bio.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <scsi/sg.h> /* for struct sg_iovec */
  29. #include <trace/events/block.h>
  30. /*
  31. * Test patch to inline a certain number of bi_io_vec's inside the bio
  32. * itself, to shrink a bio data allocation from two mempool calls to one
  33. */
  34. #define BIO_INLINE_VECS 4
  35. static mempool_t *bio_split_pool __read_mostly;
  36. /*
  37. * if you change this list, also change bvec_alloc or things will
  38. * break badly! cannot be bigger than what you can fit into an
  39. * unsigned short
  40. */
  41. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  42. struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  43. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  44. };
  45. #undef BV
  46. /*
  47. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  48. * IO code that does not need private memory pools.
  49. */
  50. struct bio_set *fs_bio_set;
  51. /*
  52. * Our slab pool management
  53. */
  54. struct bio_slab {
  55. struct kmem_cache *slab;
  56. unsigned int slab_ref;
  57. unsigned int slab_size;
  58. char name[8];
  59. };
  60. static DEFINE_MUTEX(bio_slab_lock);
  61. static struct bio_slab *bio_slabs;
  62. static unsigned int bio_slab_nr, bio_slab_max;
  63. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  64. {
  65. unsigned int sz = sizeof(struct bio) + extra_size;
  66. struct kmem_cache *slab = NULL;
  67. struct bio_slab *bslab;
  68. unsigned int i, entry = -1;
  69. mutex_lock(&bio_slab_lock);
  70. i = 0;
  71. while (i < bio_slab_nr) {
  72. struct bio_slab *bslab = &bio_slabs[i];
  73. if (!bslab->slab && entry == -1)
  74. entry = i;
  75. else if (bslab->slab_size == sz) {
  76. slab = bslab->slab;
  77. bslab->slab_ref++;
  78. break;
  79. }
  80. i++;
  81. }
  82. if (slab)
  83. goto out_unlock;
  84. if (bio_slab_nr == bio_slab_max && entry == -1) {
  85. bio_slab_max <<= 1;
  86. bio_slabs = krealloc(bio_slabs,
  87. bio_slab_max * sizeof(struct bio_slab),
  88. GFP_KERNEL);
  89. if (!bio_slabs)
  90. goto out_unlock;
  91. }
  92. if (entry == -1)
  93. entry = bio_slab_nr++;
  94. bslab = &bio_slabs[entry];
  95. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  96. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  97. if (!slab)
  98. goto out_unlock;
  99. printk("bio: create slab <%s> at %d\n", bslab->name, entry);
  100. bslab->slab = slab;
  101. bslab->slab_ref = 1;
  102. bslab->slab_size = sz;
  103. out_unlock:
  104. mutex_unlock(&bio_slab_lock);
  105. return slab;
  106. }
  107. static void bio_put_slab(struct bio_set *bs)
  108. {
  109. struct bio_slab *bslab = NULL;
  110. unsigned int i;
  111. mutex_lock(&bio_slab_lock);
  112. for (i = 0; i < bio_slab_nr; i++) {
  113. if (bs->bio_slab == bio_slabs[i].slab) {
  114. bslab = &bio_slabs[i];
  115. break;
  116. }
  117. }
  118. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  119. goto out;
  120. WARN_ON(!bslab->slab_ref);
  121. if (--bslab->slab_ref)
  122. goto out;
  123. kmem_cache_destroy(bslab->slab);
  124. bslab->slab = NULL;
  125. out:
  126. mutex_unlock(&bio_slab_lock);
  127. }
  128. unsigned int bvec_nr_vecs(unsigned short idx)
  129. {
  130. return bvec_slabs[idx].nr_vecs;
  131. }
  132. void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  133. {
  134. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  135. if (idx == BIOVEC_MAX_IDX)
  136. mempool_free(bv, bs->bvec_pool);
  137. else {
  138. struct biovec_slab *bvs = bvec_slabs + idx;
  139. kmem_cache_free(bvs->slab, bv);
  140. }
  141. }
  142. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  143. struct bio_set *bs)
  144. {
  145. struct bio_vec *bvl;
  146. /*
  147. * see comment near bvec_array define!
  148. */
  149. switch (nr) {
  150. case 1:
  151. *idx = 0;
  152. break;
  153. case 2 ... 4:
  154. *idx = 1;
  155. break;
  156. case 5 ... 16:
  157. *idx = 2;
  158. break;
  159. case 17 ... 64:
  160. *idx = 3;
  161. break;
  162. case 65 ... 128:
  163. *idx = 4;
  164. break;
  165. case 129 ... BIO_MAX_PAGES:
  166. *idx = 5;
  167. break;
  168. default:
  169. return NULL;
  170. }
  171. /*
  172. * idx now points to the pool we want to allocate from. only the
  173. * 1-vec entry pool is mempool backed.
  174. */
  175. if (*idx == BIOVEC_MAX_IDX) {
  176. fallback:
  177. bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  178. } else {
  179. struct biovec_slab *bvs = bvec_slabs + *idx;
  180. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  181. /*
  182. * Make this allocation restricted and don't dump info on
  183. * allocation failures, since we'll fallback to the mempool
  184. * in case of failure.
  185. */
  186. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  187. /*
  188. * Try a slab allocation. If this fails and __GFP_WAIT
  189. * is set, retry with the 1-entry mempool
  190. */
  191. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  192. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  193. *idx = BIOVEC_MAX_IDX;
  194. goto fallback;
  195. }
  196. }
  197. return bvl;
  198. }
  199. void bio_free(struct bio *bio, struct bio_set *bs)
  200. {
  201. void *p;
  202. if (bio_has_allocated_vec(bio))
  203. bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  204. if (bio_integrity(bio))
  205. bio_integrity_free(bio);
  206. /*
  207. * If we have front padding, adjust the bio pointer before freeing
  208. */
  209. p = bio;
  210. if (bs->front_pad)
  211. p -= bs->front_pad;
  212. mempool_free(p, bs->bio_pool);
  213. }
  214. void bio_init(struct bio *bio)
  215. {
  216. memset(bio, 0, sizeof(*bio));
  217. bio->bi_flags = 1 << BIO_UPTODATE;
  218. bio->bi_comp_cpu = -1;
  219. atomic_set(&bio->bi_cnt, 1);
  220. }
  221. /**
  222. * bio_alloc_bioset - allocate a bio for I/O
  223. * @gfp_mask: the GFP_ mask given to the slab allocator
  224. * @nr_iovecs: number of iovecs to pre-allocate
  225. * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
  226. *
  227. * Description:
  228. * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
  229. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  230. * for a &struct bio to become free. If a %NULL @bs is passed in, we will
  231. * fall back to just using @kmalloc to allocate the required memory.
  232. *
  233. * Note that the caller must set ->bi_destructor on succesful return
  234. * of a bio, to do the appropriate freeing of the bio once the reference
  235. * count drops to zero.
  236. **/
  237. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  238. {
  239. unsigned long idx = BIO_POOL_NONE;
  240. struct bio_vec *bvl = NULL;
  241. struct bio *bio;
  242. void *p;
  243. p = mempool_alloc(bs->bio_pool, gfp_mask);
  244. if (unlikely(!p))
  245. return NULL;
  246. bio = p + bs->front_pad;
  247. bio_init(bio);
  248. if (unlikely(!nr_iovecs))
  249. goto out_set;
  250. if (nr_iovecs <= BIO_INLINE_VECS) {
  251. bvl = bio->bi_inline_vecs;
  252. nr_iovecs = BIO_INLINE_VECS;
  253. } else {
  254. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  255. if (unlikely(!bvl))
  256. goto err_free;
  257. nr_iovecs = bvec_nr_vecs(idx);
  258. }
  259. out_set:
  260. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  261. bio->bi_max_vecs = nr_iovecs;
  262. bio->bi_io_vec = bvl;
  263. return bio;
  264. err_free:
  265. mempool_free(p, bs->bio_pool);
  266. return NULL;
  267. }
  268. static void bio_fs_destructor(struct bio *bio)
  269. {
  270. bio_free(bio, fs_bio_set);
  271. }
  272. /**
  273. * bio_alloc - allocate a new bio, memory pool backed
  274. * @gfp_mask: allocation mask to use
  275. * @nr_iovecs: number of iovecs
  276. *
  277. * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask
  278. * contains __GFP_WAIT, the allocation is guaranteed to succeed.
  279. *
  280. * RETURNS:
  281. * Pointer to new bio on success, NULL on failure.
  282. */
  283. struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
  284. {
  285. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  286. if (bio)
  287. bio->bi_destructor = bio_fs_destructor;
  288. return bio;
  289. }
  290. static void bio_kmalloc_destructor(struct bio *bio)
  291. {
  292. if (bio_integrity(bio))
  293. bio_integrity_free(bio);
  294. kfree(bio);
  295. }
  296. /**
  297. * bio_alloc - allocate a bio for I/O
  298. * @gfp_mask: the GFP_ mask given to the slab allocator
  299. * @nr_iovecs: number of iovecs to pre-allocate
  300. *
  301. * Description:
  302. * bio_alloc will allocate a bio and associated bio_vec array that can hold
  303. * at least @nr_iovecs entries. Allocations will be done from the
  304. * fs_bio_set. Also see @bio_alloc_bioset.
  305. *
  306. * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
  307. * a bio. This is due to the mempool guarantees. To make this work, callers
  308. * must never allocate more than 1 bio at a time from this pool. Callers
  309. * that need to allocate more than 1 bio must always submit the previously
  310. * allocated bio for IO before attempting to allocate a new one. Failure to
  311. * do so can cause livelocks under memory pressure.
  312. *
  313. **/
  314. struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
  315. {
  316. struct bio *bio;
  317. bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
  318. gfp_mask);
  319. if (unlikely(!bio))
  320. return NULL;
  321. bio_init(bio);
  322. bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
  323. bio->bi_max_vecs = nr_iovecs;
  324. bio->bi_io_vec = bio->bi_inline_vecs;
  325. bio->bi_destructor = bio_kmalloc_destructor;
  326. return bio;
  327. }
  328. void zero_fill_bio(struct bio *bio)
  329. {
  330. unsigned long flags;
  331. struct bio_vec *bv;
  332. int i;
  333. bio_for_each_segment(bv, bio, i) {
  334. char *data = bvec_kmap_irq(bv, &flags);
  335. memset(data, 0, bv->bv_len);
  336. flush_dcache_page(bv->bv_page);
  337. bvec_kunmap_irq(data, &flags);
  338. }
  339. }
  340. EXPORT_SYMBOL(zero_fill_bio);
  341. /**
  342. * bio_put - release a reference to a bio
  343. * @bio: bio to release reference to
  344. *
  345. * Description:
  346. * Put a reference to a &struct bio, either one you have gotten with
  347. * bio_alloc or bio_get. The last put of a bio will free it.
  348. **/
  349. void bio_put(struct bio *bio)
  350. {
  351. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  352. /*
  353. * last put frees it
  354. */
  355. if (atomic_dec_and_test(&bio->bi_cnt)) {
  356. bio->bi_next = NULL;
  357. bio->bi_destructor(bio);
  358. }
  359. }
  360. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  361. {
  362. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  363. blk_recount_segments(q, bio);
  364. return bio->bi_phys_segments;
  365. }
  366. /**
  367. * __bio_clone - clone a bio
  368. * @bio: destination bio
  369. * @bio_src: bio to clone
  370. *
  371. * Clone a &bio. Caller will own the returned bio, but not
  372. * the actual data it points to. Reference count of returned
  373. * bio will be one.
  374. */
  375. void __bio_clone(struct bio *bio, struct bio *bio_src)
  376. {
  377. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  378. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  379. /*
  380. * most users will be overriding ->bi_bdev with a new target,
  381. * so we don't set nor calculate new physical/hw segment counts here
  382. */
  383. bio->bi_sector = bio_src->bi_sector;
  384. bio->bi_bdev = bio_src->bi_bdev;
  385. bio->bi_flags |= 1 << BIO_CLONED;
  386. bio->bi_rw = bio_src->bi_rw;
  387. bio->bi_vcnt = bio_src->bi_vcnt;
  388. bio->bi_size = bio_src->bi_size;
  389. bio->bi_idx = bio_src->bi_idx;
  390. }
  391. /**
  392. * bio_clone - clone a bio
  393. * @bio: bio to clone
  394. * @gfp_mask: allocation priority
  395. *
  396. * Like __bio_clone, only also allocates the returned bio
  397. */
  398. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  399. {
  400. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  401. if (!b)
  402. return NULL;
  403. b->bi_destructor = bio_fs_destructor;
  404. __bio_clone(b, bio);
  405. if (bio_integrity(bio)) {
  406. int ret;
  407. ret = bio_integrity_clone(b, bio, gfp_mask);
  408. if (ret < 0) {
  409. bio_put(b);
  410. return NULL;
  411. }
  412. }
  413. return b;
  414. }
  415. /**
  416. * bio_get_nr_vecs - return approx number of vecs
  417. * @bdev: I/O target
  418. *
  419. * Return the approximate number of pages we can send to this target.
  420. * There's no guarantee that you will be able to fit this number of pages
  421. * into a bio, it does not account for dynamic restrictions that vary
  422. * on offset.
  423. */
  424. int bio_get_nr_vecs(struct block_device *bdev)
  425. {
  426. struct request_queue *q = bdev_get_queue(bdev);
  427. int nr_pages;
  428. nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  429. if (nr_pages > queue_max_phys_segments(q))
  430. nr_pages = queue_max_phys_segments(q);
  431. if (nr_pages > queue_max_hw_segments(q))
  432. nr_pages = queue_max_hw_segments(q);
  433. return nr_pages;
  434. }
  435. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  436. *page, unsigned int len, unsigned int offset,
  437. unsigned short max_sectors)
  438. {
  439. int retried_segments = 0;
  440. struct bio_vec *bvec;
  441. /*
  442. * cloned bio must not modify vec list
  443. */
  444. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  445. return 0;
  446. if (((bio->bi_size + len) >> 9) > max_sectors)
  447. return 0;
  448. /*
  449. * For filesystems with a blocksize smaller than the pagesize
  450. * we will often be called with the same page as last time and
  451. * a consecutive offset. Optimize this special case.
  452. */
  453. if (bio->bi_vcnt > 0) {
  454. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  455. if (page == prev->bv_page &&
  456. offset == prev->bv_offset + prev->bv_len) {
  457. prev->bv_len += len;
  458. if (q->merge_bvec_fn) {
  459. struct bvec_merge_data bvm = {
  460. .bi_bdev = bio->bi_bdev,
  461. .bi_sector = bio->bi_sector,
  462. .bi_size = bio->bi_size,
  463. .bi_rw = bio->bi_rw,
  464. };
  465. if (q->merge_bvec_fn(q, &bvm, prev) < len) {
  466. prev->bv_len -= len;
  467. return 0;
  468. }
  469. }
  470. goto done;
  471. }
  472. }
  473. if (bio->bi_vcnt >= bio->bi_max_vecs)
  474. return 0;
  475. /*
  476. * we might lose a segment or two here, but rather that than
  477. * make this too complex.
  478. */
  479. while (bio->bi_phys_segments >= queue_max_phys_segments(q)
  480. || bio->bi_phys_segments >= queue_max_hw_segments(q)) {
  481. if (retried_segments)
  482. return 0;
  483. retried_segments = 1;
  484. blk_recount_segments(q, bio);
  485. }
  486. /*
  487. * setup the new entry, we might clear it again later if we
  488. * cannot add the page
  489. */
  490. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  491. bvec->bv_page = page;
  492. bvec->bv_len = len;
  493. bvec->bv_offset = offset;
  494. /*
  495. * if queue has other restrictions (eg varying max sector size
  496. * depending on offset), it can specify a merge_bvec_fn in the
  497. * queue to get further control
  498. */
  499. if (q->merge_bvec_fn) {
  500. struct bvec_merge_data bvm = {
  501. .bi_bdev = bio->bi_bdev,
  502. .bi_sector = bio->bi_sector,
  503. .bi_size = bio->bi_size,
  504. .bi_rw = bio->bi_rw,
  505. };
  506. /*
  507. * merge_bvec_fn() returns number of bytes it can accept
  508. * at this offset
  509. */
  510. if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
  511. bvec->bv_page = NULL;
  512. bvec->bv_len = 0;
  513. bvec->bv_offset = 0;
  514. return 0;
  515. }
  516. }
  517. /* If we may be able to merge these biovecs, force a recount */
  518. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  519. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  520. bio->bi_vcnt++;
  521. bio->bi_phys_segments++;
  522. done:
  523. bio->bi_size += len;
  524. return len;
  525. }
  526. /**
  527. * bio_add_pc_page - attempt to add page to bio
  528. * @q: the target queue
  529. * @bio: destination bio
  530. * @page: page to add
  531. * @len: vec entry length
  532. * @offset: vec entry offset
  533. *
  534. * Attempt to add a page to the bio_vec maplist. This can fail for a
  535. * number of reasons, such as the bio being full or target block
  536. * device limitations. The target block device must allow bio's
  537. * smaller than PAGE_SIZE, so it is always possible to add a single
  538. * page to an empty bio. This should only be used by REQ_PC bios.
  539. */
  540. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  541. unsigned int len, unsigned int offset)
  542. {
  543. return __bio_add_page(q, bio, page, len, offset,
  544. queue_max_hw_sectors(q));
  545. }
  546. /**
  547. * bio_add_page - attempt to add page to bio
  548. * @bio: destination bio
  549. * @page: page to add
  550. * @len: vec entry length
  551. * @offset: vec entry offset
  552. *
  553. * Attempt to add a page to the bio_vec maplist. This can fail for a
  554. * number of reasons, such as the bio being full or target block
  555. * device limitations. The target block device must allow bio's
  556. * smaller than PAGE_SIZE, so it is always possible to add a single
  557. * page to an empty bio.
  558. */
  559. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  560. unsigned int offset)
  561. {
  562. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  563. return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
  564. }
  565. struct bio_map_data {
  566. struct bio_vec *iovecs;
  567. struct sg_iovec *sgvecs;
  568. int nr_sgvecs;
  569. int is_our_pages;
  570. };
  571. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  572. struct sg_iovec *iov, int iov_count,
  573. int is_our_pages)
  574. {
  575. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  576. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  577. bmd->nr_sgvecs = iov_count;
  578. bmd->is_our_pages = is_our_pages;
  579. bio->bi_private = bmd;
  580. }
  581. static void bio_free_map_data(struct bio_map_data *bmd)
  582. {
  583. kfree(bmd->iovecs);
  584. kfree(bmd->sgvecs);
  585. kfree(bmd);
  586. }
  587. static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
  588. gfp_t gfp_mask)
  589. {
  590. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
  591. if (!bmd)
  592. return NULL;
  593. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  594. if (!bmd->iovecs) {
  595. kfree(bmd);
  596. return NULL;
  597. }
  598. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  599. if (bmd->sgvecs)
  600. return bmd;
  601. kfree(bmd->iovecs);
  602. kfree(bmd);
  603. return NULL;
  604. }
  605. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  606. struct sg_iovec *iov, int iov_count, int uncopy,
  607. int do_free_page)
  608. {
  609. int ret = 0, i;
  610. struct bio_vec *bvec;
  611. int iov_idx = 0;
  612. unsigned int iov_off = 0;
  613. int read = bio_data_dir(bio) == READ;
  614. __bio_for_each_segment(bvec, bio, i, 0) {
  615. char *bv_addr = page_address(bvec->bv_page);
  616. unsigned int bv_len = iovecs[i].bv_len;
  617. while (bv_len && iov_idx < iov_count) {
  618. unsigned int bytes;
  619. char __user *iov_addr;
  620. bytes = min_t(unsigned int,
  621. iov[iov_idx].iov_len - iov_off, bv_len);
  622. iov_addr = iov[iov_idx].iov_base + iov_off;
  623. if (!ret) {
  624. if (!read && !uncopy)
  625. ret = copy_from_user(bv_addr, iov_addr,
  626. bytes);
  627. if (read && uncopy)
  628. ret = copy_to_user(iov_addr, bv_addr,
  629. bytes);
  630. if (ret)
  631. ret = -EFAULT;
  632. }
  633. bv_len -= bytes;
  634. bv_addr += bytes;
  635. iov_addr += bytes;
  636. iov_off += bytes;
  637. if (iov[iov_idx].iov_len == iov_off) {
  638. iov_idx++;
  639. iov_off = 0;
  640. }
  641. }
  642. if (do_free_page)
  643. __free_page(bvec->bv_page);
  644. }
  645. return ret;
  646. }
  647. /**
  648. * bio_uncopy_user - finish previously mapped bio
  649. * @bio: bio being terminated
  650. *
  651. * Free pages allocated from bio_copy_user() and write back data
  652. * to user space in case of a read.
  653. */
  654. int bio_uncopy_user(struct bio *bio)
  655. {
  656. struct bio_map_data *bmd = bio->bi_private;
  657. int ret = 0;
  658. if (!bio_flagged(bio, BIO_NULL_MAPPED))
  659. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  660. bmd->nr_sgvecs, 1, bmd->is_our_pages);
  661. bio_free_map_data(bmd);
  662. bio_put(bio);
  663. return ret;
  664. }
  665. /**
  666. * bio_copy_user_iov - copy user data to bio
  667. * @q: destination block queue
  668. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  669. * @iov: the iovec.
  670. * @iov_count: number of elements in the iovec
  671. * @write_to_vm: bool indicating writing to pages or not
  672. * @gfp_mask: memory allocation flags
  673. *
  674. * Prepares and returns a bio for indirect user io, bouncing data
  675. * to/from kernel pages as necessary. Must be paired with
  676. * call bio_uncopy_user() on io completion.
  677. */
  678. struct bio *bio_copy_user_iov(struct request_queue *q,
  679. struct rq_map_data *map_data,
  680. struct sg_iovec *iov, int iov_count,
  681. int write_to_vm, gfp_t gfp_mask)
  682. {
  683. struct bio_map_data *bmd;
  684. struct bio_vec *bvec;
  685. struct page *page;
  686. struct bio *bio;
  687. int i, ret;
  688. int nr_pages = 0;
  689. unsigned int len = 0;
  690. unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  691. for (i = 0; i < iov_count; i++) {
  692. unsigned long uaddr;
  693. unsigned long end;
  694. unsigned long start;
  695. uaddr = (unsigned long)iov[i].iov_base;
  696. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  697. start = uaddr >> PAGE_SHIFT;
  698. nr_pages += end - start;
  699. len += iov[i].iov_len;
  700. }
  701. if (offset)
  702. nr_pages++;
  703. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  704. if (!bmd)
  705. return ERR_PTR(-ENOMEM);
  706. ret = -ENOMEM;
  707. bio = bio_kmalloc(gfp_mask, nr_pages);
  708. if (!bio)
  709. goto out_bmd;
  710. bio->bi_rw |= (!write_to_vm << BIO_RW);
  711. ret = 0;
  712. if (map_data) {
  713. nr_pages = 1 << map_data->page_order;
  714. i = map_data->offset / PAGE_SIZE;
  715. }
  716. while (len) {
  717. unsigned int bytes = PAGE_SIZE;
  718. bytes -= offset;
  719. if (bytes > len)
  720. bytes = len;
  721. if (map_data) {
  722. if (i == map_data->nr_entries * nr_pages) {
  723. ret = -ENOMEM;
  724. break;
  725. }
  726. page = map_data->pages[i / nr_pages];
  727. page += (i % nr_pages);
  728. i++;
  729. } else {
  730. page = alloc_page(q->bounce_gfp | gfp_mask);
  731. if (!page) {
  732. ret = -ENOMEM;
  733. break;
  734. }
  735. }
  736. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  737. break;
  738. len -= bytes;
  739. offset = 0;
  740. }
  741. if (ret)
  742. goto cleanup;
  743. /*
  744. * success
  745. */
  746. if (!write_to_vm && (!map_data || !map_data->null_mapped)) {
  747. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
  748. if (ret)
  749. goto cleanup;
  750. }
  751. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  752. return bio;
  753. cleanup:
  754. if (!map_data)
  755. bio_for_each_segment(bvec, bio, i)
  756. __free_page(bvec->bv_page);
  757. bio_put(bio);
  758. out_bmd:
  759. bio_free_map_data(bmd);
  760. return ERR_PTR(ret);
  761. }
  762. /**
  763. * bio_copy_user - copy user data to bio
  764. * @q: destination block queue
  765. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  766. * @uaddr: start of user address
  767. * @len: length in bytes
  768. * @write_to_vm: bool indicating writing to pages or not
  769. * @gfp_mask: memory allocation flags
  770. *
  771. * Prepares and returns a bio for indirect user io, bouncing data
  772. * to/from kernel pages as necessary. Must be paired with
  773. * call bio_uncopy_user() on io completion.
  774. */
  775. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  776. unsigned long uaddr, unsigned int len,
  777. int write_to_vm, gfp_t gfp_mask)
  778. {
  779. struct sg_iovec iov;
  780. iov.iov_base = (void __user *)uaddr;
  781. iov.iov_len = len;
  782. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  783. }
  784. static struct bio *__bio_map_user_iov(struct request_queue *q,
  785. struct block_device *bdev,
  786. struct sg_iovec *iov, int iov_count,
  787. int write_to_vm, gfp_t gfp_mask)
  788. {
  789. int i, j;
  790. int nr_pages = 0;
  791. struct page **pages;
  792. struct bio *bio;
  793. int cur_page = 0;
  794. int ret, offset;
  795. for (i = 0; i < iov_count; i++) {
  796. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  797. unsigned long len = iov[i].iov_len;
  798. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  799. unsigned long start = uaddr >> PAGE_SHIFT;
  800. nr_pages += end - start;
  801. /*
  802. * buffer must be aligned to at least hardsector size for now
  803. */
  804. if (uaddr & queue_dma_alignment(q))
  805. return ERR_PTR(-EINVAL);
  806. }
  807. if (!nr_pages)
  808. return ERR_PTR(-EINVAL);
  809. bio = bio_kmalloc(gfp_mask, nr_pages);
  810. if (!bio)
  811. return ERR_PTR(-ENOMEM);
  812. ret = -ENOMEM;
  813. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  814. if (!pages)
  815. goto out;
  816. for (i = 0; i < iov_count; i++) {
  817. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  818. unsigned long len = iov[i].iov_len;
  819. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  820. unsigned long start = uaddr >> PAGE_SHIFT;
  821. const int local_nr_pages = end - start;
  822. const int page_limit = cur_page + local_nr_pages;
  823. ret = get_user_pages_fast(uaddr, local_nr_pages,
  824. write_to_vm, &pages[cur_page]);
  825. if (ret < local_nr_pages) {
  826. ret = -EFAULT;
  827. goto out_unmap;
  828. }
  829. offset = uaddr & ~PAGE_MASK;
  830. for (j = cur_page; j < page_limit; j++) {
  831. unsigned int bytes = PAGE_SIZE - offset;
  832. if (len <= 0)
  833. break;
  834. if (bytes > len)
  835. bytes = len;
  836. /*
  837. * sorry...
  838. */
  839. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  840. bytes)
  841. break;
  842. len -= bytes;
  843. offset = 0;
  844. }
  845. cur_page = j;
  846. /*
  847. * release the pages we didn't map into the bio, if any
  848. */
  849. while (j < page_limit)
  850. page_cache_release(pages[j++]);
  851. }
  852. kfree(pages);
  853. /*
  854. * set data direction, and check if mapped pages need bouncing
  855. */
  856. if (!write_to_vm)
  857. bio->bi_rw |= (1 << BIO_RW);
  858. bio->bi_bdev = bdev;
  859. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  860. return bio;
  861. out_unmap:
  862. for (i = 0; i < nr_pages; i++) {
  863. if(!pages[i])
  864. break;
  865. page_cache_release(pages[i]);
  866. }
  867. out:
  868. kfree(pages);
  869. bio_put(bio);
  870. return ERR_PTR(ret);
  871. }
  872. /**
  873. * bio_map_user - map user address into bio
  874. * @q: the struct request_queue for the bio
  875. * @bdev: destination block device
  876. * @uaddr: start of user address
  877. * @len: length in bytes
  878. * @write_to_vm: bool indicating writing to pages or not
  879. * @gfp_mask: memory allocation flags
  880. *
  881. * Map the user space address into a bio suitable for io to a block
  882. * device. Returns an error pointer in case of error.
  883. */
  884. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  885. unsigned long uaddr, unsigned int len, int write_to_vm,
  886. gfp_t gfp_mask)
  887. {
  888. struct sg_iovec iov;
  889. iov.iov_base = (void __user *)uaddr;
  890. iov.iov_len = len;
  891. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  892. }
  893. /**
  894. * bio_map_user_iov - map user sg_iovec table into bio
  895. * @q: the struct request_queue for the bio
  896. * @bdev: destination block device
  897. * @iov: the iovec.
  898. * @iov_count: number of elements in the iovec
  899. * @write_to_vm: bool indicating writing to pages or not
  900. * @gfp_mask: memory allocation flags
  901. *
  902. * Map the user space address into a bio suitable for io to a block
  903. * device. Returns an error pointer in case of error.
  904. */
  905. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  906. struct sg_iovec *iov, int iov_count,
  907. int write_to_vm, gfp_t gfp_mask)
  908. {
  909. struct bio *bio;
  910. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  911. gfp_mask);
  912. if (IS_ERR(bio))
  913. return bio;
  914. /*
  915. * subtle -- if __bio_map_user() ended up bouncing a bio,
  916. * it would normally disappear when its bi_end_io is run.
  917. * however, we need it for the unmap, so grab an extra
  918. * reference to it
  919. */
  920. bio_get(bio);
  921. return bio;
  922. }
  923. static void __bio_unmap_user(struct bio *bio)
  924. {
  925. struct bio_vec *bvec;
  926. int i;
  927. /*
  928. * make sure we dirty pages we wrote to
  929. */
  930. __bio_for_each_segment(bvec, bio, i, 0) {
  931. if (bio_data_dir(bio) == READ)
  932. set_page_dirty_lock(bvec->bv_page);
  933. page_cache_release(bvec->bv_page);
  934. }
  935. bio_put(bio);
  936. }
  937. /**
  938. * bio_unmap_user - unmap a bio
  939. * @bio: the bio being unmapped
  940. *
  941. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  942. * a process context.
  943. *
  944. * bio_unmap_user() may sleep.
  945. */
  946. void bio_unmap_user(struct bio *bio)
  947. {
  948. __bio_unmap_user(bio);
  949. bio_put(bio);
  950. }
  951. static void bio_map_kern_endio(struct bio *bio, int err)
  952. {
  953. bio_put(bio);
  954. }
  955. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  956. unsigned int len, gfp_t gfp_mask)
  957. {
  958. unsigned long kaddr = (unsigned long)data;
  959. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  960. unsigned long start = kaddr >> PAGE_SHIFT;
  961. const int nr_pages = end - start;
  962. int offset, i;
  963. struct bio *bio;
  964. bio = bio_kmalloc(gfp_mask, nr_pages);
  965. if (!bio)
  966. return ERR_PTR(-ENOMEM);
  967. offset = offset_in_page(kaddr);
  968. for (i = 0; i < nr_pages; i++) {
  969. unsigned int bytes = PAGE_SIZE - offset;
  970. if (len <= 0)
  971. break;
  972. if (bytes > len)
  973. bytes = len;
  974. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  975. offset) < bytes)
  976. break;
  977. data += bytes;
  978. len -= bytes;
  979. offset = 0;
  980. }
  981. bio->bi_end_io = bio_map_kern_endio;
  982. return bio;
  983. }
  984. /**
  985. * bio_map_kern - map kernel address into bio
  986. * @q: the struct request_queue for the bio
  987. * @data: pointer to buffer to map
  988. * @len: length in bytes
  989. * @gfp_mask: allocation flags for bio allocation
  990. *
  991. * Map the kernel address into a bio suitable for io to a block
  992. * device. Returns an error pointer in case of error.
  993. */
  994. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  995. gfp_t gfp_mask)
  996. {
  997. struct bio *bio;
  998. bio = __bio_map_kern(q, data, len, gfp_mask);
  999. if (IS_ERR(bio))
  1000. return bio;
  1001. if (bio->bi_size == len)
  1002. return bio;
  1003. /*
  1004. * Don't support partial mappings.
  1005. */
  1006. bio_put(bio);
  1007. return ERR_PTR(-EINVAL);
  1008. }
  1009. static void bio_copy_kern_endio(struct bio *bio, int err)
  1010. {
  1011. struct bio_vec *bvec;
  1012. const int read = bio_data_dir(bio) == READ;
  1013. struct bio_map_data *bmd = bio->bi_private;
  1014. int i;
  1015. char *p = bmd->sgvecs[0].iov_base;
  1016. __bio_for_each_segment(bvec, bio, i, 0) {
  1017. char *addr = page_address(bvec->bv_page);
  1018. int len = bmd->iovecs[i].bv_len;
  1019. if (read)
  1020. memcpy(p, addr, len);
  1021. __free_page(bvec->bv_page);
  1022. p += len;
  1023. }
  1024. bio_free_map_data(bmd);
  1025. bio_put(bio);
  1026. }
  1027. /**
  1028. * bio_copy_kern - copy kernel address into bio
  1029. * @q: the struct request_queue for the bio
  1030. * @data: pointer to buffer to copy
  1031. * @len: length in bytes
  1032. * @gfp_mask: allocation flags for bio and page allocation
  1033. * @reading: data direction is READ
  1034. *
  1035. * copy the kernel address into a bio suitable for io to a block
  1036. * device. Returns an error pointer in case of error.
  1037. */
  1038. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1039. gfp_t gfp_mask, int reading)
  1040. {
  1041. struct bio *bio;
  1042. struct bio_vec *bvec;
  1043. int i;
  1044. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1045. if (IS_ERR(bio))
  1046. return bio;
  1047. if (!reading) {
  1048. void *p = data;
  1049. bio_for_each_segment(bvec, bio, i) {
  1050. char *addr = page_address(bvec->bv_page);
  1051. memcpy(addr, p, bvec->bv_len);
  1052. p += bvec->bv_len;
  1053. }
  1054. }
  1055. bio->bi_end_io = bio_copy_kern_endio;
  1056. return bio;
  1057. }
  1058. /*
  1059. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1060. * for performing direct-IO in BIOs.
  1061. *
  1062. * The problem is that we cannot run set_page_dirty() from interrupt context
  1063. * because the required locks are not interrupt-safe. So what we can do is to
  1064. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1065. * check that the pages are still dirty. If so, fine. If not, redirty them
  1066. * in process context.
  1067. *
  1068. * We special-case compound pages here: normally this means reads into hugetlb
  1069. * pages. The logic in here doesn't really work right for compound pages
  1070. * because the VM does not uniformly chase down the head page in all cases.
  1071. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1072. * handle them at all. So we skip compound pages here at an early stage.
  1073. *
  1074. * Note that this code is very hard to test under normal circumstances because
  1075. * direct-io pins the pages with get_user_pages(). This makes
  1076. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1077. * But other code (eg, pdflush) could clean the pages if they are mapped
  1078. * pagecache.
  1079. *
  1080. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1081. * deferred bio dirtying paths.
  1082. */
  1083. /*
  1084. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1085. */
  1086. void bio_set_pages_dirty(struct bio *bio)
  1087. {
  1088. struct bio_vec *bvec = bio->bi_io_vec;
  1089. int i;
  1090. for (i = 0; i < bio->bi_vcnt; i++) {
  1091. struct page *page = bvec[i].bv_page;
  1092. if (page && !PageCompound(page))
  1093. set_page_dirty_lock(page);
  1094. }
  1095. }
  1096. static void bio_release_pages(struct bio *bio)
  1097. {
  1098. struct bio_vec *bvec = bio->bi_io_vec;
  1099. int i;
  1100. for (i = 0; i < bio->bi_vcnt; i++) {
  1101. struct page *page = bvec[i].bv_page;
  1102. if (page)
  1103. put_page(page);
  1104. }
  1105. }
  1106. /*
  1107. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1108. * If they are, then fine. If, however, some pages are clean then they must
  1109. * have been written out during the direct-IO read. So we take another ref on
  1110. * the BIO and the offending pages and re-dirty the pages in process context.
  1111. *
  1112. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1113. * here on. It will run one page_cache_release() against each page and will
  1114. * run one bio_put() against the BIO.
  1115. */
  1116. static void bio_dirty_fn(struct work_struct *work);
  1117. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1118. static DEFINE_SPINLOCK(bio_dirty_lock);
  1119. static struct bio *bio_dirty_list;
  1120. /*
  1121. * This runs in process context
  1122. */
  1123. static void bio_dirty_fn(struct work_struct *work)
  1124. {
  1125. unsigned long flags;
  1126. struct bio *bio;
  1127. spin_lock_irqsave(&bio_dirty_lock, flags);
  1128. bio = bio_dirty_list;
  1129. bio_dirty_list = NULL;
  1130. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1131. while (bio) {
  1132. struct bio *next = bio->bi_private;
  1133. bio_set_pages_dirty(bio);
  1134. bio_release_pages(bio);
  1135. bio_put(bio);
  1136. bio = next;
  1137. }
  1138. }
  1139. void bio_check_pages_dirty(struct bio *bio)
  1140. {
  1141. struct bio_vec *bvec = bio->bi_io_vec;
  1142. int nr_clean_pages = 0;
  1143. int i;
  1144. for (i = 0; i < bio->bi_vcnt; i++) {
  1145. struct page *page = bvec[i].bv_page;
  1146. if (PageDirty(page) || PageCompound(page)) {
  1147. page_cache_release(page);
  1148. bvec[i].bv_page = NULL;
  1149. } else {
  1150. nr_clean_pages++;
  1151. }
  1152. }
  1153. if (nr_clean_pages) {
  1154. unsigned long flags;
  1155. spin_lock_irqsave(&bio_dirty_lock, flags);
  1156. bio->bi_private = bio_dirty_list;
  1157. bio_dirty_list = bio;
  1158. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1159. schedule_work(&bio_dirty_work);
  1160. } else {
  1161. bio_put(bio);
  1162. }
  1163. }
  1164. /**
  1165. * bio_endio - end I/O on a bio
  1166. * @bio: bio
  1167. * @error: error, if any
  1168. *
  1169. * Description:
  1170. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1171. * preferred way to end I/O on a bio, it takes care of clearing
  1172. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1173. * established -Exxxx (-EIO, for instance) error values in case
  1174. * something went wrong. Noone should call bi_end_io() directly on a
  1175. * bio unless they own it and thus know that it has an end_io
  1176. * function.
  1177. **/
  1178. void bio_endio(struct bio *bio, int error)
  1179. {
  1180. if (error)
  1181. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1182. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1183. error = -EIO;
  1184. if (bio->bi_end_io)
  1185. bio->bi_end_io(bio, error);
  1186. }
  1187. void bio_pair_release(struct bio_pair *bp)
  1188. {
  1189. if (atomic_dec_and_test(&bp->cnt)) {
  1190. struct bio *master = bp->bio1.bi_private;
  1191. bio_endio(master, bp->error);
  1192. mempool_free(bp, bp->bio2.bi_private);
  1193. }
  1194. }
  1195. static void bio_pair_end_1(struct bio *bi, int err)
  1196. {
  1197. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1198. if (err)
  1199. bp->error = err;
  1200. bio_pair_release(bp);
  1201. }
  1202. static void bio_pair_end_2(struct bio *bi, int err)
  1203. {
  1204. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1205. if (err)
  1206. bp->error = err;
  1207. bio_pair_release(bp);
  1208. }
  1209. /*
  1210. * split a bio - only worry about a bio with a single page in its iovec
  1211. */
  1212. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1213. {
  1214. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1215. if (!bp)
  1216. return bp;
  1217. trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
  1218. bi->bi_sector + first_sectors);
  1219. BUG_ON(bi->bi_vcnt != 1);
  1220. BUG_ON(bi->bi_idx != 0);
  1221. atomic_set(&bp->cnt, 3);
  1222. bp->error = 0;
  1223. bp->bio1 = *bi;
  1224. bp->bio2 = *bi;
  1225. bp->bio2.bi_sector += first_sectors;
  1226. bp->bio2.bi_size -= first_sectors << 9;
  1227. bp->bio1.bi_size = first_sectors << 9;
  1228. bp->bv1 = bi->bi_io_vec[0];
  1229. bp->bv2 = bi->bi_io_vec[0];
  1230. bp->bv2.bv_offset += first_sectors << 9;
  1231. bp->bv2.bv_len -= first_sectors << 9;
  1232. bp->bv1.bv_len = first_sectors << 9;
  1233. bp->bio1.bi_io_vec = &bp->bv1;
  1234. bp->bio2.bi_io_vec = &bp->bv2;
  1235. bp->bio1.bi_max_vecs = 1;
  1236. bp->bio2.bi_max_vecs = 1;
  1237. bp->bio1.bi_end_io = bio_pair_end_1;
  1238. bp->bio2.bi_end_io = bio_pair_end_2;
  1239. bp->bio1.bi_private = bi;
  1240. bp->bio2.bi_private = bio_split_pool;
  1241. if (bio_integrity(bi))
  1242. bio_integrity_split(bi, bp, first_sectors);
  1243. return bp;
  1244. }
  1245. /**
  1246. * bio_sector_offset - Find hardware sector offset in bio
  1247. * @bio: bio to inspect
  1248. * @index: bio_vec index
  1249. * @offset: offset in bv_page
  1250. *
  1251. * Return the number of hardware sectors between beginning of bio
  1252. * and an end point indicated by a bio_vec index and an offset
  1253. * within that vector's page.
  1254. */
  1255. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1256. unsigned int offset)
  1257. {
  1258. unsigned int sector_sz;
  1259. struct bio_vec *bv;
  1260. sector_t sectors;
  1261. int i;
  1262. sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
  1263. sectors = 0;
  1264. if (index >= bio->bi_idx)
  1265. index = bio->bi_vcnt - 1;
  1266. __bio_for_each_segment(bv, bio, i, 0) {
  1267. if (i == index) {
  1268. if (offset > bv->bv_offset)
  1269. sectors += (offset - bv->bv_offset) / sector_sz;
  1270. break;
  1271. }
  1272. sectors += bv->bv_len / sector_sz;
  1273. }
  1274. return sectors;
  1275. }
  1276. EXPORT_SYMBOL(bio_sector_offset);
  1277. /*
  1278. * create memory pools for biovec's in a bio_set.
  1279. * use the global biovec slabs created for general use.
  1280. */
  1281. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1282. {
  1283. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1284. bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
  1285. if (!bs->bvec_pool)
  1286. return -ENOMEM;
  1287. return 0;
  1288. }
  1289. static void biovec_free_pools(struct bio_set *bs)
  1290. {
  1291. mempool_destroy(bs->bvec_pool);
  1292. }
  1293. void bioset_free(struct bio_set *bs)
  1294. {
  1295. if (bs->bio_pool)
  1296. mempool_destroy(bs->bio_pool);
  1297. biovec_free_pools(bs);
  1298. bio_put_slab(bs);
  1299. kfree(bs);
  1300. }
  1301. /**
  1302. * bioset_create - Create a bio_set
  1303. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1304. * @front_pad: Number of bytes to allocate in front of the returned bio
  1305. *
  1306. * Description:
  1307. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1308. * to ask for a number of bytes to be allocated in front of the bio.
  1309. * Front pad allocation is useful for embedding the bio inside
  1310. * another structure, to avoid allocating extra data to go with the bio.
  1311. * Note that the bio must be embedded at the END of that structure always,
  1312. * or things will break badly.
  1313. */
  1314. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1315. {
  1316. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1317. struct bio_set *bs;
  1318. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1319. if (!bs)
  1320. return NULL;
  1321. bs->front_pad = front_pad;
  1322. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1323. if (!bs->bio_slab) {
  1324. kfree(bs);
  1325. return NULL;
  1326. }
  1327. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1328. if (!bs->bio_pool)
  1329. goto bad;
  1330. if (!biovec_create_pools(bs, pool_size))
  1331. return bs;
  1332. bad:
  1333. bioset_free(bs);
  1334. return NULL;
  1335. }
  1336. static void __init biovec_init_slabs(void)
  1337. {
  1338. int i;
  1339. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1340. int size;
  1341. struct biovec_slab *bvs = bvec_slabs + i;
  1342. #ifndef CONFIG_BLK_DEV_INTEGRITY
  1343. if (bvs->nr_vecs <= BIO_INLINE_VECS) {
  1344. bvs->slab = NULL;
  1345. continue;
  1346. }
  1347. #endif
  1348. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1349. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1350. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1351. }
  1352. }
  1353. static int __init init_bio(void)
  1354. {
  1355. bio_slab_max = 2;
  1356. bio_slab_nr = 0;
  1357. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1358. if (!bio_slabs)
  1359. panic("bio: can't allocate bios\n");
  1360. biovec_init_slabs();
  1361. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1362. if (!fs_bio_set)
  1363. panic("bio: can't allocate bios\n");
  1364. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1365. sizeof(struct bio_pair));
  1366. if (!bio_split_pool)
  1367. panic("bio: can't create split pool\n");
  1368. return 0;
  1369. }
  1370. subsys_initcall(init_bio);
  1371. EXPORT_SYMBOL(bio_alloc);
  1372. EXPORT_SYMBOL(bio_kmalloc);
  1373. EXPORT_SYMBOL(bio_put);
  1374. EXPORT_SYMBOL(bio_free);
  1375. EXPORT_SYMBOL(bio_endio);
  1376. EXPORT_SYMBOL(bio_init);
  1377. EXPORT_SYMBOL(__bio_clone);
  1378. EXPORT_SYMBOL(bio_clone);
  1379. EXPORT_SYMBOL(bio_phys_segments);
  1380. EXPORT_SYMBOL(bio_add_page);
  1381. EXPORT_SYMBOL(bio_add_pc_page);
  1382. EXPORT_SYMBOL(bio_get_nr_vecs);
  1383. EXPORT_SYMBOL(bio_map_user);
  1384. EXPORT_SYMBOL(bio_unmap_user);
  1385. EXPORT_SYMBOL(bio_map_kern);
  1386. EXPORT_SYMBOL(bio_copy_kern);
  1387. EXPORT_SYMBOL(bio_pair_release);
  1388. EXPORT_SYMBOL(bio_split);
  1389. EXPORT_SYMBOL(bio_copy_user);
  1390. EXPORT_SYMBOL(bio_uncopy_user);
  1391. EXPORT_SYMBOL(bioset_create);
  1392. EXPORT_SYMBOL(bioset_free);
  1393. EXPORT_SYMBOL(bio_alloc_bioset);