rt2800pci.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2800pci
  19. Abstract: rt2800pci device specific routines.
  20. Supported chipsets: RT2800E & RT2800ED.
  21. */
  22. #include <linux/crc-ccitt.h>
  23. #include <linux/delay.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/pci.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/eeprom_93cx6.h>
  31. #include "rt2x00.h"
  32. #include "rt2x00pci.h"
  33. #include "rt2x00soc.h"
  34. #include "rt2800lib.h"
  35. #include "rt2800.h"
  36. #include "rt2800pci.h"
  37. #ifdef CONFIG_RT2800PCI_PCI_MODULE
  38. #define CONFIG_RT2800PCI_PCI
  39. #endif
  40. #ifdef CONFIG_RT2800PCI_WISOC_MODULE
  41. #define CONFIG_RT2800PCI_WISOC
  42. #endif
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 1;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. for (i = 0; i < 200; i++) {
  54. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  55. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  56. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  57. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  58. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  59. break;
  60. udelay(REGISTER_BUSY_DELAY);
  61. }
  62. if (i == 200)
  63. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  64. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  65. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  66. }
  67. #ifdef CONFIG_RT2800PCI_WISOC
  68. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  69. {
  70. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  71. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  72. }
  73. #else
  74. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  75. {
  76. }
  77. #endif /* CONFIG_RT2800PCI_WISOC */
  78. #ifdef CONFIG_RT2800PCI_PCI
  79. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  80. {
  81. struct rt2x00_dev *rt2x00dev = eeprom->data;
  82. u32 reg;
  83. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  84. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  85. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  86. eeprom->reg_data_clock =
  87. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  88. eeprom->reg_chip_select =
  89. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  90. }
  91. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  92. {
  93. struct rt2x00_dev *rt2x00dev = eeprom->data;
  94. u32 reg = 0;
  95. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  96. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  97. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  98. !!eeprom->reg_data_clock);
  99. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  100. !!eeprom->reg_chip_select);
  101. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  102. }
  103. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  104. {
  105. struct eeprom_93cx6 eeprom;
  106. u32 reg;
  107. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  108. eeprom.data = rt2x00dev;
  109. eeprom.register_read = rt2800pci_eepromregister_read;
  110. eeprom.register_write = rt2800pci_eepromregister_write;
  111. eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
  112. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  113. eeprom.reg_data_in = 0;
  114. eeprom.reg_data_out = 0;
  115. eeprom.reg_data_clock = 0;
  116. eeprom.reg_chip_select = 0;
  117. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  118. EEPROM_SIZE / sizeof(u16));
  119. }
  120. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  121. {
  122. u32 reg;
  123. rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
  124. return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
  125. }
  126. static void rt2800pci_efuse_read(struct rt2x00_dev *rt2x00dev,
  127. unsigned int i)
  128. {
  129. u32 reg;
  130. rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
  131. rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
  132. rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
  133. rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
  134. rt2800_register_write(rt2x00dev, EFUSE_CTRL, reg);
  135. /* Wait until the EEPROM has been loaded */
  136. rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
  137. /* Apparently the data is read from end to start */
  138. rt2800_register_read(rt2x00dev, EFUSE_DATA3,
  139. (u32 *)&rt2x00dev->eeprom[i]);
  140. rt2800_register_read(rt2x00dev, EFUSE_DATA2,
  141. (u32 *)&rt2x00dev->eeprom[i + 2]);
  142. rt2800_register_read(rt2x00dev, EFUSE_DATA1,
  143. (u32 *)&rt2x00dev->eeprom[i + 4]);
  144. rt2800_register_read(rt2x00dev, EFUSE_DATA0,
  145. (u32 *)&rt2x00dev->eeprom[i + 6]);
  146. }
  147. static void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  148. {
  149. unsigned int i;
  150. for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
  151. rt2800pci_efuse_read(rt2x00dev, i);
  152. }
  153. #else
  154. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  155. {
  156. }
  157. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  158. {
  159. return 0;
  160. }
  161. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  162. {
  163. }
  164. #endif /* CONFIG_RT2800PCI_PCI */
  165. /*
  166. * Firmware functions
  167. */
  168. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  169. {
  170. return FIRMWARE_RT2860;
  171. }
  172. static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  173. const u8 *data, const size_t len)
  174. {
  175. u16 fw_crc;
  176. u16 crc;
  177. /*
  178. * Only support 8kb firmware files.
  179. */
  180. if (len != 8192)
  181. return FW_BAD_LENGTH;
  182. /*
  183. * The last 2 bytes in the firmware array are the crc checksum itself,
  184. * this means that we should never pass those 2 bytes to the crc
  185. * algorithm.
  186. */
  187. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  188. /*
  189. * Use the crc ccitt algorithm.
  190. * This will return the same value as the legacy driver which
  191. * used bit ordering reversion on the both the firmware bytes
  192. * before input input as well as on the final output.
  193. * Obviously using crc ccitt directly is much more efficient.
  194. */
  195. crc = crc_ccitt(~0, data, len - 2);
  196. /*
  197. * There is a small difference between the crc-itu-t + bitrev and
  198. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  199. * will be swapped, use swab16 to convert the crc to the correct
  200. * value.
  201. */
  202. crc = swab16(crc);
  203. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  204. }
  205. static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  206. const u8 *data, const size_t len)
  207. {
  208. unsigned int i;
  209. u32 reg;
  210. /*
  211. * Wait for stable hardware.
  212. */
  213. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  214. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  215. if (reg && reg != ~0)
  216. break;
  217. msleep(1);
  218. }
  219. if (i == REGISTER_BUSY_COUNT) {
  220. ERROR(rt2x00dev, "Unstable hardware.\n");
  221. return -EBUSY;
  222. }
  223. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  224. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  225. /*
  226. * Disable DMA, will be reenabled later when enabling
  227. * the radio.
  228. */
  229. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  230. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  231. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  232. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  233. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  234. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  235. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  236. /*
  237. * enable Host program ram write selection
  238. */
  239. reg = 0;
  240. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  241. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  242. /*
  243. * Write firmware to device.
  244. */
  245. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  246. data, len);
  247. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  248. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  249. /*
  250. * Wait for device to stabilize.
  251. */
  252. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  253. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  254. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  255. break;
  256. msleep(1);
  257. }
  258. if (i == REGISTER_BUSY_COUNT) {
  259. ERROR(rt2x00dev, "PBF system register not ready.\n");
  260. return -EBUSY;
  261. }
  262. /*
  263. * Disable interrupts
  264. */
  265. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  266. /*
  267. * Initialize BBP R/W access agent
  268. */
  269. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  270. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  271. return 0;
  272. }
  273. /*
  274. * Initialization functions.
  275. */
  276. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  277. {
  278. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  279. u32 word;
  280. if (entry->queue->qid == QID_RX) {
  281. rt2x00_desc_read(entry_priv->desc, 1, &word);
  282. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  283. } else {
  284. rt2x00_desc_read(entry_priv->desc, 1, &word);
  285. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  286. }
  287. }
  288. static void rt2800pci_clear_entry(struct queue_entry *entry)
  289. {
  290. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  291. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  292. u32 word;
  293. if (entry->queue->qid == QID_RX) {
  294. rt2x00_desc_read(entry_priv->desc, 0, &word);
  295. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  296. rt2x00_desc_write(entry_priv->desc, 0, word);
  297. rt2x00_desc_read(entry_priv->desc, 1, &word);
  298. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  299. rt2x00_desc_write(entry_priv->desc, 1, word);
  300. } else {
  301. rt2x00_desc_read(entry_priv->desc, 1, &word);
  302. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  303. rt2x00_desc_write(entry_priv->desc, 1, word);
  304. }
  305. }
  306. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  307. {
  308. struct queue_entry_priv_pci *entry_priv;
  309. u32 reg;
  310. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  311. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  312. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  313. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  314. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  315. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  316. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  317. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  318. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  319. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  320. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  321. /*
  322. * Initialize registers.
  323. */
  324. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  325. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  326. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  327. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  328. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  329. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  330. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  331. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  332. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  333. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  334. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  335. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  336. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  337. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  338. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  339. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  340. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  341. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  342. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  343. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  344. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  345. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  346. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  347. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  348. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  349. /*
  350. * Enable global DMA configuration
  351. */
  352. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  353. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  354. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  355. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  356. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  357. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  358. return 0;
  359. }
  360. /*
  361. * Device state switch handlers.
  362. */
  363. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  364. enum dev_state state)
  365. {
  366. u32 reg;
  367. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  368. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  369. (state == STATE_RADIO_RX_ON) ||
  370. (state == STATE_RADIO_RX_ON_LINK));
  371. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  372. }
  373. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  374. enum dev_state state)
  375. {
  376. int mask = (state == STATE_RADIO_IRQ_ON);
  377. u32 reg;
  378. /*
  379. * When interrupts are being enabled, the interrupt registers
  380. * should clear the register to assure a clean state.
  381. */
  382. if (state == STATE_RADIO_IRQ_ON) {
  383. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  384. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  385. }
  386. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  387. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  388. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  389. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  390. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  391. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  392. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  393. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  394. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  395. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  396. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  397. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  398. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  399. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  400. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  401. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  402. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  403. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  404. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  405. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  406. }
  407. static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
  408. {
  409. unsigned int i;
  410. u32 reg;
  411. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  412. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  413. if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
  414. !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
  415. return 0;
  416. msleep(1);
  417. }
  418. ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
  419. return -EACCES;
  420. }
  421. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  422. {
  423. u32 reg;
  424. u16 word;
  425. /*
  426. * Initialize all registers.
  427. */
  428. if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  429. rt2800pci_init_queues(rt2x00dev) ||
  430. rt2800_init_registers(rt2x00dev) ||
  431. rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  432. rt2800_init_bbp(rt2x00dev) ||
  433. rt2800_init_rfcsr(rt2x00dev)))
  434. return -EIO;
  435. /*
  436. * Send signal to firmware during boot time.
  437. */
  438. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
  439. /*
  440. * Enable RX.
  441. */
  442. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  443. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  444. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  445. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  446. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  447. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  448. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  449. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  450. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  451. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  452. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  453. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  454. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  455. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  456. /*
  457. * Initialize LED control
  458. */
  459. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  460. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  461. word & 0xff, (word >> 8) & 0xff);
  462. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  463. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  464. word & 0xff, (word >> 8) & 0xff);
  465. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  466. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  467. word & 0xff, (word >> 8) & 0xff);
  468. return 0;
  469. }
  470. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  471. {
  472. u32 reg;
  473. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  474. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  475. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  476. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  477. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  478. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  479. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  480. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  481. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  482. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  483. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  484. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  485. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  486. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  487. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  488. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  489. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  490. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  491. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  492. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  493. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  494. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  495. /* Wait for DMA, ignore error */
  496. rt2800pci_wait_wpdma_ready(rt2x00dev);
  497. }
  498. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  499. enum dev_state state)
  500. {
  501. /*
  502. * Always put the device to sleep (even when we intend to wakeup!)
  503. * if the device is booting and wasn't asleep it will return
  504. * failure when attempting to wakeup.
  505. */
  506. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  507. if (state == STATE_AWAKE) {
  508. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  509. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  510. }
  511. return 0;
  512. }
  513. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  514. enum dev_state state)
  515. {
  516. int retval = 0;
  517. switch (state) {
  518. case STATE_RADIO_ON:
  519. /*
  520. * Before the radio can be enabled, the device first has
  521. * to be woken up. After that it needs a bit of time
  522. * to be fully awake and then the radio can be enabled.
  523. */
  524. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  525. msleep(1);
  526. retval = rt2800pci_enable_radio(rt2x00dev);
  527. break;
  528. case STATE_RADIO_OFF:
  529. /*
  530. * After the radio has been disabled, the device should
  531. * be put to sleep for powersaving.
  532. */
  533. rt2800pci_disable_radio(rt2x00dev);
  534. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  535. break;
  536. case STATE_RADIO_RX_ON:
  537. case STATE_RADIO_RX_ON_LINK:
  538. case STATE_RADIO_RX_OFF:
  539. case STATE_RADIO_RX_OFF_LINK:
  540. rt2800pci_toggle_rx(rt2x00dev, state);
  541. break;
  542. case STATE_RADIO_IRQ_ON:
  543. case STATE_RADIO_IRQ_OFF:
  544. rt2800pci_toggle_irq(rt2x00dev, state);
  545. break;
  546. case STATE_DEEP_SLEEP:
  547. case STATE_SLEEP:
  548. case STATE_STANDBY:
  549. case STATE_AWAKE:
  550. retval = rt2800pci_set_state(rt2x00dev, state);
  551. break;
  552. default:
  553. retval = -ENOTSUPP;
  554. break;
  555. }
  556. if (unlikely(retval))
  557. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  558. state, retval);
  559. return retval;
  560. }
  561. /*
  562. * TX descriptor initialization
  563. */
  564. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  565. struct sk_buff *skb,
  566. struct txentry_desc *txdesc)
  567. {
  568. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  569. __le32 *txd = skbdesc->desc;
  570. __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->hw->extra_tx_headroom);
  571. u32 word;
  572. /*
  573. * Initialize TX Info descriptor
  574. */
  575. rt2x00_desc_read(txwi, 0, &word);
  576. rt2x00_set_field32(&word, TXWI_W0_FRAG,
  577. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  578. rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
  579. rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
  580. rt2x00_set_field32(&word, TXWI_W0_TS,
  581. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  582. rt2x00_set_field32(&word, TXWI_W0_AMPDU,
  583. test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
  584. rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
  585. rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
  586. rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
  587. rt2x00_set_field32(&word, TXWI_W0_BW,
  588. test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
  589. rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
  590. test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
  591. rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
  592. rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
  593. rt2x00_desc_write(txwi, 0, word);
  594. rt2x00_desc_read(txwi, 1, &word);
  595. rt2x00_set_field32(&word, TXWI_W1_ACK,
  596. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  597. rt2x00_set_field32(&word, TXWI_W1_NSEQ,
  598. test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
  599. rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
  600. rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
  601. test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
  602. txdesc->key_idx : 0xff);
  603. rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
  604. skb->len - txdesc->l2pad);
  605. rt2x00_set_field32(&word, TXWI_W1_PACKETID,
  606. skbdesc->entry->queue->qid + 1);
  607. rt2x00_desc_write(txwi, 1, word);
  608. /*
  609. * Always write 0 to IV/EIV fields, hardware will insert the IV
  610. * from the IVEIV register when TXD_W3_WIV is set to 0.
  611. * When TXD_W3_WIV is set to 1 it will use the IV data
  612. * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
  613. * crypto entry in the registers should be used to encrypt the frame.
  614. */
  615. _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
  616. _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
  617. /*
  618. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  619. * must contains a TXWI structure + 802.11 header + padding + 802.11
  620. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  621. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  622. * data. It means that LAST_SEC0 is always 0.
  623. */
  624. /*
  625. * Initialize TX descriptor
  626. */
  627. rt2x00_desc_read(txd, 0, &word);
  628. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  629. rt2x00_desc_write(txd, 0, word);
  630. rt2x00_desc_read(txd, 1, &word);
  631. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  632. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  633. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  634. rt2x00_set_field32(&word, TXD_W1_BURST,
  635. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  636. rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
  637. rt2x00dev->hw->extra_tx_headroom);
  638. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  639. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  640. rt2x00_desc_write(txd, 1, word);
  641. rt2x00_desc_read(txd, 2, &word);
  642. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  643. skbdesc->skb_dma + rt2x00dev->hw->extra_tx_headroom);
  644. rt2x00_desc_write(txd, 2, word);
  645. rt2x00_desc_read(txd, 3, &word);
  646. rt2x00_set_field32(&word, TXD_W3_WIV,
  647. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  648. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  649. rt2x00_desc_write(txd, 3, word);
  650. }
  651. /*
  652. * TX data initialization
  653. */
  654. static void rt2800pci_write_beacon(struct queue_entry *entry)
  655. {
  656. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  657. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  658. unsigned int beacon_base;
  659. u32 reg;
  660. /*
  661. * Disable beaconing while we are reloading the beacon data,
  662. * otherwise we might be sending out invalid data.
  663. */
  664. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  665. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  666. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  667. /*
  668. * Write entire beacon with descriptor to register.
  669. */
  670. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  671. rt2800_register_multiwrite(rt2x00dev,
  672. beacon_base,
  673. skbdesc->desc, skbdesc->desc_len);
  674. rt2800_register_multiwrite(rt2x00dev,
  675. beacon_base + skbdesc->desc_len,
  676. entry->skb->data, entry->skb->len);
  677. /*
  678. * Clean up beacon skb.
  679. */
  680. dev_kfree_skb_any(entry->skb);
  681. entry->skb = NULL;
  682. }
  683. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  684. const enum data_queue_qid queue_idx)
  685. {
  686. struct data_queue *queue;
  687. unsigned int idx, qidx = 0;
  688. u32 reg;
  689. if (queue_idx == QID_BEACON) {
  690. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  691. if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
  692. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  693. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  694. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  695. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  696. }
  697. return;
  698. }
  699. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  700. return;
  701. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  702. idx = queue->index[Q_INDEX];
  703. if (queue_idx == QID_MGMT)
  704. qidx = 5;
  705. else
  706. qidx = queue_idx;
  707. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  708. }
  709. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  710. const enum data_queue_qid qid)
  711. {
  712. u32 reg;
  713. if (qid == QID_BEACON) {
  714. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  715. return;
  716. }
  717. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  718. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  719. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  720. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  721. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  722. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  723. }
  724. /*
  725. * RX control handlers
  726. */
  727. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  728. struct rxdone_entry_desc *rxdesc)
  729. {
  730. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  731. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  732. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  733. __le32 *rxd = entry_priv->desc;
  734. __le32 *rxwi = (__le32 *)entry->skb->data;
  735. u32 rxd3;
  736. u32 rxwi0;
  737. u32 rxwi1;
  738. u32 rxwi2;
  739. u32 rxwi3;
  740. rt2x00_desc_read(rxd, 3, &rxd3);
  741. rt2x00_desc_read(rxwi, 0, &rxwi0);
  742. rt2x00_desc_read(rxwi, 1, &rxwi1);
  743. rt2x00_desc_read(rxwi, 2, &rxwi2);
  744. rt2x00_desc_read(rxwi, 3, &rxwi3);
  745. if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
  746. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  747. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  748. /*
  749. * Unfortunately we don't know the cipher type used during
  750. * decryption. This prevents us from correct providing
  751. * correct statistics through debugfs.
  752. */
  753. rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
  754. rxdesc->cipher_status =
  755. rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
  756. }
  757. if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
  758. /*
  759. * Hardware has stripped IV/EIV data from 802.11 frame during
  760. * decryption. Unfortunately the descriptor doesn't contain
  761. * any fields with the EIV/IV data either, so they can't
  762. * be restored by rt2x00lib.
  763. */
  764. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  765. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  766. rxdesc->flags |= RX_FLAG_DECRYPTED;
  767. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  768. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  769. }
  770. if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
  771. rxdesc->dev_flags |= RXDONE_MY_BSS;
  772. if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD)) {
  773. rxdesc->dev_flags |= RXDONE_L2PAD;
  774. skbdesc->flags |= SKBDESC_L2_PADDED;
  775. }
  776. if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
  777. rxdesc->flags |= RX_FLAG_SHORT_GI;
  778. if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
  779. rxdesc->flags |= RX_FLAG_40MHZ;
  780. /*
  781. * Detect RX rate, always use MCS as signal type.
  782. */
  783. rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
  784. rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
  785. rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
  786. /*
  787. * Mask of 0x8 bit to remove the short preamble flag.
  788. */
  789. if (rxdesc->rate_mode == RATE_MODE_CCK)
  790. rxdesc->signal &= ~0x8;
  791. rxdesc->rssi =
  792. (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
  793. rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
  794. rxdesc->noise =
  795. (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
  796. rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
  797. rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
  798. /*
  799. * Set RX IDX in register to inform hardware that we have handled
  800. * this entry and it is available for reuse again.
  801. */
  802. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  803. /*
  804. * Remove TXWI descriptor from start of buffer.
  805. */
  806. skb_pull(entry->skb, RXWI_DESC_SIZE);
  807. skb_trim(entry->skb, rxdesc->size);
  808. }
  809. /*
  810. * Interrupt functions.
  811. */
  812. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  813. {
  814. struct data_queue *queue;
  815. struct queue_entry *entry;
  816. struct queue_entry *entry_done;
  817. struct queue_entry_priv_pci *entry_priv;
  818. struct txdone_entry_desc txdesc;
  819. u32 word;
  820. u32 reg;
  821. u32 old_reg;
  822. unsigned int type;
  823. unsigned int index;
  824. u16 mcs, real_mcs;
  825. /*
  826. * During each loop we will compare the freshly read
  827. * TX_STA_FIFO register value with the value read from
  828. * the previous loop. If the 2 values are equal then
  829. * we should stop processing because the chance it
  830. * quite big that the device has been unplugged and
  831. * we risk going into an endless loop.
  832. */
  833. old_reg = 0;
  834. while (1) {
  835. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  836. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  837. break;
  838. if (old_reg == reg)
  839. break;
  840. old_reg = reg;
  841. /*
  842. * Skip this entry when it contains an invalid
  843. * queue identication number.
  844. */
  845. type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1;
  846. if (type >= QID_RX)
  847. continue;
  848. queue = rt2x00queue_get_queue(rt2x00dev, type);
  849. if (unlikely(!queue))
  850. continue;
  851. /*
  852. * Skip this entry when it contains an invalid
  853. * index number.
  854. */
  855. index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1;
  856. if (unlikely(index >= queue->limit))
  857. continue;
  858. entry = &queue->entries[index];
  859. entry_priv = entry->priv_data;
  860. rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word);
  861. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  862. while (entry != entry_done) {
  863. /*
  864. * Catch up.
  865. * Just report any entries we missed as failed.
  866. */
  867. WARNING(rt2x00dev,
  868. "TX status report missed for entry %d\n",
  869. entry_done->entry_idx);
  870. txdesc.flags = 0;
  871. __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
  872. txdesc.retry = 0;
  873. rt2x00lib_txdone(entry_done, &txdesc);
  874. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  875. }
  876. /*
  877. * Obtain the status about this packet.
  878. */
  879. txdesc.flags = 0;
  880. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS))
  881. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  882. else
  883. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  884. /*
  885. * Ralink has a retry mechanism using a global fallback
  886. * table. We setup this fallback table to try immediate
  887. * lower rate for all rates. In the TX_STA_FIFO,
  888. * the MCS field contains the MCS used for the successfull
  889. * transmission. If the first transmission succeed,
  890. * we have mcs == tx_mcs. On the second transmission,
  891. * we have mcs = tx_mcs - 1. So the number of
  892. * retry is (tx_mcs - mcs).
  893. */
  894. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  895. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  896. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  897. txdesc.retry = mcs - min(mcs, real_mcs);
  898. rt2x00lib_txdone(entry, &txdesc);
  899. }
  900. }
  901. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  902. {
  903. struct rt2x00_dev *rt2x00dev = dev_instance;
  904. u32 reg;
  905. /* Read status and ACK all interrupts */
  906. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  907. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  908. if (!reg)
  909. return IRQ_NONE;
  910. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  911. return IRQ_HANDLED;
  912. /*
  913. * 1 - Rx ring done interrupt.
  914. */
  915. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  916. rt2x00pci_rxdone(rt2x00dev);
  917. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  918. rt2800pci_txdone(rt2x00dev);
  919. return IRQ_HANDLED;
  920. }
  921. /*
  922. * Device probe functions.
  923. */
  924. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  925. {
  926. u16 word;
  927. u8 *mac;
  928. u8 default_lna_gain;
  929. /*
  930. * Read EEPROM into buffer
  931. */
  932. switch(rt2x00dev->chip.rt) {
  933. case RT2880:
  934. case RT3052:
  935. rt2800pci_read_eeprom_soc(rt2x00dev);
  936. break;
  937. default:
  938. if (rt2800pci_efuse_detect(rt2x00dev))
  939. rt2800pci_read_eeprom_efuse(rt2x00dev);
  940. else
  941. rt2800pci_read_eeprom_pci(rt2x00dev);
  942. break;
  943. }
  944. /*
  945. * Start validation of the data that has been read.
  946. */
  947. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  948. if (!is_valid_ether_addr(mac)) {
  949. random_ether_addr(mac);
  950. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  951. }
  952. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  953. if (word == 0xffff) {
  954. rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
  955. rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1);
  956. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
  957. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  958. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  959. } else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) {
  960. /*
  961. * There is a max of 2 RX streams for RT2860 series
  962. */
  963. if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
  964. rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
  965. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  966. }
  967. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  968. if (word == 0xffff) {
  969. rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0);
  970. rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0);
  971. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
  972. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
  973. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  974. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0);
  975. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0);
  976. rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0);
  977. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0);
  978. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0);
  979. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  980. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  981. }
  982. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
  983. if ((word & 0x00ff) == 0x00ff) {
  984. rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
  985. rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
  986. LED_MODE_TXRX_ACTIVITY);
  987. rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
  988. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  989. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555);
  990. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221);
  991. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8);
  992. EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
  993. }
  994. /*
  995. * During the LNA validation we are going to use
  996. * lna0 as correct value. Note that EEPROM_LNA
  997. * is never validated.
  998. */
  999. rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
  1000. default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
  1001. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
  1002. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
  1003. rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
  1004. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
  1005. rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
  1006. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
  1007. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
  1008. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
  1009. rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
  1010. if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
  1011. rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
  1012. rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
  1013. default_lna_gain);
  1014. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
  1015. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
  1016. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
  1017. rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
  1018. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
  1019. rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
  1020. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
  1021. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
  1022. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
  1023. rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
  1024. if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
  1025. rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
  1026. rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
  1027. default_lna_gain);
  1028. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
  1029. return 0;
  1030. }
  1031. static int rt2800pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1032. {
  1033. u32 reg;
  1034. u16 value;
  1035. u16 eeprom;
  1036. /*
  1037. * Read EEPROM word for configuration.
  1038. */
  1039. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1040. /*
  1041. * Identify RF chipset.
  1042. */
  1043. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1044. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  1045. rt2x00_set_chip_rf(rt2x00dev, value, reg);
  1046. if (!rt2x00_rf(&rt2x00dev->chip, RF2820) &&
  1047. !rt2x00_rf(&rt2x00dev->chip, RF2850) &&
  1048. !rt2x00_rf(&rt2x00dev->chip, RF2720) &&
  1049. !rt2x00_rf(&rt2x00dev->chip, RF2750) &&
  1050. !rt2x00_rf(&rt2x00dev->chip, RF3020) &&
  1051. !rt2x00_rf(&rt2x00dev->chip, RF2020) &&
  1052. !rt2x00_rf(&rt2x00dev->chip, RF3021) &&
  1053. !rt2x00_rf(&rt2x00dev->chip, RF3022)) {
  1054. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1055. return -ENODEV;
  1056. }
  1057. /*
  1058. * Identify default antenna configuration.
  1059. */
  1060. rt2x00dev->default_ant.tx =
  1061. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
  1062. rt2x00dev->default_ant.rx =
  1063. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);
  1064. /*
  1065. * Read frequency offset and RF programming sequence.
  1066. */
  1067. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
  1068. rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
  1069. /*
  1070. * Read external LNA informations.
  1071. */
  1072. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1073. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
  1074. __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  1075. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
  1076. __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  1077. /*
  1078. * Detect if this device has an hardware controlled radio.
  1079. */
  1080. if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO))
  1081. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1082. /*
  1083. * Store led settings, for correct led behaviour.
  1084. */
  1085. #ifdef CONFIG_RT2X00_LIB_LEDS
  1086. rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1087. rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
  1088. rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
  1089. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
  1090. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1091. return 0;
  1092. }
  1093. /*
  1094. * RF value list for rt2860
  1095. * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
  1096. */
  1097. static const struct rf_channel rf_vals[] = {
  1098. { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
  1099. { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
  1100. { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
  1101. { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
  1102. { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
  1103. { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
  1104. { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
  1105. { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
  1106. { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
  1107. { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
  1108. { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
  1109. { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
  1110. { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
  1111. { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
  1112. /* 802.11 UNI / HyperLan 2 */
  1113. { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
  1114. { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
  1115. { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
  1116. { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
  1117. { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
  1118. { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
  1119. { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
  1120. { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
  1121. { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
  1122. { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
  1123. { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
  1124. { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
  1125. /* 802.11 HyperLan 2 */
  1126. { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
  1127. { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
  1128. { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
  1129. { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
  1130. { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
  1131. { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
  1132. { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
  1133. { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
  1134. { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
  1135. { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
  1136. { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
  1137. { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
  1138. { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
  1139. { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
  1140. { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
  1141. { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
  1142. /* 802.11 UNII */
  1143. { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
  1144. { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
  1145. { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
  1146. { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
  1147. { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
  1148. { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
  1149. { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
  1150. /* 802.11 Japan */
  1151. { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
  1152. { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
  1153. { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
  1154. { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
  1155. { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
  1156. { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
  1157. { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
  1158. };
  1159. static int rt2800pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1160. {
  1161. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1162. struct channel_info *info;
  1163. char *tx_power1;
  1164. char *tx_power2;
  1165. unsigned int i;
  1166. u16 eeprom;
  1167. /*
  1168. * Initialize all hw fields.
  1169. */
  1170. rt2x00dev->hw->flags =
  1171. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1172. IEEE80211_HW_SIGNAL_DBM |
  1173. IEEE80211_HW_SUPPORTS_PS |
  1174. IEEE80211_HW_PS_NULLFUNC_STACK;
  1175. rt2x00dev->hw->extra_tx_headroom = TXWI_DESC_SIZE;
  1176. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1177. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1178. rt2x00_eeprom_addr(rt2x00dev,
  1179. EEPROM_MAC_ADDR_0));
  1180. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1181. /*
  1182. * Initialize hw_mode information.
  1183. */
  1184. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1185. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1186. if (rt2x00_rf(&rt2x00dev->chip, RF2820) ||
  1187. rt2x00_rf(&rt2x00dev->chip, RF2720) ||
  1188. rt2x00_rf(&rt2x00dev->chip, RF3020) ||
  1189. rt2x00_rf(&rt2x00dev->chip, RF3021) ||
  1190. rt2x00_rf(&rt2x00dev->chip, RF3022) ||
  1191. rt2x00_rf(&rt2x00dev->chip, RF2020) ||
  1192. rt2x00_rf(&rt2x00dev->chip, RF3052)) {
  1193. spec->num_channels = 14;
  1194. spec->channels = rf_vals;
  1195. } else if (rt2x00_rf(&rt2x00dev->chip, RF2850) ||
  1196. rt2x00_rf(&rt2x00dev->chip, RF2750)) {
  1197. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1198. spec->num_channels = ARRAY_SIZE(rf_vals);
  1199. spec->channels = rf_vals;
  1200. }
  1201. /*
  1202. * Initialize HT information.
  1203. */
  1204. spec->ht.ht_supported = true;
  1205. spec->ht.cap =
  1206. IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  1207. IEEE80211_HT_CAP_GRN_FLD |
  1208. IEEE80211_HT_CAP_SGI_20 |
  1209. IEEE80211_HT_CAP_SGI_40 |
  1210. IEEE80211_HT_CAP_TX_STBC |
  1211. IEEE80211_HT_CAP_RX_STBC |
  1212. IEEE80211_HT_CAP_PSMP_SUPPORT;
  1213. spec->ht.ampdu_factor = 3;
  1214. spec->ht.ampdu_density = 4;
  1215. spec->ht.mcs.tx_params =
  1216. IEEE80211_HT_MCS_TX_DEFINED |
  1217. IEEE80211_HT_MCS_TX_RX_DIFF |
  1218. ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
  1219. IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
  1220. switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
  1221. case 3:
  1222. spec->ht.mcs.rx_mask[2] = 0xff;
  1223. case 2:
  1224. spec->ht.mcs.rx_mask[1] = 0xff;
  1225. case 1:
  1226. spec->ht.mcs.rx_mask[0] = 0xff;
  1227. spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
  1228. break;
  1229. }
  1230. /*
  1231. * Create channel information array
  1232. */
  1233. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1234. if (!info)
  1235. return -ENOMEM;
  1236. spec->channels_info = info;
  1237. tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
  1238. tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
  1239. for (i = 0; i < 14; i++) {
  1240. info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]);
  1241. info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]);
  1242. }
  1243. if (spec->num_channels > 14) {
  1244. tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
  1245. tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
  1246. for (i = 14; i < spec->num_channels; i++) {
  1247. info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]);
  1248. info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]);
  1249. }
  1250. }
  1251. return 0;
  1252. }
  1253. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  1254. .register_read = rt2x00pci_register_read,
  1255. .register_write = rt2x00pci_register_write,
  1256. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  1257. .register_multiread = rt2x00pci_register_multiread,
  1258. .register_multiwrite = rt2x00pci_register_multiwrite,
  1259. .regbusy_read = rt2x00pci_regbusy_read,
  1260. };
  1261. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1262. {
  1263. int retval;
  1264. rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
  1265. /*
  1266. * Allocate eeprom data.
  1267. */
  1268. retval = rt2800pci_validate_eeprom(rt2x00dev);
  1269. if (retval)
  1270. return retval;
  1271. retval = rt2800pci_init_eeprom(rt2x00dev);
  1272. if (retval)
  1273. return retval;
  1274. /*
  1275. * Initialize hw specifications.
  1276. */
  1277. retval = rt2800pci_probe_hw_mode(rt2x00dev);
  1278. if (retval)
  1279. return retval;
  1280. /*
  1281. * This device has multiple filters for control frames
  1282. * and has a separate filter for PS Poll frames.
  1283. */
  1284. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  1285. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  1286. /*
  1287. * This device requires firmware.
  1288. */
  1289. if (!rt2x00_rt(&rt2x00dev->chip, RT2880) &&
  1290. !rt2x00_rt(&rt2x00dev->chip, RT3052))
  1291. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  1292. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1293. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  1294. if (!modparam_nohwcrypt)
  1295. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  1296. /*
  1297. * Set the rssi offset.
  1298. */
  1299. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1300. return 0;
  1301. }
  1302. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  1303. .irq_handler = rt2800pci_interrupt,
  1304. .probe_hw = rt2800pci_probe_hw,
  1305. .get_firmware_name = rt2800pci_get_firmware_name,
  1306. .check_firmware = rt2800pci_check_firmware,
  1307. .load_firmware = rt2800pci_load_firmware,
  1308. .initialize = rt2x00pci_initialize,
  1309. .uninitialize = rt2x00pci_uninitialize,
  1310. .get_entry_state = rt2800pci_get_entry_state,
  1311. .clear_entry = rt2800pci_clear_entry,
  1312. .set_device_state = rt2800pci_set_device_state,
  1313. .rfkill_poll = rt2800_rfkill_poll,
  1314. .link_stats = rt2800_link_stats,
  1315. .reset_tuner = rt2800_reset_tuner,
  1316. .link_tuner = rt2800_link_tuner,
  1317. .write_tx_desc = rt2800pci_write_tx_desc,
  1318. .write_tx_data = rt2x00pci_write_tx_data,
  1319. .write_beacon = rt2800pci_write_beacon,
  1320. .kick_tx_queue = rt2800pci_kick_tx_queue,
  1321. .kill_tx_queue = rt2800pci_kill_tx_queue,
  1322. .fill_rxdone = rt2800pci_fill_rxdone,
  1323. .config_shared_key = rt2800_config_shared_key,
  1324. .config_pairwise_key = rt2800_config_pairwise_key,
  1325. .config_filter = rt2800_config_filter,
  1326. .config_intf = rt2800_config_intf,
  1327. .config_erp = rt2800_config_erp,
  1328. .config_ant = rt2800_config_ant,
  1329. .config = rt2800_config,
  1330. };
  1331. static const struct data_queue_desc rt2800pci_queue_rx = {
  1332. .entry_num = RX_ENTRIES,
  1333. .data_size = AGGREGATION_SIZE,
  1334. .desc_size = RXD_DESC_SIZE,
  1335. .priv_size = sizeof(struct queue_entry_priv_pci),
  1336. };
  1337. static const struct data_queue_desc rt2800pci_queue_tx = {
  1338. .entry_num = TX_ENTRIES,
  1339. .data_size = AGGREGATION_SIZE,
  1340. .desc_size = TXD_DESC_SIZE,
  1341. .priv_size = sizeof(struct queue_entry_priv_pci),
  1342. };
  1343. static const struct data_queue_desc rt2800pci_queue_bcn = {
  1344. .entry_num = 8 * BEACON_ENTRIES,
  1345. .data_size = 0, /* No DMA required for beacons */
  1346. .desc_size = TXWI_DESC_SIZE,
  1347. .priv_size = sizeof(struct queue_entry_priv_pci),
  1348. };
  1349. static const struct rt2x00_ops rt2800pci_ops = {
  1350. .name = KBUILD_MODNAME,
  1351. .max_sta_intf = 1,
  1352. .max_ap_intf = 8,
  1353. .eeprom_size = EEPROM_SIZE,
  1354. .rf_size = RF_SIZE,
  1355. .tx_queues = NUM_TX_QUEUES,
  1356. .rx = &rt2800pci_queue_rx,
  1357. .tx = &rt2800pci_queue_tx,
  1358. .bcn = &rt2800pci_queue_bcn,
  1359. .lib = &rt2800pci_rt2x00_ops,
  1360. .hw = &rt2800_mac80211_ops,
  1361. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1362. .debugfs = &rt2800_rt2x00debug,
  1363. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1364. };
  1365. /*
  1366. * RT2800pci module information.
  1367. */
  1368. static struct pci_device_id rt2800pci_device_table[] = {
  1369. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1370. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1371. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1372. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1373. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1374. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1375. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1376. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1377. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1378. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1379. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1380. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1381. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1382. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1383. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1384. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1385. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1386. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1387. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1388. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1389. { 0, }
  1390. };
  1391. MODULE_AUTHOR(DRV_PROJECT);
  1392. MODULE_VERSION(DRV_VERSION);
  1393. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  1394. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  1395. #ifdef CONFIG_RT2800PCI_PCI
  1396. MODULE_FIRMWARE(FIRMWARE_RT2860);
  1397. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  1398. #endif /* CONFIG_RT2800PCI_PCI */
  1399. MODULE_LICENSE("GPL");
  1400. #ifdef CONFIG_RT2800PCI_WISOC
  1401. #if defined(CONFIG_RALINK_RT288X)
  1402. __rt2x00soc_probe(RT2880, &rt2800pci_ops);
  1403. #elif defined(CONFIG_RALINK_RT305X)
  1404. __rt2x00soc_probe(RT3052, &rt2800pci_ops);
  1405. #endif
  1406. static struct platform_driver rt2800soc_driver = {
  1407. .driver = {
  1408. .name = "rt2800_wmac",
  1409. .owner = THIS_MODULE,
  1410. .mod_name = KBUILD_MODNAME,
  1411. },
  1412. .probe = __rt2x00soc_probe,
  1413. .remove = __devexit_p(rt2x00soc_remove),
  1414. .suspend = rt2x00soc_suspend,
  1415. .resume = rt2x00soc_resume,
  1416. };
  1417. #endif /* CONFIG_RT2800PCI_WISOC */
  1418. #ifdef CONFIG_RT2800PCI_PCI
  1419. static struct pci_driver rt2800pci_driver = {
  1420. .name = KBUILD_MODNAME,
  1421. .id_table = rt2800pci_device_table,
  1422. .probe = rt2x00pci_probe,
  1423. .remove = __devexit_p(rt2x00pci_remove),
  1424. .suspend = rt2x00pci_suspend,
  1425. .resume = rt2x00pci_resume,
  1426. };
  1427. #endif /* CONFIG_RT2800PCI_PCI */
  1428. static int __init rt2800pci_init(void)
  1429. {
  1430. int ret = 0;
  1431. #ifdef CONFIG_RT2800PCI_WISOC
  1432. ret = platform_driver_register(&rt2800soc_driver);
  1433. if (ret)
  1434. return ret;
  1435. #endif
  1436. #ifdef CONFIG_RT2800PCI_PCI
  1437. ret = pci_register_driver(&rt2800pci_driver);
  1438. if (ret) {
  1439. #ifdef CONFIG_RT2800PCI_WISOC
  1440. platform_driver_unregister(&rt2800soc_driver);
  1441. #endif
  1442. return ret;
  1443. }
  1444. #endif
  1445. return ret;
  1446. }
  1447. static void __exit rt2800pci_exit(void)
  1448. {
  1449. #ifdef CONFIG_RT2800PCI_PCI
  1450. pci_unregister_driver(&rt2800pci_driver);
  1451. #endif
  1452. #ifdef CONFIG_RT2800PCI_WISOC
  1453. platform_driver_unregister(&rt2800soc_driver);
  1454. #endif
  1455. }
  1456. module_init(rt2800pci_init);
  1457. module_exit(rt2800pci_exit);