sched_fair.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. static const struct sched_class fair_sched_class;
  68. /**************************************************************
  69. * CFS operations on generic schedulable entities:
  70. */
  71. static inline struct task_struct *task_of(struct sched_entity *se)
  72. {
  73. return container_of(se, struct task_struct, se);
  74. }
  75. #ifdef CONFIG_FAIR_GROUP_SCHED
  76. /* cpu runqueue to which this cfs_rq is attached */
  77. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  78. {
  79. return cfs_rq->rq;
  80. }
  81. /* An entity is a task if it doesn't "own" a runqueue */
  82. #define entity_is_task(se) (!se->my_q)
  83. /* Walk up scheduling entities hierarchy */
  84. #define for_each_sched_entity(se) \
  85. for (; se; se = se->parent)
  86. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  87. {
  88. return p->se.cfs_rq;
  89. }
  90. /* runqueue on which this entity is (to be) queued */
  91. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  92. {
  93. return se->cfs_rq;
  94. }
  95. /* runqueue "owned" by this group */
  96. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  97. {
  98. return grp->my_q;
  99. }
  100. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  101. * another cpu ('this_cpu')
  102. */
  103. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  104. {
  105. return cfs_rq->tg->cfs_rq[this_cpu];
  106. }
  107. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  108. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  109. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  110. /* Do the two (enqueued) entities belong to the same group ? */
  111. static inline int
  112. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  113. {
  114. if (se->cfs_rq == pse->cfs_rq)
  115. return 1;
  116. return 0;
  117. }
  118. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  119. {
  120. return se->parent;
  121. }
  122. /* return depth at which a sched entity is present in the hierarchy */
  123. static inline int depth_se(struct sched_entity *se)
  124. {
  125. int depth = 0;
  126. for_each_sched_entity(se)
  127. depth++;
  128. return depth;
  129. }
  130. static void
  131. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  132. {
  133. int se_depth, pse_depth;
  134. /*
  135. * preemption test can be made between sibling entities who are in the
  136. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  137. * both tasks until we find their ancestors who are siblings of common
  138. * parent.
  139. */
  140. /* First walk up until both entities are at same depth */
  141. se_depth = depth_se(*se);
  142. pse_depth = depth_se(*pse);
  143. while (se_depth > pse_depth) {
  144. se_depth--;
  145. *se = parent_entity(*se);
  146. }
  147. while (pse_depth > se_depth) {
  148. pse_depth--;
  149. *pse = parent_entity(*pse);
  150. }
  151. while (!is_same_group(*se, *pse)) {
  152. *se = parent_entity(*se);
  153. *pse = parent_entity(*pse);
  154. }
  155. }
  156. #else /* CONFIG_FAIR_GROUP_SCHED */
  157. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  158. {
  159. return container_of(cfs_rq, struct rq, cfs);
  160. }
  161. #define entity_is_task(se) 1
  162. #define for_each_sched_entity(se) \
  163. for (; se; se = NULL)
  164. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  165. {
  166. return &task_rq(p)->cfs;
  167. }
  168. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  169. {
  170. struct task_struct *p = task_of(se);
  171. struct rq *rq = task_rq(p);
  172. return &rq->cfs;
  173. }
  174. /* runqueue "owned" by this group */
  175. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  176. {
  177. return NULL;
  178. }
  179. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  180. {
  181. return &cpu_rq(this_cpu)->cfs;
  182. }
  183. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  184. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  185. static inline int
  186. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  187. {
  188. return 1;
  189. }
  190. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  191. {
  192. return NULL;
  193. }
  194. static inline void
  195. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  196. {
  197. }
  198. #endif /* CONFIG_FAIR_GROUP_SCHED */
  199. /**************************************************************
  200. * Scheduling class tree data structure manipulation methods:
  201. */
  202. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  203. {
  204. s64 delta = (s64)(vruntime - min_vruntime);
  205. if (delta > 0)
  206. min_vruntime = vruntime;
  207. return min_vruntime;
  208. }
  209. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  210. {
  211. s64 delta = (s64)(vruntime - min_vruntime);
  212. if (delta < 0)
  213. min_vruntime = vruntime;
  214. return min_vruntime;
  215. }
  216. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  217. {
  218. return se->vruntime - cfs_rq->min_vruntime;
  219. }
  220. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  221. {
  222. u64 vruntime = cfs_rq->min_vruntime;
  223. if (cfs_rq->curr)
  224. vruntime = cfs_rq->curr->vruntime;
  225. if (cfs_rq->rb_leftmost) {
  226. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  227. struct sched_entity,
  228. run_node);
  229. if (!cfs_rq->curr)
  230. vruntime = se->vruntime;
  231. else
  232. vruntime = min_vruntime(vruntime, se->vruntime);
  233. }
  234. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  235. }
  236. /*
  237. * Enqueue an entity into the rb-tree:
  238. */
  239. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  240. {
  241. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  242. struct rb_node *parent = NULL;
  243. struct sched_entity *entry;
  244. s64 key = entity_key(cfs_rq, se);
  245. int leftmost = 1;
  246. /*
  247. * Find the right place in the rbtree:
  248. */
  249. while (*link) {
  250. parent = *link;
  251. entry = rb_entry(parent, struct sched_entity, run_node);
  252. /*
  253. * We dont care about collisions. Nodes with
  254. * the same key stay together.
  255. */
  256. if (key < entity_key(cfs_rq, entry)) {
  257. link = &parent->rb_left;
  258. } else {
  259. link = &parent->rb_right;
  260. leftmost = 0;
  261. }
  262. }
  263. /*
  264. * Maintain a cache of leftmost tree entries (it is frequently
  265. * used):
  266. */
  267. if (leftmost)
  268. cfs_rq->rb_leftmost = &se->run_node;
  269. rb_link_node(&se->run_node, parent, link);
  270. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  271. }
  272. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  273. {
  274. if (cfs_rq->rb_leftmost == &se->run_node) {
  275. struct rb_node *next_node;
  276. next_node = rb_next(&se->run_node);
  277. cfs_rq->rb_leftmost = next_node;
  278. }
  279. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  280. }
  281. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  282. {
  283. struct rb_node *left = cfs_rq->rb_leftmost;
  284. if (!left)
  285. return NULL;
  286. return rb_entry(left, struct sched_entity, run_node);
  287. }
  288. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  289. {
  290. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  291. if (!last)
  292. return NULL;
  293. return rb_entry(last, struct sched_entity, run_node);
  294. }
  295. /**************************************************************
  296. * Scheduling class statistics methods:
  297. */
  298. #ifdef CONFIG_SCHED_DEBUG
  299. int sched_nr_latency_handler(struct ctl_table *table, int write,
  300. struct file *filp, void __user *buffer, size_t *lenp,
  301. loff_t *ppos)
  302. {
  303. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  304. if (ret || !write)
  305. return ret;
  306. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  307. sysctl_sched_min_granularity);
  308. return 0;
  309. }
  310. #endif
  311. /*
  312. * delta /= w
  313. */
  314. static inline unsigned long
  315. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  316. {
  317. if (unlikely(se->load.weight != NICE_0_LOAD))
  318. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  319. return delta;
  320. }
  321. /*
  322. * The idea is to set a period in which each task runs once.
  323. *
  324. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  325. * this period because otherwise the slices get too small.
  326. *
  327. * p = (nr <= nl) ? l : l*nr/nl
  328. */
  329. static u64 __sched_period(unsigned long nr_running)
  330. {
  331. u64 period = sysctl_sched_latency;
  332. unsigned long nr_latency = sched_nr_latency;
  333. if (unlikely(nr_running > nr_latency)) {
  334. period = sysctl_sched_min_granularity;
  335. period *= nr_running;
  336. }
  337. return period;
  338. }
  339. /*
  340. * We calculate the wall-time slice from the period by taking a part
  341. * proportional to the weight.
  342. *
  343. * s = p*P[w/rw]
  344. */
  345. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  346. {
  347. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  348. for_each_sched_entity(se) {
  349. struct load_weight *load;
  350. struct load_weight lw;
  351. cfs_rq = cfs_rq_of(se);
  352. load = &cfs_rq->load;
  353. if (unlikely(!se->on_rq)) {
  354. lw = cfs_rq->load;
  355. update_load_add(&lw, se->load.weight);
  356. load = &lw;
  357. }
  358. slice = calc_delta_mine(slice, se->load.weight, load);
  359. }
  360. return slice;
  361. }
  362. /*
  363. * We calculate the vruntime slice of a to be inserted task
  364. *
  365. * vs = s/w
  366. */
  367. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  368. {
  369. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  370. }
  371. /*
  372. * Update the current task's runtime statistics. Skip current tasks that
  373. * are not in our scheduling class.
  374. */
  375. static inline void
  376. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  377. unsigned long delta_exec)
  378. {
  379. unsigned long delta_exec_weighted;
  380. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  381. curr->sum_exec_runtime += delta_exec;
  382. schedstat_add(cfs_rq, exec_clock, delta_exec);
  383. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  384. curr->vruntime += delta_exec_weighted;
  385. update_min_vruntime(cfs_rq);
  386. }
  387. static void update_curr(struct cfs_rq *cfs_rq)
  388. {
  389. struct sched_entity *curr = cfs_rq->curr;
  390. u64 now = rq_of(cfs_rq)->clock;
  391. unsigned long delta_exec;
  392. if (unlikely(!curr))
  393. return;
  394. /*
  395. * Get the amount of time the current task was running
  396. * since the last time we changed load (this cannot
  397. * overflow on 32 bits):
  398. */
  399. delta_exec = (unsigned long)(now - curr->exec_start);
  400. if (!delta_exec)
  401. return;
  402. __update_curr(cfs_rq, curr, delta_exec);
  403. curr->exec_start = now;
  404. if (entity_is_task(curr)) {
  405. struct task_struct *curtask = task_of(curr);
  406. cpuacct_charge(curtask, delta_exec);
  407. account_group_exec_runtime(curtask, delta_exec);
  408. }
  409. }
  410. static inline void
  411. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  412. {
  413. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  414. }
  415. /*
  416. * Task is being enqueued - update stats:
  417. */
  418. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. /*
  421. * Are we enqueueing a waiting task? (for current tasks
  422. * a dequeue/enqueue event is a NOP)
  423. */
  424. if (se != cfs_rq->curr)
  425. update_stats_wait_start(cfs_rq, se);
  426. }
  427. static void
  428. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  429. {
  430. schedstat_set(se->wait_max, max(se->wait_max,
  431. rq_of(cfs_rq)->clock - se->wait_start));
  432. schedstat_set(se->wait_count, se->wait_count + 1);
  433. schedstat_set(se->wait_sum, se->wait_sum +
  434. rq_of(cfs_rq)->clock - se->wait_start);
  435. schedstat_set(se->wait_start, 0);
  436. }
  437. static inline void
  438. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  439. {
  440. /*
  441. * Mark the end of the wait period if dequeueing a
  442. * waiting task:
  443. */
  444. if (se != cfs_rq->curr)
  445. update_stats_wait_end(cfs_rq, se);
  446. }
  447. /*
  448. * We are picking a new current task - update its stats:
  449. */
  450. static inline void
  451. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  452. {
  453. /*
  454. * We are starting a new run period:
  455. */
  456. se->exec_start = rq_of(cfs_rq)->clock;
  457. }
  458. /**************************************************
  459. * Scheduling class queueing methods:
  460. */
  461. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  462. static void
  463. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  464. {
  465. cfs_rq->task_weight += weight;
  466. }
  467. #else
  468. static inline void
  469. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  470. {
  471. }
  472. #endif
  473. static void
  474. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  475. {
  476. update_load_add(&cfs_rq->load, se->load.weight);
  477. if (!parent_entity(se))
  478. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  479. if (entity_is_task(se)) {
  480. add_cfs_task_weight(cfs_rq, se->load.weight);
  481. list_add(&se->group_node, &cfs_rq->tasks);
  482. }
  483. cfs_rq->nr_running++;
  484. se->on_rq = 1;
  485. }
  486. static void
  487. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  488. {
  489. update_load_sub(&cfs_rq->load, se->load.weight);
  490. if (!parent_entity(se))
  491. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  492. if (entity_is_task(se)) {
  493. add_cfs_task_weight(cfs_rq, -se->load.weight);
  494. list_del_init(&se->group_node);
  495. }
  496. cfs_rq->nr_running--;
  497. se->on_rq = 0;
  498. }
  499. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  500. {
  501. #ifdef CONFIG_SCHEDSTATS
  502. if (se->sleep_start) {
  503. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  504. struct task_struct *tsk = task_of(se);
  505. if ((s64)delta < 0)
  506. delta = 0;
  507. if (unlikely(delta > se->sleep_max))
  508. se->sleep_max = delta;
  509. se->sleep_start = 0;
  510. se->sum_sleep_runtime += delta;
  511. account_scheduler_latency(tsk, delta >> 10, 1);
  512. }
  513. if (se->block_start) {
  514. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  515. struct task_struct *tsk = task_of(se);
  516. if ((s64)delta < 0)
  517. delta = 0;
  518. if (unlikely(delta > se->block_max))
  519. se->block_max = delta;
  520. se->block_start = 0;
  521. se->sum_sleep_runtime += delta;
  522. /*
  523. * Blocking time is in units of nanosecs, so shift by 20 to
  524. * get a milliseconds-range estimation of the amount of
  525. * time that the task spent sleeping:
  526. */
  527. if (unlikely(prof_on == SLEEP_PROFILING)) {
  528. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  529. delta >> 20);
  530. }
  531. account_scheduler_latency(tsk, delta >> 10, 0);
  532. }
  533. #endif
  534. }
  535. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  536. {
  537. #ifdef CONFIG_SCHED_DEBUG
  538. s64 d = se->vruntime - cfs_rq->min_vruntime;
  539. if (d < 0)
  540. d = -d;
  541. if (d > 3*sysctl_sched_latency)
  542. schedstat_inc(cfs_rq, nr_spread_over);
  543. #endif
  544. }
  545. static void
  546. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  547. {
  548. u64 vruntime = cfs_rq->min_vruntime;
  549. /*
  550. * The 'current' period is already promised to the current tasks,
  551. * however the extra weight of the new task will slow them down a
  552. * little, place the new task so that it fits in the slot that
  553. * stays open at the end.
  554. */
  555. if (initial && sched_feat(START_DEBIT))
  556. vruntime += sched_vslice(cfs_rq, se);
  557. if (!initial) {
  558. /* sleeps upto a single latency don't count. */
  559. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  560. unsigned long thresh = sysctl_sched_latency;
  561. /*
  562. * Convert the sleeper threshold into virtual time.
  563. * SCHED_IDLE is a special sub-class. We care about
  564. * fairness only relative to other SCHED_IDLE tasks,
  565. * all of which have the same weight.
  566. */
  567. if (sched_feat(NORMALIZED_SLEEPER) &&
  568. task_of(se)->policy != SCHED_IDLE)
  569. thresh = calc_delta_fair(thresh, se);
  570. vruntime -= thresh;
  571. }
  572. /* ensure we never gain time by being placed backwards. */
  573. vruntime = max_vruntime(se->vruntime, vruntime);
  574. }
  575. se->vruntime = vruntime;
  576. }
  577. static void
  578. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  579. {
  580. /*
  581. * Update run-time statistics of the 'current'.
  582. */
  583. update_curr(cfs_rq);
  584. account_entity_enqueue(cfs_rq, se);
  585. if (wakeup) {
  586. place_entity(cfs_rq, se, 0);
  587. enqueue_sleeper(cfs_rq, se);
  588. }
  589. update_stats_enqueue(cfs_rq, se);
  590. check_spread(cfs_rq, se);
  591. if (se != cfs_rq->curr)
  592. __enqueue_entity(cfs_rq, se);
  593. }
  594. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  595. {
  596. if (cfs_rq->last == se)
  597. cfs_rq->last = NULL;
  598. if (cfs_rq->next == se)
  599. cfs_rq->next = NULL;
  600. }
  601. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  602. {
  603. for_each_sched_entity(se)
  604. __clear_buddies(cfs_rq_of(se), se);
  605. }
  606. static void
  607. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  608. {
  609. /*
  610. * Update run-time statistics of the 'current'.
  611. */
  612. update_curr(cfs_rq);
  613. update_stats_dequeue(cfs_rq, se);
  614. if (sleep) {
  615. #ifdef CONFIG_SCHEDSTATS
  616. if (entity_is_task(se)) {
  617. struct task_struct *tsk = task_of(se);
  618. if (tsk->state & TASK_INTERRUPTIBLE)
  619. se->sleep_start = rq_of(cfs_rq)->clock;
  620. if (tsk->state & TASK_UNINTERRUPTIBLE)
  621. se->block_start = rq_of(cfs_rq)->clock;
  622. }
  623. #endif
  624. }
  625. clear_buddies(cfs_rq, se);
  626. if (se != cfs_rq->curr)
  627. __dequeue_entity(cfs_rq, se);
  628. account_entity_dequeue(cfs_rq, se);
  629. update_min_vruntime(cfs_rq);
  630. }
  631. /*
  632. * Preempt the current task with a newly woken task if needed:
  633. */
  634. static void
  635. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  636. {
  637. unsigned long ideal_runtime, delta_exec;
  638. ideal_runtime = sched_slice(cfs_rq, curr);
  639. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  640. if (delta_exec > ideal_runtime) {
  641. resched_task(rq_of(cfs_rq)->curr);
  642. /*
  643. * The current task ran long enough, ensure it doesn't get
  644. * re-elected due to buddy favours.
  645. */
  646. clear_buddies(cfs_rq, curr);
  647. }
  648. }
  649. static void
  650. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  651. {
  652. /* 'current' is not kept within the tree. */
  653. if (se->on_rq) {
  654. /*
  655. * Any task has to be enqueued before it get to execute on
  656. * a CPU. So account for the time it spent waiting on the
  657. * runqueue.
  658. */
  659. update_stats_wait_end(cfs_rq, se);
  660. __dequeue_entity(cfs_rq, se);
  661. }
  662. update_stats_curr_start(cfs_rq, se);
  663. cfs_rq->curr = se;
  664. #ifdef CONFIG_SCHEDSTATS
  665. /*
  666. * Track our maximum slice length, if the CPU's load is at
  667. * least twice that of our own weight (i.e. dont track it
  668. * when there are only lesser-weight tasks around):
  669. */
  670. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  671. se->slice_max = max(se->slice_max,
  672. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  673. }
  674. #endif
  675. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  676. }
  677. static int
  678. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  679. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  680. {
  681. struct sched_entity *se = __pick_next_entity(cfs_rq);
  682. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
  683. return cfs_rq->next;
  684. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
  685. return cfs_rq->last;
  686. return se;
  687. }
  688. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  689. {
  690. /*
  691. * If still on the runqueue then deactivate_task()
  692. * was not called and update_curr() has to be done:
  693. */
  694. if (prev->on_rq)
  695. update_curr(cfs_rq);
  696. check_spread(cfs_rq, prev);
  697. if (prev->on_rq) {
  698. update_stats_wait_start(cfs_rq, prev);
  699. /* Put 'current' back into the tree. */
  700. __enqueue_entity(cfs_rq, prev);
  701. }
  702. cfs_rq->curr = NULL;
  703. }
  704. static void
  705. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  706. {
  707. /*
  708. * Update run-time statistics of the 'current'.
  709. */
  710. update_curr(cfs_rq);
  711. #ifdef CONFIG_SCHED_HRTICK
  712. /*
  713. * queued ticks are scheduled to match the slice, so don't bother
  714. * validating it and just reschedule.
  715. */
  716. if (queued) {
  717. resched_task(rq_of(cfs_rq)->curr);
  718. return;
  719. }
  720. /*
  721. * don't let the period tick interfere with the hrtick preemption
  722. */
  723. if (!sched_feat(DOUBLE_TICK) &&
  724. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  725. return;
  726. #endif
  727. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  728. check_preempt_tick(cfs_rq, curr);
  729. }
  730. /**************************************************
  731. * CFS operations on tasks:
  732. */
  733. #ifdef CONFIG_SCHED_HRTICK
  734. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  735. {
  736. struct sched_entity *se = &p->se;
  737. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  738. WARN_ON(task_rq(p) != rq);
  739. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  740. u64 slice = sched_slice(cfs_rq, se);
  741. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  742. s64 delta = slice - ran;
  743. if (delta < 0) {
  744. if (rq->curr == p)
  745. resched_task(p);
  746. return;
  747. }
  748. /*
  749. * Don't schedule slices shorter than 10000ns, that just
  750. * doesn't make sense. Rely on vruntime for fairness.
  751. */
  752. if (rq->curr != p)
  753. delta = max_t(s64, 10000LL, delta);
  754. hrtick_start(rq, delta);
  755. }
  756. }
  757. /*
  758. * called from enqueue/dequeue and updates the hrtick when the
  759. * current task is from our class and nr_running is low enough
  760. * to matter.
  761. */
  762. static void hrtick_update(struct rq *rq)
  763. {
  764. struct task_struct *curr = rq->curr;
  765. if (curr->sched_class != &fair_sched_class)
  766. return;
  767. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  768. hrtick_start_fair(rq, curr);
  769. }
  770. #else /* !CONFIG_SCHED_HRTICK */
  771. static inline void
  772. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  773. {
  774. }
  775. static inline void hrtick_update(struct rq *rq)
  776. {
  777. }
  778. #endif
  779. /*
  780. * The enqueue_task method is called before nr_running is
  781. * increased. Here we update the fair scheduling stats and
  782. * then put the task into the rbtree:
  783. */
  784. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  785. {
  786. struct cfs_rq *cfs_rq;
  787. struct sched_entity *se = &p->se;
  788. for_each_sched_entity(se) {
  789. if (se->on_rq)
  790. break;
  791. cfs_rq = cfs_rq_of(se);
  792. enqueue_entity(cfs_rq, se, wakeup);
  793. wakeup = 1;
  794. }
  795. hrtick_update(rq);
  796. }
  797. /*
  798. * The dequeue_task method is called before nr_running is
  799. * decreased. We remove the task from the rbtree and
  800. * update the fair scheduling stats:
  801. */
  802. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  803. {
  804. struct cfs_rq *cfs_rq;
  805. struct sched_entity *se = &p->se;
  806. for_each_sched_entity(se) {
  807. cfs_rq = cfs_rq_of(se);
  808. dequeue_entity(cfs_rq, se, sleep);
  809. /* Don't dequeue parent if it has other entities besides us */
  810. if (cfs_rq->load.weight)
  811. break;
  812. sleep = 1;
  813. }
  814. hrtick_update(rq);
  815. }
  816. /*
  817. * sched_yield() support is very simple - we dequeue and enqueue.
  818. *
  819. * If compat_yield is turned on then we requeue to the end of the tree.
  820. */
  821. static void yield_task_fair(struct rq *rq)
  822. {
  823. struct task_struct *curr = rq->curr;
  824. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  825. struct sched_entity *rightmost, *se = &curr->se;
  826. /*
  827. * Are we the only task in the tree?
  828. */
  829. if (unlikely(cfs_rq->nr_running == 1))
  830. return;
  831. clear_buddies(cfs_rq, se);
  832. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  833. update_rq_clock(rq);
  834. /*
  835. * Update run-time statistics of the 'current'.
  836. */
  837. update_curr(cfs_rq);
  838. return;
  839. }
  840. /*
  841. * Find the rightmost entry in the rbtree:
  842. */
  843. rightmost = __pick_last_entity(cfs_rq);
  844. /*
  845. * Already in the rightmost position?
  846. */
  847. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  848. return;
  849. /*
  850. * Minimally necessary key value to be last in the tree:
  851. * Upon rescheduling, sched_class::put_prev_task() will place
  852. * 'current' within the tree based on its new key value.
  853. */
  854. se->vruntime = rightmost->vruntime + 1;
  855. }
  856. /*
  857. * wake_idle() will wake a task on an idle cpu if task->cpu is
  858. * not idle and an idle cpu is available. The span of cpus to
  859. * search starts with cpus closest then further out as needed,
  860. * so we always favor a closer, idle cpu.
  861. * Domains may include CPUs that are not usable for migration,
  862. * hence we need to mask them out (cpu_active_mask)
  863. *
  864. * Returns the CPU we should wake onto.
  865. */
  866. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  867. static int wake_idle(int cpu, struct task_struct *p)
  868. {
  869. struct sched_domain *sd;
  870. int i;
  871. unsigned int chosen_wakeup_cpu;
  872. int this_cpu;
  873. /*
  874. * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
  875. * are idle and this is not a kernel thread and this task's affinity
  876. * allows it to be moved to preferred cpu, then just move!
  877. */
  878. this_cpu = smp_processor_id();
  879. chosen_wakeup_cpu =
  880. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
  881. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
  882. idle_cpu(cpu) && idle_cpu(this_cpu) &&
  883. p->mm && !(p->flags & PF_KTHREAD) &&
  884. cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
  885. return chosen_wakeup_cpu;
  886. /*
  887. * If it is idle, then it is the best cpu to run this task.
  888. *
  889. * This cpu is also the best, if it has more than one task already.
  890. * Siblings must be also busy(in most cases) as they didn't already
  891. * pickup the extra load from this cpu and hence we need not check
  892. * sibling runqueue info. This will avoid the checks and cache miss
  893. * penalities associated with that.
  894. */
  895. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  896. return cpu;
  897. for_each_domain(cpu, sd) {
  898. if ((sd->flags & SD_WAKE_IDLE)
  899. || ((sd->flags & SD_WAKE_IDLE_FAR)
  900. && !task_hot(p, task_rq(p)->clock, sd))) {
  901. for_each_cpu_and(i, sched_domain_span(sd),
  902. &p->cpus_allowed) {
  903. if (cpu_active(i) && idle_cpu(i)) {
  904. if (i != task_cpu(p)) {
  905. schedstat_inc(p,
  906. se.nr_wakeups_idle);
  907. }
  908. return i;
  909. }
  910. }
  911. } else {
  912. break;
  913. }
  914. }
  915. return cpu;
  916. }
  917. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  918. static inline int wake_idle(int cpu, struct task_struct *p)
  919. {
  920. return cpu;
  921. }
  922. #endif
  923. #ifdef CONFIG_SMP
  924. #ifdef CONFIG_FAIR_GROUP_SCHED
  925. /*
  926. * effective_load() calculates the load change as seen from the root_task_group
  927. *
  928. * Adding load to a group doesn't make a group heavier, but can cause movement
  929. * of group shares between cpus. Assuming the shares were perfectly aligned one
  930. * can calculate the shift in shares.
  931. *
  932. * The problem is that perfectly aligning the shares is rather expensive, hence
  933. * we try to avoid doing that too often - see update_shares(), which ratelimits
  934. * this change.
  935. *
  936. * We compensate this by not only taking the current delta into account, but
  937. * also considering the delta between when the shares were last adjusted and
  938. * now.
  939. *
  940. * We still saw a performance dip, some tracing learned us that between
  941. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  942. * significantly. Therefore try to bias the error in direction of failing
  943. * the affine wakeup.
  944. *
  945. */
  946. static long effective_load(struct task_group *tg, int cpu,
  947. long wl, long wg)
  948. {
  949. struct sched_entity *se = tg->se[cpu];
  950. if (!tg->parent)
  951. return wl;
  952. /*
  953. * By not taking the decrease of shares on the other cpu into
  954. * account our error leans towards reducing the affine wakeups.
  955. */
  956. if (!wl && sched_feat(ASYM_EFF_LOAD))
  957. return wl;
  958. for_each_sched_entity(se) {
  959. long S, rw, s, a, b;
  960. long more_w;
  961. /*
  962. * Instead of using this increment, also add the difference
  963. * between when the shares were last updated and now.
  964. */
  965. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  966. wl += more_w;
  967. wg += more_w;
  968. S = se->my_q->tg->shares;
  969. s = se->my_q->shares;
  970. rw = se->my_q->rq_weight;
  971. a = S*(rw + wl);
  972. b = S*rw + s*wg;
  973. wl = s*(a-b);
  974. if (likely(b))
  975. wl /= b;
  976. /*
  977. * Assume the group is already running and will
  978. * thus already be accounted for in the weight.
  979. *
  980. * That is, moving shares between CPUs, does not
  981. * alter the group weight.
  982. */
  983. wg = 0;
  984. }
  985. return wl;
  986. }
  987. #else
  988. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  989. unsigned long wl, unsigned long wg)
  990. {
  991. return wl;
  992. }
  993. #endif
  994. static int
  995. wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
  996. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  997. int idx, unsigned long load, unsigned long this_load,
  998. unsigned int imbalance)
  999. {
  1000. struct task_struct *curr = this_rq->curr;
  1001. struct task_group *tg;
  1002. unsigned long tl = this_load;
  1003. unsigned long tl_per_task;
  1004. unsigned long weight;
  1005. int balanced;
  1006. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  1007. return 0;
  1008. if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
  1009. p->se.avg_overlap > sysctl_sched_migration_cost))
  1010. sync = 0;
  1011. /*
  1012. * If sync wakeup then subtract the (maximum possible)
  1013. * effect of the currently running task from the load
  1014. * of the current CPU:
  1015. */
  1016. if (sync) {
  1017. tg = task_group(current);
  1018. weight = current->se.load.weight;
  1019. tl += effective_load(tg, this_cpu, -weight, -weight);
  1020. load += effective_load(tg, prev_cpu, 0, -weight);
  1021. }
  1022. tg = task_group(p);
  1023. weight = p->se.load.weight;
  1024. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  1025. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1026. /*
  1027. * If the currently running task will sleep within
  1028. * a reasonable amount of time then attract this newly
  1029. * woken task:
  1030. */
  1031. if (sync && balanced)
  1032. return 1;
  1033. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1034. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1035. if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
  1036. tl_per_task)) {
  1037. /*
  1038. * This domain has SD_WAKE_AFFINE and
  1039. * p is cache cold in this domain, and
  1040. * there is no bad imbalance.
  1041. */
  1042. schedstat_inc(this_sd, ttwu_move_affine);
  1043. schedstat_inc(p, se.nr_wakeups_affine);
  1044. return 1;
  1045. }
  1046. return 0;
  1047. }
  1048. static int select_task_rq_fair(struct task_struct *p, int sync)
  1049. {
  1050. struct sched_domain *sd, *this_sd = NULL;
  1051. int prev_cpu, this_cpu, new_cpu;
  1052. unsigned long load, this_load;
  1053. struct rq *this_rq;
  1054. unsigned int imbalance;
  1055. int idx;
  1056. prev_cpu = task_cpu(p);
  1057. this_cpu = smp_processor_id();
  1058. this_rq = cpu_rq(this_cpu);
  1059. new_cpu = prev_cpu;
  1060. if (prev_cpu == this_cpu)
  1061. goto out;
  1062. /*
  1063. * 'this_sd' is the first domain that both
  1064. * this_cpu and prev_cpu are present in:
  1065. */
  1066. for_each_domain(this_cpu, sd) {
  1067. if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
  1068. this_sd = sd;
  1069. break;
  1070. }
  1071. }
  1072. if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
  1073. goto out;
  1074. /*
  1075. * Check for affine wakeup and passive balancing possibilities.
  1076. */
  1077. if (!this_sd)
  1078. goto out;
  1079. idx = this_sd->wake_idx;
  1080. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1081. load = source_load(prev_cpu, idx);
  1082. this_load = target_load(this_cpu, idx);
  1083. if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1084. load, this_load, imbalance))
  1085. return this_cpu;
  1086. /*
  1087. * Start passive balancing when half the imbalance_pct
  1088. * limit is reached.
  1089. */
  1090. if (this_sd->flags & SD_WAKE_BALANCE) {
  1091. if (imbalance*this_load <= 100*load) {
  1092. schedstat_inc(this_sd, ttwu_move_balance);
  1093. schedstat_inc(p, se.nr_wakeups_passive);
  1094. return this_cpu;
  1095. }
  1096. }
  1097. out:
  1098. return wake_idle(new_cpu, p);
  1099. }
  1100. #endif /* CONFIG_SMP */
  1101. /*
  1102. * Adaptive granularity
  1103. *
  1104. * se->avg_wakeup gives the average time a task runs until it does a wakeup,
  1105. * with the limit of wakeup_gran -- when it never does a wakeup.
  1106. *
  1107. * So the smaller avg_wakeup is the faster we want this task to preempt,
  1108. * but we don't want to treat the preemptee unfairly and therefore allow it
  1109. * to run for at least the amount of time we'd like to run.
  1110. *
  1111. * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
  1112. *
  1113. * NOTE: we use *nr_running to scale with load, this nicely matches the
  1114. * degrading latency on load.
  1115. */
  1116. static unsigned long
  1117. adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
  1118. {
  1119. u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1120. u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
  1121. u64 gran = 0;
  1122. if (this_run < expected_wakeup)
  1123. gran = expected_wakeup - this_run;
  1124. return min_t(s64, gran, sysctl_sched_wakeup_granularity);
  1125. }
  1126. static unsigned long
  1127. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1128. {
  1129. unsigned long gran = sysctl_sched_wakeup_granularity;
  1130. if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
  1131. gran = adaptive_gran(curr, se);
  1132. /*
  1133. * Since its curr running now, convert the gran from real-time
  1134. * to virtual-time in his units.
  1135. */
  1136. if (sched_feat(ASYM_GRAN)) {
  1137. /*
  1138. * By using 'se' instead of 'curr' we penalize light tasks, so
  1139. * they get preempted easier. That is, if 'se' < 'curr' then
  1140. * the resulting gran will be larger, therefore penalizing the
  1141. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1142. * be smaller, again penalizing the lighter task.
  1143. *
  1144. * This is especially important for buddies when the leftmost
  1145. * task is higher priority than the buddy.
  1146. */
  1147. if (unlikely(se->load.weight != NICE_0_LOAD))
  1148. gran = calc_delta_fair(gran, se);
  1149. } else {
  1150. if (unlikely(curr->load.weight != NICE_0_LOAD))
  1151. gran = calc_delta_fair(gran, curr);
  1152. }
  1153. return gran;
  1154. }
  1155. /*
  1156. * Should 'se' preempt 'curr'.
  1157. *
  1158. * |s1
  1159. * |s2
  1160. * |s3
  1161. * g
  1162. * |<--->|c
  1163. *
  1164. * w(c, s1) = -1
  1165. * w(c, s2) = 0
  1166. * w(c, s3) = 1
  1167. *
  1168. */
  1169. static int
  1170. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1171. {
  1172. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1173. if (vdiff <= 0)
  1174. return -1;
  1175. gran = wakeup_gran(curr, se);
  1176. if (vdiff > gran)
  1177. return 1;
  1178. return 0;
  1179. }
  1180. static void set_last_buddy(struct sched_entity *se)
  1181. {
  1182. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1183. for_each_sched_entity(se)
  1184. cfs_rq_of(se)->last = se;
  1185. }
  1186. }
  1187. static void set_next_buddy(struct sched_entity *se)
  1188. {
  1189. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1190. for_each_sched_entity(se)
  1191. cfs_rq_of(se)->next = se;
  1192. }
  1193. }
  1194. /*
  1195. * Preempt the current task with a newly woken task if needed:
  1196. */
  1197. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1198. {
  1199. struct task_struct *curr = rq->curr;
  1200. struct sched_entity *se = &curr->se, *pse = &p->se;
  1201. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1202. update_curr(cfs_rq);
  1203. if (unlikely(rt_prio(p->prio))) {
  1204. resched_task(curr);
  1205. return;
  1206. }
  1207. if (unlikely(p->sched_class != &fair_sched_class))
  1208. return;
  1209. if (unlikely(se == pse))
  1210. return;
  1211. /*
  1212. * Only set the backward buddy when the current task is still on the
  1213. * rq. This can happen when a wakeup gets interleaved with schedule on
  1214. * the ->pre_schedule() or idle_balance() point, either of which can
  1215. * drop the rq lock.
  1216. *
  1217. * Also, during early boot the idle thread is in the fair class, for
  1218. * obvious reasons its a bad idea to schedule back to the idle thread.
  1219. */
  1220. if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
  1221. set_last_buddy(se);
  1222. set_next_buddy(pse);
  1223. /*
  1224. * We can come here with TIF_NEED_RESCHED already set from new task
  1225. * wake up path.
  1226. */
  1227. if (test_tsk_need_resched(curr))
  1228. return;
  1229. /*
  1230. * Batch and idle tasks do not preempt (their preemption is driven by
  1231. * the tick):
  1232. */
  1233. if (unlikely(p->policy != SCHED_NORMAL))
  1234. return;
  1235. /* Idle tasks are by definition preempted by everybody. */
  1236. if (unlikely(curr->policy == SCHED_IDLE)) {
  1237. resched_task(curr);
  1238. return;
  1239. }
  1240. if (!sched_feat(WAKEUP_PREEMPT))
  1241. return;
  1242. if (sched_feat(WAKEUP_OVERLAP) && (sync ||
  1243. (se->avg_overlap < sysctl_sched_migration_cost &&
  1244. pse->avg_overlap < sysctl_sched_migration_cost))) {
  1245. resched_task(curr);
  1246. return;
  1247. }
  1248. find_matching_se(&se, &pse);
  1249. BUG_ON(!pse);
  1250. if (wakeup_preempt_entity(se, pse) == 1)
  1251. resched_task(curr);
  1252. }
  1253. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1254. {
  1255. struct task_struct *p;
  1256. struct cfs_rq *cfs_rq = &rq->cfs;
  1257. struct sched_entity *se;
  1258. if (unlikely(!cfs_rq->nr_running))
  1259. return NULL;
  1260. do {
  1261. se = pick_next_entity(cfs_rq);
  1262. /*
  1263. * If se was a buddy, clear it so that it will have to earn
  1264. * the favour again.
  1265. */
  1266. __clear_buddies(cfs_rq, se);
  1267. set_next_entity(cfs_rq, se);
  1268. cfs_rq = group_cfs_rq(se);
  1269. } while (cfs_rq);
  1270. p = task_of(se);
  1271. hrtick_start_fair(rq, p);
  1272. return p;
  1273. }
  1274. /*
  1275. * Account for a descheduled task:
  1276. */
  1277. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1278. {
  1279. struct sched_entity *se = &prev->se;
  1280. struct cfs_rq *cfs_rq;
  1281. for_each_sched_entity(se) {
  1282. cfs_rq = cfs_rq_of(se);
  1283. put_prev_entity(cfs_rq, se);
  1284. }
  1285. }
  1286. #ifdef CONFIG_SMP
  1287. /**************************************************
  1288. * Fair scheduling class load-balancing methods:
  1289. */
  1290. /*
  1291. * Load-balancing iterator. Note: while the runqueue stays locked
  1292. * during the whole iteration, the current task might be
  1293. * dequeued so the iterator has to be dequeue-safe. Here we
  1294. * achieve that by always pre-iterating before returning
  1295. * the current task:
  1296. */
  1297. static struct task_struct *
  1298. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1299. {
  1300. struct task_struct *p = NULL;
  1301. struct sched_entity *se;
  1302. if (next == &cfs_rq->tasks)
  1303. return NULL;
  1304. se = list_entry(next, struct sched_entity, group_node);
  1305. p = task_of(se);
  1306. cfs_rq->balance_iterator = next->next;
  1307. return p;
  1308. }
  1309. static struct task_struct *load_balance_start_fair(void *arg)
  1310. {
  1311. struct cfs_rq *cfs_rq = arg;
  1312. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1313. }
  1314. static struct task_struct *load_balance_next_fair(void *arg)
  1315. {
  1316. struct cfs_rq *cfs_rq = arg;
  1317. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1318. }
  1319. static unsigned long
  1320. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1321. unsigned long max_load_move, struct sched_domain *sd,
  1322. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1323. struct cfs_rq *cfs_rq)
  1324. {
  1325. struct rq_iterator cfs_rq_iterator;
  1326. cfs_rq_iterator.start = load_balance_start_fair;
  1327. cfs_rq_iterator.next = load_balance_next_fair;
  1328. cfs_rq_iterator.arg = cfs_rq;
  1329. return balance_tasks(this_rq, this_cpu, busiest,
  1330. max_load_move, sd, idle, all_pinned,
  1331. this_best_prio, &cfs_rq_iterator);
  1332. }
  1333. #ifdef CONFIG_FAIR_GROUP_SCHED
  1334. static unsigned long
  1335. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1336. unsigned long max_load_move,
  1337. struct sched_domain *sd, enum cpu_idle_type idle,
  1338. int *all_pinned, int *this_best_prio)
  1339. {
  1340. long rem_load_move = max_load_move;
  1341. int busiest_cpu = cpu_of(busiest);
  1342. struct task_group *tg;
  1343. rcu_read_lock();
  1344. update_h_load(busiest_cpu);
  1345. list_for_each_entry_rcu(tg, &task_groups, list) {
  1346. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1347. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1348. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1349. u64 rem_load, moved_load;
  1350. /*
  1351. * empty group
  1352. */
  1353. if (!busiest_cfs_rq->task_weight)
  1354. continue;
  1355. rem_load = (u64)rem_load_move * busiest_weight;
  1356. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1357. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1358. rem_load, sd, idle, all_pinned, this_best_prio,
  1359. tg->cfs_rq[busiest_cpu]);
  1360. if (!moved_load)
  1361. continue;
  1362. moved_load *= busiest_h_load;
  1363. moved_load = div_u64(moved_load, busiest_weight + 1);
  1364. rem_load_move -= moved_load;
  1365. if (rem_load_move < 0)
  1366. break;
  1367. }
  1368. rcu_read_unlock();
  1369. return max_load_move - rem_load_move;
  1370. }
  1371. #else
  1372. static unsigned long
  1373. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1374. unsigned long max_load_move,
  1375. struct sched_domain *sd, enum cpu_idle_type idle,
  1376. int *all_pinned, int *this_best_prio)
  1377. {
  1378. return __load_balance_fair(this_rq, this_cpu, busiest,
  1379. max_load_move, sd, idle, all_pinned,
  1380. this_best_prio, &busiest->cfs);
  1381. }
  1382. #endif
  1383. static int
  1384. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1385. struct sched_domain *sd, enum cpu_idle_type idle)
  1386. {
  1387. struct cfs_rq *busy_cfs_rq;
  1388. struct rq_iterator cfs_rq_iterator;
  1389. cfs_rq_iterator.start = load_balance_start_fair;
  1390. cfs_rq_iterator.next = load_balance_next_fair;
  1391. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1392. /*
  1393. * pass busy_cfs_rq argument into
  1394. * load_balance_[start|next]_fair iterators
  1395. */
  1396. cfs_rq_iterator.arg = busy_cfs_rq;
  1397. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1398. &cfs_rq_iterator))
  1399. return 1;
  1400. }
  1401. return 0;
  1402. }
  1403. #endif /* CONFIG_SMP */
  1404. /*
  1405. * scheduler tick hitting a task of our scheduling class:
  1406. */
  1407. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1408. {
  1409. struct cfs_rq *cfs_rq;
  1410. struct sched_entity *se = &curr->se;
  1411. for_each_sched_entity(se) {
  1412. cfs_rq = cfs_rq_of(se);
  1413. entity_tick(cfs_rq, se, queued);
  1414. }
  1415. }
  1416. /*
  1417. * Share the fairness runtime between parent and child, thus the
  1418. * total amount of pressure for CPU stays equal - new tasks
  1419. * get a chance to run but frequent forkers are not allowed to
  1420. * monopolize the CPU. Note: the parent runqueue is locked,
  1421. * the child is not running yet.
  1422. */
  1423. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1424. {
  1425. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1426. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1427. int this_cpu = smp_processor_id();
  1428. sched_info_queued(p);
  1429. update_curr(cfs_rq);
  1430. place_entity(cfs_rq, se, 1);
  1431. /* 'curr' will be NULL if the child belongs to a different group */
  1432. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1433. curr && curr->vruntime < se->vruntime) {
  1434. /*
  1435. * Upon rescheduling, sched_class::put_prev_task() will place
  1436. * 'current' within the tree based on its new key value.
  1437. */
  1438. swap(curr->vruntime, se->vruntime);
  1439. resched_task(rq->curr);
  1440. }
  1441. enqueue_task_fair(rq, p, 0);
  1442. }
  1443. /*
  1444. * Priority of the task has changed. Check to see if we preempt
  1445. * the current task.
  1446. */
  1447. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1448. int oldprio, int running)
  1449. {
  1450. /*
  1451. * Reschedule if we are currently running on this runqueue and
  1452. * our priority decreased, or if we are not currently running on
  1453. * this runqueue and our priority is higher than the current's
  1454. */
  1455. if (running) {
  1456. if (p->prio > oldprio)
  1457. resched_task(rq->curr);
  1458. } else
  1459. check_preempt_curr(rq, p, 0);
  1460. }
  1461. /*
  1462. * We switched to the sched_fair class.
  1463. */
  1464. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1465. int running)
  1466. {
  1467. /*
  1468. * We were most likely switched from sched_rt, so
  1469. * kick off the schedule if running, otherwise just see
  1470. * if we can still preempt the current task.
  1471. */
  1472. if (running)
  1473. resched_task(rq->curr);
  1474. else
  1475. check_preempt_curr(rq, p, 0);
  1476. }
  1477. /* Account for a task changing its policy or group.
  1478. *
  1479. * This routine is mostly called to set cfs_rq->curr field when a task
  1480. * migrates between groups/classes.
  1481. */
  1482. static void set_curr_task_fair(struct rq *rq)
  1483. {
  1484. struct sched_entity *se = &rq->curr->se;
  1485. for_each_sched_entity(se)
  1486. set_next_entity(cfs_rq_of(se), se);
  1487. }
  1488. #ifdef CONFIG_FAIR_GROUP_SCHED
  1489. static void moved_group_fair(struct task_struct *p)
  1490. {
  1491. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1492. update_curr(cfs_rq);
  1493. place_entity(cfs_rq, &p->se, 1);
  1494. }
  1495. #endif
  1496. /*
  1497. * All the scheduling class methods:
  1498. */
  1499. static const struct sched_class fair_sched_class = {
  1500. .next = &idle_sched_class,
  1501. .enqueue_task = enqueue_task_fair,
  1502. .dequeue_task = dequeue_task_fair,
  1503. .yield_task = yield_task_fair,
  1504. .check_preempt_curr = check_preempt_wakeup,
  1505. .pick_next_task = pick_next_task_fair,
  1506. .put_prev_task = put_prev_task_fair,
  1507. #ifdef CONFIG_SMP
  1508. .select_task_rq = select_task_rq_fair,
  1509. .load_balance = load_balance_fair,
  1510. .move_one_task = move_one_task_fair,
  1511. #endif
  1512. .set_curr_task = set_curr_task_fair,
  1513. .task_tick = task_tick_fair,
  1514. .task_new = task_new_fair,
  1515. .prio_changed = prio_changed_fair,
  1516. .switched_to = switched_to_fair,
  1517. #ifdef CONFIG_FAIR_GROUP_SCHED
  1518. .moved_group = moved_group_fair,
  1519. #endif
  1520. };
  1521. #ifdef CONFIG_SCHED_DEBUG
  1522. static void print_cfs_stats(struct seq_file *m, int cpu)
  1523. {
  1524. struct cfs_rq *cfs_rq;
  1525. rcu_read_lock();
  1526. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1527. print_cfs_rq(m, cpu, cfs_rq);
  1528. rcu_read_unlock();
  1529. }
  1530. #endif