write.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631
  1. /*
  2. * linux/fs/nfs/write.c
  3. *
  4. * Write file data over NFS.
  5. *
  6. * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/file.h>
  13. #include <linux/writeback.h>
  14. #include <linux/swap.h>
  15. #include <linux/sunrpc/clnt.h>
  16. #include <linux/nfs_fs.h>
  17. #include <linux/nfs_mount.h>
  18. #include <linux/nfs_page.h>
  19. #include <linux/backing-dev.h>
  20. #include <asm/uaccess.h>
  21. #include "delegation.h"
  22. #include "internal.h"
  23. #include "iostat.h"
  24. #include "nfs4_fs.h"
  25. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  26. #define MIN_POOL_WRITE (32)
  27. #define MIN_POOL_COMMIT (4)
  28. /*
  29. * Local function declarations
  30. */
  31. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
  32. struct inode *inode, int ioflags);
  33. static void nfs_redirty_request(struct nfs_page *req);
  34. static const struct rpc_call_ops nfs_write_partial_ops;
  35. static const struct rpc_call_ops nfs_write_full_ops;
  36. static const struct rpc_call_ops nfs_commit_ops;
  37. static struct kmem_cache *nfs_wdata_cachep;
  38. static mempool_t *nfs_wdata_mempool;
  39. static mempool_t *nfs_commit_mempool;
  40. struct nfs_write_data *nfs_commitdata_alloc(void)
  41. {
  42. struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  43. if (p) {
  44. memset(p, 0, sizeof(*p));
  45. INIT_LIST_HEAD(&p->pages);
  46. p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
  47. }
  48. return p;
  49. }
  50. void nfs_commit_free(struct nfs_write_data *p)
  51. {
  52. if (p && (p->pagevec != &p->page_array[0]))
  53. kfree(p->pagevec);
  54. mempool_free(p, nfs_commit_mempool);
  55. }
  56. struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
  57. {
  58. struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  59. if (p) {
  60. memset(p, 0, sizeof(*p));
  61. INIT_LIST_HEAD(&p->pages);
  62. p->npages = pagecount;
  63. p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
  64. if (pagecount <= ARRAY_SIZE(p->page_array))
  65. p->pagevec = p->page_array;
  66. else {
  67. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  68. if (!p->pagevec) {
  69. mempool_free(p, nfs_wdata_mempool);
  70. p = NULL;
  71. }
  72. }
  73. }
  74. return p;
  75. }
  76. static void nfs_writedata_free(struct nfs_write_data *p)
  77. {
  78. if (p && (p->pagevec != &p->page_array[0]))
  79. kfree(p->pagevec);
  80. mempool_free(p, nfs_wdata_mempool);
  81. }
  82. void nfs_writedata_release(void *data)
  83. {
  84. struct nfs_write_data *wdata = data;
  85. put_nfs_open_context(wdata->args.context);
  86. nfs_writedata_free(wdata);
  87. }
  88. static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
  89. {
  90. ctx->error = error;
  91. smp_wmb();
  92. set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  93. }
  94. static struct nfs_page *nfs_page_find_request_locked(struct page *page)
  95. {
  96. struct nfs_page *req = NULL;
  97. if (PagePrivate(page)) {
  98. req = (struct nfs_page *)page_private(page);
  99. if (req != NULL)
  100. kref_get(&req->wb_kref);
  101. }
  102. return req;
  103. }
  104. static struct nfs_page *nfs_page_find_request(struct page *page)
  105. {
  106. struct inode *inode = page->mapping->host;
  107. struct nfs_page *req = NULL;
  108. spin_lock(&inode->i_lock);
  109. req = nfs_page_find_request_locked(page);
  110. spin_unlock(&inode->i_lock);
  111. return req;
  112. }
  113. /* Adjust the file length if we're writing beyond the end */
  114. static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
  115. {
  116. struct inode *inode = page->mapping->host;
  117. loff_t end, i_size;
  118. pgoff_t end_index;
  119. spin_lock(&inode->i_lock);
  120. i_size = i_size_read(inode);
  121. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  122. if (i_size > 0 && page->index < end_index)
  123. goto out;
  124. end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
  125. if (i_size >= end)
  126. goto out;
  127. i_size_write(inode, end);
  128. nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
  129. out:
  130. spin_unlock(&inode->i_lock);
  131. }
  132. /* A writeback failed: mark the page as bad, and invalidate the page cache */
  133. static void nfs_set_pageerror(struct page *page)
  134. {
  135. SetPageError(page);
  136. nfs_zap_mapping(page->mapping->host, page->mapping);
  137. }
  138. /* We can set the PG_uptodate flag if we see that a write request
  139. * covers the full page.
  140. */
  141. static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
  142. {
  143. if (PageUptodate(page))
  144. return;
  145. if (base != 0)
  146. return;
  147. if (count != nfs_page_length(page))
  148. return;
  149. SetPageUptodate(page);
  150. }
  151. static int wb_priority(struct writeback_control *wbc)
  152. {
  153. if (wbc->for_reclaim)
  154. return FLUSH_HIGHPRI | FLUSH_STABLE;
  155. if (wbc->for_kupdate)
  156. return FLUSH_LOWPRI;
  157. return 0;
  158. }
  159. /*
  160. * NFS congestion control
  161. */
  162. int nfs_congestion_kb;
  163. #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
  164. #define NFS_CONGESTION_OFF_THRESH \
  165. (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
  166. static int nfs_set_page_writeback(struct page *page)
  167. {
  168. int ret = test_set_page_writeback(page);
  169. if (!ret) {
  170. struct inode *inode = page->mapping->host;
  171. struct nfs_server *nfss = NFS_SERVER(inode);
  172. if (atomic_long_inc_return(&nfss->writeback) >
  173. NFS_CONGESTION_ON_THRESH)
  174. set_bdi_congested(&nfss->backing_dev_info, WRITE);
  175. }
  176. return ret;
  177. }
  178. static void nfs_end_page_writeback(struct page *page)
  179. {
  180. struct inode *inode = page->mapping->host;
  181. struct nfs_server *nfss = NFS_SERVER(inode);
  182. end_page_writeback(page);
  183. if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
  184. clear_bdi_congested(&nfss->backing_dev_info, WRITE);
  185. }
  186. /*
  187. * Find an associated nfs write request, and prepare to flush it out
  188. * May return an error if the user signalled nfs_wait_on_request().
  189. */
  190. static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
  191. struct page *page)
  192. {
  193. struct inode *inode = page->mapping->host;
  194. struct nfs_page *req;
  195. int ret;
  196. spin_lock(&inode->i_lock);
  197. for(;;) {
  198. req = nfs_page_find_request_locked(page);
  199. if (req == NULL) {
  200. spin_unlock(&inode->i_lock);
  201. return 0;
  202. }
  203. if (nfs_set_page_tag_locked(req))
  204. break;
  205. /* Note: If we hold the page lock, as is the case in nfs_writepage,
  206. * then the call to nfs_set_page_tag_locked() will always
  207. * succeed provided that someone hasn't already marked the
  208. * request as dirty (in which case we don't care).
  209. */
  210. spin_unlock(&inode->i_lock);
  211. ret = nfs_wait_on_request(req);
  212. nfs_release_request(req);
  213. if (ret != 0)
  214. return ret;
  215. spin_lock(&inode->i_lock);
  216. }
  217. if (test_bit(PG_CLEAN, &req->wb_flags)) {
  218. spin_unlock(&inode->i_lock);
  219. BUG();
  220. }
  221. if (nfs_set_page_writeback(page) != 0) {
  222. spin_unlock(&inode->i_lock);
  223. BUG();
  224. }
  225. spin_unlock(&inode->i_lock);
  226. if (!nfs_pageio_add_request(pgio, req)) {
  227. nfs_redirty_request(req);
  228. return pgio->pg_error;
  229. }
  230. return 0;
  231. }
  232. static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
  233. {
  234. struct inode *inode = page->mapping->host;
  235. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
  236. nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
  237. nfs_pageio_cond_complete(pgio, page->index);
  238. return nfs_page_async_flush(pgio, page);
  239. }
  240. /*
  241. * Write an mmapped page to the server.
  242. */
  243. static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
  244. {
  245. struct nfs_pageio_descriptor pgio;
  246. int err;
  247. nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
  248. err = nfs_do_writepage(page, wbc, &pgio);
  249. nfs_pageio_complete(&pgio);
  250. if (err < 0)
  251. return err;
  252. if (pgio.pg_error < 0)
  253. return pgio.pg_error;
  254. return 0;
  255. }
  256. int nfs_writepage(struct page *page, struct writeback_control *wbc)
  257. {
  258. int ret;
  259. ret = nfs_writepage_locked(page, wbc);
  260. unlock_page(page);
  261. return ret;
  262. }
  263. static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
  264. {
  265. int ret;
  266. ret = nfs_do_writepage(page, wbc, data);
  267. unlock_page(page);
  268. return ret;
  269. }
  270. int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
  271. {
  272. struct inode *inode = mapping->host;
  273. unsigned long *bitlock = &NFS_I(inode)->flags;
  274. struct nfs_pageio_descriptor pgio;
  275. int err;
  276. /* Stop dirtying of new pages while we sync */
  277. err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
  278. nfs_wait_bit_killable, TASK_KILLABLE);
  279. if (err)
  280. goto out_err;
  281. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
  282. nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
  283. err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
  284. nfs_pageio_complete(&pgio);
  285. clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
  286. smp_mb__after_clear_bit();
  287. wake_up_bit(bitlock, NFS_INO_FLUSHING);
  288. if (err < 0)
  289. goto out_err;
  290. err = pgio.pg_error;
  291. if (err < 0)
  292. goto out_err;
  293. return 0;
  294. out_err:
  295. return err;
  296. }
  297. /*
  298. * Insert a write request into an inode
  299. */
  300. static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
  301. {
  302. struct nfs_inode *nfsi = NFS_I(inode);
  303. int error;
  304. error = radix_tree_preload(GFP_NOFS);
  305. if (error != 0)
  306. goto out;
  307. /* Lock the request! */
  308. nfs_lock_request_dontget(req);
  309. spin_lock(&inode->i_lock);
  310. error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
  311. BUG_ON(error);
  312. if (!nfsi->npages) {
  313. igrab(inode);
  314. if (nfs_have_delegation(inode, FMODE_WRITE))
  315. nfsi->change_attr++;
  316. }
  317. SetPagePrivate(req->wb_page);
  318. set_page_private(req->wb_page, (unsigned long)req);
  319. nfsi->npages++;
  320. kref_get(&req->wb_kref);
  321. radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
  322. NFS_PAGE_TAG_LOCKED);
  323. spin_unlock(&inode->i_lock);
  324. radix_tree_preload_end();
  325. out:
  326. return error;
  327. }
  328. /*
  329. * Remove a write request from an inode
  330. */
  331. static void nfs_inode_remove_request(struct nfs_page *req)
  332. {
  333. struct inode *inode = req->wb_context->path.dentry->d_inode;
  334. struct nfs_inode *nfsi = NFS_I(inode);
  335. BUG_ON (!NFS_WBACK_BUSY(req));
  336. spin_lock(&inode->i_lock);
  337. set_page_private(req->wb_page, 0);
  338. ClearPagePrivate(req->wb_page);
  339. radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
  340. nfsi->npages--;
  341. if (!nfsi->npages) {
  342. spin_unlock(&inode->i_lock);
  343. iput(inode);
  344. } else
  345. spin_unlock(&inode->i_lock);
  346. nfs_clear_request(req);
  347. nfs_release_request(req);
  348. }
  349. static void
  350. nfs_mark_request_dirty(struct nfs_page *req)
  351. {
  352. __set_page_dirty_nobuffers(req->wb_page);
  353. }
  354. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  355. /*
  356. * Add a request to the inode's commit list.
  357. */
  358. static void
  359. nfs_mark_request_commit(struct nfs_page *req)
  360. {
  361. struct inode *inode = req->wb_context->path.dentry->d_inode;
  362. struct nfs_inode *nfsi = NFS_I(inode);
  363. spin_lock(&inode->i_lock);
  364. set_bit(PG_CLEAN, &(req)->wb_flags);
  365. radix_tree_tag_set(&nfsi->nfs_page_tree,
  366. req->wb_index,
  367. NFS_PAGE_TAG_COMMIT);
  368. spin_unlock(&inode->i_lock);
  369. inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  370. inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  371. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  372. }
  373. static int
  374. nfs_clear_request_commit(struct nfs_page *req)
  375. {
  376. struct page *page = req->wb_page;
  377. if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
  378. dec_zone_page_state(page, NR_UNSTABLE_NFS);
  379. dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  380. return 1;
  381. }
  382. return 0;
  383. }
  384. static inline
  385. int nfs_write_need_commit(struct nfs_write_data *data)
  386. {
  387. return data->verf.committed != NFS_FILE_SYNC;
  388. }
  389. static inline
  390. int nfs_reschedule_unstable_write(struct nfs_page *req)
  391. {
  392. if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  393. nfs_mark_request_commit(req);
  394. return 1;
  395. }
  396. if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  397. nfs_mark_request_dirty(req);
  398. return 1;
  399. }
  400. return 0;
  401. }
  402. #else
  403. static inline void
  404. nfs_mark_request_commit(struct nfs_page *req)
  405. {
  406. }
  407. static inline int
  408. nfs_clear_request_commit(struct nfs_page *req)
  409. {
  410. return 0;
  411. }
  412. static inline
  413. int nfs_write_need_commit(struct nfs_write_data *data)
  414. {
  415. return 0;
  416. }
  417. static inline
  418. int nfs_reschedule_unstable_write(struct nfs_page *req)
  419. {
  420. return 0;
  421. }
  422. #endif
  423. /*
  424. * Wait for a request to complete.
  425. *
  426. * Interruptible by fatal signals only.
  427. */
  428. static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
  429. {
  430. struct nfs_inode *nfsi = NFS_I(inode);
  431. struct nfs_page *req;
  432. pgoff_t idx_end, next;
  433. unsigned int res = 0;
  434. int error;
  435. if (npages == 0)
  436. idx_end = ~0;
  437. else
  438. idx_end = idx_start + npages - 1;
  439. next = idx_start;
  440. while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
  441. if (req->wb_index > idx_end)
  442. break;
  443. next = req->wb_index + 1;
  444. BUG_ON(!NFS_WBACK_BUSY(req));
  445. kref_get(&req->wb_kref);
  446. spin_unlock(&inode->i_lock);
  447. error = nfs_wait_on_request(req);
  448. nfs_release_request(req);
  449. spin_lock(&inode->i_lock);
  450. if (error < 0)
  451. return error;
  452. res++;
  453. }
  454. return res;
  455. }
  456. static void nfs_cancel_commit_list(struct list_head *head)
  457. {
  458. struct nfs_page *req;
  459. while(!list_empty(head)) {
  460. req = nfs_list_entry(head->next);
  461. nfs_list_remove_request(req);
  462. nfs_clear_request_commit(req);
  463. nfs_inode_remove_request(req);
  464. nfs_unlock_request(req);
  465. }
  466. }
  467. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  468. static int
  469. nfs_need_commit(struct nfs_inode *nfsi)
  470. {
  471. return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
  472. }
  473. /*
  474. * nfs_scan_commit - Scan an inode for commit requests
  475. * @inode: NFS inode to scan
  476. * @dst: destination list
  477. * @idx_start: lower bound of page->index to scan.
  478. * @npages: idx_start + npages sets the upper bound to scan.
  479. *
  480. * Moves requests from the inode's 'commit' request list.
  481. * The requests are *not* checked to ensure that they form a contiguous set.
  482. */
  483. static int
  484. nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  485. {
  486. struct nfs_inode *nfsi = NFS_I(inode);
  487. if (!nfs_need_commit(nfsi))
  488. return 0;
  489. return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
  490. }
  491. #else
  492. static inline int nfs_need_commit(struct nfs_inode *nfsi)
  493. {
  494. return 0;
  495. }
  496. static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  497. {
  498. return 0;
  499. }
  500. #endif
  501. /*
  502. * Search for an existing write request, and attempt to update
  503. * it to reflect a new dirty region on a given page.
  504. *
  505. * If the attempt fails, then the existing request is flushed out
  506. * to disk.
  507. */
  508. static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
  509. struct page *page,
  510. unsigned int offset,
  511. unsigned int bytes)
  512. {
  513. struct nfs_page *req;
  514. unsigned int rqend;
  515. unsigned int end;
  516. int error;
  517. if (!PagePrivate(page))
  518. return NULL;
  519. end = offset + bytes;
  520. spin_lock(&inode->i_lock);
  521. for (;;) {
  522. req = nfs_page_find_request_locked(page);
  523. if (req == NULL)
  524. goto out_unlock;
  525. rqend = req->wb_offset + req->wb_bytes;
  526. /*
  527. * Tell the caller to flush out the request if
  528. * the offsets are non-contiguous.
  529. * Note: nfs_flush_incompatible() will already
  530. * have flushed out requests having wrong owners.
  531. */
  532. if (offset > rqend
  533. || end < req->wb_offset)
  534. goto out_flushme;
  535. if (nfs_set_page_tag_locked(req))
  536. break;
  537. /* The request is locked, so wait and then retry */
  538. spin_unlock(&inode->i_lock);
  539. error = nfs_wait_on_request(req);
  540. nfs_release_request(req);
  541. if (error != 0)
  542. goto out_err;
  543. spin_lock(&inode->i_lock);
  544. }
  545. if (nfs_clear_request_commit(req))
  546. radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
  547. req->wb_index, NFS_PAGE_TAG_COMMIT);
  548. /* Okay, the request matches. Update the region */
  549. if (offset < req->wb_offset) {
  550. req->wb_offset = offset;
  551. req->wb_pgbase = offset;
  552. }
  553. if (end > rqend)
  554. req->wb_bytes = end - req->wb_offset;
  555. else
  556. req->wb_bytes = rqend - req->wb_offset;
  557. out_unlock:
  558. spin_unlock(&inode->i_lock);
  559. return req;
  560. out_flushme:
  561. spin_unlock(&inode->i_lock);
  562. nfs_release_request(req);
  563. error = nfs_wb_page(inode, page);
  564. out_err:
  565. return ERR_PTR(error);
  566. }
  567. /*
  568. * Try to update an existing write request, or create one if there is none.
  569. *
  570. * Note: Should always be called with the Page Lock held to prevent races
  571. * if we have to add a new request. Also assumes that the caller has
  572. * already called nfs_flush_incompatible() if necessary.
  573. */
  574. static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
  575. struct page *page, unsigned int offset, unsigned int bytes)
  576. {
  577. struct inode *inode = page->mapping->host;
  578. struct nfs_page *req;
  579. int error;
  580. req = nfs_try_to_update_request(inode, page, offset, bytes);
  581. if (req != NULL)
  582. goto out;
  583. req = nfs_create_request(ctx, inode, page, offset, bytes);
  584. if (IS_ERR(req))
  585. goto out;
  586. error = nfs_inode_add_request(inode, req);
  587. if (error != 0) {
  588. nfs_release_request(req);
  589. req = ERR_PTR(error);
  590. }
  591. out:
  592. return req;
  593. }
  594. static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
  595. unsigned int offset, unsigned int count)
  596. {
  597. struct nfs_page *req;
  598. req = nfs_setup_write_request(ctx, page, offset, count);
  599. if (IS_ERR(req))
  600. return PTR_ERR(req);
  601. /* Update file length */
  602. nfs_grow_file(page, offset, count);
  603. nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
  604. nfs_clear_page_tag_locked(req);
  605. return 0;
  606. }
  607. int nfs_flush_incompatible(struct file *file, struct page *page)
  608. {
  609. struct nfs_open_context *ctx = nfs_file_open_context(file);
  610. struct nfs_page *req;
  611. int do_flush, status;
  612. /*
  613. * Look for a request corresponding to this page. If there
  614. * is one, and it belongs to another file, we flush it out
  615. * before we try to copy anything into the page. Do this
  616. * due to the lack of an ACCESS-type call in NFSv2.
  617. * Also do the same if we find a request from an existing
  618. * dropped page.
  619. */
  620. do {
  621. req = nfs_page_find_request(page);
  622. if (req == NULL)
  623. return 0;
  624. do_flush = req->wb_page != page || req->wb_context != ctx;
  625. nfs_release_request(req);
  626. if (!do_flush)
  627. return 0;
  628. status = nfs_wb_page(page->mapping->host, page);
  629. } while (status == 0);
  630. return status;
  631. }
  632. /*
  633. * If the page cache is marked as unsafe or invalid, then we can't rely on
  634. * the PageUptodate() flag. In this case, we will need to turn off
  635. * write optimisations that depend on the page contents being correct.
  636. */
  637. static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
  638. {
  639. return PageUptodate(page) &&
  640. !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
  641. }
  642. /*
  643. * Update and possibly write a cached page of an NFS file.
  644. *
  645. * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
  646. * things with a page scheduled for an RPC call (e.g. invalidate it).
  647. */
  648. int nfs_updatepage(struct file *file, struct page *page,
  649. unsigned int offset, unsigned int count)
  650. {
  651. struct nfs_open_context *ctx = nfs_file_open_context(file);
  652. struct inode *inode = page->mapping->host;
  653. int status = 0;
  654. nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
  655. dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
  656. file->f_path.dentry->d_parent->d_name.name,
  657. file->f_path.dentry->d_name.name, count,
  658. (long long)(page_offset(page) + offset));
  659. /* If we're not using byte range locks, and we know the page
  660. * is up to date, it may be more efficient to extend the write
  661. * to cover the entire page in order to avoid fragmentation
  662. * inefficiencies.
  663. */
  664. if (nfs_write_pageuptodate(page, inode) &&
  665. inode->i_flock == NULL &&
  666. !(file->f_flags & O_SYNC)) {
  667. count = max(count + offset, nfs_page_length(page));
  668. offset = 0;
  669. }
  670. status = nfs_writepage_setup(ctx, page, offset, count);
  671. if (status < 0)
  672. nfs_set_pageerror(page);
  673. else
  674. __set_page_dirty_nobuffers(page);
  675. dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
  676. status, (long long)i_size_read(inode));
  677. return status;
  678. }
  679. static void nfs_writepage_release(struct nfs_page *req)
  680. {
  681. if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
  682. nfs_end_page_writeback(req->wb_page);
  683. nfs_inode_remove_request(req);
  684. } else
  685. nfs_end_page_writeback(req->wb_page);
  686. nfs_clear_page_tag_locked(req);
  687. }
  688. static int flush_task_priority(int how)
  689. {
  690. switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
  691. case FLUSH_HIGHPRI:
  692. return RPC_PRIORITY_HIGH;
  693. case FLUSH_LOWPRI:
  694. return RPC_PRIORITY_LOW;
  695. }
  696. return RPC_PRIORITY_NORMAL;
  697. }
  698. /*
  699. * Set up the argument/result storage required for the RPC call.
  700. */
  701. static int nfs_write_rpcsetup(struct nfs_page *req,
  702. struct nfs_write_data *data,
  703. const struct rpc_call_ops *call_ops,
  704. unsigned int count, unsigned int offset,
  705. int how)
  706. {
  707. struct inode *inode = req->wb_context->path.dentry->d_inode;
  708. int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
  709. int priority = flush_task_priority(how);
  710. struct rpc_task *task;
  711. struct rpc_message msg = {
  712. .rpc_argp = &data->args,
  713. .rpc_resp = &data->res,
  714. .rpc_cred = req->wb_context->cred,
  715. };
  716. struct rpc_task_setup task_setup_data = {
  717. .rpc_client = NFS_CLIENT(inode),
  718. .task = &data->task,
  719. .rpc_message = &msg,
  720. .callback_ops = call_ops,
  721. .callback_data = data,
  722. .workqueue = nfsiod_workqueue,
  723. .flags = flags,
  724. .priority = priority,
  725. };
  726. /* Set up the RPC argument and reply structs
  727. * NB: take care not to mess about with data->commit et al. */
  728. data->req = req;
  729. data->inode = inode = req->wb_context->path.dentry->d_inode;
  730. data->cred = msg.rpc_cred;
  731. data->args.fh = NFS_FH(inode);
  732. data->args.offset = req_offset(req) + offset;
  733. data->args.pgbase = req->wb_pgbase + offset;
  734. data->args.pages = data->pagevec;
  735. data->args.count = count;
  736. data->args.context = get_nfs_open_context(req->wb_context);
  737. data->args.stable = NFS_UNSTABLE;
  738. if (how & FLUSH_STABLE) {
  739. data->args.stable = NFS_DATA_SYNC;
  740. if (!nfs_need_commit(NFS_I(inode)))
  741. data->args.stable = NFS_FILE_SYNC;
  742. }
  743. data->res.fattr = &data->fattr;
  744. data->res.count = count;
  745. data->res.verf = &data->verf;
  746. nfs_fattr_init(&data->fattr);
  747. /* Set up the initial task struct. */
  748. NFS_PROTO(inode)->write_setup(data, &msg);
  749. dprintk("NFS: %5u initiated write call "
  750. "(req %s/%lld, %u bytes @ offset %llu)\n",
  751. data->task.tk_pid,
  752. inode->i_sb->s_id,
  753. (long long)NFS_FILEID(inode),
  754. count,
  755. (unsigned long long)data->args.offset);
  756. task = rpc_run_task(&task_setup_data);
  757. if (IS_ERR(task))
  758. return PTR_ERR(task);
  759. rpc_put_task(task);
  760. return 0;
  761. }
  762. /* If a nfs_flush_* function fails, it should remove reqs from @head and
  763. * call this on each, which will prepare them to be retried on next
  764. * writeback using standard nfs.
  765. */
  766. static void nfs_redirty_request(struct nfs_page *req)
  767. {
  768. nfs_mark_request_dirty(req);
  769. nfs_end_page_writeback(req->wb_page);
  770. nfs_clear_page_tag_locked(req);
  771. }
  772. /*
  773. * Generate multiple small requests to write out a single
  774. * contiguous dirty area on one page.
  775. */
  776. static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
  777. {
  778. struct nfs_page *req = nfs_list_entry(head->next);
  779. struct page *page = req->wb_page;
  780. struct nfs_write_data *data;
  781. size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
  782. unsigned int offset;
  783. int requests = 0;
  784. int ret = 0;
  785. LIST_HEAD(list);
  786. nfs_list_remove_request(req);
  787. nbytes = count;
  788. do {
  789. size_t len = min(nbytes, wsize);
  790. data = nfs_writedata_alloc(1);
  791. if (!data)
  792. goto out_bad;
  793. list_add(&data->pages, &list);
  794. requests++;
  795. nbytes -= len;
  796. } while (nbytes != 0);
  797. atomic_set(&req->wb_complete, requests);
  798. ClearPageError(page);
  799. offset = 0;
  800. nbytes = count;
  801. do {
  802. int ret2;
  803. data = list_entry(list.next, struct nfs_write_data, pages);
  804. list_del_init(&data->pages);
  805. data->pagevec[0] = page;
  806. if (nbytes < wsize)
  807. wsize = nbytes;
  808. ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
  809. wsize, offset, how);
  810. if (ret == 0)
  811. ret = ret2;
  812. offset += wsize;
  813. nbytes -= wsize;
  814. } while (nbytes != 0);
  815. return ret;
  816. out_bad:
  817. while (!list_empty(&list)) {
  818. data = list_entry(list.next, struct nfs_write_data, pages);
  819. list_del(&data->pages);
  820. nfs_writedata_release(data);
  821. }
  822. nfs_redirty_request(req);
  823. return -ENOMEM;
  824. }
  825. /*
  826. * Create an RPC task for the given write request and kick it.
  827. * The page must have been locked by the caller.
  828. *
  829. * It may happen that the page we're passed is not marked dirty.
  830. * This is the case if nfs_updatepage detects a conflicting request
  831. * that has been written but not committed.
  832. */
  833. static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
  834. {
  835. struct nfs_page *req;
  836. struct page **pages;
  837. struct nfs_write_data *data;
  838. data = nfs_writedata_alloc(npages);
  839. if (!data)
  840. goto out_bad;
  841. pages = data->pagevec;
  842. while (!list_empty(head)) {
  843. req = nfs_list_entry(head->next);
  844. nfs_list_remove_request(req);
  845. nfs_list_add_request(req, &data->pages);
  846. ClearPageError(req->wb_page);
  847. *pages++ = req->wb_page;
  848. }
  849. req = nfs_list_entry(data->pages.next);
  850. /* Set up the argument struct */
  851. return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
  852. out_bad:
  853. while (!list_empty(head)) {
  854. req = nfs_list_entry(head->next);
  855. nfs_list_remove_request(req);
  856. nfs_redirty_request(req);
  857. }
  858. return -ENOMEM;
  859. }
  860. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
  861. struct inode *inode, int ioflags)
  862. {
  863. size_t wsize = NFS_SERVER(inode)->wsize;
  864. if (wsize < PAGE_CACHE_SIZE)
  865. nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
  866. else
  867. nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
  868. }
  869. /*
  870. * Handle a write reply that flushed part of a page.
  871. */
  872. static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
  873. {
  874. struct nfs_write_data *data = calldata;
  875. dprintk("NFS: %5u write(%s/%lld %d@%lld)",
  876. task->tk_pid,
  877. data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
  878. (long long)
  879. NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
  880. data->req->wb_bytes, (long long)req_offset(data->req));
  881. nfs_writeback_done(task, data);
  882. }
  883. static void nfs_writeback_release_partial(void *calldata)
  884. {
  885. struct nfs_write_data *data = calldata;
  886. struct nfs_page *req = data->req;
  887. struct page *page = req->wb_page;
  888. int status = data->task.tk_status;
  889. if (status < 0) {
  890. nfs_set_pageerror(page);
  891. nfs_context_set_write_error(req->wb_context, status);
  892. dprintk(", error = %d\n", status);
  893. goto out;
  894. }
  895. if (nfs_write_need_commit(data)) {
  896. struct inode *inode = page->mapping->host;
  897. spin_lock(&inode->i_lock);
  898. if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  899. /* Do nothing we need to resend the writes */
  900. } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  901. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  902. dprintk(" defer commit\n");
  903. } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
  904. set_bit(PG_NEED_RESCHED, &req->wb_flags);
  905. clear_bit(PG_NEED_COMMIT, &req->wb_flags);
  906. dprintk(" server reboot detected\n");
  907. }
  908. spin_unlock(&inode->i_lock);
  909. } else
  910. dprintk(" OK\n");
  911. out:
  912. if (atomic_dec_and_test(&req->wb_complete))
  913. nfs_writepage_release(req);
  914. nfs_writedata_release(calldata);
  915. }
  916. #if defined(CONFIG_NFS_V4_1)
  917. void nfs_write_prepare(struct rpc_task *task, void *calldata)
  918. {
  919. struct nfs_write_data *data = calldata;
  920. struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
  921. if (nfs4_setup_sequence(clp, &data->args.seq_args,
  922. &data->res.seq_res, 1, task))
  923. return;
  924. rpc_call_start(task);
  925. }
  926. #endif /* CONFIG_NFS_V4_1 */
  927. static const struct rpc_call_ops nfs_write_partial_ops = {
  928. #if defined(CONFIG_NFS_V4_1)
  929. .rpc_call_prepare = nfs_write_prepare,
  930. #endif /* CONFIG_NFS_V4_1 */
  931. .rpc_call_done = nfs_writeback_done_partial,
  932. .rpc_release = nfs_writeback_release_partial,
  933. };
  934. /*
  935. * Handle a write reply that flushes a whole page.
  936. *
  937. * FIXME: There is an inherent race with invalidate_inode_pages and
  938. * writebacks since the page->count is kept > 1 for as long
  939. * as the page has a write request pending.
  940. */
  941. static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
  942. {
  943. struct nfs_write_data *data = calldata;
  944. nfs_writeback_done(task, data);
  945. }
  946. static void nfs_writeback_release_full(void *calldata)
  947. {
  948. struct nfs_write_data *data = calldata;
  949. int status = data->task.tk_status;
  950. /* Update attributes as result of writeback. */
  951. while (!list_empty(&data->pages)) {
  952. struct nfs_page *req = nfs_list_entry(data->pages.next);
  953. struct page *page = req->wb_page;
  954. nfs_list_remove_request(req);
  955. dprintk("NFS: %5u write (%s/%lld %d@%lld)",
  956. data->task.tk_pid,
  957. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  958. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  959. req->wb_bytes,
  960. (long long)req_offset(req));
  961. if (status < 0) {
  962. nfs_set_pageerror(page);
  963. nfs_context_set_write_error(req->wb_context, status);
  964. dprintk(", error = %d\n", status);
  965. goto remove_request;
  966. }
  967. if (nfs_write_need_commit(data)) {
  968. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  969. nfs_mark_request_commit(req);
  970. nfs_end_page_writeback(page);
  971. dprintk(" marked for commit\n");
  972. goto next;
  973. }
  974. dprintk(" OK\n");
  975. remove_request:
  976. nfs_end_page_writeback(page);
  977. nfs_inode_remove_request(req);
  978. next:
  979. nfs_clear_page_tag_locked(req);
  980. }
  981. nfs_writedata_release(calldata);
  982. }
  983. static const struct rpc_call_ops nfs_write_full_ops = {
  984. #if defined(CONFIG_NFS_V4_1)
  985. .rpc_call_prepare = nfs_write_prepare,
  986. #endif /* CONFIG_NFS_V4_1 */
  987. .rpc_call_done = nfs_writeback_done_full,
  988. .rpc_release = nfs_writeback_release_full,
  989. };
  990. /*
  991. * This function is called when the WRITE call is complete.
  992. */
  993. int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
  994. {
  995. struct nfs_writeargs *argp = &data->args;
  996. struct nfs_writeres *resp = &data->res;
  997. struct nfs_server *server = NFS_SERVER(data->inode);
  998. int status;
  999. dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
  1000. task->tk_pid, task->tk_status);
  1001. /*
  1002. * ->write_done will attempt to use post-op attributes to detect
  1003. * conflicting writes by other clients. A strict interpretation
  1004. * of close-to-open would allow us to continue caching even if
  1005. * another writer had changed the file, but some applications
  1006. * depend on tighter cache coherency when writing.
  1007. */
  1008. status = NFS_PROTO(data->inode)->write_done(task, data);
  1009. if (status != 0)
  1010. return status;
  1011. nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
  1012. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1013. if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
  1014. /* We tried a write call, but the server did not
  1015. * commit data to stable storage even though we
  1016. * requested it.
  1017. * Note: There is a known bug in Tru64 < 5.0 in which
  1018. * the server reports NFS_DATA_SYNC, but performs
  1019. * NFS_FILE_SYNC. We therefore implement this checking
  1020. * as a dprintk() in order to avoid filling syslog.
  1021. */
  1022. static unsigned long complain;
  1023. if (time_before(complain, jiffies)) {
  1024. dprintk("NFS: faulty NFS server %s:"
  1025. " (committed = %d) != (stable = %d)\n",
  1026. server->nfs_client->cl_hostname,
  1027. resp->verf->committed, argp->stable);
  1028. complain = jiffies + 300 * HZ;
  1029. }
  1030. }
  1031. #endif
  1032. /* Is this a short write? */
  1033. if (task->tk_status >= 0 && resp->count < argp->count) {
  1034. static unsigned long complain;
  1035. nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
  1036. /* Has the server at least made some progress? */
  1037. if (resp->count != 0) {
  1038. /* Was this an NFSv2 write or an NFSv3 stable write? */
  1039. if (resp->verf->committed != NFS_UNSTABLE) {
  1040. /* Resend from where the server left off */
  1041. argp->offset += resp->count;
  1042. argp->pgbase += resp->count;
  1043. argp->count -= resp->count;
  1044. } else {
  1045. /* Resend as a stable write in order to avoid
  1046. * headaches in the case of a server crash.
  1047. */
  1048. argp->stable = NFS_FILE_SYNC;
  1049. }
  1050. nfs4_restart_rpc(task, server->nfs_client);
  1051. return -EAGAIN;
  1052. }
  1053. if (time_before(complain, jiffies)) {
  1054. printk(KERN_WARNING
  1055. "NFS: Server wrote zero bytes, expected %u.\n",
  1056. argp->count);
  1057. complain = jiffies + 300 * HZ;
  1058. }
  1059. /* Can't do anything about it except throw an error. */
  1060. task->tk_status = -EIO;
  1061. }
  1062. nfs4_sequence_free_slot(server->nfs_client, &data->res.seq_res);
  1063. return 0;
  1064. }
  1065. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1066. void nfs_commitdata_release(void *data)
  1067. {
  1068. struct nfs_write_data *wdata = data;
  1069. put_nfs_open_context(wdata->args.context);
  1070. nfs_commit_free(wdata);
  1071. }
  1072. /*
  1073. * Set up the argument/result storage required for the RPC call.
  1074. */
  1075. static int nfs_commit_rpcsetup(struct list_head *head,
  1076. struct nfs_write_data *data,
  1077. int how)
  1078. {
  1079. struct nfs_page *first = nfs_list_entry(head->next);
  1080. struct inode *inode = first->wb_context->path.dentry->d_inode;
  1081. int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
  1082. int priority = flush_task_priority(how);
  1083. struct rpc_task *task;
  1084. struct rpc_message msg = {
  1085. .rpc_argp = &data->args,
  1086. .rpc_resp = &data->res,
  1087. .rpc_cred = first->wb_context->cred,
  1088. };
  1089. struct rpc_task_setup task_setup_data = {
  1090. .task = &data->task,
  1091. .rpc_client = NFS_CLIENT(inode),
  1092. .rpc_message = &msg,
  1093. .callback_ops = &nfs_commit_ops,
  1094. .callback_data = data,
  1095. .workqueue = nfsiod_workqueue,
  1096. .flags = flags,
  1097. .priority = priority,
  1098. };
  1099. /* Set up the RPC argument and reply structs
  1100. * NB: take care not to mess about with data->commit et al. */
  1101. list_splice_init(head, &data->pages);
  1102. data->inode = inode;
  1103. data->cred = msg.rpc_cred;
  1104. data->args.fh = NFS_FH(data->inode);
  1105. /* Note: we always request a commit of the entire inode */
  1106. data->args.offset = 0;
  1107. data->args.count = 0;
  1108. data->args.context = get_nfs_open_context(first->wb_context);
  1109. data->res.count = 0;
  1110. data->res.fattr = &data->fattr;
  1111. data->res.verf = &data->verf;
  1112. nfs_fattr_init(&data->fattr);
  1113. /* Set up the initial task struct. */
  1114. NFS_PROTO(inode)->commit_setup(data, &msg);
  1115. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  1116. task = rpc_run_task(&task_setup_data);
  1117. if (IS_ERR(task))
  1118. return PTR_ERR(task);
  1119. rpc_put_task(task);
  1120. return 0;
  1121. }
  1122. /*
  1123. * Commit dirty pages
  1124. */
  1125. static int
  1126. nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1127. {
  1128. struct nfs_write_data *data;
  1129. struct nfs_page *req;
  1130. data = nfs_commitdata_alloc();
  1131. if (!data)
  1132. goto out_bad;
  1133. /* Set up the argument struct */
  1134. return nfs_commit_rpcsetup(head, data, how);
  1135. out_bad:
  1136. while (!list_empty(head)) {
  1137. req = nfs_list_entry(head->next);
  1138. nfs_list_remove_request(req);
  1139. nfs_mark_request_commit(req);
  1140. dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  1141. dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
  1142. BDI_RECLAIMABLE);
  1143. nfs_clear_page_tag_locked(req);
  1144. }
  1145. return -ENOMEM;
  1146. }
  1147. /*
  1148. * COMMIT call returned
  1149. */
  1150. static void nfs_commit_done(struct rpc_task *task, void *calldata)
  1151. {
  1152. struct nfs_write_data *data = calldata;
  1153. dprintk("NFS: %5u nfs_commit_done (status %d)\n",
  1154. task->tk_pid, task->tk_status);
  1155. /* Call the NFS version-specific code */
  1156. if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
  1157. return;
  1158. }
  1159. static void nfs_commit_release(void *calldata)
  1160. {
  1161. struct nfs_write_data *data = calldata;
  1162. struct nfs_page *req;
  1163. int status = data->task.tk_status;
  1164. while (!list_empty(&data->pages)) {
  1165. req = nfs_list_entry(data->pages.next);
  1166. nfs_list_remove_request(req);
  1167. nfs_clear_request_commit(req);
  1168. dprintk("NFS: commit (%s/%lld %d@%lld)",
  1169. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  1170. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  1171. req->wb_bytes,
  1172. (long long)req_offset(req));
  1173. if (status < 0) {
  1174. nfs_context_set_write_error(req->wb_context, status);
  1175. nfs_inode_remove_request(req);
  1176. dprintk(", error = %d\n", status);
  1177. goto next;
  1178. }
  1179. /* Okay, COMMIT succeeded, apparently. Check the verifier
  1180. * returned by the server against all stored verfs. */
  1181. if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
  1182. /* We have a match */
  1183. nfs_inode_remove_request(req);
  1184. dprintk(" OK\n");
  1185. goto next;
  1186. }
  1187. /* We have a mismatch. Write the page again */
  1188. dprintk(" mismatch\n");
  1189. nfs_mark_request_dirty(req);
  1190. next:
  1191. nfs_clear_page_tag_locked(req);
  1192. }
  1193. nfs_commitdata_release(calldata);
  1194. }
  1195. static const struct rpc_call_ops nfs_commit_ops = {
  1196. #if defined(CONFIG_NFS_V4_1)
  1197. .rpc_call_prepare = nfs_write_prepare,
  1198. #endif /* CONFIG_NFS_V4_1 */
  1199. .rpc_call_done = nfs_commit_done,
  1200. .rpc_release = nfs_commit_release,
  1201. };
  1202. int nfs_commit_inode(struct inode *inode, int how)
  1203. {
  1204. LIST_HEAD(head);
  1205. int res;
  1206. spin_lock(&inode->i_lock);
  1207. res = nfs_scan_commit(inode, &head, 0, 0);
  1208. spin_unlock(&inode->i_lock);
  1209. if (res) {
  1210. int error = nfs_commit_list(inode, &head, how);
  1211. if (error < 0)
  1212. return error;
  1213. }
  1214. return res;
  1215. }
  1216. #else
  1217. static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1218. {
  1219. return 0;
  1220. }
  1221. #endif
  1222. long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
  1223. {
  1224. struct inode *inode = mapping->host;
  1225. pgoff_t idx_start, idx_end;
  1226. unsigned int npages = 0;
  1227. LIST_HEAD(head);
  1228. int nocommit = how & FLUSH_NOCOMMIT;
  1229. long pages, ret;
  1230. /* FIXME */
  1231. if (wbc->range_cyclic)
  1232. idx_start = 0;
  1233. else {
  1234. idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
  1235. idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1236. if (idx_end > idx_start) {
  1237. pgoff_t l_npages = 1 + idx_end - idx_start;
  1238. npages = l_npages;
  1239. if (sizeof(npages) != sizeof(l_npages) &&
  1240. (pgoff_t)npages != l_npages)
  1241. npages = 0;
  1242. }
  1243. }
  1244. how &= ~FLUSH_NOCOMMIT;
  1245. spin_lock(&inode->i_lock);
  1246. do {
  1247. ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
  1248. if (ret != 0)
  1249. continue;
  1250. if (nocommit)
  1251. break;
  1252. pages = nfs_scan_commit(inode, &head, idx_start, npages);
  1253. if (pages == 0)
  1254. break;
  1255. if (how & FLUSH_INVALIDATE) {
  1256. spin_unlock(&inode->i_lock);
  1257. nfs_cancel_commit_list(&head);
  1258. ret = pages;
  1259. spin_lock(&inode->i_lock);
  1260. continue;
  1261. }
  1262. pages += nfs_scan_commit(inode, &head, 0, 0);
  1263. spin_unlock(&inode->i_lock);
  1264. ret = nfs_commit_list(inode, &head, how);
  1265. spin_lock(&inode->i_lock);
  1266. } while (ret >= 0);
  1267. spin_unlock(&inode->i_lock);
  1268. return ret;
  1269. }
  1270. static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
  1271. {
  1272. int ret;
  1273. ret = nfs_writepages(mapping, wbc);
  1274. if (ret < 0)
  1275. goto out;
  1276. ret = nfs_sync_mapping_wait(mapping, wbc, how);
  1277. if (ret < 0)
  1278. goto out;
  1279. return 0;
  1280. out:
  1281. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1282. return ret;
  1283. }
  1284. /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
  1285. static int nfs_write_mapping(struct address_space *mapping, int how)
  1286. {
  1287. struct writeback_control wbc = {
  1288. .bdi = mapping->backing_dev_info,
  1289. .sync_mode = WB_SYNC_ALL,
  1290. .nr_to_write = LONG_MAX,
  1291. .range_start = 0,
  1292. .range_end = LLONG_MAX,
  1293. .for_writepages = 1,
  1294. };
  1295. return __nfs_write_mapping(mapping, &wbc, how);
  1296. }
  1297. /*
  1298. * flush the inode to disk.
  1299. */
  1300. int nfs_wb_all(struct inode *inode)
  1301. {
  1302. return nfs_write_mapping(inode->i_mapping, 0);
  1303. }
  1304. int nfs_wb_nocommit(struct inode *inode)
  1305. {
  1306. return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
  1307. }
  1308. int nfs_wb_page_cancel(struct inode *inode, struct page *page)
  1309. {
  1310. struct nfs_page *req;
  1311. loff_t range_start = page_offset(page);
  1312. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1313. struct writeback_control wbc = {
  1314. .bdi = page->mapping->backing_dev_info,
  1315. .sync_mode = WB_SYNC_ALL,
  1316. .nr_to_write = LONG_MAX,
  1317. .range_start = range_start,
  1318. .range_end = range_end,
  1319. };
  1320. int ret = 0;
  1321. BUG_ON(!PageLocked(page));
  1322. for (;;) {
  1323. req = nfs_page_find_request(page);
  1324. if (req == NULL)
  1325. goto out;
  1326. if (test_bit(PG_CLEAN, &req->wb_flags)) {
  1327. nfs_release_request(req);
  1328. break;
  1329. }
  1330. if (nfs_lock_request_dontget(req)) {
  1331. nfs_inode_remove_request(req);
  1332. /*
  1333. * In case nfs_inode_remove_request has marked the
  1334. * page as being dirty
  1335. */
  1336. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  1337. nfs_unlock_request(req);
  1338. break;
  1339. }
  1340. ret = nfs_wait_on_request(req);
  1341. if (ret < 0)
  1342. goto out;
  1343. }
  1344. if (!PagePrivate(page))
  1345. return 0;
  1346. ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
  1347. out:
  1348. return ret;
  1349. }
  1350. static int nfs_wb_page_priority(struct inode *inode, struct page *page,
  1351. int how)
  1352. {
  1353. loff_t range_start = page_offset(page);
  1354. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1355. struct writeback_control wbc = {
  1356. .bdi = page->mapping->backing_dev_info,
  1357. .sync_mode = WB_SYNC_ALL,
  1358. .nr_to_write = LONG_MAX,
  1359. .range_start = range_start,
  1360. .range_end = range_end,
  1361. };
  1362. int ret;
  1363. do {
  1364. if (clear_page_dirty_for_io(page)) {
  1365. ret = nfs_writepage_locked(page, &wbc);
  1366. if (ret < 0)
  1367. goto out_error;
  1368. } else if (!PagePrivate(page))
  1369. break;
  1370. ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
  1371. if (ret < 0)
  1372. goto out_error;
  1373. } while (PagePrivate(page));
  1374. return 0;
  1375. out_error:
  1376. __mark_inode_dirty(inode, I_DIRTY_PAGES);
  1377. return ret;
  1378. }
  1379. /*
  1380. * Write back all requests on one page - we do this before reading it.
  1381. */
  1382. int nfs_wb_page(struct inode *inode, struct page* page)
  1383. {
  1384. return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
  1385. }
  1386. int __init nfs_init_writepagecache(void)
  1387. {
  1388. nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
  1389. sizeof(struct nfs_write_data),
  1390. 0, SLAB_HWCACHE_ALIGN,
  1391. NULL);
  1392. if (nfs_wdata_cachep == NULL)
  1393. return -ENOMEM;
  1394. nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
  1395. nfs_wdata_cachep);
  1396. if (nfs_wdata_mempool == NULL)
  1397. return -ENOMEM;
  1398. nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
  1399. nfs_wdata_cachep);
  1400. if (nfs_commit_mempool == NULL)
  1401. return -ENOMEM;
  1402. /*
  1403. * NFS congestion size, scale with available memory.
  1404. *
  1405. * 64MB: 8192k
  1406. * 128MB: 11585k
  1407. * 256MB: 16384k
  1408. * 512MB: 23170k
  1409. * 1GB: 32768k
  1410. * 2GB: 46340k
  1411. * 4GB: 65536k
  1412. * 8GB: 92681k
  1413. * 16GB: 131072k
  1414. *
  1415. * This allows larger machines to have larger/more transfers.
  1416. * Limit the default to 256M
  1417. */
  1418. nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
  1419. if (nfs_congestion_kb > 256*1024)
  1420. nfs_congestion_kb = 256*1024;
  1421. return 0;
  1422. }
  1423. void nfs_destroy_writepagecache(void)
  1424. {
  1425. mempool_destroy(nfs_commit_mempool);
  1426. mempool_destroy(nfs_wdata_mempool);
  1427. kmem_cache_destroy(nfs_wdata_cachep);
  1428. }