xmit.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  109. {
  110. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  111. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  112. sizeof(tx_info->rate_driver_data));
  113. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  114. }
  115. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  116. {
  117. if (!tid->an->sta)
  118. return;
  119. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  120. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  121. }
  122. static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
  123. struct ath_buf *bf)
  124. {
  125. ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
  126. ARRAY_SIZE(bf->rates));
  127. }
  128. static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
  129. struct sk_buff *skb)
  130. {
  131. int q;
  132. q = skb_get_queue_mapping(skb);
  133. if (txq == sc->tx.uapsdq)
  134. txq = sc->tx.txq_map[q];
  135. if (txq != sc->tx.txq_map[q])
  136. return;
  137. if (WARN_ON(--txq->pending_frames < 0))
  138. txq->pending_frames = 0;
  139. if (txq->stopped &&
  140. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  141. ieee80211_wake_queue(sc->hw, q);
  142. txq->stopped = false;
  143. }
  144. }
  145. static struct ath_atx_tid *
  146. ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
  147. {
  148. struct ieee80211_hdr *hdr;
  149. u8 tidno = 0;
  150. hdr = (struct ieee80211_hdr *) skb->data;
  151. if (ieee80211_is_data_qos(hdr->frame_control))
  152. tidno = ieee80211_get_qos_ctl(hdr)[0];
  153. tidno &= IEEE80211_QOS_CTL_TID_MASK;
  154. return ATH_AN_2_TID(an, tidno);
  155. }
  156. static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
  157. {
  158. return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
  159. }
  160. static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
  161. {
  162. struct sk_buff *skb;
  163. skb = __skb_dequeue(&tid->retry_q);
  164. if (!skb)
  165. skb = __skb_dequeue(&tid->buf_q);
  166. return skb;
  167. }
  168. /*
  169. * ath_tx_tid_change_state:
  170. * - clears a-mpdu flag of previous session
  171. * - force sequence number allocation to fix next BlockAck Window
  172. */
  173. static void
  174. ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
  175. {
  176. struct ath_txq *txq = tid->ac->txq;
  177. struct ieee80211_tx_info *tx_info;
  178. struct sk_buff *skb, *tskb;
  179. struct ath_buf *bf;
  180. struct ath_frame_info *fi;
  181. skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
  182. fi = get_frame_info(skb);
  183. bf = fi->bf;
  184. tx_info = IEEE80211_SKB_CB(skb);
  185. tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
  186. if (bf)
  187. continue;
  188. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  189. if (!bf) {
  190. __skb_unlink(skb, &tid->buf_q);
  191. ath_txq_skb_done(sc, txq, skb);
  192. ieee80211_free_txskb(sc->hw, skb);
  193. continue;
  194. }
  195. }
  196. }
  197. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  198. {
  199. struct ath_txq *txq = tid->ac->txq;
  200. struct sk_buff *skb;
  201. struct ath_buf *bf;
  202. struct list_head bf_head;
  203. struct ath_tx_status ts;
  204. struct ath_frame_info *fi;
  205. bool sendbar = false;
  206. INIT_LIST_HEAD(&bf_head);
  207. memset(&ts, 0, sizeof(ts));
  208. while ((skb = __skb_dequeue(&tid->retry_q))) {
  209. fi = get_frame_info(skb);
  210. bf = fi->bf;
  211. if (!bf) {
  212. ath_txq_skb_done(sc, txq, skb);
  213. ieee80211_free_txskb(sc->hw, skb);
  214. continue;
  215. }
  216. if (fi->baw_tracked) {
  217. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  218. sendbar = true;
  219. }
  220. list_add_tail(&bf->list, &bf_head);
  221. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  222. }
  223. if (sendbar) {
  224. ath_txq_unlock(sc, txq);
  225. ath_send_bar(tid, tid->seq_start);
  226. ath_txq_lock(sc, txq);
  227. }
  228. }
  229. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  230. int seqno)
  231. {
  232. int index, cindex;
  233. index = ATH_BA_INDEX(tid->seq_start, seqno);
  234. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  235. __clear_bit(cindex, tid->tx_buf);
  236. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  237. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  238. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  239. if (tid->bar_index >= 0)
  240. tid->bar_index--;
  241. }
  242. }
  243. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  244. struct ath_buf *bf)
  245. {
  246. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  247. u16 seqno = bf->bf_state.seqno;
  248. int index, cindex;
  249. index = ATH_BA_INDEX(tid->seq_start, seqno);
  250. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  251. __set_bit(cindex, tid->tx_buf);
  252. fi->baw_tracked = 1;
  253. if (index >= ((tid->baw_tail - tid->baw_head) &
  254. (ATH_TID_MAX_BUFS - 1))) {
  255. tid->baw_tail = cindex;
  256. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  257. }
  258. }
  259. /*
  260. * TODO: For frame(s) that are in the retry state, we will reuse the
  261. * sequence number(s) without setting the retry bit. The
  262. * alternative is to give up on these and BAR the receiver's window
  263. * forward.
  264. */
  265. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  266. struct ath_atx_tid *tid)
  267. {
  268. struct sk_buff *skb;
  269. struct ath_buf *bf;
  270. struct list_head bf_head;
  271. struct ath_tx_status ts;
  272. struct ath_frame_info *fi;
  273. memset(&ts, 0, sizeof(ts));
  274. INIT_LIST_HEAD(&bf_head);
  275. while ((skb = ath_tid_dequeue(tid))) {
  276. fi = get_frame_info(skb);
  277. bf = fi->bf;
  278. if (!bf) {
  279. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  280. continue;
  281. }
  282. list_add_tail(&bf->list, &bf_head);
  283. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  284. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  285. }
  286. tid->seq_next = tid->seq_start;
  287. tid->baw_tail = tid->baw_head;
  288. tid->bar_index = -1;
  289. }
  290. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  291. struct sk_buff *skb, int count)
  292. {
  293. struct ath_frame_info *fi = get_frame_info(skb);
  294. struct ath_buf *bf = fi->bf;
  295. struct ieee80211_hdr *hdr;
  296. int prev = fi->retries;
  297. TX_STAT_INC(txq->axq_qnum, a_retries);
  298. fi->retries += count;
  299. if (prev > 0)
  300. return;
  301. hdr = (struct ieee80211_hdr *)skb->data;
  302. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  303. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  304. sizeof(*hdr), DMA_TO_DEVICE);
  305. }
  306. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  307. {
  308. struct ath_buf *bf = NULL;
  309. spin_lock_bh(&sc->tx.txbuflock);
  310. if (unlikely(list_empty(&sc->tx.txbuf))) {
  311. spin_unlock_bh(&sc->tx.txbuflock);
  312. return NULL;
  313. }
  314. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  315. list_del(&bf->list);
  316. spin_unlock_bh(&sc->tx.txbuflock);
  317. return bf;
  318. }
  319. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  320. {
  321. spin_lock_bh(&sc->tx.txbuflock);
  322. list_add_tail(&bf->list, &sc->tx.txbuf);
  323. spin_unlock_bh(&sc->tx.txbuflock);
  324. }
  325. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  326. {
  327. struct ath_buf *tbf;
  328. tbf = ath_tx_get_buffer(sc);
  329. if (WARN_ON(!tbf))
  330. return NULL;
  331. ATH_TXBUF_RESET(tbf);
  332. tbf->bf_mpdu = bf->bf_mpdu;
  333. tbf->bf_buf_addr = bf->bf_buf_addr;
  334. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  335. tbf->bf_state = bf->bf_state;
  336. return tbf;
  337. }
  338. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  339. struct ath_tx_status *ts, int txok,
  340. int *nframes, int *nbad)
  341. {
  342. struct ath_frame_info *fi;
  343. u16 seq_st = 0;
  344. u32 ba[WME_BA_BMP_SIZE >> 5];
  345. int ba_index;
  346. int isaggr = 0;
  347. *nbad = 0;
  348. *nframes = 0;
  349. isaggr = bf_isaggr(bf);
  350. if (isaggr) {
  351. seq_st = ts->ts_seqnum;
  352. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  353. }
  354. while (bf) {
  355. fi = get_frame_info(bf->bf_mpdu);
  356. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  357. (*nframes)++;
  358. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  359. (*nbad)++;
  360. bf = bf->bf_next;
  361. }
  362. }
  363. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  364. struct ath_buf *bf, struct list_head *bf_q,
  365. struct ath_tx_status *ts, int txok)
  366. {
  367. struct ath_node *an = NULL;
  368. struct sk_buff *skb;
  369. struct ieee80211_sta *sta;
  370. struct ieee80211_hw *hw = sc->hw;
  371. struct ieee80211_hdr *hdr;
  372. struct ieee80211_tx_info *tx_info;
  373. struct ath_atx_tid *tid = NULL;
  374. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  375. struct list_head bf_head;
  376. struct sk_buff_head bf_pending;
  377. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  378. u32 ba[WME_BA_BMP_SIZE >> 5];
  379. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  380. bool rc_update = true, isba;
  381. struct ieee80211_tx_rate rates[4];
  382. struct ath_frame_info *fi;
  383. int nframes;
  384. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  385. int i, retries;
  386. int bar_index = -1;
  387. skb = bf->bf_mpdu;
  388. hdr = (struct ieee80211_hdr *)skb->data;
  389. tx_info = IEEE80211_SKB_CB(skb);
  390. memcpy(rates, bf->rates, sizeof(rates));
  391. retries = ts->ts_longretry + 1;
  392. for (i = 0; i < ts->ts_rateindex; i++)
  393. retries += rates[i].count;
  394. rcu_read_lock();
  395. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  396. if (!sta) {
  397. rcu_read_unlock();
  398. INIT_LIST_HEAD(&bf_head);
  399. while (bf) {
  400. bf_next = bf->bf_next;
  401. if (!bf->bf_stale || bf_next != NULL)
  402. list_move_tail(&bf->list, &bf_head);
  403. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  404. bf = bf_next;
  405. }
  406. return;
  407. }
  408. an = (struct ath_node *)sta->drv_priv;
  409. tid = ath_get_skb_tid(sc, an, skb);
  410. seq_first = tid->seq_start;
  411. isba = ts->ts_flags & ATH9K_TX_BA;
  412. /*
  413. * The hardware occasionally sends a tx status for the wrong TID.
  414. * In this case, the BA status cannot be considered valid and all
  415. * subframes need to be retransmitted
  416. *
  417. * Only BlockAcks have a TID and therefore normal Acks cannot be
  418. * checked
  419. */
  420. if (isba && tid->tidno != ts->tid)
  421. txok = false;
  422. isaggr = bf_isaggr(bf);
  423. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  424. if (isaggr && txok) {
  425. if (ts->ts_flags & ATH9K_TX_BA) {
  426. seq_st = ts->ts_seqnum;
  427. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  428. } else {
  429. /*
  430. * AR5416 can become deaf/mute when BA
  431. * issue happens. Chip needs to be reset.
  432. * But AP code may have sychronization issues
  433. * when perform internal reset in this routine.
  434. * Only enable reset in STA mode for now.
  435. */
  436. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  437. needreset = 1;
  438. }
  439. }
  440. __skb_queue_head_init(&bf_pending);
  441. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  442. while (bf) {
  443. u16 seqno = bf->bf_state.seqno;
  444. txfail = txpending = sendbar = 0;
  445. bf_next = bf->bf_next;
  446. skb = bf->bf_mpdu;
  447. tx_info = IEEE80211_SKB_CB(skb);
  448. fi = get_frame_info(skb);
  449. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
  450. !tid->active) {
  451. /*
  452. * Outside of the current BlockAck window,
  453. * maybe part of a previous session
  454. */
  455. txfail = 1;
  456. } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  457. /* transmit completion, subframe is
  458. * acked by block ack */
  459. acked_cnt++;
  460. } else if (!isaggr && txok) {
  461. /* transmit completion */
  462. acked_cnt++;
  463. } else if (flush) {
  464. txpending = 1;
  465. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  466. if (txok || !an->sleeping)
  467. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  468. retries);
  469. txpending = 1;
  470. } else {
  471. txfail = 1;
  472. txfail_cnt++;
  473. bar_index = max_t(int, bar_index,
  474. ATH_BA_INDEX(seq_first, seqno));
  475. }
  476. /*
  477. * Make sure the last desc is reclaimed if it
  478. * not a holding desc.
  479. */
  480. INIT_LIST_HEAD(&bf_head);
  481. if (bf_next != NULL || !bf_last->bf_stale)
  482. list_move_tail(&bf->list, &bf_head);
  483. if (!txpending) {
  484. /*
  485. * complete the acked-ones/xretried ones; update
  486. * block-ack window
  487. */
  488. ath_tx_update_baw(sc, tid, seqno);
  489. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  490. memcpy(tx_info->control.rates, rates, sizeof(rates));
  491. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  492. rc_update = false;
  493. }
  494. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  495. !txfail);
  496. } else {
  497. if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
  498. tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
  499. ieee80211_sta_eosp(sta);
  500. }
  501. /* retry the un-acked ones */
  502. if (bf->bf_next == NULL && bf_last->bf_stale) {
  503. struct ath_buf *tbf;
  504. tbf = ath_clone_txbuf(sc, bf_last);
  505. /*
  506. * Update tx baw and complete the
  507. * frame with failed status if we
  508. * run out of tx buf.
  509. */
  510. if (!tbf) {
  511. ath_tx_update_baw(sc, tid, seqno);
  512. ath_tx_complete_buf(sc, bf, txq,
  513. &bf_head, ts, 0);
  514. bar_index = max_t(int, bar_index,
  515. ATH_BA_INDEX(seq_first, seqno));
  516. break;
  517. }
  518. fi->bf = tbf;
  519. }
  520. /*
  521. * Put this buffer to the temporary pending
  522. * queue to retain ordering
  523. */
  524. __skb_queue_tail(&bf_pending, skb);
  525. }
  526. bf = bf_next;
  527. }
  528. /* prepend un-acked frames to the beginning of the pending frame queue */
  529. if (!skb_queue_empty(&bf_pending)) {
  530. if (an->sleeping)
  531. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  532. skb_queue_splice_tail(&bf_pending, &tid->retry_q);
  533. if (!an->sleeping) {
  534. ath_tx_queue_tid(txq, tid);
  535. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  536. tid->ac->clear_ps_filter = true;
  537. }
  538. }
  539. if (bar_index >= 0) {
  540. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  541. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  542. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  543. ath_txq_unlock(sc, txq);
  544. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  545. ath_txq_lock(sc, txq);
  546. }
  547. rcu_read_unlock();
  548. if (needreset)
  549. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  550. }
  551. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  552. {
  553. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  554. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  555. }
  556. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  557. struct ath_tx_status *ts, struct ath_buf *bf,
  558. struct list_head *bf_head)
  559. {
  560. struct ieee80211_tx_info *info;
  561. bool txok, flush;
  562. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  563. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  564. txq->axq_tx_inprogress = false;
  565. txq->axq_depth--;
  566. if (bf_is_ampdu_not_probing(bf))
  567. txq->axq_ampdu_depth--;
  568. if (!bf_isampdu(bf)) {
  569. if (!flush) {
  570. info = IEEE80211_SKB_CB(bf->bf_mpdu);
  571. memcpy(info->control.rates, bf->rates,
  572. sizeof(info->control.rates));
  573. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  574. }
  575. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  576. } else
  577. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  578. if (!flush)
  579. ath_txq_schedule(sc, txq);
  580. }
  581. static bool ath_lookup_legacy(struct ath_buf *bf)
  582. {
  583. struct sk_buff *skb;
  584. struct ieee80211_tx_info *tx_info;
  585. struct ieee80211_tx_rate *rates;
  586. int i;
  587. skb = bf->bf_mpdu;
  588. tx_info = IEEE80211_SKB_CB(skb);
  589. rates = tx_info->control.rates;
  590. for (i = 0; i < 4; i++) {
  591. if (!rates[i].count || rates[i].idx < 0)
  592. break;
  593. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  594. return true;
  595. }
  596. return false;
  597. }
  598. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  599. struct ath_atx_tid *tid)
  600. {
  601. struct sk_buff *skb;
  602. struct ieee80211_tx_info *tx_info;
  603. struct ieee80211_tx_rate *rates;
  604. u32 max_4ms_framelen, frmlen;
  605. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  606. int q = tid->ac->txq->mac80211_qnum;
  607. int i;
  608. skb = bf->bf_mpdu;
  609. tx_info = IEEE80211_SKB_CB(skb);
  610. rates = bf->rates;
  611. /*
  612. * Find the lowest frame length among the rate series that will have a
  613. * 4ms (or TXOP limited) transmit duration.
  614. */
  615. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  616. for (i = 0; i < 4; i++) {
  617. int modeidx;
  618. if (!rates[i].count)
  619. continue;
  620. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  621. legacy = 1;
  622. break;
  623. }
  624. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  625. modeidx = MCS_HT40;
  626. else
  627. modeidx = MCS_HT20;
  628. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  629. modeidx++;
  630. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  631. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  632. }
  633. /*
  634. * limit aggregate size by the minimum rate if rate selected is
  635. * not a probe rate, if rate selected is a probe rate then
  636. * avoid aggregation of this packet.
  637. */
  638. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  639. return 0;
  640. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  641. /*
  642. * Override the default aggregation limit for BTCOEX.
  643. */
  644. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  645. if (bt_aggr_limit)
  646. aggr_limit = bt_aggr_limit;
  647. /*
  648. * h/w can accept aggregates up to 16 bit lengths (65535).
  649. * The IE, however can hold up to 65536, which shows up here
  650. * as zero. Ignore 65536 since we are constrained by hw.
  651. */
  652. if (tid->an->maxampdu)
  653. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  654. return aggr_limit;
  655. }
  656. /*
  657. * Returns the number of delimiters to be added to
  658. * meet the minimum required mpdudensity.
  659. */
  660. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  661. struct ath_buf *bf, u16 frmlen,
  662. bool first_subfrm)
  663. {
  664. #define FIRST_DESC_NDELIMS 60
  665. u32 nsymbits, nsymbols;
  666. u16 minlen;
  667. u8 flags, rix;
  668. int width, streams, half_gi, ndelim, mindelim;
  669. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  670. /* Select standard number of delimiters based on frame length alone */
  671. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  672. /*
  673. * If encryption enabled, hardware requires some more padding between
  674. * subframes.
  675. * TODO - this could be improved to be dependent on the rate.
  676. * The hardware can keep up at lower rates, but not higher rates
  677. */
  678. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  679. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  680. ndelim += ATH_AGGR_ENCRYPTDELIM;
  681. /*
  682. * Add delimiter when using RTS/CTS with aggregation
  683. * and non enterprise AR9003 card
  684. */
  685. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  686. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  687. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  688. /*
  689. * Convert desired mpdu density from microeconds to bytes based
  690. * on highest rate in rate series (i.e. first rate) to determine
  691. * required minimum length for subframe. Take into account
  692. * whether high rate is 20 or 40Mhz and half or full GI.
  693. *
  694. * If there is no mpdu density restriction, no further calculation
  695. * is needed.
  696. */
  697. if (tid->an->mpdudensity == 0)
  698. return ndelim;
  699. rix = bf->rates[0].idx;
  700. flags = bf->rates[0].flags;
  701. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  702. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  703. if (half_gi)
  704. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  705. else
  706. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  707. if (nsymbols == 0)
  708. nsymbols = 1;
  709. streams = HT_RC_2_STREAMS(rix);
  710. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  711. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  712. if (frmlen < minlen) {
  713. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  714. ndelim = max(mindelim, ndelim);
  715. }
  716. return ndelim;
  717. }
  718. static struct ath_buf *
  719. ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
  720. struct ath_atx_tid *tid, struct sk_buff_head **q)
  721. {
  722. struct ieee80211_tx_info *tx_info;
  723. struct ath_frame_info *fi;
  724. struct sk_buff *skb;
  725. struct ath_buf *bf;
  726. u16 seqno;
  727. while (1) {
  728. *q = &tid->retry_q;
  729. if (skb_queue_empty(*q))
  730. *q = &tid->buf_q;
  731. skb = skb_peek(*q);
  732. if (!skb)
  733. break;
  734. fi = get_frame_info(skb);
  735. bf = fi->bf;
  736. if (!fi->bf)
  737. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  738. if (!bf) {
  739. __skb_unlink(skb, *q);
  740. ath_txq_skb_done(sc, txq, skb);
  741. ieee80211_free_txskb(sc->hw, skb);
  742. continue;
  743. }
  744. bf->bf_next = NULL;
  745. bf->bf_lastbf = bf;
  746. tx_info = IEEE80211_SKB_CB(skb);
  747. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  748. if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
  749. bf->bf_state.bf_type = 0;
  750. return bf;
  751. }
  752. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  753. seqno = bf->bf_state.seqno;
  754. /* do not step over block-ack window */
  755. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
  756. break;
  757. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  758. struct ath_tx_status ts = {};
  759. struct list_head bf_head;
  760. INIT_LIST_HEAD(&bf_head);
  761. list_add(&bf->list, &bf_head);
  762. __skb_unlink(skb, *q);
  763. ath_tx_update_baw(sc, tid, seqno);
  764. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  765. continue;
  766. }
  767. return bf;
  768. }
  769. return NULL;
  770. }
  771. static bool
  772. ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
  773. struct ath_atx_tid *tid, struct list_head *bf_q,
  774. struct ath_buf *bf_first, struct sk_buff_head *tid_q,
  775. int *aggr_len)
  776. {
  777. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  778. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  779. int nframes = 0, ndelim;
  780. u16 aggr_limit = 0, al = 0, bpad = 0,
  781. al_delta, h_baw = tid->baw_size / 2;
  782. struct ieee80211_tx_info *tx_info;
  783. struct ath_frame_info *fi;
  784. struct sk_buff *skb;
  785. bool closed = false;
  786. bf = bf_first;
  787. aggr_limit = ath_lookup_rate(sc, bf, tid);
  788. do {
  789. skb = bf->bf_mpdu;
  790. fi = get_frame_info(skb);
  791. /* do not exceed aggregation limit */
  792. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  793. if (nframes) {
  794. if (aggr_limit < al + bpad + al_delta ||
  795. ath_lookup_legacy(bf) || nframes >= h_baw)
  796. break;
  797. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  798. if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  799. !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
  800. break;
  801. }
  802. /* add padding for previous frame to aggregation length */
  803. al += bpad + al_delta;
  804. /*
  805. * Get the delimiters needed to meet the MPDU
  806. * density for this node.
  807. */
  808. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  809. !nframes);
  810. bpad = PADBYTES(al_delta) + (ndelim << 2);
  811. nframes++;
  812. bf->bf_next = NULL;
  813. /* link buffers of this frame to the aggregate */
  814. if (!fi->baw_tracked)
  815. ath_tx_addto_baw(sc, tid, bf);
  816. bf->bf_state.ndelim = ndelim;
  817. __skb_unlink(skb, tid_q);
  818. list_add_tail(&bf->list, bf_q);
  819. if (bf_prev)
  820. bf_prev->bf_next = bf;
  821. bf_prev = bf;
  822. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  823. if (!bf) {
  824. closed = true;
  825. break;
  826. }
  827. } while (ath_tid_has_buffered(tid));
  828. bf = bf_first;
  829. bf->bf_lastbf = bf_prev;
  830. if (bf == bf_prev) {
  831. al = get_frame_info(bf->bf_mpdu)->framelen;
  832. bf->bf_state.bf_type = BUF_AMPDU;
  833. } else {
  834. TX_STAT_INC(txq->axq_qnum, a_aggr);
  835. }
  836. *aggr_len = al;
  837. return closed;
  838. #undef PADBYTES
  839. }
  840. /*
  841. * rix - rate index
  842. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  843. * width - 0 for 20 MHz, 1 for 40 MHz
  844. * half_gi - to use 4us v/s 3.6 us for symbol time
  845. */
  846. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  847. int width, int half_gi, bool shortPreamble)
  848. {
  849. u32 nbits, nsymbits, duration, nsymbols;
  850. int streams;
  851. /* find number of symbols: PLCP + data */
  852. streams = HT_RC_2_STREAMS(rix);
  853. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  854. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  855. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  856. if (!half_gi)
  857. duration = SYMBOL_TIME(nsymbols);
  858. else
  859. duration = SYMBOL_TIME_HALFGI(nsymbols);
  860. /* addup duration for legacy/ht training and signal fields */
  861. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  862. return duration;
  863. }
  864. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  865. {
  866. int streams = HT_RC_2_STREAMS(mcs);
  867. int symbols, bits;
  868. int bytes = 0;
  869. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  870. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  871. bits -= OFDM_PLCP_BITS;
  872. bytes = bits / 8;
  873. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  874. if (bytes > 65532)
  875. bytes = 65532;
  876. return bytes;
  877. }
  878. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  879. {
  880. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  881. int mcs;
  882. /* 4ms is the default (and maximum) duration */
  883. if (!txop || txop > 4096)
  884. txop = 4096;
  885. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  886. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  887. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  888. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  889. for (mcs = 0; mcs < 32; mcs++) {
  890. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  891. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  892. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  893. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  894. }
  895. }
  896. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  897. struct ath_tx_info *info, int len, bool rts)
  898. {
  899. struct ath_hw *ah = sc->sc_ah;
  900. struct sk_buff *skb;
  901. struct ieee80211_tx_info *tx_info;
  902. struct ieee80211_tx_rate *rates;
  903. const struct ieee80211_rate *rate;
  904. struct ieee80211_hdr *hdr;
  905. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  906. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  907. int i;
  908. u8 rix = 0;
  909. skb = bf->bf_mpdu;
  910. tx_info = IEEE80211_SKB_CB(skb);
  911. rates = bf->rates;
  912. hdr = (struct ieee80211_hdr *)skb->data;
  913. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  914. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  915. info->rtscts_rate = fi->rtscts_rate;
  916. for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
  917. bool is_40, is_sgi, is_sp;
  918. int phy;
  919. if (!rates[i].count || (rates[i].idx < 0))
  920. continue;
  921. rix = rates[i].idx;
  922. info->rates[i].Tries = rates[i].count;
  923. /*
  924. * Handle RTS threshold for unaggregated HT frames.
  925. */
  926. if (bf_isampdu(bf) && !bf_isaggr(bf) &&
  927. (rates[i].flags & IEEE80211_TX_RC_MCS) &&
  928. unlikely(rts_thresh != (u32) -1)) {
  929. if (!rts_thresh || (len > rts_thresh))
  930. rts = true;
  931. }
  932. if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  933. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  934. info->flags |= ATH9K_TXDESC_RTSENA;
  935. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  936. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  937. info->flags |= ATH9K_TXDESC_CTSENA;
  938. }
  939. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  940. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  941. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  942. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  943. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  944. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  945. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  946. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  947. /* MCS rates */
  948. info->rates[i].Rate = rix | 0x80;
  949. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  950. ah->txchainmask, info->rates[i].Rate);
  951. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  952. is_40, is_sgi, is_sp);
  953. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  954. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  955. continue;
  956. }
  957. /* legacy rates */
  958. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  959. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  960. !(rate->flags & IEEE80211_RATE_ERP_G))
  961. phy = WLAN_RC_PHY_CCK;
  962. else
  963. phy = WLAN_RC_PHY_OFDM;
  964. info->rates[i].Rate = rate->hw_value;
  965. if (rate->hw_value_short) {
  966. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  967. info->rates[i].Rate |= rate->hw_value_short;
  968. } else {
  969. is_sp = false;
  970. }
  971. if (bf->bf_state.bfs_paprd)
  972. info->rates[i].ChSel = ah->txchainmask;
  973. else
  974. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  975. ah->txchainmask, info->rates[i].Rate);
  976. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  977. phy, rate->bitrate * 100, len, rix, is_sp);
  978. }
  979. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  980. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  981. info->flags &= ~ATH9K_TXDESC_RTSENA;
  982. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  983. if (info->flags & ATH9K_TXDESC_RTSENA)
  984. info->flags &= ~ATH9K_TXDESC_CTSENA;
  985. }
  986. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  987. {
  988. struct ieee80211_hdr *hdr;
  989. enum ath9k_pkt_type htype;
  990. __le16 fc;
  991. hdr = (struct ieee80211_hdr *)skb->data;
  992. fc = hdr->frame_control;
  993. if (ieee80211_is_beacon(fc))
  994. htype = ATH9K_PKT_TYPE_BEACON;
  995. else if (ieee80211_is_probe_resp(fc))
  996. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  997. else if (ieee80211_is_atim(fc))
  998. htype = ATH9K_PKT_TYPE_ATIM;
  999. else if (ieee80211_is_pspoll(fc))
  1000. htype = ATH9K_PKT_TYPE_PSPOLL;
  1001. else
  1002. htype = ATH9K_PKT_TYPE_NORMAL;
  1003. return htype;
  1004. }
  1005. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  1006. struct ath_txq *txq, int len)
  1007. {
  1008. struct ath_hw *ah = sc->sc_ah;
  1009. struct ath_buf *bf_first = NULL;
  1010. struct ath_tx_info info;
  1011. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  1012. bool rts = false;
  1013. memset(&info, 0, sizeof(info));
  1014. info.is_first = true;
  1015. info.is_last = true;
  1016. info.txpower = MAX_RATE_POWER;
  1017. info.qcu = txq->axq_qnum;
  1018. while (bf) {
  1019. struct sk_buff *skb = bf->bf_mpdu;
  1020. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1021. struct ath_frame_info *fi = get_frame_info(skb);
  1022. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  1023. info.type = get_hw_packet_type(skb);
  1024. if (bf->bf_next)
  1025. info.link = bf->bf_next->bf_daddr;
  1026. else
  1027. info.link = 0;
  1028. if (!bf_first) {
  1029. bf_first = bf;
  1030. info.flags = ATH9K_TXDESC_INTREQ;
  1031. if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
  1032. txq == sc->tx.uapsdq)
  1033. info.flags |= ATH9K_TXDESC_CLRDMASK;
  1034. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1035. info.flags |= ATH9K_TXDESC_NOACK;
  1036. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1037. info.flags |= ATH9K_TXDESC_LDPC;
  1038. if (bf->bf_state.bfs_paprd)
  1039. info.flags |= (u32) bf->bf_state.bfs_paprd <<
  1040. ATH9K_TXDESC_PAPRD_S;
  1041. /*
  1042. * mac80211 doesn't handle RTS threshold for HT because
  1043. * the decision has to be taken based on AMPDU length
  1044. * and aggregation is done entirely inside ath9k.
  1045. * Set the RTS/CTS flag for the first subframe based
  1046. * on the threshold.
  1047. */
  1048. if (aggr && (bf == bf_first) &&
  1049. unlikely(rts_thresh != (u32) -1)) {
  1050. /*
  1051. * "len" is the size of the entire AMPDU.
  1052. */
  1053. if (!rts_thresh || (len > rts_thresh))
  1054. rts = true;
  1055. }
  1056. ath_buf_set_rate(sc, bf, &info, len, rts);
  1057. }
  1058. info.buf_addr[0] = bf->bf_buf_addr;
  1059. info.buf_len[0] = skb->len;
  1060. info.pkt_len = fi->framelen;
  1061. info.keyix = fi->keyix;
  1062. info.keytype = fi->keytype;
  1063. if (aggr) {
  1064. if (bf == bf_first)
  1065. info.aggr = AGGR_BUF_FIRST;
  1066. else if (bf == bf_first->bf_lastbf)
  1067. info.aggr = AGGR_BUF_LAST;
  1068. else
  1069. info.aggr = AGGR_BUF_MIDDLE;
  1070. info.ndelim = bf->bf_state.ndelim;
  1071. info.aggr_len = len;
  1072. }
  1073. if (bf == bf_first->bf_lastbf)
  1074. bf_first = NULL;
  1075. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  1076. bf = bf->bf_next;
  1077. }
  1078. }
  1079. static void
  1080. ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
  1081. struct ath_atx_tid *tid, struct list_head *bf_q,
  1082. struct ath_buf *bf_first, struct sk_buff_head *tid_q)
  1083. {
  1084. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  1085. struct sk_buff *skb;
  1086. int nframes = 0;
  1087. do {
  1088. struct ieee80211_tx_info *tx_info;
  1089. skb = bf->bf_mpdu;
  1090. nframes++;
  1091. __skb_unlink(skb, tid_q);
  1092. list_add_tail(&bf->list, bf_q);
  1093. if (bf_prev)
  1094. bf_prev->bf_next = bf;
  1095. bf_prev = bf;
  1096. if (nframes >= 2)
  1097. break;
  1098. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1099. if (!bf)
  1100. break;
  1101. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1102. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
  1103. break;
  1104. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1105. } while (1);
  1106. }
  1107. static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  1108. struct ath_atx_tid *tid, bool *stop)
  1109. {
  1110. struct ath_buf *bf;
  1111. struct ieee80211_tx_info *tx_info;
  1112. struct sk_buff_head *tid_q;
  1113. struct list_head bf_q;
  1114. int aggr_len = 0;
  1115. bool aggr, last = true;
  1116. if (!ath_tid_has_buffered(tid))
  1117. return false;
  1118. INIT_LIST_HEAD(&bf_q);
  1119. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1120. if (!bf)
  1121. return false;
  1122. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1123. aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
  1124. if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
  1125. (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
  1126. *stop = true;
  1127. return false;
  1128. }
  1129. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1130. if (aggr)
  1131. last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
  1132. tid_q, &aggr_len);
  1133. else
  1134. ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
  1135. if (list_empty(&bf_q))
  1136. return false;
  1137. if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
  1138. tid->ac->clear_ps_filter = false;
  1139. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1140. }
  1141. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  1142. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1143. return true;
  1144. }
  1145. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  1146. u16 tid, u16 *ssn)
  1147. {
  1148. struct ath_atx_tid *txtid;
  1149. struct ath_node *an;
  1150. u8 density;
  1151. an = (struct ath_node *)sta->drv_priv;
  1152. txtid = ATH_AN_2_TID(an, tid);
  1153. /* update ampdu factor/density, they may have changed. This may happen
  1154. * in HT IBSS when a beacon with HT-info is received after the station
  1155. * has already been added.
  1156. */
  1157. if (sta->ht_cap.ht_supported) {
  1158. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1159. sta->ht_cap.ampdu_factor);
  1160. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1161. an->mpdudensity = density;
  1162. }
  1163. /* force sequence number allocation for pending frames */
  1164. ath_tx_tid_change_state(sc, txtid);
  1165. txtid->active = true;
  1166. txtid->paused = true;
  1167. *ssn = txtid->seq_start = txtid->seq_next;
  1168. txtid->bar_index = -1;
  1169. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1170. txtid->baw_head = txtid->baw_tail = 0;
  1171. return 0;
  1172. }
  1173. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1174. {
  1175. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1176. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1177. struct ath_txq *txq = txtid->ac->txq;
  1178. ath_txq_lock(sc, txq);
  1179. txtid->active = false;
  1180. txtid->paused = false;
  1181. ath_tx_flush_tid(sc, txtid);
  1182. ath_tx_tid_change_state(sc, txtid);
  1183. ath_txq_unlock_complete(sc, txq);
  1184. }
  1185. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1186. struct ath_node *an)
  1187. {
  1188. struct ath_atx_tid *tid;
  1189. struct ath_atx_ac *ac;
  1190. struct ath_txq *txq;
  1191. bool buffered;
  1192. int tidno;
  1193. for (tidno = 0, tid = &an->tid[tidno];
  1194. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1195. if (!tid->sched)
  1196. continue;
  1197. ac = tid->ac;
  1198. txq = ac->txq;
  1199. ath_txq_lock(sc, txq);
  1200. buffered = ath_tid_has_buffered(tid);
  1201. tid->sched = false;
  1202. list_del(&tid->list);
  1203. if (ac->sched) {
  1204. ac->sched = false;
  1205. list_del(&ac->list);
  1206. }
  1207. ath_txq_unlock(sc, txq);
  1208. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1209. }
  1210. }
  1211. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1212. {
  1213. struct ath_atx_tid *tid;
  1214. struct ath_atx_ac *ac;
  1215. struct ath_txq *txq;
  1216. int tidno;
  1217. for (tidno = 0, tid = &an->tid[tidno];
  1218. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1219. ac = tid->ac;
  1220. txq = ac->txq;
  1221. ath_txq_lock(sc, txq);
  1222. ac->clear_ps_filter = true;
  1223. if (!tid->paused && ath_tid_has_buffered(tid)) {
  1224. ath_tx_queue_tid(txq, tid);
  1225. ath_txq_schedule(sc, txq);
  1226. }
  1227. ath_txq_unlock_complete(sc, txq);
  1228. }
  1229. }
  1230. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
  1231. u16 tidno)
  1232. {
  1233. struct ath_atx_tid *tid;
  1234. struct ath_node *an;
  1235. struct ath_txq *txq;
  1236. an = (struct ath_node *)sta->drv_priv;
  1237. tid = ATH_AN_2_TID(an, tidno);
  1238. txq = tid->ac->txq;
  1239. ath_txq_lock(sc, txq);
  1240. tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1241. tid->paused = false;
  1242. if (ath_tid_has_buffered(tid)) {
  1243. ath_tx_queue_tid(txq, tid);
  1244. ath_txq_schedule(sc, txq);
  1245. }
  1246. ath_txq_unlock_complete(sc, txq);
  1247. }
  1248. void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
  1249. struct ieee80211_sta *sta,
  1250. u16 tids, int nframes,
  1251. enum ieee80211_frame_release_type reason,
  1252. bool more_data)
  1253. {
  1254. struct ath_softc *sc = hw->priv;
  1255. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1256. struct ath_txq *txq = sc->tx.uapsdq;
  1257. struct ieee80211_tx_info *info;
  1258. struct list_head bf_q;
  1259. struct ath_buf *bf_tail = NULL, *bf;
  1260. struct sk_buff_head *tid_q;
  1261. int sent = 0;
  1262. int i;
  1263. INIT_LIST_HEAD(&bf_q);
  1264. for (i = 0; tids && nframes; i++, tids >>= 1) {
  1265. struct ath_atx_tid *tid;
  1266. if (!(tids & 1))
  1267. continue;
  1268. tid = ATH_AN_2_TID(an, i);
  1269. if (tid->paused)
  1270. continue;
  1271. ath_txq_lock(sc, tid->ac->txq);
  1272. while (nframes > 0) {
  1273. bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
  1274. if (!bf)
  1275. break;
  1276. __skb_unlink(bf->bf_mpdu, tid_q);
  1277. list_add_tail(&bf->list, &bf_q);
  1278. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1279. ath_tx_addto_baw(sc, tid, bf);
  1280. bf->bf_state.bf_type &= ~BUF_AGGR;
  1281. if (bf_tail)
  1282. bf_tail->bf_next = bf;
  1283. bf_tail = bf;
  1284. nframes--;
  1285. sent++;
  1286. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1287. if (an->sta && !ath_tid_has_buffered(tid))
  1288. ieee80211_sta_set_buffered(an->sta, i, false);
  1289. }
  1290. ath_txq_unlock_complete(sc, tid->ac->txq);
  1291. }
  1292. if (list_empty(&bf_q))
  1293. return;
  1294. info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
  1295. info->flags |= IEEE80211_TX_STATUS_EOSP;
  1296. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1297. ath_txq_lock(sc, txq);
  1298. ath_tx_fill_desc(sc, bf, txq, 0);
  1299. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1300. ath_txq_unlock(sc, txq);
  1301. }
  1302. /********************/
  1303. /* Queue Management */
  1304. /********************/
  1305. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1306. {
  1307. struct ath_hw *ah = sc->sc_ah;
  1308. struct ath9k_tx_queue_info qi;
  1309. static const int subtype_txq_to_hwq[] = {
  1310. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1311. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1312. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1313. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1314. };
  1315. int axq_qnum, i;
  1316. memset(&qi, 0, sizeof(qi));
  1317. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1318. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1319. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1320. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1321. qi.tqi_physCompBuf = 0;
  1322. /*
  1323. * Enable interrupts only for EOL and DESC conditions.
  1324. * We mark tx descriptors to receive a DESC interrupt
  1325. * when a tx queue gets deep; otherwise waiting for the
  1326. * EOL to reap descriptors. Note that this is done to
  1327. * reduce interrupt load and this only defers reaping
  1328. * descriptors, never transmitting frames. Aside from
  1329. * reducing interrupts this also permits more concurrency.
  1330. * The only potential downside is if the tx queue backs
  1331. * up in which case the top half of the kernel may backup
  1332. * due to a lack of tx descriptors.
  1333. *
  1334. * The UAPSD queue is an exception, since we take a desc-
  1335. * based intr on the EOSP frames.
  1336. */
  1337. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1338. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1339. } else {
  1340. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1341. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1342. else
  1343. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1344. TXQ_FLAG_TXDESCINT_ENABLE;
  1345. }
  1346. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1347. if (axq_qnum == -1) {
  1348. /*
  1349. * NB: don't print a message, this happens
  1350. * normally on parts with too few tx queues
  1351. */
  1352. return NULL;
  1353. }
  1354. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1355. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1356. txq->axq_qnum = axq_qnum;
  1357. txq->mac80211_qnum = -1;
  1358. txq->axq_link = NULL;
  1359. __skb_queue_head_init(&txq->complete_q);
  1360. INIT_LIST_HEAD(&txq->axq_q);
  1361. INIT_LIST_HEAD(&txq->axq_acq);
  1362. spin_lock_init(&txq->axq_lock);
  1363. txq->axq_depth = 0;
  1364. txq->axq_ampdu_depth = 0;
  1365. txq->axq_tx_inprogress = false;
  1366. sc->tx.txqsetup |= 1<<axq_qnum;
  1367. txq->txq_headidx = txq->txq_tailidx = 0;
  1368. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1369. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1370. }
  1371. return &sc->tx.txq[axq_qnum];
  1372. }
  1373. int ath_txq_update(struct ath_softc *sc, int qnum,
  1374. struct ath9k_tx_queue_info *qinfo)
  1375. {
  1376. struct ath_hw *ah = sc->sc_ah;
  1377. int error = 0;
  1378. struct ath9k_tx_queue_info qi;
  1379. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1380. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1381. qi.tqi_aifs = qinfo->tqi_aifs;
  1382. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1383. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1384. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1385. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1386. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1387. ath_err(ath9k_hw_common(sc->sc_ah),
  1388. "Unable to update hardware queue %u!\n", qnum);
  1389. error = -EIO;
  1390. } else {
  1391. ath9k_hw_resettxqueue(ah, qnum);
  1392. }
  1393. return error;
  1394. }
  1395. int ath_cabq_update(struct ath_softc *sc)
  1396. {
  1397. struct ath9k_tx_queue_info qi;
  1398. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1399. int qnum = sc->beacon.cabq->axq_qnum;
  1400. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1401. /*
  1402. * Ensure the readytime % is within the bounds.
  1403. */
  1404. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1405. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1406. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1407. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1408. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1409. sc->config.cabqReadytime) / 100;
  1410. ath_txq_update(sc, qnum, &qi);
  1411. return 0;
  1412. }
  1413. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1414. struct list_head *list)
  1415. {
  1416. struct ath_buf *bf, *lastbf;
  1417. struct list_head bf_head;
  1418. struct ath_tx_status ts;
  1419. memset(&ts, 0, sizeof(ts));
  1420. ts.ts_status = ATH9K_TX_FLUSH;
  1421. INIT_LIST_HEAD(&bf_head);
  1422. while (!list_empty(list)) {
  1423. bf = list_first_entry(list, struct ath_buf, list);
  1424. if (bf->bf_stale) {
  1425. list_del(&bf->list);
  1426. ath_tx_return_buffer(sc, bf);
  1427. continue;
  1428. }
  1429. lastbf = bf->bf_lastbf;
  1430. list_cut_position(&bf_head, list, &lastbf->list);
  1431. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1432. }
  1433. }
  1434. /*
  1435. * Drain a given TX queue (could be Beacon or Data)
  1436. *
  1437. * This assumes output has been stopped and
  1438. * we do not need to block ath_tx_tasklet.
  1439. */
  1440. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1441. {
  1442. ath_txq_lock(sc, txq);
  1443. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1444. int idx = txq->txq_tailidx;
  1445. while (!list_empty(&txq->txq_fifo[idx])) {
  1446. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1447. INCR(idx, ATH_TXFIFO_DEPTH);
  1448. }
  1449. txq->txq_tailidx = idx;
  1450. }
  1451. txq->axq_link = NULL;
  1452. txq->axq_tx_inprogress = false;
  1453. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1454. ath_txq_unlock_complete(sc, txq);
  1455. }
  1456. bool ath_drain_all_txq(struct ath_softc *sc)
  1457. {
  1458. struct ath_hw *ah = sc->sc_ah;
  1459. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1460. struct ath_txq *txq;
  1461. int i;
  1462. u32 npend = 0;
  1463. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1464. return true;
  1465. ath9k_hw_abort_tx_dma(ah);
  1466. /* Check if any queue remains active */
  1467. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1468. if (!ATH_TXQ_SETUP(sc, i))
  1469. continue;
  1470. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1471. npend |= BIT(i);
  1472. }
  1473. if (npend)
  1474. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1475. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1476. if (!ATH_TXQ_SETUP(sc, i))
  1477. continue;
  1478. /*
  1479. * The caller will resume queues with ieee80211_wake_queues.
  1480. * Mark the queue as not stopped to prevent ath_tx_complete
  1481. * from waking the queue too early.
  1482. */
  1483. txq = &sc->tx.txq[i];
  1484. txq->stopped = false;
  1485. ath_draintxq(sc, txq);
  1486. }
  1487. return !npend;
  1488. }
  1489. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1490. {
  1491. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1492. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1493. }
  1494. /* For each axq_acq entry, for each tid, try to schedule packets
  1495. * for transmit until ampdu_depth has reached min Q depth.
  1496. */
  1497. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1498. {
  1499. struct ath_atx_ac *ac, *last_ac;
  1500. struct ath_atx_tid *tid, *last_tid;
  1501. bool sent = false;
  1502. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1503. list_empty(&txq->axq_acq))
  1504. return;
  1505. rcu_read_lock();
  1506. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1507. while (!list_empty(&txq->axq_acq)) {
  1508. bool stop = false;
  1509. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1510. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1511. list_del(&ac->list);
  1512. ac->sched = false;
  1513. while (!list_empty(&ac->tid_q)) {
  1514. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1515. list);
  1516. list_del(&tid->list);
  1517. tid->sched = false;
  1518. if (tid->paused)
  1519. continue;
  1520. if (ath_tx_sched_aggr(sc, txq, tid, &stop))
  1521. sent = true;
  1522. /*
  1523. * add tid to round-robin queue if more frames
  1524. * are pending for the tid
  1525. */
  1526. if (ath_tid_has_buffered(tid))
  1527. ath_tx_queue_tid(txq, tid);
  1528. if (stop || tid == last_tid)
  1529. break;
  1530. }
  1531. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1532. ac->sched = true;
  1533. list_add_tail(&ac->list, &txq->axq_acq);
  1534. }
  1535. if (stop)
  1536. break;
  1537. if (ac == last_ac) {
  1538. if (!sent)
  1539. break;
  1540. sent = false;
  1541. last_ac = list_entry(txq->axq_acq.prev,
  1542. struct ath_atx_ac, list);
  1543. }
  1544. }
  1545. rcu_read_unlock();
  1546. }
  1547. /***********/
  1548. /* TX, DMA */
  1549. /***********/
  1550. /*
  1551. * Insert a chain of ath_buf (descriptors) on a txq and
  1552. * assume the descriptors are already chained together by caller.
  1553. */
  1554. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1555. struct list_head *head, bool internal)
  1556. {
  1557. struct ath_hw *ah = sc->sc_ah;
  1558. struct ath_common *common = ath9k_hw_common(ah);
  1559. struct ath_buf *bf, *bf_last;
  1560. bool puttxbuf = false;
  1561. bool edma;
  1562. /*
  1563. * Insert the frame on the outbound list and
  1564. * pass it on to the hardware.
  1565. */
  1566. if (list_empty(head))
  1567. return;
  1568. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1569. bf = list_first_entry(head, struct ath_buf, list);
  1570. bf_last = list_entry(head->prev, struct ath_buf, list);
  1571. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1572. txq->axq_qnum, txq->axq_depth);
  1573. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1574. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1575. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1576. puttxbuf = true;
  1577. } else {
  1578. list_splice_tail_init(head, &txq->axq_q);
  1579. if (txq->axq_link) {
  1580. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1581. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1582. txq->axq_qnum, txq->axq_link,
  1583. ito64(bf->bf_daddr), bf->bf_desc);
  1584. } else if (!edma)
  1585. puttxbuf = true;
  1586. txq->axq_link = bf_last->bf_desc;
  1587. }
  1588. if (puttxbuf) {
  1589. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1590. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1591. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1592. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1593. }
  1594. if (!edma) {
  1595. TX_STAT_INC(txq->axq_qnum, txstart);
  1596. ath9k_hw_txstart(ah, txq->axq_qnum);
  1597. }
  1598. if (!internal) {
  1599. while (bf) {
  1600. txq->axq_depth++;
  1601. if (bf_is_ampdu_not_probing(bf))
  1602. txq->axq_ampdu_depth++;
  1603. bf = bf->bf_lastbf->bf_next;
  1604. }
  1605. }
  1606. }
  1607. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1608. struct ath_atx_tid *tid, struct sk_buff *skb)
  1609. {
  1610. struct ath_frame_info *fi = get_frame_info(skb);
  1611. struct list_head bf_head;
  1612. struct ath_buf *bf;
  1613. bf = fi->bf;
  1614. INIT_LIST_HEAD(&bf_head);
  1615. list_add_tail(&bf->list, &bf_head);
  1616. bf->bf_state.bf_type = 0;
  1617. bf->bf_next = NULL;
  1618. bf->bf_lastbf = bf;
  1619. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1620. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1621. TX_STAT_INC(txq->axq_qnum, queued);
  1622. }
  1623. static void setup_frame_info(struct ieee80211_hw *hw,
  1624. struct ieee80211_sta *sta,
  1625. struct sk_buff *skb,
  1626. int framelen)
  1627. {
  1628. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1629. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1630. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1631. const struct ieee80211_rate *rate;
  1632. struct ath_frame_info *fi = get_frame_info(skb);
  1633. struct ath_node *an = NULL;
  1634. enum ath9k_key_type keytype;
  1635. bool short_preamble = false;
  1636. /*
  1637. * We check if Short Preamble is needed for the CTS rate by
  1638. * checking the BSS's global flag.
  1639. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1640. */
  1641. if (tx_info->control.vif &&
  1642. tx_info->control.vif->bss_conf.use_short_preamble)
  1643. short_preamble = true;
  1644. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1645. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1646. if (sta)
  1647. an = (struct ath_node *) sta->drv_priv;
  1648. memset(fi, 0, sizeof(*fi));
  1649. if (hw_key)
  1650. fi->keyix = hw_key->hw_key_idx;
  1651. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1652. fi->keyix = an->ps_key;
  1653. else
  1654. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1655. fi->keytype = keytype;
  1656. fi->framelen = framelen;
  1657. fi->rtscts_rate = rate->hw_value;
  1658. if (short_preamble)
  1659. fi->rtscts_rate |= rate->hw_value_short;
  1660. }
  1661. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1662. {
  1663. struct ath_hw *ah = sc->sc_ah;
  1664. struct ath9k_channel *curchan = ah->curchan;
  1665. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1666. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1667. (chainmask == 0x7) && (rate < 0x90))
  1668. return 0x3;
  1669. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1670. IS_CCK_RATE(rate))
  1671. return 0x2;
  1672. else
  1673. return chainmask;
  1674. }
  1675. /*
  1676. * Assign a descriptor (and sequence number if necessary,
  1677. * and map buffer for DMA. Frees skb on error
  1678. */
  1679. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1680. struct ath_txq *txq,
  1681. struct ath_atx_tid *tid,
  1682. struct sk_buff *skb)
  1683. {
  1684. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1685. struct ath_frame_info *fi = get_frame_info(skb);
  1686. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1687. struct ath_buf *bf;
  1688. int fragno;
  1689. u16 seqno;
  1690. bf = ath_tx_get_buffer(sc);
  1691. if (!bf) {
  1692. ath_dbg(common, XMIT, "TX buffers are full\n");
  1693. return NULL;
  1694. }
  1695. ATH_TXBUF_RESET(bf);
  1696. if (tid) {
  1697. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1698. seqno = tid->seq_next;
  1699. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1700. if (fragno)
  1701. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1702. if (!ieee80211_has_morefrags(hdr->frame_control))
  1703. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1704. bf->bf_state.seqno = seqno;
  1705. }
  1706. bf->bf_mpdu = skb;
  1707. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1708. skb->len, DMA_TO_DEVICE);
  1709. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1710. bf->bf_mpdu = NULL;
  1711. bf->bf_buf_addr = 0;
  1712. ath_err(ath9k_hw_common(sc->sc_ah),
  1713. "dma_mapping_error() on TX\n");
  1714. ath_tx_return_buffer(sc, bf);
  1715. return NULL;
  1716. }
  1717. fi->bf = bf;
  1718. return bf;
  1719. }
  1720. static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
  1721. struct ath_tx_control *txctl)
  1722. {
  1723. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1724. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1725. struct ieee80211_sta *sta = txctl->sta;
  1726. struct ieee80211_vif *vif = info->control.vif;
  1727. struct ath_vif *avp;
  1728. struct ath_softc *sc = hw->priv;
  1729. int frmlen = skb->len + FCS_LEN;
  1730. int padpos, padsize;
  1731. /* NOTE: sta can be NULL according to net/mac80211.h */
  1732. if (sta)
  1733. txctl->an = (struct ath_node *)sta->drv_priv;
  1734. else if (vif && ieee80211_is_data(hdr->frame_control)) {
  1735. avp = (void *)vif->drv_priv;
  1736. txctl->an = &avp->mcast_node;
  1737. }
  1738. if (info->control.hw_key)
  1739. frmlen += info->control.hw_key->icv_len;
  1740. /*
  1741. * As a temporary workaround, assign seq# here; this will likely need
  1742. * to be cleaned up to work better with Beacon transmission and virtual
  1743. * BSSes.
  1744. */
  1745. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1746. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1747. sc->tx.seq_no += 0x10;
  1748. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1749. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1750. }
  1751. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1752. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1753. !ieee80211_is_data(hdr->frame_control))
  1754. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1755. /* Add the padding after the header if this is not already done */
  1756. padpos = ieee80211_hdrlen(hdr->frame_control);
  1757. padsize = padpos & 3;
  1758. if (padsize && skb->len > padpos) {
  1759. if (skb_headroom(skb) < padsize)
  1760. return -ENOMEM;
  1761. skb_push(skb, padsize);
  1762. memmove(skb->data, skb->data + padsize, padpos);
  1763. }
  1764. setup_frame_info(hw, sta, skb, frmlen);
  1765. return 0;
  1766. }
  1767. /* Upon failure caller should free skb */
  1768. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1769. struct ath_tx_control *txctl)
  1770. {
  1771. struct ieee80211_hdr *hdr;
  1772. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1773. struct ieee80211_sta *sta = txctl->sta;
  1774. struct ieee80211_vif *vif = info->control.vif;
  1775. struct ath_softc *sc = hw->priv;
  1776. struct ath_txq *txq = txctl->txq;
  1777. struct ath_atx_tid *tid = NULL;
  1778. struct ath_buf *bf;
  1779. int q;
  1780. int ret;
  1781. ret = ath_tx_prepare(hw, skb, txctl);
  1782. if (ret)
  1783. return ret;
  1784. hdr = (struct ieee80211_hdr *) skb->data;
  1785. /*
  1786. * At this point, the vif, hw_key and sta pointers in the tx control
  1787. * info are no longer valid (overwritten by the ath_frame_info data.
  1788. */
  1789. q = skb_get_queue_mapping(skb);
  1790. ath_txq_lock(sc, txq);
  1791. if (txq == sc->tx.txq_map[q] &&
  1792. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1793. !txq->stopped) {
  1794. ieee80211_stop_queue(sc->hw, q);
  1795. txq->stopped = true;
  1796. }
  1797. if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
  1798. ath_txq_unlock(sc, txq);
  1799. txq = sc->tx.uapsdq;
  1800. ath_txq_lock(sc, txq);
  1801. } else if (txctl->an &&
  1802. ieee80211_is_data_present(hdr->frame_control)) {
  1803. tid = ath_get_skb_tid(sc, txctl->an, skb);
  1804. WARN_ON(tid->ac->txq != txctl->txq);
  1805. if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  1806. tid->ac->clear_ps_filter = true;
  1807. /*
  1808. * Add this frame to software queue for scheduling later
  1809. * for aggregation.
  1810. */
  1811. TX_STAT_INC(txq->axq_qnum, a_queued_sw);
  1812. __skb_queue_tail(&tid->buf_q, skb);
  1813. if (!txctl->an->sleeping)
  1814. ath_tx_queue_tid(txq, tid);
  1815. ath_txq_schedule(sc, txq);
  1816. goto out;
  1817. }
  1818. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1819. if (!bf) {
  1820. ath_txq_skb_done(sc, txq, skb);
  1821. if (txctl->paprd)
  1822. dev_kfree_skb_any(skb);
  1823. else
  1824. ieee80211_free_txskb(sc->hw, skb);
  1825. goto out;
  1826. }
  1827. bf->bf_state.bfs_paprd = txctl->paprd;
  1828. if (txctl->paprd)
  1829. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1830. ath_set_rates(vif, sta, bf);
  1831. ath_tx_send_normal(sc, txq, tid, skb);
  1832. out:
  1833. ath_txq_unlock(sc, txq);
  1834. return 0;
  1835. }
  1836. void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
  1837. struct sk_buff *skb)
  1838. {
  1839. struct ath_softc *sc = hw->priv;
  1840. struct ath_tx_control txctl = {
  1841. .txq = sc->beacon.cabq
  1842. };
  1843. struct ath_tx_info info = {};
  1844. struct ieee80211_hdr *hdr;
  1845. struct ath_buf *bf_tail = NULL;
  1846. struct ath_buf *bf;
  1847. LIST_HEAD(bf_q);
  1848. int duration = 0;
  1849. int max_duration;
  1850. max_duration =
  1851. sc->cur_beacon_conf.beacon_interval * 1000 *
  1852. sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
  1853. do {
  1854. struct ath_frame_info *fi = get_frame_info(skb);
  1855. if (ath_tx_prepare(hw, skb, &txctl))
  1856. break;
  1857. bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
  1858. if (!bf)
  1859. break;
  1860. bf->bf_lastbf = bf;
  1861. ath_set_rates(vif, NULL, bf);
  1862. ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
  1863. duration += info.rates[0].PktDuration;
  1864. if (bf_tail)
  1865. bf_tail->bf_next = bf;
  1866. list_add_tail(&bf->list, &bf_q);
  1867. bf_tail = bf;
  1868. skb = NULL;
  1869. if (duration > max_duration)
  1870. break;
  1871. skb = ieee80211_get_buffered_bc(hw, vif);
  1872. } while(skb);
  1873. if (skb)
  1874. ieee80211_free_txskb(hw, skb);
  1875. if (list_empty(&bf_q))
  1876. return;
  1877. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1878. hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
  1879. if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
  1880. hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
  1881. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  1882. sizeof(*hdr), DMA_TO_DEVICE);
  1883. }
  1884. ath_txq_lock(sc, txctl.txq);
  1885. ath_tx_fill_desc(sc, bf, txctl.txq, 0);
  1886. ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
  1887. TX_STAT_INC(txctl.txq->axq_qnum, queued);
  1888. ath_txq_unlock(sc, txctl.txq);
  1889. }
  1890. /*****************/
  1891. /* TX Completion */
  1892. /*****************/
  1893. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1894. int tx_flags, struct ath_txq *txq)
  1895. {
  1896. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1897. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1898. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1899. int padpos, padsize;
  1900. unsigned long flags;
  1901. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1902. if (sc->sc_ah->caldata)
  1903. sc->sc_ah->caldata->paprd_packet_sent = true;
  1904. if (!(tx_flags & ATH_TX_ERROR))
  1905. /* Frame was ACKed */
  1906. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1907. padpos = ieee80211_hdrlen(hdr->frame_control);
  1908. padsize = padpos & 3;
  1909. if (padsize && skb->len>padpos+padsize) {
  1910. /*
  1911. * Remove MAC header padding before giving the frame back to
  1912. * mac80211.
  1913. */
  1914. memmove(skb->data + padsize, skb->data, padpos);
  1915. skb_pull(skb, padsize);
  1916. }
  1917. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1918. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1919. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1920. ath_dbg(common, PS,
  1921. "Going back to sleep after having received TX status (0x%lx)\n",
  1922. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1923. PS_WAIT_FOR_CAB |
  1924. PS_WAIT_FOR_PSPOLL_DATA |
  1925. PS_WAIT_FOR_TX_ACK));
  1926. }
  1927. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1928. __skb_queue_tail(&txq->complete_q, skb);
  1929. ath_txq_skb_done(sc, txq, skb);
  1930. }
  1931. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1932. struct ath_txq *txq, struct list_head *bf_q,
  1933. struct ath_tx_status *ts, int txok)
  1934. {
  1935. struct sk_buff *skb = bf->bf_mpdu;
  1936. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1937. unsigned long flags;
  1938. int tx_flags = 0;
  1939. if (!txok)
  1940. tx_flags |= ATH_TX_ERROR;
  1941. if (ts->ts_status & ATH9K_TXERR_FILT)
  1942. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1943. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1944. bf->bf_buf_addr = 0;
  1945. if (bf->bf_state.bfs_paprd) {
  1946. if (time_after(jiffies,
  1947. bf->bf_state.bfs_paprd_timestamp +
  1948. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1949. dev_kfree_skb_any(skb);
  1950. else
  1951. complete(&sc->paprd_complete);
  1952. } else {
  1953. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1954. ath_tx_complete(sc, skb, tx_flags, txq);
  1955. }
  1956. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1957. * accidentally reference it later.
  1958. */
  1959. bf->bf_mpdu = NULL;
  1960. /*
  1961. * Return the list of ath_buf of this mpdu to free queue
  1962. */
  1963. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1964. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1965. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1966. }
  1967. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1968. struct ath_tx_status *ts, int nframes, int nbad,
  1969. int txok)
  1970. {
  1971. struct sk_buff *skb = bf->bf_mpdu;
  1972. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1973. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1974. struct ieee80211_hw *hw = sc->hw;
  1975. struct ath_hw *ah = sc->sc_ah;
  1976. u8 i, tx_rateindex;
  1977. if (txok)
  1978. tx_info->status.ack_signal = ts->ts_rssi;
  1979. tx_rateindex = ts->ts_rateindex;
  1980. WARN_ON(tx_rateindex >= hw->max_rates);
  1981. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1982. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1983. BUG_ON(nbad > nframes);
  1984. }
  1985. tx_info->status.ampdu_len = nframes;
  1986. tx_info->status.ampdu_ack_len = nframes - nbad;
  1987. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1988. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1989. /*
  1990. * If an underrun error is seen assume it as an excessive
  1991. * retry only if max frame trigger level has been reached
  1992. * (2 KB for single stream, and 4 KB for dual stream).
  1993. * Adjust the long retry as if the frame was tried
  1994. * hw->max_rate_tries times to affect how rate control updates
  1995. * PER for the failed rate.
  1996. * In case of congestion on the bus penalizing this type of
  1997. * underruns should help hardware actually transmit new frames
  1998. * successfully by eventually preferring slower rates.
  1999. * This itself should also alleviate congestion on the bus.
  2000. */
  2001. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  2002. ATH9K_TX_DELIM_UNDERRUN)) &&
  2003. ieee80211_is_data(hdr->frame_control) &&
  2004. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  2005. tx_info->status.rates[tx_rateindex].count =
  2006. hw->max_rate_tries;
  2007. }
  2008. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  2009. tx_info->status.rates[i].count = 0;
  2010. tx_info->status.rates[i].idx = -1;
  2011. }
  2012. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  2013. }
  2014. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  2015. {
  2016. struct ath_hw *ah = sc->sc_ah;
  2017. struct ath_common *common = ath9k_hw_common(ah);
  2018. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  2019. struct list_head bf_head;
  2020. struct ath_desc *ds;
  2021. struct ath_tx_status ts;
  2022. int status;
  2023. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  2024. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  2025. txq->axq_link);
  2026. ath_txq_lock(sc, txq);
  2027. for (;;) {
  2028. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2029. break;
  2030. if (list_empty(&txq->axq_q)) {
  2031. txq->axq_link = NULL;
  2032. ath_txq_schedule(sc, txq);
  2033. break;
  2034. }
  2035. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  2036. /*
  2037. * There is a race condition that a BH gets scheduled
  2038. * after sw writes TxE and before hw re-load the last
  2039. * descriptor to get the newly chained one.
  2040. * Software must keep the last DONE descriptor as a
  2041. * holding descriptor - software does so by marking
  2042. * it with the STALE flag.
  2043. */
  2044. bf_held = NULL;
  2045. if (bf->bf_stale) {
  2046. bf_held = bf;
  2047. if (list_is_last(&bf_held->list, &txq->axq_q))
  2048. break;
  2049. bf = list_entry(bf_held->list.next, struct ath_buf,
  2050. list);
  2051. }
  2052. lastbf = bf->bf_lastbf;
  2053. ds = lastbf->bf_desc;
  2054. memset(&ts, 0, sizeof(ts));
  2055. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  2056. if (status == -EINPROGRESS)
  2057. break;
  2058. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2059. /*
  2060. * Remove ath_buf's of the same transmit unit from txq,
  2061. * however leave the last descriptor back as the holding
  2062. * descriptor for hw.
  2063. */
  2064. lastbf->bf_stale = true;
  2065. INIT_LIST_HEAD(&bf_head);
  2066. if (!list_is_singular(&lastbf->list))
  2067. list_cut_position(&bf_head,
  2068. &txq->axq_q, lastbf->list.prev);
  2069. if (bf_held) {
  2070. list_del(&bf_held->list);
  2071. ath_tx_return_buffer(sc, bf_held);
  2072. }
  2073. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2074. }
  2075. ath_txq_unlock_complete(sc, txq);
  2076. }
  2077. void ath_tx_tasklet(struct ath_softc *sc)
  2078. {
  2079. struct ath_hw *ah = sc->sc_ah;
  2080. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  2081. int i;
  2082. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2083. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  2084. ath_tx_processq(sc, &sc->tx.txq[i]);
  2085. }
  2086. }
  2087. void ath_tx_edma_tasklet(struct ath_softc *sc)
  2088. {
  2089. struct ath_tx_status ts;
  2090. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2091. struct ath_hw *ah = sc->sc_ah;
  2092. struct ath_txq *txq;
  2093. struct ath_buf *bf, *lastbf;
  2094. struct list_head bf_head;
  2095. struct list_head *fifo_list;
  2096. int status;
  2097. for (;;) {
  2098. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2099. break;
  2100. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  2101. if (status == -EINPROGRESS)
  2102. break;
  2103. if (status == -EIO) {
  2104. ath_dbg(common, XMIT, "Error processing tx status\n");
  2105. break;
  2106. }
  2107. /* Process beacon completions separately */
  2108. if (ts.qid == sc->beacon.beaconq) {
  2109. sc->beacon.tx_processed = true;
  2110. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  2111. continue;
  2112. }
  2113. txq = &sc->tx.txq[ts.qid];
  2114. ath_txq_lock(sc, txq);
  2115. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2116. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  2117. if (list_empty(fifo_list)) {
  2118. ath_txq_unlock(sc, txq);
  2119. return;
  2120. }
  2121. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2122. if (bf->bf_stale) {
  2123. list_del(&bf->list);
  2124. ath_tx_return_buffer(sc, bf);
  2125. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2126. }
  2127. lastbf = bf->bf_lastbf;
  2128. INIT_LIST_HEAD(&bf_head);
  2129. if (list_is_last(&lastbf->list, fifo_list)) {
  2130. list_splice_tail_init(fifo_list, &bf_head);
  2131. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  2132. if (!list_empty(&txq->axq_q)) {
  2133. struct list_head bf_q;
  2134. INIT_LIST_HEAD(&bf_q);
  2135. txq->axq_link = NULL;
  2136. list_splice_tail_init(&txq->axq_q, &bf_q);
  2137. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  2138. }
  2139. } else {
  2140. lastbf->bf_stale = true;
  2141. if (bf != lastbf)
  2142. list_cut_position(&bf_head, fifo_list,
  2143. lastbf->list.prev);
  2144. }
  2145. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2146. ath_txq_unlock_complete(sc, txq);
  2147. }
  2148. }
  2149. /*****************/
  2150. /* Init, Cleanup */
  2151. /*****************/
  2152. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  2153. {
  2154. struct ath_descdma *dd = &sc->txsdma;
  2155. u8 txs_len = sc->sc_ah->caps.txs_len;
  2156. dd->dd_desc_len = size * txs_len;
  2157. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  2158. &dd->dd_desc_paddr, GFP_KERNEL);
  2159. if (!dd->dd_desc)
  2160. return -ENOMEM;
  2161. return 0;
  2162. }
  2163. static int ath_tx_edma_init(struct ath_softc *sc)
  2164. {
  2165. int err;
  2166. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  2167. if (!err)
  2168. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  2169. sc->txsdma.dd_desc_paddr,
  2170. ATH_TXSTATUS_RING_SIZE);
  2171. return err;
  2172. }
  2173. int ath_tx_init(struct ath_softc *sc, int nbufs)
  2174. {
  2175. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2176. int error = 0;
  2177. spin_lock_init(&sc->tx.txbuflock);
  2178. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  2179. "tx", nbufs, 1, 1);
  2180. if (error != 0) {
  2181. ath_err(common,
  2182. "Failed to allocate tx descriptors: %d\n", error);
  2183. return error;
  2184. }
  2185. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  2186. "beacon", ATH_BCBUF, 1, 1);
  2187. if (error != 0) {
  2188. ath_err(common,
  2189. "Failed to allocate beacon descriptors: %d\n", error);
  2190. return error;
  2191. }
  2192. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  2193. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  2194. error = ath_tx_edma_init(sc);
  2195. return error;
  2196. }
  2197. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  2198. {
  2199. struct ath_atx_tid *tid;
  2200. struct ath_atx_ac *ac;
  2201. int tidno, acno;
  2202. for (tidno = 0, tid = &an->tid[tidno];
  2203. tidno < IEEE80211_NUM_TIDS;
  2204. tidno++, tid++) {
  2205. tid->an = an;
  2206. tid->tidno = tidno;
  2207. tid->seq_start = tid->seq_next = 0;
  2208. tid->baw_size = WME_MAX_BA;
  2209. tid->baw_head = tid->baw_tail = 0;
  2210. tid->sched = false;
  2211. tid->paused = false;
  2212. tid->active = false;
  2213. __skb_queue_head_init(&tid->buf_q);
  2214. __skb_queue_head_init(&tid->retry_q);
  2215. acno = TID_TO_WME_AC(tidno);
  2216. tid->ac = &an->ac[acno];
  2217. }
  2218. for (acno = 0, ac = &an->ac[acno];
  2219. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  2220. ac->sched = false;
  2221. ac->clear_ps_filter = true;
  2222. ac->txq = sc->tx.txq_map[acno];
  2223. INIT_LIST_HEAD(&ac->tid_q);
  2224. }
  2225. }
  2226. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2227. {
  2228. struct ath_atx_ac *ac;
  2229. struct ath_atx_tid *tid;
  2230. struct ath_txq *txq;
  2231. int tidno;
  2232. for (tidno = 0, tid = &an->tid[tidno];
  2233. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  2234. ac = tid->ac;
  2235. txq = ac->txq;
  2236. ath_txq_lock(sc, txq);
  2237. if (tid->sched) {
  2238. list_del(&tid->list);
  2239. tid->sched = false;
  2240. }
  2241. if (ac->sched) {
  2242. list_del(&ac->list);
  2243. tid->ac->sched = false;
  2244. }
  2245. ath_tid_drain(sc, txq, tid);
  2246. tid->active = false;
  2247. ath_txq_unlock(sc, txq);
  2248. }
  2249. }