDR_USER_START;
  2766. gate_vma.vm_end = FIXADDR_USER_END;
  2767. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2768. gate_vma.vm_page_prot = __P101;
  2769. /*
  2770. * Make sure the vDSO gets into every core dump.
  2771. * Dumping its contents makes post-mortem fully interpretable later
  2772. * without matching up the same kernel and hardware config to see
  2773. * what PC values meant.
  2774. */
  2775. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2776. return 0;
  2777. }
  2778. __initcall(gate_vma_init);
  2779. #endif
  2780. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2781. {
  2782. #ifdef AT_SYSINFO_EHDR
  2783. return &gate_vma;
  2784. #else
  2785. return NULL;
  2786. #endif
  2787. }
  2788. int in_gate_area_no_task(unsigned long addr)
  2789. {
  2790. #ifdef AT_SYSINFO_EHDR
  2791. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2792. return 1;
  2793. #endif
  2794. return 0;
  2795. }
  2796. #endif /* __HAVE_ARCH_GATE_AREA */
  2797. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2798. pte_t **ptepp, spinlock_t **ptlp)
  2799. {
  2800. pgd_t *pgd;
  2801. pud_t *pud;
  2802. pmd_t *pmd;
  2803. pte_t *ptep;
  2804. pgd = pgd_offset(mm, address);
  2805. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2806. goto out;
  2807. pud = pud_offset(pgd, address);
  2808. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2809. goto out;
  2810. pmd = pmd_offset(pud, address);
  2811. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2812. goto out;
  2813. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2814. if (pmd_huge(*pmd))
  2815. goto out;
  2816. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2817. if (!ptep)
  2818. goto out;
  2819. if (!pte_present(*ptep))
  2820. goto unlock;
  2821. *ptepp = ptep;
  2822. return 0;
  2823. unlock:
  2824. pte_unmap_unlock(ptep, *ptlp);
  2825. out:
  2826. return -EINVAL;
  2827. }
  2828. /**
  2829. * follow_pfn - look up PFN at a user virtual address
  2830. * @vma: memory mapping
  2831. * @address: user virtual address
  2832. * @pfn: location to store found PFN
  2833. *
  2834. * Only IO mappings and raw PFN mappings are allowed.
  2835. *
  2836. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2837. */
  2838. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2839. unsigned long *pfn)
  2840. {
  2841. int ret = -EINVAL;
  2842. spinlock_t *ptl;
  2843. pte_t *ptep;
  2844. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2845. return ret;
  2846. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2847. if (ret)
  2848. return ret;
  2849. *pfn = pte_pfn(*ptep);
  2850. pte_unmap_unlock(ptep, ptl);
  2851. return 0;
  2852. }
  2853. EXPORT_SYMBOL(follow_pfn);
  2854. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2855. int follow_phys(struct vm_area_struct *vma,
  2856. unsigned long address, unsigned int flags,
  2857. unsigned long *prot, resource_size_t *phys)
  2858. {
  2859. int ret = -EINVAL;
  2860. pte_t *ptep, pte;
  2861. spinlock_t *ptl;
  2862. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2863. goto out;
  2864. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2865. goto out;
  2866. pte = *ptep;
  2867. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2868. goto unlock;
  2869. *prot = pgprot_val(pte_pgprot(pte));
  2870. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  2871. ret = 0;
  2872. unlock:
  2873. pte_unmap_unlock(ptep, ptl);
  2874. out:
  2875. return ret;
  2876. }
  2877. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2878. void *buf, int len, int write)
  2879. {
  2880. resource_size_t phys_addr;
  2881. unsigned long prot = 0;
  2882. void __iomem *maddr;
  2883. int offset = addr & (PAGE_SIZE-1);
  2884. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2885. return -EINVAL;
  2886. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2887. if (write)
  2888. memcpy_toio(maddr + offset, buf, len);
  2889. else
  2890. memcpy_fromio(buf, maddr + offset, len);
  2891. iounmap(maddr);
  2892. return len;
  2893. }
  2894. #endif
  2895. /*
  2896. * Access another process' address space.
  2897. * Source/target buffer must be kernel space,
  2898. * Do not walk the page table directly, use get_user_pages
  2899. */
  2900. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2901. {
  2902. struct mm_struct *mm;
  2903. struct vm_area_struct *vma;
  2904. void *old_buf = buf;
  2905. mm = get_task_mm(tsk);
  2906. if (!mm)
  2907. return 0;
  2908. down_read(&mm->mmap_sem);
  2909. /* ignore errors, just check how much was successfully transferred */
  2910. while (len) {
  2911. int bytes, ret, offset;
  2912. void *maddr;
  2913. struct page *page = NULL;
  2914. ret = get_user_pages(tsk, mm, addr, 1,
  2915. write, 1, &page, &vma);
  2916. if (ret <= 0) {
  2917. /*
  2918. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2919. * we can access using slightly different code.
  2920. */
  2921. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2922. vma = find_vma(mm, addr);
  2923. if (!vma)
  2924. break;
  2925. if (vma->vm_ops && vma->vm_ops->access)
  2926. ret = vma->vm_ops->access(vma, addr, buf,
  2927. len, write);
  2928. if (ret <= 0)
  2929. #endif
  2930. break;
  2931. bytes = ret;
  2932. } else {
  2933. bytes = len;
  2934. offset = addr & (PAGE_SIZE-1);
  2935. if (bytes > PAGE_SIZE-offset)
  2936. bytes = PAGE_SIZE-offset;
  2937. maddr = kmap(page);
  2938. if (write) {
  2939. copy_to_user_page(vma, page, addr,
  2940. maddr + offset, buf, bytes);
  2941. set_page_dirty_lock(page);
  2942. } else {
  2943. copy_from_user_page(vma, page, addr,
  2944. buf, maddr + offset, bytes);
  2945. }
  2946. kunmap(page);
  2947. page_cache_release(page);
  2948. }
  2949. len -= bytes;
  2950. buf += bytes;
  2951. addr += bytes;
  2952. }
  2953. up_read(&mm->mmap_sem);
  2954. mmput(mm);
  2955. return buf - old_buf;
  2956. }
  2957. /*
  2958. * Print the name of a VMA.
  2959. */
  2960. void print_vma_addr(char *prefix, unsigned long ip)
  2961. {
  2962. struct mm_struct *mm = current->mm;
  2963. struct vm_area_struct *vma;
  2964. /*
  2965. * Do not print if we are in atomic
  2966. * contexts (in exception stacks, etc.):
  2967. */
  2968. if (preempt_count())
  2969. return;
  2970. down_read(&mm->mmap_sem);
  2971. vma = find_vma(mm, ip);
  2972. if (vma && vma->vm_file) {
  2973. struct file *f = vma->vm_file;
  2974. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2975. if (buf) {
  2976. char *p, *s;
  2977. p = d_path(&f->f_path, buf, PAGE_SIZE);
  2978. if (IS_ERR(p))
  2979. p = "?";
  2980. s = strrchr(p, '/');
  2981. if (s)
  2982. p = s+1;
  2983. printk("%s%s[%lx+%lx]", prefix, p,
  2984. vma->vm_start,
  2985. vma->vm_end - vma->vm_start);
  2986. free_page((unsigned long)buf);
  2987. }
  2988. }
  2989. up_read(&current->mm->mmap_sem);
  2990. }
  2991. #ifdef CONFIG_PROVE_LOCKING
  2992. void might_fault(void)
  2993. {
  2994. /*
  2995. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  2996. * holding the mmap_sem, this is safe because kernel memory doesn't
  2997. * get paged out, therefore we'll never actually fault, and the
  2998. * below annotations will generate false positives.
  2999. */
  3000. if (segment_eq(get_fs(), KERNEL_DS))
  3001. return;
  3002. might_sleep();
  3003. /*
  3004. * it would be nicer only to annotate paths which are not under
  3005. * pagefault_disable, however that requires a larger audit and
  3006. * providing helpers like get_user_atomic.
  3007. */
  3008. if (!in_atomic() && current->mm)
  3009. might_lock_read(&current->mm->mmap_sem);
  3010. }
  3011. EXPORT_SYMBOL(might_fault);
  3012. #endif