exit.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/mnt_namespace.h>
  15. #include <linux/iocontext.h>
  16. #include <linux/key.h>
  17. #include <linux/security.h>
  18. #include <linux/cpu.h>
  19. #include <linux/acct.h>
  20. #include <linux/tsacct_kern.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/binfmts.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/pid_namespace.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/profile.h>
  28. #include <linux/mount.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/kthread.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/taskstats_kern.h>
  33. #include <linux/delayacct.h>
  34. #include <linux/freezer.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/signal.h>
  38. #include <linux/posix-timers.h>
  39. #include <linux/cn_proc.h>
  40. #include <linux/mutex.h>
  41. #include <linux/futex.h>
  42. #include <linux/pipe_fs_i.h>
  43. #include <linux/audit.h> /* for audit_free() */
  44. #include <linux/resource.h>
  45. #include <linux/blkdev.h>
  46. #include <linux/task_io_accounting_ops.h>
  47. #include <linux/tracehook.h>
  48. #include <linux/fs_struct.h>
  49. #include <linux/init_task.h>
  50. #include <linux/perf_counter.h>
  51. #include <trace/sched.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/unistd.h>
  54. #include <asm/pgtable.h>
  55. #include <asm/mmu_context.h>
  56. #include "cred-internals.h"
  57. DEFINE_TRACE(sched_process_free);
  58. DEFINE_TRACE(sched_process_exit);
  59. DEFINE_TRACE(sched_process_wait);
  60. static void exit_mm(struct task_struct * tsk);
  61. static void __unhash_process(struct task_struct *p)
  62. {
  63. nr_threads--;
  64. detach_pid(p, PIDTYPE_PID);
  65. if (thread_group_leader(p)) {
  66. detach_pid(p, PIDTYPE_PGID);
  67. detach_pid(p, PIDTYPE_SID);
  68. list_del_rcu(&p->tasks);
  69. __get_cpu_var(process_counts)--;
  70. }
  71. list_del_rcu(&p->thread_group);
  72. list_del_init(&p->sibling);
  73. }
  74. /*
  75. * This function expects the tasklist_lock write-locked.
  76. */
  77. static void __exit_signal(struct task_struct *tsk)
  78. {
  79. struct signal_struct *sig = tsk->signal;
  80. struct sighand_struct *sighand;
  81. BUG_ON(!sig);
  82. BUG_ON(!atomic_read(&sig->count));
  83. sighand = rcu_dereference(tsk->sighand);
  84. spin_lock(&sighand->siglock);
  85. posix_cpu_timers_exit(tsk);
  86. if (atomic_dec_and_test(&sig->count))
  87. posix_cpu_timers_exit_group(tsk);
  88. else {
  89. /*
  90. * If there is any task waiting for the group exit
  91. * then notify it:
  92. */
  93. if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
  94. wake_up_process(sig->group_exit_task);
  95. if (tsk == sig->curr_target)
  96. sig->curr_target = next_thread(tsk);
  97. /*
  98. * Accumulate here the counters for all threads but the
  99. * group leader as they die, so they can be added into
  100. * the process-wide totals when those are taken.
  101. * The group leader stays around as a zombie as long
  102. * as there are other threads. When it gets reaped,
  103. * the exit.c code will add its counts into these totals.
  104. * We won't ever get here for the group leader, since it
  105. * will have been the last reference on the signal_struct.
  106. */
  107. sig->utime = cputime_add(sig->utime, task_utime(tsk));
  108. sig->stime = cputime_add(sig->stime, task_stime(tsk));
  109. sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
  110. sig->min_flt += tsk->min_flt;
  111. sig->maj_flt += tsk->maj_flt;
  112. sig->nvcsw += tsk->nvcsw;
  113. sig->nivcsw += tsk->nivcsw;
  114. sig->inblock += task_io_get_inblock(tsk);
  115. sig->oublock += task_io_get_oublock(tsk);
  116. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  117. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  118. sig = NULL; /* Marker for below. */
  119. }
  120. __unhash_process(tsk);
  121. /*
  122. * Do this under ->siglock, we can race with another thread
  123. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  124. */
  125. flush_sigqueue(&tsk->pending);
  126. tsk->signal = NULL;
  127. tsk->sighand = NULL;
  128. spin_unlock(&sighand->siglock);
  129. __cleanup_sighand(sighand);
  130. clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  131. if (sig) {
  132. flush_sigqueue(&sig->shared_pending);
  133. taskstats_tgid_free(sig);
  134. /*
  135. * Make sure ->signal can't go away under rq->lock,
  136. * see account_group_exec_runtime().
  137. */
  138. task_rq_unlock_wait(tsk);
  139. __cleanup_signal(sig);
  140. }
  141. }
  142. static void delayed_put_task_struct(struct rcu_head *rhp)
  143. {
  144. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  145. #ifdef CONFIG_PERF_COUNTERS
  146. WARN_ON_ONCE(tsk->perf_counter_ctxp);
  147. #endif
  148. trace_sched_process_free(tsk);
  149. put_task_struct(tsk);
  150. }
  151. void release_task(struct task_struct * p)
  152. {
  153. struct task_struct *leader;
  154. int zap_leader;
  155. repeat:
  156. tracehook_prepare_release_task(p);
  157. /* don't need to get the RCU readlock here - the process is dead and
  158. * can't be modifying its own credentials */
  159. atomic_dec(&__task_cred(p)->user->processes);
  160. proc_flush_task(p);
  161. write_lock_irq(&tasklist_lock);
  162. tracehook_finish_release_task(p);
  163. __exit_signal(p);
  164. /*
  165. * If we are the last non-leader member of the thread
  166. * group, and the leader is zombie, then notify the
  167. * group leader's parent process. (if it wants notification.)
  168. */
  169. zap_leader = 0;
  170. leader = p->group_leader;
  171. if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  172. BUG_ON(task_detached(leader));
  173. do_notify_parent(leader, leader->exit_signal);
  174. /*
  175. * If we were the last child thread and the leader has
  176. * exited already, and the leader's parent ignores SIGCHLD,
  177. * then we are the one who should release the leader.
  178. *
  179. * do_notify_parent() will have marked it self-reaping in
  180. * that case.
  181. */
  182. zap_leader = task_detached(leader);
  183. /*
  184. * This maintains the invariant that release_task()
  185. * only runs on a task in EXIT_DEAD, just for sanity.
  186. */
  187. if (zap_leader)
  188. leader->exit_state = EXIT_DEAD;
  189. }
  190. write_unlock_irq(&tasklist_lock);
  191. release_thread(p);
  192. call_rcu(&p->rcu, delayed_put_task_struct);
  193. p = leader;
  194. if (unlikely(zap_leader))
  195. goto repeat;
  196. }
  197. /*
  198. * This checks not only the pgrp, but falls back on the pid if no
  199. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  200. * without this...
  201. *
  202. * The caller must hold rcu lock or the tasklist lock.
  203. */
  204. struct pid *session_of_pgrp(struct pid *pgrp)
  205. {
  206. struct task_struct *p;
  207. struct pid *sid = NULL;
  208. p = pid_task(pgrp, PIDTYPE_PGID);
  209. if (p == NULL)
  210. p = pid_task(pgrp, PIDTYPE_PID);
  211. if (p != NULL)
  212. sid = task_session(p);
  213. return sid;
  214. }
  215. /*
  216. * Determine if a process group is "orphaned", according to the POSIX
  217. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  218. * by terminal-generated stop signals. Newly orphaned process groups are
  219. * to receive a SIGHUP and a SIGCONT.
  220. *
  221. * "I ask you, have you ever known what it is to be an orphan?"
  222. */
  223. static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  224. {
  225. struct task_struct *p;
  226. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  227. if ((p == ignored_task) ||
  228. (p->exit_state && thread_group_empty(p)) ||
  229. is_global_init(p->real_parent))
  230. continue;
  231. if (task_pgrp(p->real_parent) != pgrp &&
  232. task_session(p->real_parent) == task_session(p))
  233. return 0;
  234. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  235. return 1;
  236. }
  237. int is_current_pgrp_orphaned(void)
  238. {
  239. int retval;
  240. read_lock(&tasklist_lock);
  241. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  242. read_unlock(&tasklist_lock);
  243. return retval;
  244. }
  245. static int has_stopped_jobs(struct pid *pgrp)
  246. {
  247. int retval = 0;
  248. struct task_struct *p;
  249. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  250. if (!task_is_stopped(p))
  251. continue;
  252. retval = 1;
  253. break;
  254. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  255. return retval;
  256. }
  257. /*
  258. * Check to see if any process groups have become orphaned as
  259. * a result of our exiting, and if they have any stopped jobs,
  260. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  261. */
  262. static void
  263. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  264. {
  265. struct pid *pgrp = task_pgrp(tsk);
  266. struct task_struct *ignored_task = tsk;
  267. if (!parent)
  268. /* exit: our father is in a different pgrp than
  269. * we are and we were the only connection outside.
  270. */
  271. parent = tsk->real_parent;
  272. else
  273. /* reparent: our child is in a different pgrp than
  274. * we are, and it was the only connection outside.
  275. */
  276. ignored_task = NULL;
  277. if (task_pgrp(parent) != pgrp &&
  278. task_session(parent) == task_session(tsk) &&
  279. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  280. has_stopped_jobs(pgrp)) {
  281. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  282. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  283. }
  284. }
  285. /**
  286. * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
  287. *
  288. * If a kernel thread is launched as a result of a system call, or if
  289. * it ever exits, it should generally reparent itself to kthreadd so it
  290. * isn't in the way of other processes and is correctly cleaned up on exit.
  291. *
  292. * The various task state such as scheduling policy and priority may have
  293. * been inherited from a user process, so we reset them to sane values here.
  294. *
  295. * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
  296. */
  297. static void reparent_to_kthreadd(void)
  298. {
  299. write_lock_irq(&tasklist_lock);
  300. ptrace_unlink(current);
  301. /* Reparent to init */
  302. current->real_parent = current->parent = kthreadd_task;
  303. list_move_tail(&current->sibling, &current->real_parent->children);
  304. /* Set the exit signal to SIGCHLD so we signal init on exit */
  305. current->exit_signal = SIGCHLD;
  306. if (task_nice(current) < 0)
  307. set_user_nice(current, 0);
  308. /* cpus_allowed? */
  309. /* rt_priority? */
  310. /* signals? */
  311. memcpy(current->signal->rlim, init_task.signal->rlim,
  312. sizeof(current->signal->rlim));
  313. atomic_inc(&init_cred.usage);
  314. commit_creds(&init_cred);
  315. write_unlock_irq(&tasklist_lock);
  316. }
  317. void __set_special_pids(struct pid *pid)
  318. {
  319. struct task_struct *curr = current->group_leader;
  320. if (task_session(curr) != pid)
  321. change_pid(curr, PIDTYPE_SID, pid);
  322. if (task_pgrp(curr) != pid)
  323. change_pid(curr, PIDTYPE_PGID, pid);
  324. }
  325. static void set_special_pids(struct pid *pid)
  326. {
  327. write_lock_irq(&tasklist_lock);
  328. __set_special_pids(pid);
  329. write_unlock_irq(&tasklist_lock);
  330. }
  331. /*
  332. * Let kernel threads use this to say that they
  333. * allow a certain signal (since daemonize() will
  334. * have disabled all of them by default).
  335. */
  336. int allow_signal(int sig)
  337. {
  338. if (!valid_signal(sig) || sig < 1)
  339. return -EINVAL;
  340. spin_lock_irq(&current->sighand->siglock);
  341. sigdelset(&current->blocked, sig);
  342. if (!current->mm) {
  343. /* Kernel threads handle their own signals.
  344. Let the signal code know it'll be handled, so
  345. that they don't get converted to SIGKILL or
  346. just silently dropped */
  347. current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  348. }
  349. recalc_sigpending();
  350. spin_unlock_irq(&current->sighand->siglock);
  351. return 0;
  352. }
  353. EXPORT_SYMBOL(allow_signal);
  354. int disallow_signal(int sig)
  355. {
  356. if (!valid_signal(sig) || sig < 1)
  357. return -EINVAL;
  358. spin_lock_irq(&current->sighand->siglock);
  359. current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  360. recalc_sigpending();
  361. spin_unlock_irq(&current->sighand->siglock);
  362. return 0;
  363. }
  364. EXPORT_SYMBOL(disallow_signal);
  365. /*
  366. * Put all the gunge required to become a kernel thread without
  367. * attached user resources in one place where it belongs.
  368. */
  369. void daemonize(const char *name, ...)
  370. {
  371. va_list args;
  372. sigset_t blocked;
  373. va_start(args, name);
  374. vsnprintf(current->comm, sizeof(current->comm), name, args);
  375. va_end(args);
  376. /*
  377. * If we were started as result of loading a module, close all of the
  378. * user space pages. We don't need them, and if we didn't close them
  379. * they would be locked into memory.
  380. */
  381. exit_mm(current);
  382. /*
  383. * We don't want to have TIF_FREEZE set if the system-wide hibernation
  384. * or suspend transition begins right now.
  385. */
  386. current->flags |= (PF_NOFREEZE | PF_KTHREAD);
  387. if (current->nsproxy != &init_nsproxy) {
  388. get_nsproxy(&init_nsproxy);
  389. switch_task_namespaces(current, &init_nsproxy);
  390. }
  391. set_special_pids(&init_struct_pid);
  392. proc_clear_tty(current);
  393. /* Block and flush all signals */
  394. sigfillset(&blocked);
  395. sigprocmask(SIG_BLOCK, &blocked, NULL);
  396. flush_signals(current);
  397. /* Become as one with the init task */
  398. daemonize_fs_struct();
  399. exit_files(current);
  400. current->files = init_task.files;
  401. atomic_inc(&current->files->count);
  402. reparent_to_kthreadd();
  403. }
  404. EXPORT_SYMBOL(daemonize);
  405. static void close_files(struct files_struct * files)
  406. {
  407. int i, j;
  408. struct fdtable *fdt;
  409. j = 0;
  410. /*
  411. * It is safe to dereference the fd table without RCU or
  412. * ->file_lock because this is the last reference to the
  413. * files structure.
  414. */
  415. fdt = files_fdtable(files);
  416. for (;;) {
  417. unsigned long set;
  418. i = j * __NFDBITS;
  419. if (i >= fdt->max_fds)
  420. break;
  421. set = fdt->open_fds->fds_bits[j++];
  422. while (set) {
  423. if (set & 1) {
  424. struct file * file = xchg(&fdt->fd[i], NULL);
  425. if (file) {
  426. filp_close(file, files);
  427. cond_resched();
  428. }
  429. }
  430. i++;
  431. set >>= 1;
  432. }
  433. }
  434. }
  435. struct files_struct *get_files_struct(struct task_struct *task)
  436. {
  437. struct files_struct *files;
  438. task_lock(task);
  439. files = task->files;
  440. if (files)
  441. atomic_inc(&files->count);
  442. task_unlock(task);
  443. return files;
  444. }
  445. void put_files_struct(struct files_struct *files)
  446. {
  447. struct fdtable *fdt;
  448. if (atomic_dec_and_test(&files->count)) {
  449. close_files(files);
  450. /*
  451. * Free the fd and fdset arrays if we expanded them.
  452. * If the fdtable was embedded, pass files for freeing
  453. * at the end of the RCU grace period. Otherwise,
  454. * you can free files immediately.
  455. */
  456. fdt = files_fdtable(files);
  457. if (fdt != &files->fdtab)
  458. kmem_cache_free(files_cachep, files);
  459. free_fdtable(fdt);
  460. }
  461. }
  462. void reset_files_struct(struct files_struct *files)
  463. {
  464. struct task_struct *tsk = current;
  465. struct files_struct *old;
  466. old = tsk->files;
  467. task_lock(tsk);
  468. tsk->files = files;
  469. task_unlock(tsk);
  470. put_files_struct(old);
  471. }
  472. void exit_files(struct task_struct *tsk)
  473. {
  474. struct files_struct * files = tsk->files;
  475. if (files) {
  476. task_lock(tsk);
  477. tsk->files = NULL;
  478. task_unlock(tsk);
  479. put_files_struct(files);
  480. }
  481. }
  482. #ifdef CONFIG_MM_OWNER
  483. /*
  484. * Task p is exiting and it owned mm, lets find a new owner for it
  485. */
  486. static inline int
  487. mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
  488. {
  489. /*
  490. * If there are other users of the mm and the owner (us) is exiting
  491. * we need to find a new owner to take on the responsibility.
  492. */
  493. if (atomic_read(&mm->mm_users) <= 1)
  494. return 0;
  495. if (mm->owner != p)
  496. return 0;
  497. return 1;
  498. }
  499. void mm_update_next_owner(struct mm_struct *mm)
  500. {
  501. struct task_struct *c, *g, *p = current;
  502. retry:
  503. if (!mm_need_new_owner(mm, p))
  504. return;
  505. read_lock(&tasklist_lock);
  506. /*
  507. * Search in the children
  508. */
  509. list_for_each_entry(c, &p->children, sibling) {
  510. if (c->mm == mm)
  511. goto assign_new_owner;
  512. }
  513. /*
  514. * Search in the siblings
  515. */
  516. list_for_each_entry(c, &p->parent->children, sibling) {
  517. if (c->mm == mm)
  518. goto assign_new_owner;
  519. }
  520. /*
  521. * Search through everything else. We should not get
  522. * here often
  523. */
  524. do_each_thread(g, c) {
  525. if (c->mm == mm)
  526. goto assign_new_owner;
  527. } while_each_thread(g, c);
  528. read_unlock(&tasklist_lock);
  529. /*
  530. * We found no owner yet mm_users > 1: this implies that we are
  531. * most likely racing with swapoff (try_to_unuse()) or /proc or
  532. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  533. */
  534. mm->owner = NULL;
  535. return;
  536. assign_new_owner:
  537. BUG_ON(c == p);
  538. get_task_struct(c);
  539. /*
  540. * The task_lock protects c->mm from changing.
  541. * We always want mm->owner->mm == mm
  542. */
  543. task_lock(c);
  544. /*
  545. * Delay read_unlock() till we have the task_lock()
  546. * to ensure that c does not slip away underneath us
  547. */
  548. read_unlock(&tasklist_lock);
  549. if (c->mm != mm) {
  550. task_unlock(c);
  551. put_task_struct(c);
  552. goto retry;
  553. }
  554. mm->owner = c;
  555. task_unlock(c);
  556. put_task_struct(c);
  557. }
  558. #endif /* CONFIG_MM_OWNER */
  559. /*
  560. * Turn us into a lazy TLB process if we
  561. * aren't already..
  562. */
  563. static void exit_mm(struct task_struct * tsk)
  564. {
  565. struct mm_struct *mm = tsk->mm;
  566. struct core_state *core_state;
  567. mm_release(tsk, mm);
  568. if (!mm)
  569. return;
  570. /*
  571. * Serialize with any possible pending coredump.
  572. * We must hold mmap_sem around checking core_state
  573. * and clearing tsk->mm. The core-inducing thread
  574. * will increment ->nr_threads for each thread in the
  575. * group with ->mm != NULL.
  576. */
  577. down_read(&mm->mmap_sem);
  578. core_state = mm->core_state;
  579. if (core_state) {
  580. struct core_thread self;
  581. up_read(&mm->mmap_sem);
  582. self.task = tsk;
  583. self.next = xchg(&core_state->dumper.next, &self);
  584. /*
  585. * Implies mb(), the result of xchg() must be visible
  586. * to core_state->dumper.
  587. */
  588. if (atomic_dec_and_test(&core_state->nr_threads))
  589. complete(&core_state->startup);
  590. for (;;) {
  591. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  592. if (!self.task) /* see coredump_finish() */
  593. break;
  594. schedule();
  595. }
  596. __set_task_state(tsk, TASK_RUNNING);
  597. down_read(&mm->mmap_sem);
  598. }
  599. atomic_inc(&mm->mm_count);
  600. BUG_ON(mm != tsk->active_mm);
  601. /* more a memory barrier than a real lock */
  602. task_lock(tsk);
  603. tsk->mm = NULL;
  604. up_read(&mm->mmap_sem);
  605. enter_lazy_tlb(mm, current);
  606. /* We don't want this task to be frozen prematurely */
  607. clear_freeze_flag(tsk);
  608. task_unlock(tsk);
  609. mm_update_next_owner(mm);
  610. mmput(mm);
  611. }
  612. /*
  613. * When we die, we re-parent all our children.
  614. * Try to give them to another thread in our thread
  615. * group, and if no such member exists, give it to
  616. * the child reaper process (ie "init") in our pid
  617. * space.
  618. */
  619. static struct task_struct *find_new_reaper(struct task_struct *father)
  620. {
  621. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  622. struct task_struct *thread;
  623. thread = father;
  624. while_each_thread(father, thread) {
  625. if (thread->flags & PF_EXITING)
  626. continue;
  627. if (unlikely(pid_ns->child_reaper == father))
  628. pid_ns->child_reaper = thread;
  629. return thread;
  630. }
  631. if (unlikely(pid_ns->child_reaper == father)) {
  632. write_unlock_irq(&tasklist_lock);
  633. if (unlikely(pid_ns == &init_pid_ns))
  634. panic("Attempted to kill init!");
  635. zap_pid_ns_processes(pid_ns);
  636. write_lock_irq(&tasklist_lock);
  637. /*
  638. * We can not clear ->child_reaper or leave it alone.
  639. * There may by stealth EXIT_DEAD tasks on ->children,
  640. * forget_original_parent() must move them somewhere.
  641. */
  642. pid_ns->child_reaper = init_pid_ns.child_reaper;
  643. }
  644. return pid_ns->child_reaper;
  645. }
  646. /*
  647. * Any that need to be release_task'd are put on the @dead list.
  648. */
  649. static void reparent_thread(struct task_struct *father, struct task_struct *p,
  650. struct list_head *dead)
  651. {
  652. if (p->pdeath_signal)
  653. group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
  654. list_move_tail(&p->sibling, &p->real_parent->children);
  655. if (task_detached(p))
  656. return;
  657. /*
  658. * If this is a threaded reparent there is no need to
  659. * notify anyone anything has happened.
  660. */
  661. if (same_thread_group(p->real_parent, father))
  662. return;
  663. /* We don't want people slaying init. */
  664. p->exit_signal = SIGCHLD;
  665. /* If it has exited notify the new parent about this child's death. */
  666. if (!p->ptrace &&
  667. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  668. do_notify_parent(p, p->exit_signal);
  669. if (task_detached(p)) {
  670. p->exit_state = EXIT_DEAD;
  671. list_move_tail(&p->sibling, dead);
  672. }
  673. }
  674. kill_orphaned_pgrp(p, father);
  675. }
  676. static void forget_original_parent(struct task_struct *father)
  677. {
  678. struct task_struct *p, *n, *reaper;
  679. LIST_HEAD(dead_children);
  680. exit_ptrace(father);
  681. write_lock_irq(&tasklist_lock);
  682. reaper = find_new_reaper(father);
  683. list_for_each_entry_safe(p, n, &father->children, sibling) {
  684. p->real_parent = reaper;
  685. if (p->parent == father) {
  686. BUG_ON(p->ptrace);
  687. p->parent = p->real_parent;
  688. }
  689. reparent_thread(father, p, &dead_children);
  690. }
  691. write_unlock_irq(&tasklist_lock);
  692. BUG_ON(!list_empty(&father->children));
  693. list_for_each_entry_safe(p, n, &dead_children, sibling) {
  694. list_del_init(&p->sibling);
  695. release_task(p);
  696. }
  697. }
  698. /*
  699. * Send signals to all our closest relatives so that they know
  700. * to properly mourn us..
  701. */
  702. static void exit_notify(struct task_struct *tsk, int group_dead)
  703. {
  704. int signal;
  705. void *cookie;
  706. /*
  707. * This does two things:
  708. *
  709. * A. Make init inherit all the child processes
  710. * B. Check to see if any process groups have become orphaned
  711. * as a result of our exiting, and if they have any stopped
  712. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  713. */
  714. forget_original_parent(tsk);
  715. exit_task_namespaces(tsk);
  716. write_lock_irq(&tasklist_lock);
  717. if (group_dead)
  718. kill_orphaned_pgrp(tsk->group_leader, NULL);
  719. /* Let father know we died
  720. *
  721. * Thread signals are configurable, but you aren't going to use
  722. * that to send signals to arbitary processes.
  723. * That stops right now.
  724. *
  725. * If the parent exec id doesn't match the exec id we saved
  726. * when we started then we know the parent has changed security
  727. * domain.
  728. *
  729. * If our self_exec id doesn't match our parent_exec_id then
  730. * we have changed execution domain as these two values started
  731. * the same after a fork.
  732. */
  733. if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
  734. (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
  735. tsk->self_exec_id != tsk->parent_exec_id))
  736. tsk->exit_signal = SIGCHLD;
  737. signal = tracehook_notify_death(tsk, &cookie, group_dead);
  738. if (signal >= 0)
  739. signal = do_notify_parent(tsk, signal);
  740. tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
  741. /* mt-exec, de_thread() is waiting for us */
  742. if (thread_group_leader(tsk) &&
  743. tsk->signal->group_exit_task &&
  744. tsk->signal->notify_count < 0)
  745. wake_up_process(tsk->signal->group_exit_task);
  746. write_unlock_irq(&tasklist_lock);
  747. tracehook_report_death(tsk, signal, cookie, group_dead);
  748. /* If the process is dead, release it - nobody will wait for it */
  749. if (signal == DEATH_REAP)
  750. release_task(tsk);
  751. }
  752. #ifdef CONFIG_DEBUG_STACK_USAGE
  753. static void check_stack_usage(void)
  754. {
  755. static DEFINE_SPINLOCK(low_water_lock);
  756. static int lowest_to_date = THREAD_SIZE;
  757. unsigned long free;
  758. free = stack_not_used(current);
  759. if (free >= lowest_to_date)
  760. return;
  761. spin_lock(&low_water_lock);
  762. if (free < lowest_to_date) {
  763. printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
  764. "left\n",
  765. current->comm, free);
  766. lowest_to_date = free;
  767. }
  768. spin_unlock(&low_water_lock);
  769. }
  770. #else
  771. static inline void check_stack_usage(void) {}
  772. #endif
  773. NORET_TYPE void do_exit(long code)
  774. {
  775. struct task_struct *tsk = current;
  776. int group_dead;
  777. profile_task_exit(tsk);
  778. WARN_ON(atomic_read(&tsk->fs_excl));
  779. if (unlikely(in_interrupt()))
  780. panic("Aiee, killing interrupt handler!");
  781. if (unlikely(!tsk->pid))
  782. panic("Attempted to kill the idle task!");
  783. tracehook_report_exit(&code);
  784. /*
  785. * We're taking recursive faults here in do_exit. Safest is to just
  786. * leave this task alone and wait for reboot.
  787. */
  788. if (unlikely(tsk->flags & PF_EXITING)) {
  789. printk(KERN_ALERT
  790. "Fixing recursive fault but reboot is needed!\n");
  791. /*
  792. * We can do this unlocked here. The futex code uses
  793. * this flag just to verify whether the pi state
  794. * cleanup has been done or not. In the worst case it
  795. * loops once more. We pretend that the cleanup was
  796. * done as there is no way to return. Either the
  797. * OWNER_DIED bit is set by now or we push the blocked
  798. * task into the wait for ever nirwana as well.
  799. */
  800. tsk->flags |= PF_EXITPIDONE;
  801. set_current_state(TASK_UNINTERRUPTIBLE);
  802. schedule();
  803. }
  804. exit_irq_thread();
  805. exit_signals(tsk); /* sets PF_EXITING */
  806. /*
  807. * tsk->flags are checked in the futex code to protect against
  808. * an exiting task cleaning up the robust pi futexes.
  809. */
  810. smp_mb();
  811. spin_unlock_wait(&tsk->pi_lock);
  812. if (unlikely(in_atomic()))
  813. printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  814. current->comm, task_pid_nr(current),
  815. preempt_count());
  816. acct_update_integrals(tsk);
  817. group_dead = atomic_dec_and_test(&tsk->signal->live);
  818. if (group_dead) {
  819. hrtimer_cancel(&tsk->signal->real_timer);
  820. exit_itimers(tsk->signal);
  821. }
  822. acct_collect(code, group_dead);
  823. if (group_dead)
  824. tty_audit_exit();
  825. if (unlikely(tsk->audit_context))
  826. audit_free(tsk);
  827. tsk->exit_code = code;
  828. taskstats_exit(tsk, group_dead);
  829. exit_mm(tsk);
  830. if (group_dead)
  831. acct_process();
  832. trace_sched_process_exit(tsk);
  833. exit_sem(tsk);
  834. exit_files(tsk);
  835. exit_fs(tsk);
  836. check_stack_usage();
  837. exit_thread();
  838. cgroup_exit(tsk, 1);
  839. if (group_dead && tsk->signal->leader)
  840. disassociate_ctty(1);
  841. module_put(task_thread_info(tsk)->exec_domain->module);
  842. if (tsk->binfmt)
  843. module_put(tsk->binfmt->module);
  844. proc_exit_connector(tsk);
  845. /*
  846. * Flush inherited counters to the parent - before the parent
  847. * gets woken up by child-exit notifications.
  848. */
  849. perf_counter_exit_task(tsk);
  850. exit_notify(tsk, group_dead);
  851. #ifdef CONFIG_NUMA
  852. mpol_put(tsk->mempolicy);
  853. tsk->mempolicy = NULL;
  854. #endif
  855. #ifdef CONFIG_FUTEX
  856. if (unlikely(!list_empty(&tsk->pi_state_list)))
  857. exit_pi_state_list(tsk);
  858. if (unlikely(current->pi_state_cache))
  859. kfree(current->pi_state_cache);
  860. #endif
  861. /*
  862. * Make sure we are holding no locks:
  863. */
  864. debug_check_no_locks_held(tsk);
  865. /*
  866. * We can do this unlocked here. The futex code uses this flag
  867. * just to verify whether the pi state cleanup has been done
  868. * or not. In the worst case it loops once more.
  869. */
  870. tsk->flags |= PF_EXITPIDONE;
  871. if (tsk->io_context)
  872. exit_io_context();
  873. if (tsk->splice_pipe)
  874. __free_pipe_info(tsk->splice_pipe);
  875. preempt_disable();
  876. /* causes final put_task_struct in finish_task_switch(). */
  877. tsk->state = TASK_DEAD;
  878. schedule();
  879. BUG();
  880. /* Avoid "noreturn function does return". */
  881. for (;;)
  882. cpu_relax(); /* For when BUG is null */
  883. }
  884. EXPORT_SYMBOL_GPL(do_exit);
  885. NORET_TYPE void complete_and_exit(struct completion *comp, long code)
  886. {
  887. if (comp)
  888. complete(comp);
  889. do_exit(code);
  890. }
  891. EXPORT_SYMBOL(complete_and_exit);
  892. SYSCALL_DEFINE1(exit, int, error_code)
  893. {
  894. do_exit((error_code&0xff)<<8);
  895. }
  896. /*
  897. * Take down every thread in the group. This is called by fatal signals
  898. * as well as by sys_exit_group (below).
  899. */
  900. NORET_TYPE void
  901. do_group_exit(int exit_code)
  902. {
  903. struct signal_struct *sig = current->signal;
  904. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  905. if (signal_group_exit(sig))
  906. exit_code = sig->group_exit_code;
  907. else if (!thread_group_empty(current)) {
  908. struct sighand_struct *const sighand = current->sighand;
  909. spin_lock_irq(&sighand->siglock);
  910. if (signal_group_exit(sig))
  911. /* Another thread got here before we took the lock. */
  912. exit_code = sig->group_exit_code;
  913. else {
  914. sig->group_exit_code = exit_code;
  915. sig->flags = SIGNAL_GROUP_EXIT;
  916. zap_other_threads(current);
  917. }
  918. spin_unlock_irq(&sighand->siglock);
  919. }
  920. do_exit(exit_code);
  921. /* NOTREACHED */
  922. }
  923. /*
  924. * this kills every thread in the thread group. Note that any externally
  925. * wait4()-ing process will get the correct exit code - even if this
  926. * thread is not the thread group leader.
  927. */
  928. SYSCALL_DEFINE1(exit_group, int, error_code)
  929. {
  930. do_group_exit((error_code & 0xff) << 8);
  931. /* NOTREACHED */
  932. return 0;
  933. }
  934. static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  935. {
  936. struct pid *pid = NULL;
  937. if (type == PIDTYPE_PID)
  938. pid = task->pids[type].pid;
  939. else if (type < PIDTYPE_MAX)
  940. pid = task->group_leader->pids[type].pid;
  941. return pid;
  942. }
  943. static int eligible_child(enum pid_type type, struct pid *pid, int options,
  944. struct task_struct *p)
  945. {
  946. int err;
  947. if (type < PIDTYPE_MAX) {
  948. if (task_pid_type(p, type) != pid)
  949. return 0;
  950. }
  951. /* Wait for all children (clone and not) if __WALL is set;
  952. * otherwise, wait for clone children *only* if __WCLONE is
  953. * set; otherwise, wait for non-clone children *only*. (Note:
  954. * A "clone" child here is one that reports to its parent
  955. * using a signal other than SIGCHLD.) */
  956. if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
  957. && !(options & __WALL))
  958. return 0;
  959. err = security_task_wait(p);
  960. if (err)
  961. return err;
  962. return 1;
  963. }
  964. static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
  965. int why, int status,
  966. struct siginfo __user *infop,
  967. struct rusage __user *rusagep)
  968. {
  969. int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
  970. put_task_struct(p);
  971. if (!retval)
  972. retval = put_user(SIGCHLD, &infop->si_signo);
  973. if (!retval)
  974. retval = put_user(0, &infop->si_errno);
  975. if (!retval)
  976. retval = put_user((short)why, &infop->si_code);
  977. if (!retval)
  978. retval = put_user(pid, &infop->si_pid);
  979. if (!retval)
  980. retval = put_user(uid, &infop->si_uid);
  981. if (!retval)
  982. retval = put_user(status, &infop->si_status);
  983. if (!retval)
  984. retval = pid;
  985. return retval;
  986. }
  987. /*
  988. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  989. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  990. * the lock and this task is uninteresting. If we return nonzero, we have
  991. * released the lock and the system call should return.
  992. */
  993. static int wait_task_zombie(struct task_struct *p, int options,
  994. struct siginfo __user *infop,
  995. int __user *stat_addr, struct rusage __user *ru)
  996. {
  997. unsigned long state;
  998. int retval, status, traced;
  999. pid_t pid = task_pid_vnr(p);
  1000. uid_t uid = __task_cred(p)->uid;
  1001. if (!likely(options & WEXITED))
  1002. return 0;
  1003. if (unlikely(options & WNOWAIT)) {
  1004. int exit_code = p->exit_code;
  1005. int why, status;
  1006. get_task_struct(p);
  1007. read_unlock(&tasklist_lock);
  1008. if ((exit_code & 0x7f) == 0) {
  1009. why = CLD_EXITED;
  1010. status = exit_code >> 8;
  1011. } else {
  1012. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1013. status = exit_code & 0x7f;
  1014. }
  1015. return wait_noreap_copyout(p, pid, uid, why,
  1016. status, infop, ru);
  1017. }
  1018. /*
  1019. * Try to move the task's state to DEAD
  1020. * only one thread is allowed to do this:
  1021. */
  1022. state = xchg(&p->exit_state, EXIT_DEAD);
  1023. if (state != EXIT_ZOMBIE) {
  1024. BUG_ON(state != EXIT_DEAD);
  1025. return 0;
  1026. }
  1027. traced = ptrace_reparented(p);
  1028. if (likely(!traced)) {
  1029. struct signal_struct *psig;
  1030. struct signal_struct *sig;
  1031. struct task_cputime cputime;
  1032. /*
  1033. * The resource counters for the group leader are in its
  1034. * own task_struct. Those for dead threads in the group
  1035. * are in its signal_struct, as are those for the child
  1036. * processes it has previously reaped. All these
  1037. * accumulate in the parent's signal_struct c* fields.
  1038. *
  1039. * We don't bother to take a lock here to protect these
  1040. * p->signal fields, because they are only touched by
  1041. * __exit_signal, which runs with tasklist_lock
  1042. * write-locked anyway, and so is excluded here. We do
  1043. * need to protect the access to p->parent->signal fields,
  1044. * as other threads in the parent group can be right
  1045. * here reaping other children at the same time.
  1046. *
  1047. * We use thread_group_cputime() to get times for the thread
  1048. * group, which consolidates times for all threads in the
  1049. * group including the group leader.
  1050. */
  1051. thread_group_cputime(p, &cputime);
  1052. spin_lock_irq(&p->parent->sighand->siglock);
  1053. psig = p->parent->signal;
  1054. sig = p->signal;
  1055. psig->cutime =
  1056. cputime_add(psig->cutime,
  1057. cputime_add(cputime.utime,
  1058. sig->cutime));
  1059. psig->cstime =
  1060. cputime_add(psig->cstime,
  1061. cputime_add(cputime.stime,
  1062. sig->cstime));
  1063. psig->cgtime =
  1064. cputime_add(psig->cgtime,
  1065. cputime_add(p->gtime,
  1066. cputime_add(sig->gtime,
  1067. sig->cgtime)));
  1068. psig->cmin_flt +=
  1069. p->min_flt + sig->min_flt + sig->cmin_flt;
  1070. psig->cmaj_flt +=
  1071. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1072. psig->cnvcsw +=
  1073. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1074. psig->cnivcsw +=
  1075. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1076. psig->cinblock +=
  1077. task_io_get_inblock(p) +
  1078. sig->inblock + sig->cinblock;
  1079. psig->coublock +=
  1080. task_io_get_oublock(p) +
  1081. sig->oublock + sig->coublock;
  1082. task_io_accounting_add(&psig->ioac, &p->ioac);
  1083. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1084. spin_unlock_irq(&p->parent->sighand->siglock);
  1085. }
  1086. /*
  1087. * Now we are sure this task is interesting, and no other
  1088. * thread can reap it because we set its state to EXIT_DEAD.
  1089. */
  1090. read_unlock(&tasklist_lock);
  1091. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1092. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1093. ? p->signal->group_exit_code : p->exit_code;
  1094. if (!retval && stat_addr)
  1095. retval = put_user(status, stat_addr);
  1096. if (!retval && infop)
  1097. retval = put_user(SIGCHLD, &infop->si_signo);
  1098. if (!retval && infop)
  1099. retval = put_user(0, &infop->si_errno);
  1100. if (!retval && infop) {
  1101. int why;
  1102. if ((status & 0x7f) == 0) {
  1103. why = CLD_EXITED;
  1104. status >>= 8;
  1105. } else {
  1106. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1107. status &= 0x7f;
  1108. }
  1109. retval = put_user((short)why, &infop->si_code);
  1110. if (!retval)
  1111. retval = put_user(status, &infop->si_status);
  1112. }
  1113. if (!retval && infop)
  1114. retval = put_user(pid, &infop->si_pid);
  1115. if (!retval && infop)
  1116. retval = put_user(uid, &infop->si_uid);
  1117. if (!retval)
  1118. retval = pid;
  1119. if (traced) {
  1120. write_lock_irq(&tasklist_lock);
  1121. /* We dropped tasklist, ptracer could die and untrace */
  1122. ptrace_unlink(p);
  1123. /*
  1124. * If this is not a detached task, notify the parent.
  1125. * If it's still not detached after that, don't release
  1126. * it now.
  1127. */
  1128. if (!task_detached(p)) {
  1129. do_notify_parent(p, p->exit_signal);
  1130. if (!task_detached(p)) {
  1131. p->exit_state = EXIT_ZOMBIE;
  1132. p = NULL;
  1133. }
  1134. }
  1135. write_unlock_irq(&tasklist_lock);
  1136. }
  1137. if (p != NULL)
  1138. release_task(p);
  1139. return retval;
  1140. }
  1141. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1142. {
  1143. if (ptrace) {
  1144. if (task_is_stopped_or_traced(p))
  1145. return &p->exit_code;
  1146. } else {
  1147. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1148. return &p->signal->group_exit_code;
  1149. }
  1150. return NULL;
  1151. }
  1152. /*
  1153. * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
  1154. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1155. * the lock and this task is uninteresting. If we return nonzero, we have
  1156. * released the lock and the system call should return.
  1157. */
  1158. static int wait_task_stopped(int ptrace, struct task_struct *p,
  1159. int options, struct siginfo __user *infop,
  1160. int __user *stat_addr, struct rusage __user *ru)
  1161. {
  1162. int retval, exit_code, *p_code, why;
  1163. uid_t uid = 0; /* unneeded, required by compiler */
  1164. pid_t pid;
  1165. if (!(options & WUNTRACED))
  1166. return 0;
  1167. exit_code = 0;
  1168. spin_lock_irq(&p->sighand->siglock);
  1169. p_code = task_stopped_code(p, ptrace);
  1170. if (unlikely(!p_code))
  1171. goto unlock_sig;
  1172. exit_code = *p_code;
  1173. if (!exit_code)
  1174. goto unlock_sig;
  1175. if (!unlikely(options & WNOWAIT))
  1176. *p_code = 0;
  1177. /* don't need the RCU readlock here as we're holding a spinlock */
  1178. uid = __task_cred(p)->uid;
  1179. unlock_sig:
  1180. spin_unlock_irq(&p->sighand->siglock);
  1181. if (!exit_code)
  1182. return 0;
  1183. /*
  1184. * Now we are pretty sure this task is interesting.
  1185. * Make sure it doesn't get reaped out from under us while we
  1186. * give up the lock and then examine it below. We don't want to
  1187. * keep holding onto the tasklist_lock while we call getrusage and
  1188. * possibly take page faults for user memory.
  1189. */
  1190. get_task_struct(p);
  1191. pid = task_pid_vnr(p);
  1192. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1193. read_unlock(&tasklist_lock);
  1194. if (unlikely(options & WNOWAIT))
  1195. return wait_noreap_copyout(p, pid, uid,
  1196. why, exit_code,
  1197. infop, ru);
  1198. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1199. if (!retval && stat_addr)
  1200. retval = put_user((exit_code << 8) | 0x7f, stat_addr);
  1201. if (!retval && infop)
  1202. retval = put_user(SIGCHLD, &infop->si_signo);
  1203. if (!retval && infop)
  1204. retval = put_user(0, &infop->si_errno);
  1205. if (!retval && infop)
  1206. retval = put_user((short)why, &infop->si_code);
  1207. if (!retval && infop)
  1208. retval = put_user(exit_code, &infop->si_status);
  1209. if (!retval && infop)
  1210. retval = put_user(pid, &infop->si_pid);
  1211. if (!retval && infop)
  1212. retval = put_user(uid, &infop->si_uid);
  1213. if (!retval)
  1214. retval = pid;
  1215. put_task_struct(p);
  1216. BUG_ON(!retval);
  1217. return retval;
  1218. }
  1219. /*
  1220. * Handle do_wait work for one task in a live, non-stopped state.
  1221. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1222. * the lock and this task is uninteresting. If we return nonzero, we have
  1223. * released the lock and the system call should return.
  1224. */
  1225. static int wait_task_continued(struct task_struct *p, int options,
  1226. struct siginfo __user *infop,
  1227. int __user *stat_addr, struct rusage __user *ru)
  1228. {
  1229. int retval;
  1230. pid_t pid;
  1231. uid_t uid;
  1232. if (!unlikely(options & WCONTINUED))
  1233. return 0;
  1234. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1235. return 0;
  1236. spin_lock_irq(&p->sighand->siglock);
  1237. /* Re-check with the lock held. */
  1238. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1239. spin_unlock_irq(&p->sighand->siglock);
  1240. return 0;
  1241. }
  1242. if (!unlikely(options & WNOWAIT))
  1243. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1244. uid = __task_cred(p)->uid;
  1245. spin_unlock_irq(&p->sighand->siglock);
  1246. pid = task_pid_vnr(p);
  1247. get_task_struct(p);
  1248. read_unlock(&tasklist_lock);
  1249. if (!infop) {
  1250. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1251. put_task_struct(p);
  1252. if (!retval && stat_addr)
  1253. retval = put_user(0xffff, stat_addr);
  1254. if (!retval)
  1255. retval = pid;
  1256. } else {
  1257. retval = wait_noreap_copyout(p, pid, uid,
  1258. CLD_CONTINUED, SIGCONT,
  1259. infop, ru);
  1260. BUG_ON(retval == 0);
  1261. }
  1262. return retval;
  1263. }
  1264. /*
  1265. * Consider @p for a wait by @parent.
  1266. *
  1267. * -ECHILD should be in *@notask_error before the first call.
  1268. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1269. * Returns zero if the search for a child should continue;
  1270. * then *@notask_error is 0 if @p is an eligible child,
  1271. * or another error from security_task_wait(), or still -ECHILD.
  1272. */
  1273. static int wait_consider_task(struct task_struct *parent, int ptrace,
  1274. struct task_struct *p, int *notask_error,
  1275. enum pid_type type, struct pid *pid, int options,
  1276. struct siginfo __user *infop,
  1277. int __user *stat_addr, struct rusage __user *ru)
  1278. {
  1279. int ret = eligible_child(type, pid, options, p);
  1280. if (!ret)
  1281. return ret;
  1282. if (unlikely(ret < 0)) {
  1283. /*
  1284. * If we have not yet seen any eligible child,
  1285. * then let this error code replace -ECHILD.
  1286. * A permission error will give the user a clue
  1287. * to look for security policy problems, rather
  1288. * than for mysterious wait bugs.
  1289. */
  1290. if (*notask_error)
  1291. *notask_error = ret;
  1292. }
  1293. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1294. /*
  1295. * This child is hidden by ptrace.
  1296. * We aren't allowed to see it now, but eventually we will.
  1297. */
  1298. *notask_error = 0;
  1299. return 0;
  1300. }
  1301. if (p->exit_state == EXIT_DEAD)
  1302. return 0;
  1303. /*
  1304. * We don't reap group leaders with subthreads.
  1305. */
  1306. if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
  1307. return wait_task_zombie(p, options, infop, stat_addr, ru);
  1308. /*
  1309. * It's stopped or running now, so it might
  1310. * later continue, exit, or stop again.
  1311. */
  1312. *notask_error = 0;
  1313. if (task_stopped_code(p, ptrace))
  1314. return wait_task_stopped(ptrace, p, options,
  1315. infop, stat_addr, ru);
  1316. return wait_task_continued(p, options, infop, stat_addr, ru);
  1317. }
  1318. /*
  1319. * Do the work of do_wait() for one thread in the group, @tsk.
  1320. *
  1321. * -ECHILD should be in *@notask_error before the first call.
  1322. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1323. * Returns zero if the search for a child should continue; then
  1324. * *@notask_error is 0 if there were any eligible children,
  1325. * or another error from security_task_wait(), or still -ECHILD.
  1326. */
  1327. static int do_wait_thread(struct task_struct *tsk, int *notask_error,
  1328. enum pid_type type, struct pid *pid, int options,
  1329. struct siginfo __user *infop, int __user *stat_addr,
  1330. struct rusage __user *ru)
  1331. {
  1332. struct task_struct *p;
  1333. list_for_each_entry(p, &tsk->children, sibling) {
  1334. /*
  1335. * Do not consider detached threads.
  1336. */
  1337. if (!task_detached(p)) {
  1338. int ret = wait_consider_task(tsk, 0, p, notask_error,
  1339. type, pid, options,
  1340. infop, stat_addr, ru);
  1341. if (ret)
  1342. return ret;
  1343. }
  1344. }
  1345. return 0;
  1346. }
  1347. static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
  1348. enum pid_type type, struct pid *pid, int options,
  1349. struct siginfo __user *infop, int __user *stat_addr,
  1350. struct rusage __user *ru)
  1351. {
  1352. struct task_struct *p;
  1353. /*
  1354. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1355. */
  1356. options |= WUNTRACED;
  1357. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1358. int ret = wait_consider_task(tsk, 1, p, notask_error,
  1359. type, pid, options,
  1360. infop, stat_addr, ru);
  1361. if (ret)
  1362. return ret;
  1363. }
  1364. return 0;
  1365. }
  1366. static long do_wait(enum pid_type type, struct pid *pid, int options,
  1367. struct siginfo __user *infop, int __user *stat_addr,
  1368. struct rusage __user *ru)
  1369. {
  1370. DECLARE_WAITQUEUE(wait, current);
  1371. struct task_struct *tsk;
  1372. int retval;
  1373. trace_sched_process_wait(pid);
  1374. add_wait_queue(&current->signal->wait_chldexit,&wait);
  1375. repeat:
  1376. /*
  1377. * If there is nothing that can match our critiera just get out.
  1378. * We will clear @retval to zero if we see any child that might later
  1379. * match our criteria, even if we are not able to reap it yet.
  1380. */
  1381. retval = -ECHILD;
  1382. if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
  1383. goto end;
  1384. current->state = TASK_INTERRUPTIBLE;
  1385. read_lock(&tasklist_lock);
  1386. tsk = current;
  1387. do {
  1388. int tsk_result = do_wait_thread(tsk, &retval,
  1389. type, pid, options,
  1390. infop, stat_addr, ru);
  1391. if (!tsk_result)
  1392. tsk_result = ptrace_do_wait(tsk, &retval,
  1393. type, pid, options,
  1394. infop, stat_addr, ru);
  1395. if (tsk_result) {
  1396. /*
  1397. * tasklist_lock is unlocked and we have a final result.
  1398. */
  1399. retval = tsk_result;
  1400. goto end;
  1401. }
  1402. if (options & __WNOTHREAD)
  1403. break;
  1404. tsk = next_thread(tsk);
  1405. BUG_ON(tsk->signal != current->signal);
  1406. } while (tsk != current);
  1407. read_unlock(&tasklist_lock);
  1408. if (!retval && !(options & WNOHANG)) {
  1409. retval = -ERESTARTSYS;
  1410. if (!signal_pending(current)) {
  1411. schedule();
  1412. goto repeat;
  1413. }
  1414. }
  1415. end:
  1416. current->state = TASK_RUNNING;
  1417. remove_wait_queue(&current->signal->wait_chldexit,&wait);
  1418. if (infop) {
  1419. if (retval > 0)
  1420. retval = 0;
  1421. else {
  1422. /*
  1423. * For a WNOHANG return, clear out all the fields
  1424. * we would set so the user can easily tell the
  1425. * difference.
  1426. */
  1427. if (!retval)
  1428. retval = put_user(0, &infop->si_signo);
  1429. if (!retval)
  1430. retval = put_user(0, &infop->si_errno);
  1431. if (!retval)
  1432. retval = put_user(0, &infop->si_code);
  1433. if (!retval)
  1434. retval = put_user(0, &infop->si_pid);
  1435. if (!retval)
  1436. retval = put_user(0, &infop->si_uid);
  1437. if (!retval)
  1438. retval = put_user(0, &infop->si_status);
  1439. }
  1440. }
  1441. return retval;
  1442. }
  1443. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1444. infop, int, options, struct rusage __user *, ru)
  1445. {
  1446. struct pid *pid = NULL;
  1447. enum pid_type type;
  1448. long ret;
  1449. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1450. return -EINVAL;
  1451. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1452. return -EINVAL;
  1453. switch (which) {
  1454. case P_ALL:
  1455. type = PIDTYPE_MAX;
  1456. break;
  1457. case P_PID:
  1458. type = PIDTYPE_PID;
  1459. if (upid <= 0)
  1460. return -EINVAL;
  1461. break;
  1462. case P_PGID:
  1463. type = PIDTYPE_PGID;
  1464. if (upid <= 0)
  1465. return -EINVAL;
  1466. break;
  1467. default:
  1468. return -EINVAL;
  1469. }
  1470. if (type < PIDTYPE_MAX)
  1471. pid = find_get_pid(upid);
  1472. ret = do_wait(type, pid, options, infop, NULL, ru);
  1473. put_pid(pid);
  1474. /* avoid REGPARM breakage on x86: */
  1475. asmlinkage_protect(5, ret, which, upid, infop, options, ru);
  1476. return ret;
  1477. }
  1478. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1479. int, options, struct rusage __user *, ru)
  1480. {
  1481. struct pid *pid = NULL;
  1482. enum pid_type type;
  1483. long ret;
  1484. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1485. __WNOTHREAD|__WCLONE|__WALL))
  1486. return -EINVAL;
  1487. if (upid == -1)
  1488. type = PIDTYPE_MAX;
  1489. else if (upid < 0) {
  1490. type = PIDTYPE_PGID;
  1491. pid = find_get_pid(-upid);
  1492. } else if (upid == 0) {
  1493. type = PIDTYPE_PGID;
  1494. pid = get_task_pid(current, PIDTYPE_PGID);
  1495. } else /* upid > 0 */ {
  1496. type = PIDTYPE_PID;
  1497. pid = find_get_pid(upid);
  1498. }
  1499. ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
  1500. put_pid(pid);
  1501. /* avoid REGPARM breakage on x86: */
  1502. asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
  1503. return ret;
  1504. }
  1505. #ifdef __ARCH_WANT_SYS_WAITPID
  1506. /*
  1507. * sys_waitpid() remains for compatibility. waitpid() should be
  1508. * implemented by calling sys_wait4() from libc.a.
  1509. */
  1510. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1511. {
  1512. return sys_wait4(pid, stat_addr, options, NULL);
  1513. }
  1514. #endif